
Under review as submission to TMLR

Future-aware Safe Active Learning of Time Varying Systems
using Gaussian Processes

Anonymous authors
Paper under double-blind review

Abstract

Experimental exploration of high-cost systems with safety constraints, common in engineering
applications, is a challenging endeavor. Data-driven models offer a promising solution,
but acquiring the requisite data remains expensive and is potentially unsafe. Safe active
learning techniques prove essential, enabling the learning of high-quality models with minimal
expensive data points and high safety. This paper introduces a safe active learning framework
tailored for time-varying systems, addressing drift, seasonal changes, and complexities due
to dynamic behavior. The proposed Time-aware Integrated Mean Squared Prediction Error
(T-IMSPE) method minimizes posterior variance over current and future states, optimizing
information gathering also in the time domain. Empirical results highlight T-IMSPE’s
advantages in model quality through toy and real-world examples. State of the art Gaussian
processes are compatible with T-IMSPE. Our theoretical contributions include a clear
delineation which Gaussian process kernels, domains, and weighting measures are suitable
for T-IMSPE and even beyond for its non-time aware predecessor IMSPE.

1 Introduction

Many systems pose challenges for experimentation due to their high costs, whether in actual implementation
or simulation, a concern particularly pronounced in engineering applications. Data-driven models emerged
as a valuable solution for swiftly simulating such systems. However, acquiring the necessary data for these
models can still be prohibitively expensive, e.g. in machine calibration (Badra et al., 2020), biology (Sverchkov
& Craven, 2017), numerical simulation (Al-Obaidi, 2022), prototype building (Torres et al., 2016), or process
optimization (Hernández Rodríguez et al., 2022). To address this situation where measurements can be taken
at almost arbitrary positions in a continuous domain, active learning techniques become crucial, allowing the
learning of a high-quality system using a minimal amount of expensive data points. This involves setting
inputs or calibration parameters in a manner that maximizes the information gathered from experiments.

Moreover, many real world systems are subject to safety constraints, such as critical temperatures, pressures,
or restricted sensor working conditions, which must be adhered to during measurements. Often, these safety
constraints are unknown and need to be modeled, leading to the application of safe active learning and related
methodologies (Berkenkamp et al., 2023; Cowen-Rivers et al., 2022; Sui et al., 2018; Schreiter et al., 2015).
While active learning is usually superior to static Design of Experiments (DoE) approaches (Smith, 1918;
Pukelsheim, 2006), static DoE is not even applicable in the face of safety constraints.

Real-world scenarios frequently involve time-varying systems, presenting additional complexities. Examples
include systems affected by drift (Talluru et al., 2014), possibly caused by continuously polluting sensors
(Thewes et al., 2015); systems influenced by periodic trends like seasonal variations (Bacastow et al., 1985;
Scherliess & Fejer, 1999); or dynamic systems, where current decisions influence future behavior, such as
is reflected in NX (non-linear exogenous) model structures (Chen & Huang, 2015; Zimmer et al., 2018);
Actively learning such systems proves challenging, as parts of the system may change or certain operation
points might be currently unreachable. Despite these challenges, there is a substantial demand for learning
such systems. For example production systems with periodic changes may require accurate model-based

1

Under review as submission to TMLR

low future
variance

reduction

new x∗

future:
high
variance
present:
low
variance

domain D

va
ria

nc
e

(a) Entropy, measure high current variance

high future
variance

reduction

good current variance reduction

new x∗

future:
high
variance
present:
low
variance

domain D

prior variance
posterior variance

future prior variance
future posterior variance

new data point x
variance reduction

(b) T-IMSPE (ours), reduce future variance

Figure 1: This illustrative sketch showcases the efficacy of our acquisition function T-IMSPE in variance
reduction on a domain D in present (dark color) and future (light color). The darker color at the bottom
exhibits the transition from the prior blue line to the posterior green dashed line when conditioning on the
red data point x at present time. The lighter colored top delineates the induced variance reduction in a future
time step. The left subplot (a) highlights the suboptimal variance reduction when employing the entropy
acquisition function: it leads to a measurement at the boundary and to a very low reduction of the future
variance. The right subplot (b) reveals the capability of T-IMSPE to outperform entropy in reducing the
average variance at current and future time steps.

anomaly detection, drift in sensors needs to be counteracted, or engines needs to be modeled for an economic
calibration. Dynamic systems necessitate an understanding of their dynamic behavior.

This paper introduces a safe active learning framework tailored for time-varying systems. The approach
involves measuring at safe positions where the maximum information can be collected. Notably, we focus on
also gathering information about future scenarios, rather than solely the current system state.

Technically, we start from the acquisition function IMSPE (Integrated Mean Squared Prediction Error), also
known under various other names such as ALC (Active Learning Cohn) or IMSE (Integrated mean squared
error). This acquisition function chooses measurement points that minimize the posterior prediction variances,
integrated over the entire relevant domain. We extend IMSPE to the acquisition function Time-aware
Integrated Mean Squared Prediction Error (T-IMSPE), which minimizes the posterior variance over current
and future states of the systems. Surprisingly, the necessary integration in both IMSPE and T-IMSPE can be
computed in closed form for many Gaussian process models, in particular the ones that are state of the art in
active learning scenarios.

Our main contributions are:

• We introduce the novel T-IMSPE acquisition function for safe active learning of time-varying systems.
We compute the defining integral in closed form, improving computational complexity and accuracy.

• We demonstrate the advantages of T-IMSPE in terms of model quality in several toy and real world
examples, see Section 5.

• We provide several theoretical contribution to the theory T-IMSPE and more generally of IMSPE,
see Section 4. In particular, we provide a cookbook of usage for various Gaussian processes kernels
and domains.

• We distinctly delineate the theoretical scope of closed-form integrals and show the boundaries of
practical supremacy of T-IMSPE in various delineating scenarios in Appendix D.

2 Background

Active learning applications typically use Gaussian process (GP) models due to their Bayesian capabilities in
dealing with few data points and their reliable uncertainty estimates through variances.

2

Under review as submission to TMLR

2.1 Gaussian processes (GPs)

A Gaussian process (GP) g = GP(m, k) defines a probability distribution on the evaluations of functions
D → R where the domain D ⊆ Rd ≡ R1×d such that function values g(x1), . . . , g(xn) at points x1, . . . , xn ∈ D
are jointly (multivariate) Gaussian. Such a GP g = GP(m, k) is specified by a mean function m : D → R :
x 7→ E(g(x)) and a positive semidefinite covariance function

k : D2 → R : (x,w) 7→ E ((g(x) −m(x))(g(w) −m(w))) .
Our experiments use the kind-of-default squared exponential covariance function kSE : (x, x′) 7→
exp

(
− ||x−x′||2

2
2

)
. Any finite list of evaluations of g at x = [x1, . . . , xn] follows the multivariate Gaus-

sian distribution g(x) ∼ N (m(x), k(x, x)) for g(x),m(x) ∈ Rn and k(x, x) ∈ Rn×n with g(x)i = g(xi),
m(x)i = m(xi), and k(x, x)i,j = k(xi, xj). Likelihoods and posteriors can now be computed via linear
algebra from this multivariate Gaussian (Rasmussen & Williams, 2006). We denote the posterior covariance
function of a GP conditioned on a dataset (x, y) ∈ (D × R)n by k(−,−|x) and we define k(x) = k(x, x) and
k(x,w)i,j = k(xi, wj) for w = [w1, . . . , wm]. The posterior covariance is independent of the output data y,
which is used in active learning to plan the input x.

GPs are used to model dynamical systems in various ways. This paper uses NX structures in GP models
(Chen & Huang, 2015; Crespi, 2019). Additionally, GPs have been used to model state space systems (Frigola
et al., 2014; Eleftheriadis et al., 2017), linear differential equations (Besginow & Lange-Hegermann, 2022;
Harkonen et al., 2023), or periodic dynamics (Klenske et al., 2015)

2.2 Safe active learning

Safe Active Learning (SAL) is a sequential experimental design which strives for safety under previously
unknown constraints. SAL iteratively determines a new point x∗ for labelling that maximizes information
I(x∗) constraint on safety with high probability. Entropy is commonly used as a measure for information
and is in case of Gaussian distribution proportional to the predictive variance of the regression GP. For a
comparison and elaboration of entropy, e.g. its other names in the literature, see Subsection 3.1.

Assuming that a safety critical quantity is known, e.g. temperature should stay below a critical temperature,
one can calculate a safety indicator z that indicates safety for non-negative values z ≥ 0. Assuming that
measurements on this safety critical quantity can be obtained, a safety GP gsafe = GP(msafe, ksafe) modeling
the values of z ∼ gsafe(x∗) can be trained. Often but not necessary, the safety GP is the (or amongst the)
model(s) that we strive to learn. This yield the probability of safely obtaining a new point x∗ when already
some data (x, y) has been obtained as

ξ(x∗) =
∫

z≥0
N (z;msafe(x∗|x, y), ksafe(x∗, x∗|x)) dz.

