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Abstract

This paper introduces Mamba4Cast, a zero-shot foundation model for time series forecasting.
Based on the Mamba architecture and inspired by Prior-data Fitted Networks (PFNs),
Mamba4Cast generalizes robustly across diverse time series tasks without the need for
dataset specific fine-tuning. Mamba4Cast’s key innovation lies in its ability to achieve strong
zero-shot performance on real-world datasets while having much lower inference times than
time series foundation models based on the transformer architecture. Trained solely on
synthetic data, the model generates forecasts for entire horizons in a single pass, outpacing
traditional auto-regressive approaches. Our experiments show that Mamba4Cast performs
competitively against other state-of-the-art foundation models in various data sets while
scaling significantly better with the prediction length. The source code can be accessed at
https://github.com/automl/Mamba4Cast.

1 Introduction

Time series forecasting is a critical task in numerous domains, from finance (He et al., 2023) to healthcare
(Jung et al., 2021), and has been approached through various deep learning methods in recent years (Chen et al.,
2023; Liu & Wang, 2024). Time-series data often exhibits complex temporal patterns, varying distributions
with many confounding variables, and long-range dependencies, making it more challenging to model than
other data paradigms. Although the recent Cambrian explosion in deep learning, especially foundation models
(Touvron et al., 2023; Yu et al., 2022), can be attributed in part to the availability of large amounts of data for
training, the same cannot be said about forecasting in some domains (Wang et al., 2023; Sivaroopan et al.,
2024).

Forecasting models (Salinas et al., 2020; Zeng et al., 2023; Oreshkin et al., 2019) have traditionally employed
non-zero-shot methods, which typically require customized training or fine-tuning for each specific task.
While effective, this approach can be resource-intensive and time-consuming. Transformer-based time series
foundation models (Ansari et al., 2024; Rasul et al., 2023; Dooley et al., 2023) have demonstrated significant
potential to address these limitations. However, their application to long sequences during inference is
constrained by their quadratic sample complexity.

In an effort to address both of these problems, we present Mamba4Cast, a time series foundation model based
on two concepts: Prior-data Fitted Networks (PFNs) (Hollmann et al., 2023; Dooley et al., 2023) and the
Mamba (Gu & Dao, 2024; Dao & Gu, 2024) architecture. Our contributions are twofold:
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Figure 1: Schematic overview of the Mamba4Cast architecture.

• We introduce Mamba4Cast, a Mamba-based zero-shot forecasting model trained exclusively on
synthetic data. It achieves competitive performance compared to other state-of-the-art zero-shot
models, such as Chronos (Ansari et al., 2024), while leveraging Mamba’s architecture for efficient
scaling over longer context lengths.

• We demonstrate that Mamba4Cast provides accurate point predictions over the entire forecast hori-
zon in a single forward pass, achieving inference speeds several times faster than autoregressive
counterparts.

2 Related Work

Time series forecasting with Transformers In the last few years, transformer-based models have significantly
improved the state of the art in time series forecasting. Works like the Informer (Zhou et al., 2021) and
PatchTST (Nie et al., 2023) address the issue of long-term forecasting with transformers.

Zero-shot forecasting There have also been several advancements in zero-shot time series forecasting (Woo
et al., 2024; Gruver et al., 2023). Gao et al. (2024) proposed UNITS, a unified multi-task model handling
various predictive and generative tasks, and Oreshkin et al. (2021) proposed a meta-learning framework for
zero-shot forecasting. These works highlight the growing trend towards more adaptable generalized time series
models.

Training on Synthetic Data While pre-training has enhanced the generalization capabilities of many
models, their inductive biases often remain constrained to the distributions of their training corpus, potentially
necessitating fine-tuning for niche applications. ForecastPFN (Dooley et al., 2023), inspired by PFNs
(Hollmann et al., 2023; Müller et al., 2022), addressed this limitation by training on synthetic data, enabling
zero-shot generalization to real-world time series. More recently, Chronos (Ansari et al., 2024) demonstrated
state-of-the-art results by training on both synthetic and real-world time series, introducing a transformer-based
foundation model that follows the next-token prediction paradigm of large language models.

