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Abstract

Clinical notes contain vital patient informa-
tion organized into sections such as "History of
Present Illness" and "Medications". Recogniz-
ing these sections supports clinical decision-
making, yet most existing segmentation ap-
proaches rely on supervised models trained
on large public corpora (e.g., MIMIC-III),
which may not generalize effectively to spe-
cialized domains such as obstetrics. In this
paper, we advance clinical section segmenta-
tion through three key contributions: (1) we
introduce a novel, de-identified dataset of ob-
stetrics clinical notes; (2) we systematically
evaluate transformer-based supervised models
on both in-domain (MIMIC-III) and out-of-
domain (obstetrics) data; and (3) we present the
first head-to-head comparison with zero-shot
large language models (Llama, Mistral, and
Qwen). Our results show that while supervised
models significantly outperform large language
models (LLMs) on in-domain MIMIC-III data,
their performance degrades substantially in the
out-of-domain setting—where the best zero-
shot LLM (Llama 3.3-70B-Instruct) surpasses
all supervised baselines, even before applying
our hallucination correction step. Once hal-
lucinated section headers are corrected, zero-
shot performance improves further, with three
out of four LLMs outperforming the best su-
pervised model, demonstrating the viability of
zero-shot models for specialized clinical do-
mains. These findings underscore the challenge
of transferring models trained on broad public
corpora to underexplored clinical subdomains
and highlight the strong potential of zero-shot
approaches when labeled data is scarce.

1 Introduction

Electronic Health Records (EHRs) are widely used
in modern healthcare to provide detailed records of
patient encounters and their interactions within the
healthcare system (Holmes et al., 2021). EHR data
often contain free text clinical notes, which are typ-

ically organized into sections such as "Chief Com-
plaint" and "History of Present Illness". Accurately
identifying these sections is crucial for downstream
natural language processing (NLP) tasks, including
entity extraction, information retrieval, and word
sense disambiguation (Denny et al., 2008). How-
ever, clinical documentation is highly variable and
often lacks standardized formatting. For example,
the section “Social History” can appear as “Social
HXx” or contain typographical errors like “Chief
Complain” instead of “Chief Complaint” (Ganesan
and Subotin, 2014). Such inconsistencies compli-
cate rule-based solutions and motivate more robust
machine-learning and deep-learning approaches.

Although transformer-based models trained on
large public corpora (e.g., MIMIC-III (Johnson
et al., 2016)) have shown promise for section seg-
mentation, their domain adaptation capabilities re-
main uncertain. In particular, obstetrics represents
a specialized clinical subdomain with unique docu-
mentation styles and limited annotated data. This
variability is evident in how physician counseling
information is structured, where the same content
may be documented under diverse section headers
such as "Impression and Plan", "Assessment and
Plan", "Assessment", or even abbreviated formats
like "A/P", "A&P" and "A: P:". For instance, in
one of our obstetrics notes, the counseling section
appears under an abbreviated heading, as shown in
Figure 1.

Such variability often introduces out-of-
vocabulary or unseen section headers that can
significantly hinder deep learning approaches
trained on more standardized data. Recent research
suggests that LLMs can handle out-of-domain
tasks through zero-shot or few-shot prompting,
but it is unclear how they fare against traditional
supervised methods in specialized domains.

To address these gaps, we make the following
key contributions:



alp:

"This is 28 y/o G6P4013 presents for repeat cesarean delivery and bi-
lateral tuba ligation. admit to labor and delivery cbc, type and screen
iv fluids consented for repeat cesarean delivery, possible hysterectomy,
possible blood transfusion, and bilateral tubal ligation. Hgb 11.1 patient
alst ate at 2100on <DATE> discussed with the team <NAME> MD Ob-
stetrics and Gynecology Resident Attending note I saw patient prior to
scheduled repeat c/section this morning, reviewed cerner and counseled
patient r/b/a. Patient with history of prior ¢/s x 1 here for RCD and BTL.
Labs this morning includes Hgb 11.1, plat 207, bl gp O+ve. Singlton
cephalic, posterior placenta. Writtent consent obtained, will proceed
when OR is ready. Patient voiced understanding of the plan. <NAME>,
MD"

Figure 1: Counseling section from a sample obstet-
rics note (includes typographical errors).

1. A Novel Obstetrics Dataset: We introduce
a de-identified dataset of 100 History & Phys-
ical (H&P) obstetrics notes, annotated in col-
laboration with a domain expert. This dataset
provides a new and realistic benchmark for
investigating section segmentation in underex-
plored clinical subdomains.

2. Domain-Specific Evaluation of Supervised
Models: We assess whether transformer-
based supervised models —originally trained
on public datasets— can effectively general-
ize to obstetrics notes. By comparing them
on both in-domain (MedSecld (Landes et al.,
2022)) and out-of-domain (Obstetrics) data,
we highlight the difficulties in transferring
knowledge across clinical sub-specialties.

3. Systematic Comparison With Zero-Shot
LLMs: We present the first head-to-head
comparison of supervised transformer models
and zero-shot LLMs (i.e., Llama, Mistral and
Qwen) for clinical section segmentation. Our
experiments reveal challenges (e.g., halluci-
nated section headers) as well as the poten-
tial benefits of zero-shot strategies, especially
when annotated data are scarce.

The paper is organized as follows: we discuss
related work in Sec. 2, our datasets in Sec. 3, and
our proposed approaches in Sec. 4. We present our
experimental results in Sec. 5, and conclude with
future directions (Sec. 6) and limitations (Sec. 7).