Now, a new point x∗ can be determined by maximizing (cf. Appendix F) information constrained on safety:
x∗ = argmaxx∗∈D,ξ(x∗)>α I(x∗) (1)

where 0 ≤ α < 1 indicates the desired safety level.
Remark 2.1. Our experiments use α = 0.977 such that two standard deviations from the mean of a
Gaussian is predicted as being safe. This safety criterion corresponds to the probability of a random and
statistically independently drawn point being safe. Points evaluated in active learning might be far from
previous measurements and have a higher probability of being unsafe due to potential model misspecification.
Therefore, these points are not statistically independent random draws of a Gaussian. Hence, more of them
might be unsafe. We chose the wording "satisfying" for safety percentages around 97.7 % or higher and
"acceptable" for slightly lower percentages to describe our experiments. All experiments, either of T-IMSPE
or other acquisition functions, show at least acceptable safety.

After a new label y∗ has been obtained, both the regression and the safety GP can be retrained and the
next constrained optimization problem (1) solved. More formally, SAL can be summarized in the following
algorithm.

3

Under review as submission to TMLR

Input: budget n, initial data (x, y) = (xi, yi)ninitial
i=1

Train initial GPs
for i = 1, . . . , n do

Determine x∗ by solving (1) and get label y∗ for x∗.
Update (x, y) = ((x, y), (x∗, y∗)) and retrain GPs

end for

GP hyperparameter training is well established and fast. If in certain real-time applications further speed up
is required, techniques of amortized inference are at hand (Bitzer et al., 2023; Liu et al., 2020)

2.3 Integrated mean squared prediction error (IMSPE)

The Integrated mean squared prediction error (IMSPE) acquisition function strives for a model posterior with
minimal average variance. Start with a (prior) Gaussian process g ∼ GP(m, k) and have already measured at
n positions x ∈ Rn×d. IMSPE selects x∗ ∈ R1×d with minimal

∫

Rd

k(xr|x∗, x) dµ(xr), (2)

where k(xr|x∗, x) is the posterior variance of the Gaussian processes g when conditioned on observations at
x∗ and x, and µ is a suitable finite measure used to average over reference points xr. We comment on a
comparison of IMSPE and entropy in Appendix D.2.

3 Related work

3.1 Acquisition functions for active learning

In machine learning, the standard acquisition function is entropy. This approach is often called ALM (Active
Learning Mackay) (MacKay, 1992). The acquisition function BALD (Houlsby et al., 2011) was originally
presented for classification tasks. For regression tasks, it is equivalent to the entropy criterion (Riis et al.,
2022a, A.3) (Riis et al., 2022b, G.2).

The acquisition function mutual information has gained prominence in safe active learning scenarios. Originally
applied in the context of sensor placement for fixed sensors (Krause et al., 2008), mutual information-based
acquisition functions have found applications in active learning scenarios with discrete domain D (Vasisht
et al., 2014; Kirsch et al., 2019; Li et al., 2022b). For a detailed comparison of IMSPE with averaging mutual
information (Krause et al., 2008) and β-diversity (Leinster, 2021), refer to Appendix D.3.

While classical criteria from the Design of Experiments (DoE) theory (Smith, 1918; Pukelsheim, 2006), such
as D-optimal designs, could be potential acquisition functions, they have not gained traction in machine
learning due to their emphasis on learning parameters rather than making predictions. IMSPE is closely
connected to the classical V-optimality criterion in DoE theory, where measurement points are chosen to
minimize the model’s variance at a finite number of points (Fedorov & Hackl, 1997, (2.1.18)). IMSPE can be
considered a variant of A-optional designs, where it minimizes the average variance of the response, while
A-optimality minimizes the average variance of the model parameters. Other geometric criteria have also been
proposed in practice (Thewes et al., 2016). None of these DoE criteria allow to include safety constraints.

IMSPE has a long history. The seminal work by (Sacks et al., 1989b), see also (Sacks et al., 1989a) and the
authors’ book (Santner et al., 2003), introduced the acquisition function IMSE (Integrated Mean Squared
Error), estimating mean squared error via posterior variance for polynomial covariance functions. (Ying, 1991)
renamed IMSE into IMSPE and conducts extensive theoretical investigations into its asymptotic properties.
The second time the name IMSPE appears in the literature is in (Fang, 2000). (Ankenman et al., 2010)
proposes the use of IMSE, for which they use a closed form formula, for active learning. (Leatherman et al.,
2014) gives a thorough overview about techniques for static designs with IMSPE. (Leatherman et al., 2018)
computes the IMSPE for certain finite dimensional GPs. For modern references to IMSPE we refer to
(Gramacy, 2020; Binois et al., 2019), with extensive implementation hetGP (Binois & Gramacy, 2021) in the
system R.

4

Under review as submission to TMLR

IMSPE has been reintroduced under different names. (Cohn et al., 1996) introduced active learning for
mixtures of Gaussian with the goal of minimizing IV (Integrated Variance), for which they found a simple
closed form; this is another special case of IMSPE later named ALC1 (Active Learning Cohn). (Seo et al.,
2000) introduced active learning to GPs, where they used VI from ALC while approximating the integral
using sampled points. (Burnaev & Panov, 2015) independently introduced IMSPE as IntegratedMSEGain,
providing an unproven closed form. (Gorodetsky & Marzouk, 2016) independently introduce IMSPE under
the name IVAR (Integrated VARiance), where they compute the integral numerically. Recent literature has
extensively utilized IMSPE or its variants. (Vernon et al., 2019) focuses on safety boundaries, (Meka et al.,
2020) applies ALC in closed-set active learning, (Lee et al., 2022) investigates IMSE, ALC, and ALM in safe
active learning, and (Lee et al., 2023) employs a discrete approximation to ALC/IMSE for local GPs.

None of these approaches use IMSPE or its variants under different names to specifically collect information
for future time steps.

3.2 Active learning in dynamic systems

Active learning has also been explored in dynamic systems. (Schneider, 1995; Umlauft et al., 2020) consider
dropping old data points when their information content becomes irrelevant. (Lughofer, 2017) provides an
overview of active learning in data streams, while (Jain et al., 2018) applies active learning to GP models
for non-linear control during closed-loop control. Safety considerations in dynamic systems are addressed
by (Zimmer et al., 2018), and (Buisson-Fenet et al., 2020) proposes an iterative active learning scheme in
dynamical systems based on mutual information. (Yu et al., 2021) conducts active learning specifically for
GP state space models, and (Heim et al., 2020) learns safety constraints in dynamical systems. Similar
strategies can be found in reinforcement learning for non-stationary environments (Padakandla et al., 2020;
Padakandla, 2021; Ritto et al., 2022; Cowen-Rivers et al., 2022), control (Fisac et al., 2018; Agarwal et al.,
2019; Capone et al., 2020), concept drift (Han et al., 2022), and theoretical work on regret in non-stationary
systems (Zhang, 2021; Zhao et al., 2022). The papers (Fiducioso et al., 2019; Krause & Ong, 2011) consider
regret in the current time/context and show that their choice of acquisition function is still sublinear in
changing contexts.

Notably, none of these approaches considers acquisition functions that account for information or prediction
accuracy at future time steps.

3.3 Safe learning

Safe exploration has been employed in robotics (Sui et al., 2018; Berkenkamp et al., 2016; Baumann et al.,
2021), energy management (Galichet et al., 2013), terrain exploration, (Moldovan & Abbeel, 2012; Turchetta
et al., 2019) and engine modeling (Schreiter et al., 2015; Zimmer et al., 2018; Schillinger et al., 2017; Li et al.,
2022a). While most of this Safe Learning work is on Bayesian optimization, some is on Active Learning
but does not consider future information or future prediction accuracy. (Li et al., 2024) considers Bayesian
optimization (but not active learning) in a dynamic setting, with a focus on safety guarantees.

4 T-IMSPE - Time-aware Integrated mean squared prediction error

Our criterion T-IMSPE uses the concepts and formulas from IMSPE in time-dependent models, to ensure
variance reduction not only for the current time step, but also for future time steps. We first consider GP
models with time as an additional input for both continuous and discrete time domains, and afterwards we
consider NX-GP models for dynamic systems in discrete time domain. In both cases, T-IMSPE work with a
wide range of GP covariance structures.

1Some authors distinguish between IMSPE and ALC (Sauer et al., 2023), noting that IMSPE computes the integral in
equation (2) in closed form, while ALC approximates it numerically. However, this distinction is not widely recognized in the
literature. For an example, see (Gramacy, 2020, §6) by the second author of (Sauer et al., 2023).