State Space Models Despite the success of transformer-based methods, they face scalability challenges due
to their quadratic complexity. In contrast, state-space models, such as Mamba (Gu & Dao, 2024; Dao & Gu,
2024) or Linear Attention (Katharopoulos et al., 2020; Yang et al., 2024a,b), have emerged as more efficient
architectures, adapting state space models / linear RNNs (Pöppel et al., 2024) for sequence modeling with
linear scaling properties. This efficiency has proven crucial for modeling dense, long-sequence data in vision
and time series forecasting (Behrouz et al., 2024; Patro & Agneeswaran, 2024). Subsequent works have further
demonstrated Mamba’s capacity in multivariate time-series forecasting; e.g., Wang et al. (2024) and Liang
et al. (2024) proposed bi-directional Mamba architectures to capture inter- and intra-series dependencies, with
the latter introducing a forget gate for enhancing selective performance on longer ranges. With recent studies
showcasing Mamba’s in-context learning capabilities (Grazzi et al., 2024; Park et al., 2024), Mamba4Cast
attempts to utilize them towards a Mamba-based foundation model for zero-shot time series forecasting. We
aim to address this unexplored avenue for univariate time series, by training over a diverse set of synthetic
generation procedures that generalize to various real-life datasets.

3 Methodology

3.1 Background: State Space Models

Mamba4Cast builds upon the Mamba2 state-space model introduced by Dao & Gu (2024). Mamba2 is a linear
Recurrent Neural Network described by the following recurrence:

ht = Atht−1 +Btxt; yt = Ctht
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Figure 2: Performance and efficiency comparison of Mamba4Cast against baseline models. (left) Distribution
of MASE across 16 evaluation datasets (excluding Covid Deaths) for Mamba4Cast and five baseline models
(ForecastPFN was much worse and is on a separate scale). (right) Inference time of Mamba4Cast versus
Chronos-Small on synthetically generated time series (2048 series, 512 context length) for increasing prediction
lengths and varying batch sizes. The results demonstrate Mamba4Cast’s superior efficiency, particularly for
longer prediction horizons and larger batch sizes.

where ht, xt, and yt represent the hidden state, input token embedding, and output at index t, respectively.
In contrast to Mamba (Gu & Dao, 2024), which uses a fully parameterized diagonal state transition matrix
At, Mamba2 employs a scalar multiple of the identity matrix allowing for more efficient computation. The
recurrence can be computed in chunks of linear attention blocks that can be pieced together later, leveraging
tensor cores through matrix multiplication. This approach differs from Mamba’s evaluation through an
associative scan, which is also performed in parallel across the sequence but cannot leverage GPUs as well.

3.2 Mamba4Cast Architecture

Our proposed architecture, illustrated in Figure 1, consists of four primary components:
(1) Pre-processing: we scale the input series using a Min-Max Scaler and extract time features for positional
embeddings. (2) Embedding: we embed the scaled input values and their temporal information using
convolutions with different dilations, ensuring a large receptive field for the representation used by future
layers. For more details about data pre-processing and embedding, refer to Appendix C. (3) Encoder: comprises
of Mamba2 blocks with LayerNorm to avoid noisy learning signals followed by another dilated convolution
layer. (4) Decoder: the final component is a linear projection layer that transforms the embedded token
representations into point forecasts.

We perform an ablation study, detailed in Appendix F, investigating the role of convolutions, the efficacy of
synthetic data generation methods, and the performance of alternative inference strategies.

3.3 Synthetic Data Generation

The quality and diversity of the data generation process are crucial for Mamba4Cast’s performance on real-
world data, as it is trained exclusively on synthetic data. We employ two types of data-generating priors:
ForecastPFN (FPFN) and Gaussian Process (GP) based. The FPFN prior, based on Dooley et al. (2023),
decomposes a time series into trend, seasonality, and noise components reflecting real-life patterns. The GP
prior, inspired by Ansari et al. (2024), complements the FPFN priors by accounting for patterns not captured
therein. Each series is sampled from a GP with either a zero or a linear mean function and a composite kernel
drawn from our Kernel bank. This allows for generating diverse and realistic synthetic time series that exhibit
a wide range of temporal behaviors. Detailed descriptions of these data priors are provided in Appendix B.