2 Related Work

Before the emergence of advanced machine learn-
ing and NLP techniques, early approaches to clini-
cal section segmentation primarily relied on rule-
based methods. Denny et al. (2008), for instance,
extracted candidate section header strings from a
large corpus of "history and physical" (H&P) notes

through pattern-based matching (e.g., detecting
strings that end with punctuation or follow cer-
tain capitalization patterns). These candidates were
then refined in collaboration with clinicians to build
a terminology of section headers. However, purely
rule-based methods tend to be inflexible and often
fail to handle unexpected variations in unstructured,
non-standardized text, which constitutes approxi-
mately 80% of the content in Electronic Health
Records (EHR)(Kong, 2019).

To overcome the limitations of rule-based ap-
proaches, researchers proposed machine learning-
based solutions for section segmentation, often
framing it as a sequence-labeling task. Li et al.
(2010) trained a Hidden Markov Model (HMM)
on a clinical corpus to segment 15 predefined sec-
tion types. Ganesan and Subotin (2014) employed
an L1-regularized multi-class Logistic Regression
model to classify each line of a clinical note into
one of five roles—start header, continue header,
start section, continue section, or footer—and then
used the Viterbi algorithm (Forney, 1973) to deter-
mine the most probable sequence of labels.

More recent work has been grounded in
transformer-based architectures. Zhang et al.
(2022) presented a multi-task transformer model
that simultaneously identifies section boundaries
and assigns medically relevant labels. Saleh et al.
(2024) leveraged BioClinical BERT embeddings
(Alsentzer et al., 2019) and framed section title
and subtitle detection as a named entity recog-
nition (NER) task. While not fully transformer-
based, Landes et al. (2022) incorporated BERT em-
beddings as sentence-level representations, which
were then processed using a BILSTM model for
sequence modeling and further refined with a Con-
ditional Random Field (CRF) layer to enforce struc-
tured predictions across section boundaries.

Most of this research relies on large publicly
available datasets such as MIMIC-III. Since pro-
ducing high-quality annotated data is very resource-
intensive, recent work has explored large lan-
guage models (LLMs) for clinical section seg-
mentation in zero-shot settings. Zhou and Miller
(2024) evaluated several LLMs, both zero-shot
and fine-tuned, across multiple corpora to assess
their section-segmentation effectiveness; but these
LLMs were still tested on common public datasets
(e.g., MIMIC-III and i2b2 (Ozlem Uzuner et al.,
2011)) rather than more specialized clinical do-
mains, such as obstetrics.

Hence, it remains unclear how well these ap-



proaches generalize to specialized and underuti-
lized domains like obstetrics. Moreover, exist-
ing comparative studies often evaluate supervised
methods solely against each other or LLM-based
methods solely against each other, leaving a gap in
cross-method comparisons in specialized settings.

In this paper, we address this gap by introducing
a small yet informative dataset of obstetrics-related
H&P narratives. We propose both supervised and
zero-shot approaches for clinical section segmen-
tation, and then evaluate their performance against
each other on our newly collected dataset as well
as on publicly available annotated corpora. This
comprehensive evaluation sheds new light on how
different models perform in a specialized medical
domain.

3 Data

We utilize the publicly available MedSecld corpus
introduced by Landes et al. (2022) to train and eval-
uate our models. MedSecld comprises 2,002 fully
annotated clinical notes from MIMIC-III, specif-
ically designed for clinical section segmentation.
Additionally, we introduce a novel, de-identified
dataset of 100 History & Physical (H&P) notes
from 50 vaginal birth after cesarean (VBAC) and
50 repeat cesarean section (RCS) patients to evalu-
ate model performance in obstetrics, an underrep-
resented clinical domain.

MedSecld spans five note types—Discharge
summary (1,254), Physician (288), Radiology
(205), Echo (198) and Consult (57)—and seg-
ments each note into 50 section categories, plus
a "<none>" label for text outside of any predefined
section (Landes et al., 2022). To prepare the dataset,
we first extracted section spans from MedSecld and
split each note into section segments. Next, we to-
kenized the context of each section into lists of
sentences using the NLTK sentence tokenizer (Bird
et al., 2009), ensuring each sentence was correctly
assigned to its respective section and appeared in
the correct order.

Our obstetrics dataset was collected and man-
aged using REDCap (Harris et al., 2009, 2019).
Since the notes contained protected health infor-
mation (PHI), we transferred them to a HIPAA-
secure environment and applied automatic de-
identification using the Spark NLP framework (Ko-
caman and Talby, 2021). This framework masked
entities, including NAME, LOCATION (address,
city, zip code), DATE, CONTACT (phone numbers,

email addresses), and ID (social security number,
medical record number). We then manually re-
viewed all notes to ensure PHI removal was com-
plete.

Due to annotation resource constraints, we fo-
cused on 100 high-quality, full-length H&P notes
from distinct patients across both delivery groups
(VBAC and RCS). Annotations were performed
in collaboration with a midwifery domain expert.
As with MedSecld, we split each section into
sentences, using the dataset solely for evaluation
due to its limited size. Unlike MedSecld, which
includes a mix of general-purpose clinical note
types, our dataset is obstetrics-specific and incorpo-
rates domain-relevant sections headers (e.g., "Preg-
nancy History", "Gynecologic History") that cap-
ture obstetric-specific content such as gravida/para
notation and neonatal outcomes. Rather than nor-
malizing to MedSecld’s schema, we retained these
specialized headers to preserve the narrative struc-
ture and semantics of obstetric H&P narratives.

To enable fair cross-domain evaluation, we ex-
cluded specialized headers when testing supervised
models trained on MedSecld. This allows us to iso-
late the models’ ability to generalize to a clinically
distinct domain. Table A1 (Appendix) compares
section headers across both datasets, highlighting
shared and domain-specific labels. Table A2 (Ap-
pendix) presents the frequency distribution of sec-
tion spans observed in the Obstetrics corpus.