5

Under review as submission to TMLR

4.1 T-IMSPE for GPs with time amongst its inputs

Consider a GP g = GP(m, k) defined on the domain R×D, where R represents the time domain and D ⊆ Rd

represents the remaining inputs, e.g. “spatial” inputs. For example, when not encoding any specific time
dependent behavior in the GP prior, k might be a squared exponential covariance function on Rd+1. Let µ
be a finite measure on R × D. We define T-IMPSE for choosing a new data point x∗ ∈ D at time t∗ ∈ R
after already obtained data (τ, x) ∈ (R ×D)n for such GPs as

T-IMSPE(x∗) =
∫
k((tr, xr)|(t∗, x∗), (τ, x)) dµ(tr, xr). (3)

By Theorem 4.4 below, this integral is computable in closed form for most common covariance functions.
The time-aware aspect can now be included in the measure µ. Assume we have a suitable measure µD on the
domain D. Then, we can encode our desire to accumulate information in the relevant time interval [t∗, t∗ +∆t]
by a uniform distribution µt = 1[t∗,t∗+∆t]. Then, defining µ as the product measure µ := µt ⊗ µD strives to
choose a new data point as follow: the posterior variance over the domain D is reduced being weighed by µD,
while this reduction is not only achieved at t∗, but aware of future times in all of [t∗, t∗ +∆t]. The relevant time
domain might also be considered discrete via µt = 1{t∗,t∗+1,...,t∗+∆t}, then µ := µt ⊗ µD =

∑t∗+∆t
t=t∗

δt ⊗ µD

for the Kronecker delta δt.

4.2 T-IMSPE for GPs with NX-structure

Consider modeling time dependent behavior via NX (non-linear exogenous) structure yt =
f(xt, xt−1, . . . , xt−ℓ+1) for some positive ℓ ∈ N by placing a GP prior g = GP(m, k) on the function
f : Dℓ → R. Such models work in discrete time domain. Let µ be a finite measure defined on Dℓ. Assume
already obtained data at x ∈ (Dℓ)n, where the condition xi,t = xi+1,t+1 ∈ D for the NX structure for
i ∈ {1, 2, . . . , ℓ− 1} and t ∈ {1, 2, . . . , n− 1}. We define T-IMPSE for choosing a new data point x∗ ∈ D for
such NX GPs as

T-IMSPE(x∗) =
∫
k(xr|x∗, x) dµ(xr), (4)

where x∗ = (x∗, x1,n, . . . , xℓ−1,n) ∈ Dℓ is the new measurement position with previous measurement positions
to predict the model dynamics. Since x1,n, . . . , xℓ−1,n are the measurement positions from previous steps,
they are well known values, to which we add the vector x∗ of new inputs. We now use the closed formula for
T-IMSPE in

∫
k(xr | x∗, x)dµ(xr) from Theorem 4.4, where instead of x∗ we substitute x∗. This formula

allows optimization for x∗.

In our experiments we chose the ℓ-times product measure µ :=
⊗ℓ

i=1 µD for a fixed finite measure µD on the
domain D. Note that if µD is Gaussian or a uniform measure on a multi-dimensional interval, then so is
µ. This acquisition function is time-aware, as points are chosen that reduce the variance over all possible
dynamical behaviour.

This version of T-IMSPE is a special case of the previous one: start with the version from Subsection 4.1,
ignore the time dependency in the GP and intepret the GP to have the NX-time inputs. Now, the additional
average over time in T-IMPSE is trivial.

4.3 P -elementary functions for closed form (T-)IMSPE

A key step to applicability of our new T-IMSPE criterion is the evaluation of the integral in Equation (2),
and hence in the Equations (3) and (4). This section shows that the integral can be computed in closed form
for a variety of covariance functions and measures. This decreases computational load improves numerical
stability of values and gradient. Even though this work uses the squared exponential kernel, work on efficient
kernel selection (Bitzer et al., 2022) allows the modeler to quickly pick a suitable composed kernel. Our
theoretical contribution actually extends beyond our T-IMSPE criterion to the general situation of IMSPE.
We summarize and extend existing results (Sacks et al., 1989b; Leatherman et al., 2018) that this integral
can be computed in closed form, putting them into a more abstract and widely applicable framework.

6

Under review as submission to TMLR

Recall the class of elementary functions, which was defined in the 19th century (Liouville, 1833a;c;b; Bronstein,
2005) to e.g. describe the well known result that while erf(x) :=

∫
exp(−x2) dx is analytical and even entire,

it is not expressible in closed form using classical functions. The class of elementary functions is not suitable
to describe functions being computable in PyTorch, e.g. it is too big in the sense that it is closed under inverse
functions and it is too small as functions like erf(x) are nowadays easily computable. Furthermore, the class
of elementary functions only considers univariate scalar function f : U → R for U ⊆ R, whereas multivariate
multi-ouput functions are common in machine learning. Now, we adapt this definition of elementary functions
to formally define what it means to compute functions in closed form in a system like PyTorch.

Fix a programming framework P . We think of P as PyTorch, but one might as well think of P as JAX, TF
or any other current or future framework. Then, we view the following operation as computable in closed
form in P : (a) they have access to functions in P , (b) one can compose functions, and (c) one can perform
arithmetic operations. More formally, we define the following.
Definition 4.1. We define the set of P -elementary functions as the intersection2 of all sets of partial3
functions U → Rd′′ for U ⊆ Rd′ , d′, d′′ ∈ Z>0, that

(a) include all constants (considered as constant functions) and functions available in P ,

(b) are closed under function composition ◦, and

(c) are closed under (multivariate and multi-output) rational maps; in particular additions, subtractions,
multiplications, divisions, and linear maps.

Example 4.2. The following functions are PyTorch-elementary:

i. (x1, x2) 7→ 2x1 − 42x2 by Definition 4.1.(c).

ii. x1 7→ erf(x1) by Definition 4.1.(a).

iii. (x1, x2) 7→ erf(x1) by using all of Definition 4.1, as (x1 7→ erf(x1)) ◦ ((x1, x2) 7→ x1).

iv. (x1, x2, x3) 7→ erf(softmax(x1 + π · x2,Γ(x3
x2

)2)) by using all of Definition 4.1.

We now show that IMSPE and T-IMSPE are PyTorch-elementary for a wide range of covariance functions,
making safe active learning with them is computationally efficient and numerically stable.

4.4 Computability in closed form

IMSPE and T-IMSPE can be computed in closed form with a mild assumption on the GP covariance.
Definition 4.3. Let µ be a finite measure on Rd. We say a covariance function k is P -elementary
covariance marginalizable w.r.t. µ if the integral

∫
k(x1, xr)k(xr, x2) dµ(xr) exists as a P -elementary

function in x1 and x2.

This is a non-trivial definition. In the appendices, we show or recall from the existing literature that constant
(Example A.3), ARD squared exponential (Examples A.4), polynomial (Example A.5), half-integer Matérn
(Example A.5), Wiener process (Example A.5), and random Fourier feature (Example A.11) covariance
functions are Pytorch-elementary covariance, while rational quadratic and periodic covariance functions are
probably not (Example A.6), all when considering µ as a non-degenerate continuous uniform distribution on
a multidimensional interval or non-degenerate Gaussian distribution.

The class of P -elementary covariance marginalizable covariance functions is closed under various operations:
scaling (Proposition A.8), multiplication on independent inputs (Proposition A.9), and also under sums
when the covariance functions satisfy another condition (Proposition A.10). Furthermore, if a covariance

2Intersecting is a way of constructing mathematical objects when direct constructions are inconvenient. E.g., the span of a
set of vectors can be defined as intersection of all linear subspaces containing this set of vectors.

3Partial functions are functions that are not defined in all of their domain. This is necessary, e.g. as we divide through
functions having zeros or use logarithms.

7

Under review as submission to TMLR

function is P -elementary covariance marginalizable w.r.t. two measures, then so it is w.r.t. the sum of these
two measures (Proposition A.12). This cookbook allows to construct new GPs from previous ones, such that
T-IMSPE stays applicable. For more details on this cookbook see Appendix A.3. From this discussion we
conclude that the following theorem is widely applicable.
Theorem 4.4. Assume the prior covariance function k of a prior GP g to be P -elementary covariance
marginalizable w.r.t. a measure µ. Then, IMSPE and T-IMSPE are P -elementary, i.e. they can be computed
in closed form in the programming framework P .

These results have the major advantage that it is sufficient for the prior covariance function to be P -elementary
covariance marginalizable, and we do not need properties for the posterior covariance functions. For a proof
of Theorem 4.4 we refer to Appendix B, which also provides a very concrete formula for the computation of
these criteria. We do not claim novelty to these proofs, which are known for the special case of polynomial
covariance functions since (Sacks et al., 1989b) and additional special cases are spread over the subsequent
literature, see Subsection 3.1.

IMSPE and T-IMSPE have the same computational complexity as computing the entropy.
Corollary 4.5. IMSPE and T-IMSPE as computed in the proof of Theorem 4.4 need a one-time Cholesky
decomposition (which is computed anyway during the GP training) of the data covariance matrix k(x, x) in
O(n3), independent of the new data point x∗, where n is the number of data points. Afterwards, these criteria
can be evaluated in O(n2) as a function in x∗.