4 Experiments

4.1 Training Details

The Mamba4Cast model is designed with approximately 27M parameters, positioning it between Chronos-
Mini (20M) and Chronos-Small (46M) in size. It features 2 encoder layers following an input projection to
an embedding dimension of 1024. We minimize the mean squared error over the prediction horizon using
AdamW (Loshchilov & Hutter, 2019). The model is trained for 420K batches of size 64, using data sampled
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Figure 3: Qualitative analysis of Mamba4Cast’s performance. (left) Demonstrates how prediction accuracy
improves with increasing context length for multiplicative sine waves. (right) Illustrates the model’s forecasting
capabilities on two real-world time series datasets.

from the priors in Section 3.3, via a parallelized data loader that ensures the same sample is not seen twice.
Further details about the experimental setup are provided in Appendix D.

4.2 Performance Comparison with Baseline Models

1 2 3 4 5 6

Mamba4Cast

Chronos-Base

DeepAR Chronos-Small

AutoARIMA

S-Naive

CD

Figure 4: Critical difference diagram comparing mean
MASE ranks of Mamba4Cast and baseline models
across 17 time series datasets. ForecastPFN was much
worse and is excluded for the sake of visibility.

We evaluate on 17 publicly available time series
datasets from a wide range of domains from the
dataset repository of the GluonTS (Alexandrov et al.,
2020) library with a 512 context length. A detailed
list of the datasets used is included in Appendix E.
Our evaluations involve comparisons with zero-shot
baselines trained on synthetic data (Chronos and
ForecastPFN), a deep learning baseline (DeepAR),
and statistical methods (AutoARIMA and Seasonal
Naive).

For our evaluations, we use AutoGluon–TimeSeries (Shchur et al., 2023) to evaluate the baselines, with the
exception of ForecastPFN, whose results are sourced from the Chronos paper (Ansari et al., 2024). To ensure
fair comparison across datasets with varying scales, we use the MASE metric (Hyndman & Koehler, 2006),
which is scale-invariant.

The results, as illustrated in Figures 2 and 4, demonstrate that Mamba4Cast achieves competitive performance
with Chronos-Base(200M) and surpasses other baselines. Notably, this performance is achieved without
fine-tuning on real-world datasets. Figure 4 shows a critical difference diagram, visualizing the mean model
rankings based on MASE (Mean Absolute Scaled Error) over the datasets. In this diagram, models are
arranged from best (left) to worst (right), with statistically insignificant performance differences indicated by
connecting horizontal lines (at a significance level of α = 0.05). Detailed information on the MASE metric
and per-dataset results can be found in Appendix G.

4.3 Qualitative Analysis on Synthetic and Real Data

We conduct a qualitative inspection of Mamba4Cast to evaluate its ability to extrapolate over the forecasting
horizon. Figure 3 illustrates Mamba4Cast’s improvement with increasing context length and its ability to
capture real-life patterns. We also visualize the model’s forecasting capability on additional real-world data in
Appendix G.

5 Conclusion and Future Work

Our experiments demonstrate Mamba’s capability in creating reliable zero-shot time-series foundation model.
Training solely on synthetic data, Mamba4Cast achieves near state-of-the-art results while also maintaining
scalability and efficient inference. However, Mamba4Cast is limited to the univariate domain, which only forms
a small portion of real time series problems, and is heavily reliant on the diversity of its priors. Nevertheless,
we believe our work serves as a significant step towards developing highly performant and efficient multivariate
zero-shot forecasting models, setting the stage for future advancements in this domain.
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A Additional Related Work

In the wake of the recent success of Large Language Models (LLMs), a novel direction in time series analysis
has emerged, focusing on adapting LLM-based architectures for forecasting. Studies such as Liu et al. (2024);
Jin et al. (2024); Rasul et al. (2023) have demonstrated the effectiveness of re-purposing LLMs for time
series tasks. These approaches involve techniques to align time series data with the text-based input expected
by LLMs, such as using text prototypes or encoding time series as strings of numerical digits. Notably,
Gruver et al. (2023) showed that LLMs can perform zero-shot time series forecasting at levels comparable
to or exceeding purpose-built models. These developments suggest that LLMs are promising candidates for
general-purpose time series analysis, which can offer advantages in flexibility and performance in various
forecasting tasks.