4 Methodology

We explore two approaches for clinical section
segmentation: Supervised Learning and Zero-shot
Learning via LLMs. In this section, we provide an
overview of both approaches; highlighting model
architectures and design choices. Detailed imple-
mentation, training configurations, and computa-
tional resource usage are provided in Appendix A.

4.1 Supervised Learning Approach

We first develop a supervised approach to
clinical section segmentation using pre-trained
Transformer-based models, widely used in text clas-
sification and sequence labeling tasks (Vaswani,
2017; Devlin et al., 2019). While these models
do not surpass existing systems such as Landes
et al. (2022), they provide competitive and robust
supervised baselines to evaluate the zero-shot LLM
approach on this task. We fine-tune the models
using two architectures:



1. Transformer-based Classification: Each
line is treated as an independent input and
classified into one of the predefined section
headers.

2. Transformer + CRF: A Conditional Ran-
dom Field (CRF) layer is added on top of the
Transformer to model label dependencies be-
tween consecutive lines, framing the task as
sequence labeling.

4.1.1 Transformer-based Section
Segmentation

We approach section segmentation as a 51-way
classification task (including the label "<none>")
using an 1O-like encoding scheme: lines within
labeled sections are tagged as "I_section_name",
while lines outside any labeled section are tagged
as "<none>" (Landes et al., 2022). Throughout
this work, we use the terms "line"” and "sentence"
interchangeably, as each unit in our dataset corre-
sponds to a single textual span separated by new-
lines in clinical notes. We experiment with BERT-
base, a widely used Transformer model pre-trained
on general-domain English corpora (Devlin et al.,
2019), and three models trained on biomedical text.
BioBERT (Lee et al., 2020) extends BERT via fur-
ther pretraining on PubMed abstracts and PubMed
Central (PMC) articles. BiomedBERT (formerly
PubMedBERT) (Gu et al., 2021) is trained from
scratch exclusively on PubMed abstracts, making
it fully domain-specialized. GatorTron-base (Yang
et al., 2022) is trained on a diverse corpus compris-
ing de-identified clinical notes from a university
hospital, PubMed articles, and Wikipedia, total-
ing 90 billion words. We exclude models primar-
ily trained on MIMIC-III (e.g., BioClinical BERT
(Alsentzer et al., 2019)) to avoid evaluation bias.

Line-Level Representation We represent clin-
ical notes as sequences of independent lines
(rather than full-length notes) to comply with Trans-
former token limits and reduce computational over-
head. Each line is treated as a separate exam-
ple, capturing local context without modeling se-
quential dependencies. Consequently, we flatten
each note—originally a list of labeled lines—into
a dataset of individual line-label pairs. Because
the model does not leverage inter-line context, we
perform train-test splitting at the line level, consis-
tent with the model’s independence assumption and
eliminating the need to preserve note boundaries.

This process yields 175,703 lines from 2,002 clini-
cal notes, with 80% (140,140 lines) used for train-
ing and 20% (35,563 lines) for evaluation. While
this setup ignores document-level structure, it pro-
vides a fair supervised baseline for comparison
with zero-shot LLMs, which —despite accessing
the full note—do not explicitly model label transi-
tions or structured dependencies across lines.

Token Length Analysis Before tokenization, we
analyzed the distribution of token lengths per line.
Approximately 97% of lines (across all models)
contained fewer than 100 subword tokens. We
therefore truncate each line to 100 tokens to opti-
mize memory usage and format inputs using the
standard HuggingFace (Wolf et al., 2020) conven-
tion: input_ids and attention_mask for training.
Training configurations, hyperparameters, and
evaluation metrics are provided in Appendix A.3.

4.1.2 Transformer + CRF based Section
Segmentation

Unlike the line-level approach in Section 4.1.1,
we retain note-level structure to model sequential
dependencies between lines. Each note is treated as
a single training instance, allowing the CRF layer
to learn label transitions (e.g., from "History of
Present Illness" to "Review of Systems").

Custom Collator and Data Preparation To ac-
commodate varying note lengths, we implement a
custom collator for note-level batching:

* Dynamic Line Dimensions: For each batch,
let L be the maximum number of lines among
notes; each line is truncated or padded to a
maximum token length S.

* Batch-Size Constraint: To preserve note-
level context and avoid inefficient padding
across variable-length sequences, we set the
batch size to B = I, which simplifies training
and reduces GPU memory usage while retain-
ing the CRF’s ability to model label transi-
tions.

* Final Tensor Shape: Each note is arranged
into a tensor of shape (B,L,S), preserving full
note structure. This allows the CRF to model
label transitions across all lines within a note.

Model Architecture We use the same Trans-
former backbones in Section 4.1.1 (BERT-base,
BioBERT, BiomedBERT and GatorTron-base)
combined with forcherf, a CRF library for PyTorch
(Paszke et al., 2019).



<|begin_of_text|><|start_header_id|>system<|
end_header_id|>

You are a clinical assistant specializing in
segmenting clinical notes.

<|eot_id|><|start_header_id|>user<|end_header_id
|>

Your task is to assign section headers to each
line of a clinical note. Most of the section
headers will likely span multiple lines, so
headers should be assigned sequentially and
consistently.

Clinical Note:
{enumerated clinical note text}

Select the most appropriate section header for
each line from the following options:
{string of 30 potential headers}

Return your answer as a list of section headers,
one for each line, in the same order.

Example Output:
Line @: <none>

Line 1: imaging

Line 2: <none>

Line 3: chief-complaint

Line 4: history-of-present-illness
Line 5: history-of-present-illness
Line 6: history-of-present-illness
Line 7: history-of-present-illness
Line 8: history-of-present-illness
Line 9: history-of-present-illness

The output must contain **exactly the same
number of lines** as the clinical note, i.e
number of lines SHOULD BE EQUAL TO {number of
note lines}

<|eot_id|><|start_header_id|>assistant<|
end_header_id|>
Section Headers:

Listing 1: Zero-shot prompt snippet for Llama Instruct
models

The Transformer + CRF architecture consists of
the following steps:

1. Flatten Input: We reshape (B,L,S) to (B x
L,S) so each line can be processed indepen-
dently by the Transformer.

2. Contextual Embeddings: We extract the
[CLS] representation for each line.

3. Logit Projection: We apply a linear layer
to project contextual embeddings into logits
of shape (B x L, num_labels) for each section
label where num_labels = 51.