The proof of this corollary in Appendix B is very explicit and yields a direct formula for computations. For
us, the most important special case of the above general theory is the following.
Corollary 4.6. IMSPE and T-IMSPE can be computed in closed form in PyTorch for a prior GP with
squared exponential covariance, provided the measure µ is Gaussian or continuous uniform.

5 Experiments

We conduct three experiments for safe active learning in time varying systems. Thereby, we demonstrate the
superiority of the modeling quality achieved by T-IMSPE over both entropy, which is currently the state
of the art (see Appendix D) in active learning, and IMSPE, while keeping the same safety standard. For
further results of our experiments resp. further details on the setup of our experiments see Appendix E resp.
Appendix F and the attached code. We use the paired Wilcox signed rank test to show statistical significance.

5.1 Experiment: seasonal change

We consider learning a system with strong seasonal changes. The system is given as by rotating the two-
dimensional domain in the function from Equation (5) in Appendix F.1. We start with 8 initial measurements
at times 0, . . . , 7 positioned at the inital points of a Sobol sequence in the safe area. Afterwards, 100 further
measurements at times 8, . . . , 107 are conducted according to the two respective safe active learning criteria
T-IMSPE, entropy, and IMSPE.

For this and the subsequent experiment, we take a grid as test data and restrict to the grid points where
the behavior is currently safe. We make this restriction of our test data to the safe area, as the model
quality is only of interest there. This implies that the test data varies between time steps, as different areas
are considered safe. We consider test data only at the current time instead of including time steps at the
future, to prevent an unjustified advantage of T-IMSPE, which optimizes over the future time steps, over the
acquisition functions entropy and IMSPE.

For the upcoming experiment and the subsequent experiment, we utilize a grid as our test dataset, restricting
to grid points where the behavior is currently safe. The rationale behind restricting our test data to this safe
area is rooted assessing the model’s quality there. The test data varies across different time steps, reflecting
the changing state of the system. Consequently, our analysis is confined to the current time, deliberately
excluding future time steps. This intentional exclusion prevents any unwarranted advantage of T-IMSPE over
entropy in the evaluation criteria, as T-IMSPE optimizes over future time steps. This precaution ensures a

8

Under review as submission to TMLR

av
er

ag
e

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

0
1
2
3
4
5
6

R
M

SE
in

sa
fe

ar
ea

T-IMSPE (ours)
Entropy
IMSPE

time in experiment av
er

ag
e

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

−4
−3
−2
−1

0
1
2
3
4

R
M

SE
ga

in
in

sa
fe

ar
ea

time in experiment

Figure 2: Box plots of RMSE value in the safe area of the experiments from active learning with seasonal
changes (left, Subsection 5.1) and under drift (right, Subsection 5.2). The x-axis shows these value on averaged
over all time steps and at certain ascending time steps from 10% to 100%. The left diagram compares the
results of 450 runs between T-IMSPE (blue), entropy (red), and IMSPE (green), where T-IMSPE is highly
significantly (p < 2.2e−16) superior to entropy in all eleven comparison, whereas T-IMSPE is superior over
IMSPE on average (p < 2.1e−3). The right diagram shows the gain of RMSE values in 500 runs when
choosing T-IMSPE over entropy (red) and over IMSPE (green). The results are significantly (p < 1e−10)
better for T-IMSPE over entropy in all 11 comparisons and and significantly better in 10 out of 11 comparisons
for T-IMSPE over IMSPE.

fair and unbiased evaluation of model performance within the immediate temporal context. Comparisons are
done between runs of equal random seeds, in particular the same noise is added to the initial measurement
points.

Due to changing domains, we strive for a good RMSE not only at the final time step, but during all of the
measurement time. Figure 2 summarizes the results in terms RMSE in 50 runs with different seeds by the
above protocol after 10, 20, . . . , 100 time steps, and the average over all time steps. In this experiment,
T-IMSPE is vastly superior in reducing RMSE in comparison to the state of the art entropy. The superiority
of T-IMSPE is highly significant (p < 2.2e−16) for all time steps and the average model quality. This number
2.2e−16 is the smallest representable p-value in R and indicates a result that is statistically highly significant,
essentially suggesting that the probability of the observed result occurring under the null hypothesis is
vanishingly small. Comparing T-IMSPE to IMSPE, we have T-IMSPE being superior to IMSPE on average
(p < 2.1e−3) and over the first three time steps at 10 % to 30 % (p < 2.2e−4, p < 1.1e−2, p < 1.5e−7).
Afterwards, when IMSPE and T-IMSPE have both mostly converged, both methods perform comparably,
with advantages for IMSPE at time steps 40 % to 90 %.

With all acquisition functions, over 99.5 % of all points were safe; this is satisfying by Remark 2.1.

5.2 Experiment: drift

We consider learning a system with strong temporal drift. The system is given as by the formula in Equation (6)
in Appendix F.1. With the exception of the changed formula, our setup is the same as for the experiment
with seasonal drift in the previous Subsection 5.1.

Due to changing domains, we strive for a good RMSE not only at the final time step, but during all of the
measurement time. Figure 2 summarizes the results in terms RMSE in 500 runs with different seeds by the
above protocol after 10, 20, . . . , 100 time steps, and the average over all time steps. We see that at almost all
time steps, and in particular on average (left), the RMSE of T-IMSPE is smaller than that of the entropy. In
a paired Wilcox signed rank test T-IMSPE is highly significantly (p < 1e−10) superior to entropy for all 11
comparisons. The superiority of T-IMSPE over IMSPE is highly significant (p < 2e−16) on average, highly
significant (p < 1e−5) for 5 time steps (10 %, 40 %, 50 %, 60 %, 80 %), significant (p < 5e−2) for 4 time
steps (20 %, 70 %, 90 %, 100 %), and inconclusive at one time step (30 %).

9

Under review as submission to TMLR

250 500 750 1000

2

4

6

8

steps

RMSE

entropy
T-IMSPE (ours)

Figure 3: Left: Common rail pressure system (system for high-pressure fuel injection) with controllable inputs
vk, nk and measured output ψk, taken from Zimmer et al. (2018); Tietze et al. (2014) Right: This diagram
show the decline in RMSE in the rail pressure model from Subsection 5.3. Entropy (red) shows a slow decline
over the 1000 steps, whereas our approach T-IMSPE declines more consistensly, faster, and ends in much
smaller RMSE values. The dashed line is the mean of 100 runs, the area shows the 2σ area and the solid
lines show 5 examplatory runs.

We have 96.2 %–96.5 % safe points for all 3 acquisition functions; this is acceptable by Remark 2.1.

5.3 Dynamic real world system: rail pressure

This experiment considers the rail pressure example from (Tietze et al., 2014). The system consists of an
actuation vk and an engine (rotational) speed nk, which yield the rail pressure ψk. There exists a formula,
given in Appendix F.1 and in the code, such that ψk = ψ(nk, nk−1, nk−2, nk−3, vk, vk−1, vk−3) with vk−2
missing, and we will try to find a GP model g such that ψk ≈ g(nk, nk−1, nk−2, nk−3, vk, vk−1, vk−2, vk−3).
Here, the final RMSE values in the safe domain are most imppenortant in practice. To obtain test data in the
safe area, we constructed a random safe trajectory of length 2024, where the next point is always a random
point that turned out to be safe.

Previous papers considered this dynamic example using piecewise linear trajectories as in (Zimmer et al., 2018),
where given a history of measurement position (nk, vk), (nk−1, vk−1), . . ., a new point (nk+5, vk+5) was chosen
and the measurement position between were linearly interpolated as (nk+i, vk+i) = 5−i

5 (nk, vk)+ i
5 (nk+5, vk+5).

We consider fully dynamic learning, where given the above history, (nk+1, vk+1) is chosen. Hence, we are in
the setting of NX models as in Subsection 4.2, where IMSPE is not feasible as a comparison.

The results of the RMSE of comparing 100 runs of entropy to 100 runs of T-IMSPE over 1000 iterations are
shown in Figure 3. The superiority in RMSE values shows the superiority of the T-IMSPE over entropy for
dynamical systems. The Wilcox signed rank test conducted 10 times (every 100 steps) shows that at all time
steps TIMSPE is significantly better than entropy with p < 1.1e−6 after 100 time steps and p < 3.2e−15
(sic!) at all remaining tested time steps.

Entropy had 97.5 % safe points and T-IMSPE had 99.2 % safe points in these experiments, see also Table 2
in Appendix E, which is satisfying for both acquisition functions by Remark 2.1.

6 Conclusion

This paper introduced an algorithm for safe active learning that is specifically suited for time varying
systems. Our T-IMSPE acquisition function is able to capture the time dependence and does not only collect
information for the current time step, but also for future time steps.