B Synthetic Data Generation

B.1 ForecastPFN Prior

We adopted the prior generation process from Dooley et al. (2023) that decomposes the time series into three
components as outlined in Section 3.3. The trend incorporates linear and exponential growth factors, while
seasonal components capture periodic variations at multiple time scales (minutely, hourly, daily, weekly, and
monthly), reflecting natural cycles in the data. Noise is modeled using a Weibull distribution to maintain
a constant expected value. We introduced some modifications to the original procedure that are mentioned
below.

Trend In our experiments, we found that training Mamba4Cast on long sequence time series with exponential
trends results in suboptimal performance. Therefore we limited the non-linear growth behavior to be polynomial
ones represented in the GP priors, while the FPFN prior only models linearly growing signals.

Seasonal Seasonal patterns are generated according to the granularity of the timestamps. For each granularity,
we sample sine-wave signals, referred to as harmonics, with periodicities corresponding to that granularity: 60
for minutely, 24 for hourly, 7 for daily, and 12 for monthly data. For each time series, we sample harmonics
from both its granularity and the immediate higher granularity. As an example, for minutely data, we sample
seasonal signals with both minutely and hourly periodicities. In the original design, 10 or 6 harmonics were
sampled for each granularity, but in our optimal setup, we used 8 and 5 harmonics, respectively. As the number
of harmonics increases, their periodicity is scaled down by the harmonic index, allowing the model to capture
finer fluctuations in the data.

B.2 GP priors

GP model We use GPyTorch (Gardner et al., 2018) for sampling our time series from composite kernels,
with a sampled zero or linear mean, and a Gaussian likelihood. We add the noise using Cholesky jitter, with
the jitter level being sampled among 0.1, 0.01, and 0.001, with probabilities of 0.1, 0.2, and 0.7 respectively.
This design choice is to generalize Mamba4Cast for different noise levels in the real-life datasets.

Kernels The kernel bank comprises Linear, Polynomial, Matern, and Periodic kernels. To ensure complex
time series patterns, we combine up to 6 kernels using sampled binary operations (addition or multiplication).
The best training pipeline involved sampling a number of kernels from 1 to 6. In the first 360K training rounds,
for each kernel, we sampled from Periodic, Matern, or Linear kernels with weights of 5, 1.5, and 1 respectively.
This prior was inspired by the KernelSynth method outlined by Chronos (Ansari et al., 2024).
We also observed that training followed by a fine-tuning phase of 60K rounds with changed weights of Periodic,
Matern, and Polynomial kernels to 5, 2 and 1 respectively, resulted in better generalization.

B.3 Signal level noises

In addition to the white noise signal incorporated in our priors, we introduce two types of multiplicative noise
signals: spikes and step noise. Spikes are designed to introduce regular peaks at every interval, l. To simulate
peaks that occur regularly but are irregularly spaced, we apply a masking window m, which masks up to
40% of the spikes within the window. Similarly, multiplicative step functions are applied in an alternating
high-low-high-low pattern to enable Mamba4Cast to capture seasonal level shifts.

8



C Dataset Preprocessing

We adopt a preprocessing approach similar to e.g. ForecastPFN (Dooley et al., 2023). Time-steps are
decomposed into minutely, hourly, day of week, day of month, day of year, monthly and yearly components,
encoded using sinusoidal embeddings. These encodings, along with the series value, are linearly projected
and concatenated to represent each time-point in a 112 embedding vector. The value of target tokens for
model input across the prediction horizon is 0 for the prediction of point value or 1 for the cumulative mean
prediction, fixed to 0 during inference.

With all input and output token embeddings stacked along the sequence dimension, we apply four causal
convolution layers with kernel sizes of 5 and dilations of 1, 2, 4, and 8, concatenating their outputs for diverse
temporal coverage. This facilitates capturing multi-scale temporal dependencies, enhancing our model’s
forecasting capabilities. The stack of causal convolution projects the tokens up into our desired embedding
dimension of 1024 followed by an inception layer to combine the information across the temporal multi-scale
for each token while maintaining the embedding size.