4. CRF Reshaping: We reshape logits back to
(B, L, num_labels), so the CRF can model
line-level transitions across the entire note.

5. Viterbi Decoding: At evaluation, we apply

Viterbi decoding (Forney, 1973) to obtain the
most likely label sequence for each note.

Training hyperparameters and evaluation details
are provided in Appendix A.4.

4.2 Zero-Shot Learning via LLMs

Unlike supervised approaches that require labeled
training data, we explore zero-shot learning for
clinical section segmentation using pre-trained
LLMs. Our primary goal is to evaluate whether
instruction-tuned LLMs—without domain-specific
fine-tuning—can accurately assign section labels
by leveraging general contextual understanding.

Model Selection We selected four instruction-
tuned, open-source LL.Ms for evaluation: Mistral-
7B-Instruct-v0.3 (Jiang et al., 2023), Llama 3.1-
8B-Instruct (Touvron et al., 2023), Qwen-2.5-32B-
Instruct (Yang et al., 2024), and Llama 3.3-70B-
Instruct (Touvron et al., 2023). These models
support extended context windows (32k-128k to-
kens), enabling full-note inference without trunca-
tion. Their varied sizes (7B-70B) allow us to assess
how model scale affects performance in long-form
clinical narratives.

Although our dataset is de-identified, real-world
clinical documents often contain protected health
information (PHI). Closed-source models such as
GPT-4 (Achiam et al., 2023) and Gemini (Team
et al., 2023) can pose security and privacy risks, as
they require sending user data to third-party servers
and thus increase the likelihood of unauthorized ac-
cess or misuse of sensitive information (Kim et al.,
2025). In contrast, open-source models can be
deployed on-premises, offering a more secure path-
way for integrating LLMs into clinical workflows.
This practical consideration further motivates our
use of open-source models.

Prompt Engineering We adopt an instruction-
style prompt to assign section labels to each line
in a clinical note, without any task-specific fine-
tuning. All four models are chat-based and support
system/user prompting. The Llama models use a
unified template with explicit system and user roles
(see Listing 1); for Mistral and Qwen, we adapt
the prompt format to match their respective syntax
conventions (e.g., [INST] or <lim_startl>). We
designate the model as a “clinical assistant special-
izing in segmenting clinical notes” and provide it
with a list of valid section labels. Each line in the
note is numbered (e.g., “1. linel,” “2. line2”) to



Llama 3.1-8B-Instruct,y 0.17 | 0.19 | 0.14 | 0.70 | 0.48 | 0.52
Qwen-2.5-32B-Instruct,y, 0.25 | 0.23 | 0.21 | 0.68 | 0.45 | 0.49
Llama 3.3-70B-Instructy 0.23 1029 | 0.23 | 0.76 | 0.61 | 0.64

Model [ MP [ MR [ MF1 [ wP | wR | wF1 Model [ MP [ MR [ MF1 [ wP | wR | wF1
Supervised Models Supervised Models
BERTase 0.71 | 0.67 | 0.68 | 0.78 | 0.78 | 0.77 BERThuse 0.66 | 0.37 | 0.39 | 0.76 | 0.43 | 0.47
BioBERT 0.72 | 0.68 | 0.68 | 0.78 | 0.78 | 0.77 BioBERT 0.54 [ 039 | 0.39 | 0.75 | 0.45 | 0.48
BiomedBERT 0.72 | 0.69 | 0.68 | 0.79 | 0.79 | 0.78 BiomedBERT 0.61 | 0.39 | 040 | 0.76 | 0.46 | 0.49
GatorTronpyse 0.73 | 0.69 | 0.69 | 0.80 | 0.80 | 0.78 GatorTronp,se 0.73 | 048 | 0.49 | 0.85 | 0.58 | 0.61
BERT},e+CRF 0.72 | 0.69 | 0.68 | 0.79 | 0.77 | 0.77 BERT}5e+CRF 0.68 | 049 | 047 | 0.80 | 0.61 | 0.62
BioBERT+CRF 0.74 | 0.69 | 0.68 | 0.79 | 0.77 | 0.76 BioBERT+CRF 0.55 | 045 | 043 | 0.74 | 0.59 | 0.57
BiomedBERT+CRF 0.75 | 0.70 | 0.69 | 0.79 | 0.79 | 0.78 BiomedBERT+CRF 0.56 | 0.51 | 0.50 | 0.76 | 0.65 | 0.66
GatorTronp,se +CRF 0.74 | 0.65 | 0.67 | 0.81 | 0.80 | 0.79 GatorTronp,s +CRF 0.65 | 0.51 | 049 | 0.79 | 0.65 | 0.65
Zero-Shot Models (Results with Hallucinations) Zero-Shot Models (Results with Hallucinations)

Mistral-7B-Instruct;ay 0.03 | 0.02 | 0.02 | 0.54 | 0.17 | 0.22 Mistral-7B-Instruct;ay 0.05 | 0.04 | 0.04 | 0.72 | 0.45 | 0.52

Llama 3.1-8B-Instruct;ay 035033 | 032 | 0.84 | 0.70 | 0.74
Qwen-2.5-32B-Instruct;yy, 0.34 | 039 | 0.34 | 0.88 | 0.79 | 0.83
Llama 3.3-70B-Instruct,, 0.61 | 0.59 | 0.58 | 0.90 | 0.85 | 0.86