Our T-IMSPE acquisition function can be evaluated in closed-form at comparable complexity as the widely
used entropy acquisition function. This holds for commonly used kernels and we theoretically show the
boundary of computability for the IMSPE and T-IMSPE criteria and construct a cookbook of GP constructions
for IMSPE and T-IMSPE. The superiority of TIMSPE is highly significant.

10

Under review as submission to TMLR

Additionally, the theoretical contributions of this paper allow further applications which need more control
over information collection; for example one can specify where and when information is important and one
can see for which covariance functions such information gathering is possible.

The experimental results show a clear and significant advantage for the model quality obtained by T-IMSPE
over the state of the art entropy and over IMSPE in various settings of time changing systems, while keeping
the safety. In Appendix E.1 we discuss what happens if systems are only slightly time changing.

References
Naman Agarwal, Brian Bullins, Elad Hazan, Sham Kakade, and Karan Singh. Online control with adversarial

disturbances. International Conference on Machine Learning (ICML), 2019.

Ahmed Ramadhan Al-Obaidi. Characterization of internal thermohydraulic flow and heat transfer improvement
in a three-dimensional circular corrugated tube surfaces based on numerical simulation and design of
experiment. Heat Transfer, 51(5):4688–4713, 2022.

Bruce Ankenman, Barry L. Nelson, and Jeremy Staum. Stochastic kriging for simulation metamodeling.
Operations Research, 58(2):371–382, 2010.

RB Bacastow, ChD Keeling, and TP Whorf. Seasonal amplitude increase in atmospheric CO2 concentration
at Mauna Loa, Hawaii, 1959–1982. Journal of Geophysical Research: Atmospheres, 90(D6):10529–10540,
1985.

Jihad Badra, Jaeheon Sim, Yuanjiang Pei, Yoann Viollet, Pinaki Pal, Carsten Futterer, Mattia Brenner,
Sibendu Som, Aamir Farooq, Junseok Chang, et al. Combustion system optimization of a light-duty GCI
engine using CFD and machine learning. SAE World Congress Experience, 2020.

Dominik Baumann, Alonso Marco, Matteo Turchetta, and Sebastian Trimpe. Gosafe: Globally optimal safe
robot learning. International Conference on Robotics and Automation (ICRA), 2021.

Felix Berkenkamp, Angela P. Schoellig, and Andreas Krause. Safe controller optimization for quadrotors
with Gaussian processes. International Conference on Robotics and Automation (ICRA), 2016.

Felix Berkenkamp, Andreas Krause, and Angela P Schoellig. Bayesian optimization with safety constraints:
safe and automatic parameter tuning in robotics. Machine Learning, 112(10):3713–3747, 2023.

Andreas Besginow and Markus Lange-Hegermann. Constraining Gaussian processes to systems of linear
ordinary differential equations. Advances in Neural Information Processing Systems (NeurIPS), 2022.

Mickaël Binois, Jiangeng Huang, Robert B Gramacy, and Mike Ludkovski. Replication or exploration?
Sequential design for stochastic simulation experiments. Technometrics, 61(1):7–23, 2019.

Mickaël Binois and Robert B. Gramacy. hetGP: Heteroskedastic Gaussian process modeling and sequential
design in R. Journal of Statistical Software, 98(13):1–44, 2021.

Matthias Bitzer, Mona Meister, and Christoph Zimmer. Structural kernel search via Bayesian optimization
and symbolical optimal transport. Advances in Neural Information Processing Systems (NeurIPS), 2022.

Matthias Bitzer, Mona Meister, and Christoph Zimmer. Amortized inference for Gaussian process hyperpa-
rameters of structured kernels. Uncertainty in Artificial Intelligence (UAI), 2023.

Manuel Bronstein. Symbolic integration I: transcendental functions. Springer, 2005.

Mona Buisson-Fenet, Friedrich Solowjow, and Sebastian Trimpe. Actively learning Gaussian process dynamics.
Learning for Dynamics and Control, 2020.

Evgeny Burnaev and Maxim Panov. Adaptive design of experiments based on Gaussian processes. Statistical
Learning and Data Sciences (SLDS), 2015.

11

Under review as submission to TMLR

Alexandre Capone, Armin Lederer, Jonas Umlauft, and Sandra Hirche. Data selection for multi-task learning
under dynamic constraints. Control Systems Letters, 5(3):959–964, 2020.

Zhiyong Chen and Jie Huang. Stabilization and regulation of nonlinear systems. Springer, 2015.

Chun-Huo Chiu, Lou Jost, and Anne Chao. Phylogenetic beta diversity, similarity, and differentiation
measures based on hill numbers. Ecological Monographs, 84(1):21–44, 2014.

David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical models. Journal
of artificial intelligence research, 4:129–145, 1996.

Alexander I Cowen-Rivers, Daniel Palenicek, Vincent Moens, Mohammed Amin Abdullah, Aivar Sootla, Jun
Wang, and Haitham Bou-Ammar. Samba: Safe model-based & active reinforcement learning. Machine
Learning, 111(1):173–203, 2022.

Veronica Crespi. Dynamic safe active learning with NARX Gaussian processes. Master’s thesis, Universität
Stuttgart, 2019.

Frank E Curtis, Tim Mitchell, and Michael L Overton. A bfgs-sqp method for nonsmooth, nonconvex,
constrained optimization and its evaluation using relative minimization profiles. Optimization Methods and
Software, 32(1):148–181, 2017.

Stefanos Eleftheriadis, Tom Nicholson, Marc Deisenroth, and James Hensman. Identification of Gaussian
process state space models. Advances in neural information processing systems (NeurIPS), 2017.

Zhide Fang. Robust extrapolation designs for biased polynomial models. Journal of Statistical Planning and
Inference, 87(1):135–147, 2000.

Valerii V. Fedorov and Peter Hackl. Model-Oriented Design of Experiments. Lecture Notes in Statistics 125.
Springer, 1997.

Marcello Fiducioso, Sebastian Curi, Benedikt Schumacher, Markus Gwerder, and Andreas Krause. Safe
contextual bayesian optimization for sustainable room temperature pid control tuning. International Joint
Conference on Artificial Intelligence (IJCAI), 2019.

Jaime F Fisac, Anayo K Akametalu, Melanie N Zeilinger, Shahab Kaynama, Jeremy Gillula, and Claire J
Tomlin. A general safety framework for learning-based control in uncertain robotic systems. Transactions
on Automatic Control, 64(7):2737–2752, 2018.

Roger Frigola, Yutian Chen, and Carl Edward Rasmussen. Variational Gaussian process state-space models.
Advances in neural information processing systems (NeurIPS), 2014.

N. Galichet, M. Sebag, and O. Teytaud. Exploration vs exploitation vs safety: Risk-aware multi-armed
bandits. Asian Conference on Machine Learning, 2013.

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wilson. GPyTorch: Blackbox
matrix-matrix Gaussian process inference with gpu acceleration. Advances in neural information processing
systems (NeurIPS), 2018.

Alex Gorodetsky and Youssef Marzouk. Mercer kernels and integrated variance experimental design: con-
nections between Gaussian process regression and polynomial approximation. Journal on Uncertainty
Quantification, 4(1):796–828, 2016.

Robert B Gramacy. Surrogates: Gaussian process modeling, design, and optimization for the applied sciences.
CRC press, 2020.

Meng Han, Zhiqiang Chen, Muhang Li, Hongxin Wu, and Xilong Zhang. A survey of active and passive
concept drift handling methods. Computational Intelligence, 38(4):1492–1535, 2022.

12

Under review as submission to TMLR

Marc Harkonen, Markus Lange-Hegermann, and Bogdan Raita. Gaussian process priors for systems of linear
partial differential equations with constant coefficients. International Conference on Machine Learning
(ICML), 2023.

Steve Heim, Alexander von Rohr, Sebastian Trimpe, and Alexander Badri-Spröwitz. A learnable safety
measure. Conference on Robot Learning, 2020.

James Hensman, Nicolas Durrande, and Arno Solin. Variational fourier features for gaussian processes.
Journal of Machine Learning Research, 18(151):1–52, 2018.

Tanja Hernández Rodríguez, Anton Sekulic, Markus Lange-Hegermann, and Björn Frahm. Designing
robust biotechnological processes regarding variabilities using multi-objective optimization applied to a
biopharmaceutical seed train design. Processes, 10(5):883, 2022.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for classification
and preference learning. arXiv:1112.5745, 2011.

Achin Jain, Truong Nghiem, Manfred Morari, and Rahul Mangharam. Learning and control using Gaussian
processes. International conference on cyber-physical systems (ICCPS), 2018.

Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch acquisition for
deep Bayesian active learning. Advances in neural information processing systems (NeurIPS), 32, 2019.

Edgar D Klenske, Melanie N Zeilinger, Bernhard Schölkopf, and Philipp Hennig. Gaussian process-based
predictive control for periodic error correction. Transactions on Control Systems Technology, 24(1):110–121,
2015.