D Training Details

Architectural choices As demonstrated in Figure 1, Mamba4Cast is built on Mamba2 (Dao & Gu, 2024)
with a state expansion factor (N) of 128 and a block expansion factor (E) of 2. The final layer of the encoder is
defined similarly to the stacked convolution layer illustrated in Appendix C with the difference in the input
channels being 1024 for the embedding size.

Training setup We train on sequence lengths uniformly sampled between 30 and 512 and minimize the
mean squared error over a prediction length uniformly sampled between 10 and 60 per batch. 50% of the time
we train to predict a contiguous chunk from the middle of the prediction length to improve predictability over
the sequence by reducing reliance on previous states and encouraging emphasis on temporal information. The
learning rate is cosine annealed (Loshchilov & Hutter, 2017) from 1e-5 to 1e-7 throughout the training.

The model is trained exclusively on synthetic data generated using two methods outlined in Section 3.3.
The data composition is 70% sampled from GP priors and 30% sampled from FPFN priors, leveraging the
GP kernels’ flexibility in capturing diverse patterns. Training was conducted over 3 days on a single Nvidia
RTX2080Ti GPU, for 360k training rounds consisting of 64 independently generated samples each. As stated
in B.2, we continue training for another 60K rounds with a changed kernel composition and a learning rate of
1e-6.

E Benchmark Datasets

We use 17 datasets from Chronos zero-shot benchmark while removing datasets with very small context and
prediction length, datasets that are very large, and datasets with sub-hourly frequencies. We will extend to
support those datasets in future work. We used GluonTS as an interface for these datasets to have a comparable
evaluation pipeline to Chronos. The context length (input sequence length) was restricted to be at most 512,
while the prediction length varied according to the evaluated dataset as shown in Table 1.

F Ablation studies

We investigate the robustness of Mamba4Cast in different configurations, which fall into three main categories:

• Architectural Changes: We look into the effectiveness of a stacked causal convolutions layer (CNN)
against a linear layer (Linear) in the input embedding and as the encoder-block’s last layer. While
adding the CNN layer as the final layer of the encoder block (baseline) provides superior performance
with a significant overhead in model size, the key advantage stems from the CNN layer in the input
embedding without overhead in model size.
The model sizes of the three setups listed in the corresponding section of Table 2 are 27M, 17M, and
15M, in the same order as in the table.

• Prior Mixing Ratios: Given the importance of the distribution of synthetic data, we conducted
experiments to explore the impact of each of the two approaches mentioned in Section 3.3. The
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Table 1: Characteristics of Datasets Used for Zero-Shot Evaluation of Mamba4Cast and baselines.

Dataset Frequency Num. Test Series Prediction Length

CIF 2016 1M 72 12
Car Parts 1M 2674 12
Covid Deaths 1D 266 30
ERCOT Load 1H 8 24
Exchange Rate 1B 8 30
FRED-MD 1M 107 12
Hospital 1M 767 12
M1 (Monthly) 1M 617 18
M1 (Quarterly) 3M 203 8
M3 (Monthly) 1M 1428 18
M3 (Quarterly) 3M 756 8
NN5 (Daily) 1D 111 56
NN5 (Weekly) 1W 111 8
Tourism (Monthly) 1M 366 24
Tourism (Quarterly) 3M 427 8
Traffic 1H 862 24
Weather 1D 3010 30

ablation indicates the effectiveness of the GP prior over the FPFN prior, leading to our choice of a GP
favoured mixture of data for training.

• Inference Modes: Mamba4Cast was designed with efficient zero-shot forecasting in mind following
the one-pass multipoint setup, in which the input and target tokens are concatenated together in their
respective order. Mamba4Cast also supports autoregressive forecasting, but its performance declines
significantly in this setup. A likely reason is that feeding predicted values back into the model causes
overconfidence and error propagation. In contrast, the multipoint setup treats all target values as
unknown, avoiding this issue.

We further test the impact of ensembling by averaging the forecasts generated at 5 different levels
of dropout, from 0 to 0.5, of the input sequence. However, given the superior performance over
longer and more inclusive contexts, demonstrated in Figure 3, it follows that including a less accurate
forecast can degrade performance in case Mamba4Cast is certain about its forecast as shown in Table
2.