Zero-Shot Models (Results after Mitigating Hallucinations)

Zero-Shot Models (Results after Mitigating Hallucinations)

Mistral-7B-Instructeorrected 021 | 0.19 | 0.16 | 041 | 0.20 | 0.23
Llama 3.1-8B-Instructorecea | 0.46 | 0.54 | 0.39 | 0.70 | 0.49 | 0.52
Qwen-2.5-32B-Instructcorrected | 0.47 | 0.48 | 0.41 | 0.61 | 0.46 | 0.49
Llama 3.3-70B-Instructeorrecea | 0.47 | 0.61 | 0.48 | 0.73 | 0.62 | 0.64

Mistral-7B-Instructeorected 038 | 045 | 0.37 | 0.56 | 0.47 | 0.49
Llama 3.1-8B-Instructeorected | 0.58 | 0.56 | 0.54 | 0.83 | 0.71 | 0.74
Qwen-2.5-32B-Instructeomrected | 0.61 | 0.71 | 0.61 | 0.88 | 0.82 | 0.84
Llama 3.3-70B-Instructeorected | 0.70 | 0.67 | 0.67 | 0.90 | 0.85 | 0.86

Table 1: Performance metrics on MedSecld: MP =
macro precision, MR = macro recall, MF1 = macro F1;
wP = weighted precision, wR = weighted recall, wF1 =
weighted F1.

ensure independent prediction while preserving se-
quence order. This structure allows the model to
reference neighboring lines during inference, en-
abling implicit modeling of section transitions. To
clarify output formatting (rather than teach section
content), we include a single one-shot-style exam-
ple (e.g., “Line 0: <none>, Line 1: imaging”). This
preserves a near-zero-shot setup, relying solely on
the model’s pretrained knowledge to infer appropri-
ate section labels. See Appendix A.6 for inference
details.

Post Processing We parse model outputs using
regular expressions to isolate predicted section
headers (e.g., removing “Line 0:” prefixes). Pre-
dictions are evaluated against gold labels in the
MedSecld and Obstetrics datasets using precision,
recall, F1, and hallucination rate—defined as the
percentage of lines assigned to non-existent section
headers. To reduce label fragmentation, we normal-
ize semantically equivalent labels. In collaboration
with the midwifery expert who assisted with an-
notations, we consolidated impression-and-plan
and plan into the standardized label assessment-
and-plan, following clinical convention. This label
aligns with terminology adopted in prior clinical
section segmentation work (Denny et al., 2009;
Landes et al., 2022), supporting its use as a canoni-
cal form for evaluation.

Table 2: Performance metrics on Obstetrics: MP =
macro precision, MR = macro recall, MF1 = macro F1;
wP = weighted precision, wR = weighted recall, wF1 =
weighted F1.

5 Experiments

5.1 Evaluation and Experimental Setup

We evaluate the performance of both our super-
vised models and zero-shot LLMs on two datasets:
MedSecld and Obstetrics. Since the supervised
models were trained on MedSecld, we excluded
the training portion to avoid evaluation bias. Specif-
ically, we removed 80% (1,601 notes) of the origi-
nal MedSecld corpus used for training. From the
remaining 401 notes, we further excluded those
with more than 100 lines to maintain a tractable
sequence length for evaluation, resulting in a final
subset of 251 notes comprising 11,528 lines. For
the Obstetrics dataset, we used all 100 notes (5,352
lines).

5.2 Hallucinations in Zero-Shot LLMs

Despite receiving clear instructions, all four zero-
shot models—M istral-7B-Instruct-v0.3, Qwen-2.5-
32B-Instruct, Llama 3.1-8B-Instruct, and Llama
3.3-70B-Instruct—exhibited hallucinations during
inference by generating section headers not present
in the ground truth. We define hallucination in this
context as the assignment of a section header that
does not appear in the predefined list of valid labels.
For example, Mistral frequently labeled substance-
abuse as a distinct section, although it should be
subsumed under the broader social history. Such
mislabeling risks fragmenting semantically related



content, potentially compromising clinical work-
flows.

As shown in Table 3, hallucination rates varied
across models, with Mistral producing the high-
est rates on both datasets (22.21% for MedSecld;
17.64% for Obstetrics), followed by Qwen, Llama
3.1-8B and Llama 3.3-70B. Interestingly, this
ranking diverges from those reported in general-
domain hallucination benchmarks (e.g., Hughes
et al. (2023)), underscoring the importance of eval-
uating model reliability within the specific context
of clinical tasks. These findings suggest that hallu-
cination behavior is highly sensitive to domain, task
formulation, and prompting strategy—and cannot
be reliably extrapolated from general-purpose eval-
uations. Further research is needed to address the
factual consistency of LLM outputs in the health-
care domain (Nori et al., 2023).

To better characterize model behavior, Table A3
(Appendix) lists the five most frequently halluci-
nated section headers for each model on the Obstet-
rics dataset.

Model |HL | TL [ H% [HS
MedSecld
Mistral-7B-Instruct-v0.3 | 2,560 | 11,528 | 22.21% | 433
Llama 3.1-8B Instruct | 452 | 11,528 | 3.92% | 89
Qwen-2.5-32B-Instruct | 497 | 11,528 | 4.31% | 54
Llama 3.3-70B Instruct | 404 [11,528 | 3.50% | 57
Obstetrics
Mistral-7B-Instruct-v0.3 | 944 | 5,352 | 17.64% | 136
Llama 3.1-8B Instruct 115 | 5,352 | 2.15% | 19
Qwen-2.5-32B-Instruct | 177 | 5,352 | 3.31% | 23
Llama 3.3-70B Instruct 5 5,352 | 0.09% | 4

Table 3: Hallucination Analysis on MedSecld and Ob-
stetrics. HL = number of hallucinated lines; 7L = total
lines; H% = hallucination rate; HS = number of halluci-
nated sections types are not in the original label set.