Andreas Krause and Cheng Ong. Contextual gaussian process bandit optimization. Advances in neural
information processing systems (NeurIPS), 24, 2011.

Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor placements in Gaussian processes:
Theory, efficient algorithms and empirical studies. Journal of Machine Learning Research, 9(2), 2008.

Erin R Leatherman, Angela M Dean, and Thomas J Santner. Designs for computer experiments that minimize
the weighted integrated mean square prediction error. Technical report, Tech. Rep. 875, The Ohio State
University, Columbus, Ohio, 2014.

Erin R Leatherman, Thomas J Santner, and Angela M Dean. Computer experiment designs for accurate
prediction. Statistics and Computing, 28:739–751, 2018.

Cheolhei Lee, Xing Wang, Jianguo Wu, and Xiaowei Yue. Failure-averse active learning for physics-constrained
systems. Transactions on Automation Science and Engineering, 2022.

Cheolhei Lee, Kaiwen Wang, Jianguo Wu, Wenjun Cai, and Xiaowei Yue. Partitioned active learning for
heterogeneous systems. Journal of Computing and Information Science in Engineering, 23(4):041009, 2023.

Tom Leinster. Entropy and diversity: the axiomatic approach. Cambridge university press, 2021.

Cen-You Li, Barbara Rakitsch, and Christoph Zimmer. Safe active learning for multi-output Gaussian
processes. International Conference on Artificial Intelligence and Statistics (AISTATS), 2022a.

Jialin Li, Marta Zagorowska, Giulia De Pasquale, Alisa Rupenyan, and John Lygeros. Safe time-varying
optimization based on gaussian processes with spatio-temporal kernel. arXiv:2409.18000, 2024.

Shibo Li, Jeff M Phillips, Xin Yu, Robert Kirby, and Shandian Zhe. Batch multi-fidelity active learning with
budget constraints. Advances in Neural Information Processing Systems (NeurIPS), 2022b.

Buyun Liang, Tim Mitchell, and Ju Sun. NCVX: A general-purpose optimization solver for constrained
machine and deep learning. arXiv:2210.00973, NeurIPS workshow OPT 2022: Optimization for Machine
Learning, 2022.

13

Under review as submission to TMLR

Joseph Liouville. Premier mémoire sur la détermination des intégrales dont la valeur est algébrique. Impr.
Royale, 1833a.

Joseph Liouville. Rapport sur deux mémoires de mr. j. liouville, ayant pour titre: Mémoires sur la détermination
des intégrales dont la valeur est algébrique., 1833b.

Joseph Liouville. Second mémoire sur la détermination des intégrales dont la valeur est algébrique. Impr.
Royale, 1833c.

Sulin Liu, Xingyuan Sun, Peter J Ramadge, and Ryan P Adams. Task-agnostic amortized inference of
Gaussian process hyperparameters. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Edwin Lughofer. On-line active learning: A new paradigm to improve practical useability of data stream
modeling methods. Information Sciences, 415:356–376, 2017.

David JC MacKay. The evidence framework applied to classification networks. Neural computation, 4(5):
720–736, 1992.

Garth P McCormick. Computability of global solutions to factorable nonconvex programs: Part i—convex
underestimating problems. Mathematical programming, 10(1):147–175, 1976.

Rajitha Meka, Adel Alaeddini, Sakiko Oyama, and Kristina Langer. An active learning methodology for
efficient estimation of expensive noisy black-box functions using Gaussian process regression. IEEE Access,
8:111460–111474, 2020.

T. M. Moldovan and P. Abbeel. Safe Exploration in Markov Decision Processes. International Conference on
Machine Learning (ICML), 2012.

Sindhu Padakandla. A survey of reinforcement learning algorithms for dynamically varying environments.
ACM Computing Surveys (CSUR), 54(6):1–25, 2021.

Sindhu Padakandla, Prabuchandran KJ, and Shalabh Bhatnagar. Reinforcement learning algorithm for
non-stationary environments. Applied Intelligence, 50:3590–3606, 2020.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. Advances in neural
information processing systems (NeurIPS), 2017.

Friedrich Pukelsheim. Optimal design of experiments. SIAM, 2006.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning. MIT
Press, 2006.

Christoffer Riis, Francisco Antunes, Frederik Hüttel, Carlos Lima Azevedo, and Francisco Pereira. Bayesian
active learning with fully bayesian gaussian processes. Advances in Neural Information Processing Systems
(NeurIPS), 2022a.

Christoffer Riis, Francisco Antunes, Frederik Hüttel, and Francisco Pereira. Mixture of gaussian processes for
bayesian active learning. Advances in Neural Information Processing Systems (NeurIPS), 2022b.

TG Ritto, S Beregi, and DAW Barton. Reinforcement learning and approximate Bayesian computation for
model selection and parameter calibration applied to a nonlinear dynamical system. Mechanical Systems
and Signal Processing, 181:109485, 2022.

HoHo Rosenbrock. An automatic method for finding the greatest or least value of a function. The computer
journal, 3(3):175–184, 1960.

J Sacks, WJ Welch, TJ Mitchell, and HP Wynn. Design and analysis of computer experiments (with
discussion). Statistical Science, 4(4):409–435, 1989a.

14

Under review as submission to TMLR

Jerome Sacks, Susannah B Schiller, and William J Welch. Designs for computer experiments. Technometrics,
31(1):41–47, 1989b.

Thomas J Santner, Brian J Williams, William I Notz, and Brain J Williams. The design and analysis of
computer experiments. Springer, 2003.

Annie Sauer, Robert B Gramacy, and David Higdon. Active learning for deep gaussian process surrogates.
Technometrics, 2023.

L Scherliess and Bela G Fejer. Radar and satellite global equatorial f region vertical drift model. Journal of
Geophysical Research: Space Physics, 104(A4):6829–6842, 1999.

Mark Schillinger, Benjamin Hartmann, Patric Skalecki, Mona Meister, Duy Nguyen-Tuong, and Oliver Nelles.
Safe active learning and safe Bayesian optimization for tuning a PI-controller. IFAC-PapersOnLine, 50(1):
5967–5972, 2017.

Je Schneider. Active learning on non-stationary functions, 1995. URL https://www.ri.cmu.edu/pub_
files/pub1/schneider_jeff_1996_1/.

Jens Schreiter, Duy Nguyen-Tuong, Mona Eberts, Bastian Bischoff, Heiner Markert, and Marc Toussaint.
Safe exploration for active learning with Gaussian processes. Machine Learning and Knowledge Discovery
in Databases: European Conference (ECML PKDD), 2015.

Sambu Seo, Marko Wallat, Thore Graepel, and Klaus Obermayer. Gaussian process regression: Active data
selection and test point rejection. Mustererkennung 2000: 22. DAGM-Symposium., pp. 27–34, 2000.

Kirstine Smith. On the standard deviations of adjusted and interpolated values of an observed polynomial
function and its constants and the guidance they give towards a proper choice of the distribution of
observations. Biometrika, 12(1/2):1–85, 1918.

Yanan Sui, Vincent Zhuang, Joel Burdick, and Yisong Yue. Stagewise safe Bayesian optimization with
Gaussian processes. International conference on machine learning (ICML), 2018.

Yuriy Sverchkov and Mark Craven. A review of active learning approaches to experimental design for
uncovering biological networks. PLoS computational biology, 13(6):e1005466, 2017.

KM Talluru, V Kulandaivelu, N Hutchins, and I Marusic. A calibration technique to correct sensor drift
issues in hot-wire anemometry. Measurement Science and Technology, 25(10):105304, 2014.

Jörn Tebbe, Christoph Zimmer, Ansgar Steland, Markus Lange-Hegermann, and Fabian Mies. Efficiently
computable safety bounds for gaussian processes in active learning. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2024.

Silja Thewes, Markus Lange-Hegermann, Christoph Reuber, and Ralf Beck. Advanced Gaussian process
modeling techniques. Design of Experiments (DoE) in Powertrain Development, 2015.

Silja Thewes, Matthias Krause, Christoph Reuber, Markus Lange-Hegermann, Rafael Dziadek, and Martin
Rebbert. Efficient in-vehicle calibration by the usage of automation and enhanced online DoE approaches.
Simulation and Testing for Vehicle Technology, 2016.

Nils Tietze, U Konigorski, C Fleck, and D Nguyen-Tuong. Model-based calibration of engine controller
using automated transient design of experiment. Internationales Stuttgarter Symposium: Automobil-und
Motorentechnik, 2014.

Jonathan Torres, Matthew Cole, Allen Owji, Zachary DeMastry, and Ali P Gordon. An approach for mechanical
property optimization of fused deposition modeling with polylactic acid via design of experiments. Rapid
Prototyping Journal, 22(2):387–404, 2016.

Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe exploration for interactive machine learning.
Advances in Neural Information Processing Systems (NeurIPS), 2019.