The ablation studies were conducted on the first 360K training rounds mentioned in Appendix D, as the
subsequent 60K were later applied to our chosen setup for the baseline comparisons cited in Section 4.2.

G Evaluations on real datasets

G.1 Evaluation metric

As part of our evaluation, we tested the performance of our model on real-world time series datasets alongside
the synthetic data. The primary metric used was the seasonal Mean Absolute Scaled Error (MASE), which
scales the forecast error by the mean absolute error of a seasonal naïve forecast on the training data. The
evaluation of Mamba4Cast on real-world datasets demonstrates the model’s capability to generalize and
perform well in diverse, real-world forecasting scenarios. Detailed evaluations per dataset can be found in
Table 3. We witnessed inconsistencies between the evaluations performed by AutoGluon in our setups and the
ones reported in Chronos paper on datasets with daily frequency, specifically on "Covid Deaths." This resulted
in the large gap witnessed on ForecastPFN’s results reported here, since the model’s MASE evaluations are
sourced from the Chronos paper. The results reported for Mamba4Cast per dataset are evaluated with the best
model trained according to the procedures in Appendix D.
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Table 2: Ablation study on architectural changes, prior mixing ratios and the
inference modes. The value reported is the geometric mean of MASE across
all 17 datasets for each setup.

Ablation Setup Mean MASE

Architectural Modifications

CNNin_emb / CNNenc_out (Baseline) 1.153
CNNin_emb / Linearenc_out 1.205
Linearin_emb / Linearenc_out 1.556

Priors Mixing Ratios

70% GP Prior / 30% FPFN Prior (Baseline) 1.153
100% GP Prior / 0% FPFN Prior 1.167

0% GP Prior /100% FPFN Prior 1.579

Inference Modes

Multipoint Forecasting (Baseline) 1.153
Autoregressive Forecasting 2.044
Ensemble Forecasting 1.558

Table 3: MASE evaluations on all of the 17 datasets with the lower value the better. The best results per dataset
are in bold and the second best results are underlined.

Zero-shot Task-specific Statistical Baseline

Mamba4Cast Chronos-B Chronos-S ForecastPFN DeepAR AutoARIMA S-Naive
Dataset
Car Parts 1.061 0.832 0.817 2.657 0.747 1.180 1.127
CIF 2016 0.925 0.995 1.016 3.558 1.597 1.062 1.289
Covid Deaths 5.926 7.461 7.376 91.515 8.917 6.059 8.977
ERCOT Load 0.657 0.521 0.560 3.975 1.429 1.112 0.751
Exchange Rate 1.329 1.388 1.436 7.583 2.214 1.187 1.460
FRED-MD 0.524 0.399 0.399 2.621 0.588 0.519 0.935
Hospital 0.806 0.815 0.814 1.775 0.775 0.836 0.921
M1 (Monthly) 1.100 1.126 1.171 2.172 1.102 1.239 1.314
M1 (Quarterly) 1.695 1.778 1.824 9.931 1.784 1.766 2.078
M3 (Monthly) 0.849 0.866 0.890 2.240 1.056 1.033 1.146
M3 (Quarterly) 1.251 1.210 1.285 10.176 1.178 1.323 1.425
NN5 (Daily) 0.833 0.809 0.834 1.375 0.793 0.832 0.952
NN5 (Weekly) 0.956 0.942 0.950 1.349 0.861 1.700 1.063
Tourism (Monthly) 1.567 1.836 1.936 4.348 1.430 1.692 1.631
Tourism (Quarterly) 1.746 1.799 1.770 5.595 1.686 1.784 1.699
Traffic 1.120 0.370 0.380 1.909 0.482 1.327 0.753
Weather 0.726 0.589 0.627 2.003 0.769 0.705 0.813

G.2 Qualitative analysis

An impartial evaluation in time series forecasting applications favors a qualitative evaluation over the datasets
in question, to guarantee adequate behavior for point forecasting. For this sake, Figure 5 demonstrates
Mamba4Cast’s ability to capture diverse patterns exemplified in the real-life datasets.
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Figure 5: Qualitative analysis of real-world datasets evaluated by Mamba4Cast. Blue denotes the ground-truth,
red the prediction.
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