Mitigating Hallucinations To mitigate halluci-
nations, we implemented a post-processing cor-
rection step using GPT-40 (Achiam et al., 2023).
For each hallucinated section header—i.e., one not
present in the predefined set of valid labels—we
prompted GPT-40 to map it to the most semanti-
cally appropriate label from the valid list. Because
this task involved only generic section names (e.g.,
labs, social-history) and no patient-level content,
we could safely use an API-based model without
violating privacy constraints. We selected GPT-40
over embedding-based heuristics (e.g., Sentence-
BERT cosine similarity (Reimers and Gurevych,
2019)) due to its superior contextual reasoning,

particularly for ambiguous or sparsely descriptive
headers.

While some edge cases remain challenging, this
procedure substantially reduced the number of non-
standard predictions and improved alignment with
the target schema. Importantly, the correction accu-
racy may underestimate true semantic alignment:
in some cases, hallucinated headers (e.g., ultra-
sound) may be semantically closer to a different
valid label (e.g., imaging) than to the gold-standard
label used for evaluation (e.g., review-of-systems).
In such cases, lower correction scores may reflect
initial label misalignment rather than a failure of
the mapping strategy. We report the post-correction
mapping results in Table A4 (Appendix). The
prompt used for GPT-40 hallucination correction
is provided in Listing 2 (Appendix).

5.3 Qualitative Error Analysis for LLM
Predictions

After correcting hallucinations, we analyzed re-
maining section labeling errors through a qualita-
tive evaluation of outputs from the best-performing
model, Llama 3.3-70B-Instruct. To scale this pro-
cess, we employed the same model in an LLM-
based classification framework to automatically
assign errors to one of four categories: (1) Omis-
sion—the model incorrectly predicted <none> for
a span that should have received a valid label; (2)
Label confusion—the predicted label was clearly in-
correct relative to the gold label; and (3) Valid local
interpretation—the predicted label differed but was
semantically justifiable given the local span; and
(4) Other—ambiguous or uncategorizable cases.

The classification prompt handled categories
2-4, while omission was identified separately using
rule-based logic. The prompt is shown in Listing 3
(Appendix). Figure 2 summarizes error type dis-
tributions, and Table A5 provides representative
examples; both appear in the Appendix.

5.4 Results and Discussion

Tables 1 and 2 present the performance of all mod-
els on the MedSecld and Obstetrics datasets, re-
spectively. For zero-shot LLMs, we report both
raw and corrected results to highlight the impact of
hallucination mitigation. Notably, post-correction
macro F1 scores increase by 9% to 33%, confirm-
ing that hallucinations are a major source of error
in zero-shot predictions.

As expected, supervised models outperform
zero-shot LLMs on MedSecld due to their direct



training on that dataset. Among the supervised
models, performance is largely comparable across
Transformer variants. However, the addition of a
CREF layer yields modest but non-negligible gains
for some models. Specifically, macro F1 scores for
BERT-based models improve by 4% to 10% with
CREF integration, suggesting that modeling inter-
line dependencies offers measurable benefits. In
contrast, GatorTron shows no improvement with
a CREF layer, indicating that larger models may al-
ready encode sufficient contextual information for
accurate line-level predictions. Meanwhile, zero-
shot LLMs display large discrepancies between
macro and weighted F1 scores due to macro F1’s
sensitivity to hallucinated labels. Once hallucinated
headers are corrected, spurious labels are mapped
to valid ones, leading to substantial improvements
in macro scores.

While supervised models maintain a strong lead
over zero-shot LLMs on MedSecld, they struggle
to generalize to the newly introduced Obstetrics
dataset. This result suggests that models trained
on large public corpora, such as MIMIC, may
not transfer effectively to narrower clinical sub-
domains like Obstetrics. Although GatorTron-
base initially outperforms the other supervised
models, the addition of a CRF layer allows oth-
ers—particularly BioMedBERT—to close the gap
or even surpass it. Notably, BioMedBERT+CRF
outperforms GatorTron+CRF by approximately 1%
in both macro and weighted F1 on the Obstetrics
dataset.

Interestingly, zero-shot LLMs perform relatively
better on Obstetrics, partly due to the smaller
label space (28 vs. 51). To quantify the ro-
bustness of model performance across notes, we
report 95% confidence intervals over per-note
macro and weighted F1 scores (Appendix A.8).
Llama 3.3-70B-Instruct achieves the highest over-
all performance, outperforming all supervised base-
lines. To assess the consistency of this advan-
tage, we conducted Wilcoxon signed-rank tests
on per-note macro F1 scores. Even in its hal-
lucinated form, Llama 3.3-70B-Instruct signifi-
cantly outperforms the strongest supervised model
(p < 4.88 x 10~17), with further gains after cor-
rection (p < 3.75 x 107'7). These results sug-
gest that the LLLM’s advantage reflects robust gen-
eralization, not merely post-hoc label correction.
While Llama 3.3-70B-Instruct slightly outperforms
Qwen-2.5-32B-Instruct on average, the difference
is not statistically significant (p ~ 0.11), indicating

comparable performance between the two strongest
zero-shot models.

Opverall, these findings highlight the flexibility of
zero-shot LLMs in adapting to novel domains with-
out requiring additional annotation or fine-tuning.
While supervised Transformer models remain state-
of-the-art for in-domain tasks, instruction-tuned
LLMs—especially when paired with simple hal-
lucination correction—offer a statistically robust
and scalable alternative for clinical NLP in under-
explored subdomains.