15

https://www.ri.cmu.edu/pub_files/pub1/schneider_jeff_1996_1/
https://www.ri.cmu.edu/pub_files/pub1/schneider_jeff_1996_1/

Under review as submission to TMLR

Jonas Umlauft, Thomas Beckers, Alexandre Capone, Armin Lederer, and Sandra Hirche. Smart forgetting
for safe online learning with Gaussian processes. Learning for Dynamics and Control, pp. 160–169, 2020.

Alje van Dam. Diversity and its decomposition into variety, balance and disparity. Royal Society open science,
6(7):190452, 2019.

Deepak Vasisht, Andreas Damianou, Manik Varma, and Ashish Kapoor. Active learning for sparse Bayesian
multilabel classification. International conference on Knowledge discovery and data mining (KDD), 2014.

Ian Vernon, Samuel E Jackson, and Jonathan A Cumming. Known boundary emulation of complex computer
models. Journal on Uncertainty Quantification, 7(3):838–876, 2019.

Ihsan Mohd Yassin, Mohd Nasir Taib, Norasmadi Abdul Rahim, Mohd Khairul Mohd Salleh, and Husna Zainol
Abidin. Particle swarm optimization for narx structure selection—application on dc motor model. In IEEE
Symposium on Industrial Electronics and Applications (ISIEA 2010), 2010.

Zhiliang Ying. Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process.
Journal of Multivariate analysis, 36(2):280–296, 1991.

Hon Sum Alec Yu, Dingling Yao, Christoph Zimmer, Marc Toussaint, and Duy Nguyen-Tuong. Active
learning in Gaussian process state space model. Machine Learning and Knowledge Discovery in Databases.
Research Track: European Conference, (ECML PKDD), 2021.

Lijun Zhang. Online learning in changing environments. International Joint Conference on Artificial
Intelligence (IJCAI), 2021.

Peng Zhao, Yu-Xiang Wang, and Zhi-Hua Zhou. Non-stationary online learning with memory and non-
stochastic control. International Conference on Artificial Intelligence and Statistics (AISTATS), 2022.

Christoph Zimmer, Mona Meister, and Duy Nguyen-Tuong. Safe active learning for time-series modeling
with Gaussian processes. Advances in neural information processing systems (NeurIPS), 31, 2018.

16

Under review as submission to TMLR

A On P -elementary covariance marginalizable covariance functions

This section provides more information about P -elementary covariance marginalizable covariance functions.
In particular, we provide a cookbook of which GP covariance constructions result in P -elementary covariance
marginalizable covariance functions.

A.1 Motivating example

Recall Definition 4.3: a covariance function k is P -elementary covariance marginalizable w.r.t. a finite measure
µ on Rd if the integral

∫
k(x1, xr)k(xr, x2) dµ(xr) exists as a P -elementary function in x1 and x2. This

condition was used in Theorem 4.4, and hence allowed for closed form computations of IMSPE and T-IMSPE.

Let us see this definition in action for the special case of the squared exponential covariance function with
lengthscale of one and signal variance of one and a Gaussian measure. The rest of this appendix section
vastly generalizes this example.

Example A.1. According to Formula (2), IMSPE selects the next measurement point x∗ ∈ R1×d such that
the averaged posterior variance

∫

Rd

k(xr|x∗, x) dµ(xr),

is minimal for any chosen measure µ on R1×d. Consider specifically d = 1, the prior Gaussian process
g = GP(0, k) with mean zero and covariance function

k(x1, x2) = exp
(

− (x1 − x2)2

2

)
,

and µ the standard Gaussian distribution given by the (Lebesgue, denoted by λ) density

dµ
dλ = 1√

2π
exp

(
−x2

2

)
.

Assume furthermore one existing measurement point at x = 1.

Now let us consider which point x∗ ∈ R to choose next, according to IMSPE.

∫

R
k(xr|x∗, 1) dµ(xr)

=
∫

R

(
k(xr, xr) −

[
k(xr, x∗) k(xr, 1)

] [k(x∗, x∗) k(x∗, 1)
k(1, x∗) k(1, 1)

]−1 [
k(x∗, xr)
k(1, xr)

])
dµ(xr)

=
∫

R

(
1 −

[
k(xr, x∗) k(xr, 1)

] [1 k(x∗, 1)
k(1, x∗) 1

]−1 [
k(x∗, xr)
k(1, xr)

])
dµ(xr)

= 1 −
∫

R

(
1

1 − k(1, x∗)2
[
k(xr, x∗) k(xr, 1)

] [1 −k(1, x∗)
−k(1, x∗) 1

] [
k(x∗, xr)
k(1, xr)

])
dµ(xr)

= 1 − 1
1 − k(1, x∗)2

∫

R

[
k(xr, x∗) k(xr, 1)

] [1 −k(1, x∗)
−k(1, x∗) 1

] [
k(x∗, xr)
k(1, xr)

]
dµ(xr)

= 1 − 1
1 − k(1, x∗)2

∫

R

(
k(xr, x∗)2 + k(xr, 1)2 − 2k(1, x∗)k(xr, x∗)k(xr, 1)

)
dµ(xr)

17

Under review as submission to TMLR

This integral is computable, if we can compute the above products (or squares) of covariance functions.
Computing this is closed form is precisely the condition of k being P -elementary covariance marginalizable
w.r.t. µ. Luckily, this is possible for Gaussians, see also Example A.4 for a more general statement of this fact.

= 1 − 1
(1 − k(1, x∗)2)(∫

R
exp

(
− (xr − x∗)2

2

)2

dµ(xr) +
∫

R
exp

(
− (xr − 1)2

2

)2

dµ(xr)

− 2
∫

R
exp

(
− (1 − x∗)2

2

)
exp

(
− (xr − x∗)2

2

)
exp

(
− (xr − 1)2

2

)
dµ(xr)

)

= 1 − 1
(1 − k(1, x∗)2)

√
2π(∫

R
exp

(
− (xr − x∗)2

2

)2

exp
(

−x2
r

2

)
dλ(xr) +

∫

R
exp

(
− (xr − 1)2

2

)2

exp
(

−x2
r

2

)
dλ(xr)

− 2 exp
(

− (1 − x∗)2

2

)∫

R
exp

(
− (xr − x∗)2

2

)
exp

(
− (xr − 1)2

2

)
exp

(
−x2

r

2

)
dλ(xr)

)

= 1 − 1
(1 − k(1, x∗)2)

√
2π(∫

R
exp

(
−(xr − x∗)2 − x2

r

2

)
dλ(xr) +

∫

R
exp

(
−(xr − 1)2 − x2

r

2

)
dλ(xr)

− 2 exp
(

− (1 − x∗)2

2

)∫

R
exp

(
− (xr − x∗)2

2 − (xr − 1)2

2 − x2
r

2

)
dλ(xr)

)

Again, we stress that these integrals are computable in closed form.

= 1 − 1
(1 − k(1, x∗)2)

√
2π

(√
2π√
3

exp
(

−x2
∗

3

)
+

√
2π√
3

exp
(

−1
3

)
− 2

√
2π√
3

exp
(

−1
6(5x2

∗ − 8x∗ + 5)
))

= 1 − 1
(1 − exp(−(1 − x∗)2)

(
1√
3

exp
(

−x2
∗

3

)
+ 1√

3
exp

(
−1

3

)
− 2√

3
exp

(
−1

6(5x2
∗ − 8x∗ + 5)

))

The resulting function shows which values for x∗ are most suitable to yield information concentrated around
zero with variance 1 (as specified by the measure µ) for the given Gaussian process. We plot this function in
Figure 4. The positive area is less suitable, since there already exists a measurement point x at x = 1. The
optimal point can be determined by numerically minimizing the above closed formula, which leads to the
optimal x∗ = −0.54792.

This example has shown on the special case that we need to integrate certain products of covariance functions
in closed form to compute IMSPE and T-IMSPE in closed form. This was the definition of P -elementary
covariance marginalizable covariance functions, which will be formally used in the proof of Theorem 4.4 in
Appendix B, similar to the example above.

A.2 Examples of P -elementary covariance marginalizable covariance functions

We now generalize this definition of a covariance function k being P -elementary covariance marginalizable,
such that it takes two covariance functions info consideration. This generalization is necessary for taking
sums of two covariance functions, see Proposition A.10. Our proofs below are given in this slightly more
general framework.

18

Under review as submission to TMLR

x∗

∫
Rd k(xr|x∗, x) dµ(xr)

x = 1

•
x∗

Figure 4: The IMSPE criterion in Example A.1. Without the (green) data at x = 1, the IMSPE criterion
would be symmetric around zero. With the (green) data at x = 1, the optimal choice according to IMSPE for
the (red) next measurement point x∗ is the red position at x∗ = −0.5479204538.

Definition A.2. Let µ be a finite measure on Rd. We call a pair (k1, k2) of two covariance functions
P -elementary cross-covariance marginalizable w.r.t. µ if the integral

∫
k1(x1, xr)k2(xr, x2) dµ(xr)

exists as a P -elementary function in x1 and x2.