6 Conclusions and Future Work

We addressed clinical section segmentation in a
specialized obstetrics domain by introducing a cu-
rated dataset of obstetrics-related H&P narratives.
We evaluated both supervised and zero-shot LLM
approaches on this dataset and existing public cor-
pora. While supervised models perform well in-
domain, they struggle to generalize to unfamiliar
clinical subdomains. In contrast, zero-shot LLMs
demonstrate greater adaptability, particularly when
domain-specific fine-tuning is unavailable.

Despite these advances, several challenges re-
main. First, our dataset’s limited size may not
capture the full variability of obstetrics documenta-
tion. Second, although zero-shot LLMs reduce
reliance on labeled data, they remain prone to
domain-inconsistent predictions, including halluci-
nated section headers and omissions of clinically
important spans. These issues are especially con-
cerning in specialized domains, where mislabeling
critical content undermines reliability and inter-
pretability.

Future work includes expanding the dataset to
cover a wider range of conditions, procedures,
and patient profiles, improving clinical diversity.
We also aim to explore further LLM adaptation
strategies, such as few-shot learning and parameter-
efficient fine-tuning (PEFT), to more effectively
tailor models to specialized domains while retain-
ing computational efficiency (Han et al., 2024).
Finally, integrating domain knowledge bases or
medical ontologies may enhance performance and
interpretability by guiding segmentation and label
assignment. These efforts aim to support the de-
velopment of robust, domain-aware clinical NLP
systems.



7 Limitations

Our dataset currently includes 100 H&P nar-
ratives—50 from VBAC patients and 50 from
RCS patients—randomly selected from a larger
pool. While this subset provides an initial look
at obstetrics-focused documentation, it may not
capture the full variability of patients in this do-
main. For section annotation, we adopted a set
of obstetrics-specific headers developed in collab-
oration with a certified midwifery expert. While
these labels offer improved clinical relevance over
general-purpose schemas such as MedSecld (Lan-
des et al., 2022), they may introduce subjectivity,
as other experts might define or group sections dif-
ferently. This lack of standardization may limit
comparability across datasets or models. Future
work should explore building consensus-driven or
ontology-aligned section schemas tailored to ob-
stetrics, as well as expanding dataset coverage to
better reflect diverse clinical structures and docu-
mentation styles.
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A Appendix

A.1 Section Header Comparison Between
MedSecld and Obstetrics

MedSecld Obstetrics

©
(]

Section Header
<none>

24-hour-events
addendum

allergies
assessment-and-plan
chief-complaint
clinical-implications
consent

code-status
communication
comparison
conclusions

contrast
critical-care-attending-addendum
current-medications
discharge-condition
discharge-diagnosis
discharge-disposition
discharge-instructions
discharge-medications
disposition

facility

family-history

findings
flowsheet-data-vitals
gestational-age
gynecological-history
history
history-of-present-illness
history-of-present-pregnancy
hospital-course
image-type

imaging

impression
impression-and-plan
indication

infusions

labs

labs-imaging
last-dose-of-antibiotics
major-surgical-or-invasive-procedure
medical-condition
medication-history
obstetrical-and-gynecological-history
obstetrical-history
other-medications
past-medical-history
past-surgical-history
patient-test-information
physical-examination
plan

pregnancy-history
prenatal-care
prenatal-history
prenatal-screens
problem-list

procedure
procedure-history
reason
review-of-systems
social-and-family-history
social-history
technique

wet-read

0000000

0000000000

00
(]

0000000

0000

00
©

00000000

00000000

Table Al: Comparison of Section Headers in MedSecld
vs. Obstetrics Dataset (& = Present, € = Absent)
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A.2 Section Header Distribution of Obstetrics

Dataset
Section Header Total Spans  Overall %
social-history 119 7.89
current-medications 114 7.56
allergies 114 7.56
physical-examination 102 6.76
family-history 97 6.43
history-of-present-illness 96 6.37
impression-and-plan 83 5.50
chief-complaint 79 5.24
review-of-systems 79 5.24
problem-list 79 5.24
pregnancy-history 79 5.24
gestational-age 78 5.17
procedure-history 64 4.24
past-medical-history 61 4.05
labs 51 3.38
past-surgical-history 49 3.25
obstetrical-history 46 3.05
gynecological-history 46 3.05
assessment-and-plan 19 1.26
critical-care-attending-addendum 12 0.80
labs-imaging 11 0.73
imaging 11 0.73
prenatal-history 11 0.73
obstetrical-and-gynecological-history 2 0.13
plan 2 0.13
prenatal-screens 1 0.07
consent 1 0.07
history-of-present-pregnancy 1 0.07
prenatal-care 1 0.07

Table A2: Frequency distribution of section headers in
the Obstetrics dataset (excluding <none>).

A.3 Transformer-Based Section
Segmentation—Training and Evaluation

Training Configuration We use the Trainer
class from HuggingFace (Wolf et al., 2020) with
the following hyperparameters (tuned within our
GPU/memory constraints):

* Learning rate: 2e-5

* Epochs: 5

* Batch size: 32

* Mixed precision: Training is accelerated with
bf16 precision

* Max token length: 100

* Warmup steps: 500

* Weight decay: 0.05

Evaluation Metrics We compute standard clas-
sification metrics—accuracy, precision, recall,
Fl—along with macro-F1 (class-agnostic) and
weighted-F1 (weighing classes by frequency) to
assess how class imbalance affects performance.

A4 Transformer + CRF-Based Section
Segmentation—Training and Evaluation

Training Details The training details for our ex-
periments are as follows:



* Learning rate: 2e-5

* Epoch: 5

* Batch size: B =1

* Mixed precision: Training is accelerated with
bf16 precision

* Optimizer: AdamW (Loshchilov and Hutter,
2019) (updates Transformer + CRF parame-
ters)

* Max token length: 100 for BERT-base,
BioBERT, BiomedBERT; 64 for GatorTron
(due to higher memory consumption)

Evaluation Metrics As in Section A.3, we com-
pute precision, recall, macro-F1, and weighted-F1
to evaluate note-level segmentation performance.

A.5 Hallucination Analysis

Model Top 5 Hallucinated Sections
Mistral-7B- substance-abuse, neurologic, psychi-
Instruct-v0.3 atric, psychosocial-history, integumen-
tary
Llama 3.1-8B- | review / management, review-and-
Instruct management,  health maintenance,
psychosocial-history, obstetrical-
examination
Qwen-2.5- basic-information,  substance-abuse,

32B-Instruct | psychosocial-history, obstetric-exam,

postoperative-information

Llama 3.3-
70B-Instruct

health-maintenance, risk-factors,
psychosocial-history, comments

Table A3: Top 5 most frequently hallucinated section
headers generated by each model. (Llama 3.3-70B-
Instruct produced only four hallucinated headers in to-
tal.)

Suppose the following are the valid section
headers:
{set of valid actual headers}

And the following are the hallucinated headers:
{set of hallucinated headers}

Please map each hallucinated header to the most
suitable or semantically similar valid header.
If no valid header is an appropriate match,
return "<none>".

Listing 2: Zero-shot prompt used to align hallucinated
headers with valid section labels.
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Model CH | TH S%
Mistral-7B- 479 | 944 | 50.74%
Instruct-v0.3
Llama 23 115 | 20.00%
3.1-8B-Instruct
Qwen-2.5-32B- 116 | 177 | 65.54%
Instruct
Llama 3 5 60.00%
3.3-70B-Instruct

Table A4: Correction success rates for hallucinated sec-
tion headers. CH: number of corrected hallucinations
that matched the gold-standard label; TH: total halluci-
nated lines; S%: success rate.

A.6 Zero-Shot Learning via
LLMs—Inference Details

Inference Details To generate section labels, we
perform a forward pass in inference-only mode
with the following parameters:

* temperature = 0.0: Forces greedy decoding,
prioritizing the most probable token at each
step for consistent and deterministic output.

* do_sample = False: Disables random sam-
pling, ensuring reproducible outputs for iden-
tical prompts.

* num_beams = 1: Avoids complex beam
search, reducing computational overhead.

* pad_token_id tokenizer.eos_token_id:
Uses the end-of-sequence token for padding,
preventing extraneous tokens in the output.

By combining these settings, our inference pro-
cedure remains deterministic and focused, yielding
consistent line-by-line label predictions for each
clinical note.

A.7 Qualitative Error Analysis

B Omission
[ Label Confusion
B VL Interpretation

[ Other

Figure 2: Proportional distribution of section labeling
errors for Llama 3.3-70B-Instruct.



Text Span

Error Type

Explanation

GBS (group B streptococcal):
negative Hepatitis B : negative
Syphilis screen: NR x2 Rubella:
Immune HIV: NR STDs: Neg Blood
type: O+ 1-hr GTT: 94 Genetic
Screening Tests
(First/Sequential/QUAD) : normal.

Review / Management Results review:

Label Confusion

The predicted label "assessment-and-plan" is a valid label,
but it clearly differs from the gold label "labs-imaging",
as the text span primarily discusses laboratory results,
which aligns more closely with "labs-imaging".

In addition patient was incidentally
found to have 4cm arrachnoid cyst of
her left temporal fossa.

Valid Local Interpretation

The predicted label physical-examination makes sense
given the text span, which describes a medical finding,
even though the gold label is assessment-and-plan. The
sentence could be part of a physical examination section,
but in the context of the entire clinical note, it might be
more appropriately classified under assessment and plan
due to the incidental finding mentioned.

Table AS: Representative examples of Llama 3.3-70B-Instruct prediction mismatches categorized by LLM, with

associated reasoning.

<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are analyzing a prediction error in a clinical note section classification task. A sentence was
assigned a gold-standard label. A language model attempted to predict this label.

<|eot_id|><|start_header_id|>user<|end_header_id|>

Your task is to assign section headers to each line of a clinical note. Most of the section headers
will likely span multiple lines, so headers should be assigned sequentially and consistently.

You are given:
- Gold label: {gold_label}

- Predicted label: {predicted_label}

- Text span: {span_text}

Your task is to decide what type of error this is.

Choose only one of the following categories:

1. xxLabel Confusion** The model predicted a valid but clearly different label from the gold.
2. x*Valid Local Interpretation** The predicted label is different from gold, but makes semantic

sense given the span alone.

3. x*0therxx This case is ambiguous or doesn't fit the above categories.

Respond exactly in the following format:
Label: <one of the 3 options above>

Reason: <your brief explanation>

<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Section Headers:

Listing 3: Zero-shot prompt used to classify qualitative errors.
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A.8 Confidence Intervals for Model
Performance on Obstetrics Data

Model Macro F1 Weighted F1
(#95% CI) (#95% CI)
Llama 3.3-70B- 0.800 £0.024 | 0.851 £0.024
InStrUthm‘rcctcd
Qwen-2.5-32B- 0.764 £0.032 | 0.818 £0.038
InStrUthorrected
BioMedBERT+CRF | 0.604 £0.026 | 0.646 +0.028

Table A6: Comparison of per-note macro and weighted
F1 scores £ 95% bootstrap confidence intervals across
100 obstetric notes for the top two zero-shot LLMs
and the best-performing supervised model (BioMed-
BERT+CREF).

A.9 Computational Resources

All training and inference experiments were con-
ducted on NVIDIA A100 GPUs (80GB VRAM). We
used 3 GPUs for Llama 3.3-70B-Instruct, while all
other models fit on a single GPU. Detailed train-
ing configurations, including batch sizes and epoch
settings for both supervised and zero-shot experi-
ments, are provided in their respective sections in
Appendix A.
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