Obviously, a covariance function k is P -elementary covariance marginalizable w.r.t. µ if (k, k) is P -elementary
cross-covariance marginalizable. Hence, we will show some of the following results for P -elementary cross-
covariance marginalizability, which implies these results for P -elementary covariance marginalizability.

The definition of P -elementary cross-covariance marginalizability is non-trivial, as many relevant covariance
functions are elementary (cross-)covariance marginalizable w.r.t. relevant measures. While we state the
following examples with P being PyTorch, these results should obviously hold for any reasonable programming
framework.

Example A.3. Constant covariance functions ki(x1, x2) = ci are PyTorch-elementary cross-covariance
marginalizable w.r.t. any finite measure µ. The integral

∫

D

k1(x1, xr)k2(xr, x2) dµ(xr) =
∫

D

c2c2 dµ(xr)

= c1c2 · µ(D) ∈ R

is a real number since µ is a finite measure. Hence, this real number can be represented by PyTorch.

Example A.4. Consider the automatic relevance detection squared exponential (SE) covariance function

kSE,σ,ℓ(x, y) = σ2 exp
(

−1
2

d∑

i=1

(xi − yi)2

ℓ2
i

)
.

Then, kSE,σ1,ℓ1 and kSE,σ2,ℓ2 are PyTorch-elementary cross-covariance marginalizable w.r.t. any continuous
uniform distribution on a multidimensional interval or any Gaussian distribution. This holds, since any finite
product of Gaussian functions is again Gaussian, leading to integrals involving the error function erf or
more squared exponential functions. To prevent digging even deeper into gory details of indices, here we

19

Under review as submission to TMLR

demonstrate this in the one-dimensional case for a uniform measure µ = c · 1[a,b]:
∫

R
kSE,σ1,ℓ1(x1, xr)kSE,σ2,ℓ2(xr, x2) dµ(xr)

=
∫ b

a

c · σ2
1 exp

(
−1

2
(x1 − xr)2

ℓ2
1

)
· σ2

2 exp
(

−1
2

(x2 − xr)2

ℓ2
2

)
dλ(xr)

=cσ2
1σ

2
2 ·
∫ b

a

exp
(

−1
2

(x1 − xr)2

ℓ2
1

)
· exp

(
−1

2
(x2 − xr)2

ℓ2
2

)
dλ(xr)

=cσ2
1σ

2
2 ·
∫ b

a

exp
(

−ℓ2
2(x1 − xr)2 − ℓ2

1(x2 − xr)2

2ℓ2
1ℓ

2
2

)
dλ(xr)

=cσ2
1σ

2
2 ·
∫ b

a

exp
(

−(ℓ2
1 + ℓ2

2) ·
(
xr − 2ℓ2

1x2 + 2ℓ2
2x1

2(ℓ2
1 + ℓ2

2)

)2

− ℓ2
1ℓ

2
2(x1 − x2)2

ℓ2
1 + ℓ2

2

)
dλ(xr)

=cσ2
1σ

2
2 ·

√
πℓ1ℓ2 · exp

(
− (x1−x2)2

2(ℓ2
1+ℓ2

2)

)
·
(

erf
(

ℓ2
1(b−x1)+ℓ2

2(b−x2)
ℓ1ℓ2

√
2ℓ2

1+2ℓ2
2

)
− erf

(
ℓ2

1(a−x1)+ℓ2
2(a−x2)

ℓ1ℓ2
√

2ℓ2
1+2ℓ2

2

))

√
2ℓ2

1 + 2ℓ2
2

The same computation for a Gaussian measure µ follows from an additional completion to the square and the
multidimensional case follows from the one-dimensional case and Fubini’s theorem on the order of integration.
We refer to Appendix C for more details on this covariance function for T-IMSPE and IMSPE.
Example A.5. Using the Risch-Algorithm as implemented in Maple, polynomial covariance functions,
half-integer Matérn covariance functions, and Wiener process covariance are PyTorch-elementary covariance
marginalizable w.r.t. both continuous uniform distribution on an interval or any Gaussian distribution.
Additionally, these three covariance functions, together with constant and squared exponential covariance
functions, are all pairwise PyTorch-elementary cross-covariance marginalizable.

The proof of this is easy to understand on a high level, although a detailed technical proof ends in a gory
fight against indices, case distinctions, and factors4. First, using Fubini’s theorem, everything reduces to the
one-dimensional case. Second, case distinction in the minimum-function in the Wiener process covariance
function is easily dealt with by splitting the one-dimensional integrals at its positions of non-differentiability;
this results in integrals where only one case appears. Afterwards, the Wiener process is just a polynomial
covariance. Now, the integrands are just products of polynomials and exponential functions with at most
quadratic exponents. These integrals can be solved by—potentially ugly—combinations of partial integration,
completion to squares in exponents, and usage of the Gaussian error function, similar to Example A.4.

Example A.6. Neither the rational quadratic (RQ) nor the periodic covariance function seem to be5

PyTorch-elementary covariance marginalizable w.r.t. non-degenerate continuous uniform distributions on
a multidimensional interval or non-degenerate Gaussian distributions, let alone PyTorch-elementary cross-
covariance marginalizable w.r.t. any of the standard covariance functions.
Example A.7. Consider the PyTorch-elementary (cross-)covariance marginalizability of the cosine covariance
function w.r.t. a uniform distribution on an intervall. It is easily recognized as PyTorch-elementary covariance
marginalizable, as the integral basically reduces to a square of cosines. Similarly, Riesch’s algorithm in Maple
is able to verify that the cosine covariance function is PyTorch-elementary cross-covariance marginalizable
together with constant, linear, polynomial, and Wiener process covariance functions. More interestingly,
it seems that the pair of squared exponential and cosine covariance function is not PyTorch-elementary
cross-covariance marginalizable w.r.t. both continuous uniform distribution on an interval or any Gaussian
distribution. While Maple can find an antiderivative for the defining integral in closed form, this antiderivative

4We recommend implementations of the Risch-Algorithm as implemented in Maple, Maxima, or Mathematica to solve these
integrals.

5At least neither the authors nor—and much more important—the implementation of the Riesch algorithm in Maple were
able to compute these integrals in closed form.

20

Under review as submission to TMLR

Table 1: These tables shows pairs of standard covariance functions and whether they are PyTorch-elementary
cross-covariance marginalizable w.r.t. any continuous uniform distribution on a multidimensional interval (left
table) or any Gaussian distribution (right table). The reasons for this summary are given in the examples
A.4, A.5, A.6, and A.7. The negative results stemm from the fact, that Riesch’s algorithm in Maple failed
to compute the necessary integrals in Maple in closed form. A checkmark on the diagonal means that a
covariance function is PyTorch-elementary covariance marginalizable. For the negative results in brackets for
the cosine covariance function, see the comment in Example A.7. For the extension from cosine covariance
functions to random Fourier features (RFF) see Example A.11.

uniform
distribution

po
ly

no
m

ia
l

SE

W
ie

ne
r

co
si

ne

R
FF

M
at

ér
n

R
Q

pe
ri

od
ic

polynomial ✓ ✓ ✓ ✓ ✓ ✓ - -
SE ✓ ✓ ✓ (-) (-) ✓ - -

Wiener process ✓ ✓ ✓ ✓ ✓ ✓ - -
cosine ✓ (-) ✓ ✓ ✓ ✓ - -
RFF ✓ (-) ✓ ✓ ✓ ✓ - -

Matérn ✓ ✓ ✓ ✓ ✓ ✓ - -
RQ - - - - - - - -

Periodic - - - - - - - -

Gaussian
distribution

po
ly

no
m

ia
l

SE

W
ie

ne
r

co
si

ne

R
FF

M
at

ér
n

R
Q

pe
ri

od
ic

polynomial ✓ ✓ ✓ ✓ ✓ ✓ - -
SE ✓ ✓ ✓ ✓ ✓ ✓ - -

Wiener process ✓ ✓ ✓ (-) (-) ✓ - -
cosine ✓ ✓ (-) ✓ ✓ (-) - -
RFF ✓ ✓ (-) ✓ ✓ (-) - -

Matérn ✓ ✓ ✓ (-) (-) ✓ - -
RQ - - - - - - - -

Periodic - - - - - - - -

involves complex error functions6, which are not implemented in current versions of PyTorch. Perhaps, this
pair will be PyTorch-elementary cross-covariance marginalizable in a future version of PyTorch.

Now consider the cosine covariance function and its PyTorch-elementary (cross-)covariance marginalizable
w.r.t. a Gaussian distribution. Even showing that it is PyTorch-elementary covariance marginalizable
needs some manual intervention to simplify the results of Riesch’s algorithm in Maple7. As the squared
exponential covariance function is a Gaussian, this trick works to show that the pair of cosine covarince
function and squared exponential covariance function are PyTorch-elementary cross-covariance marginalizable.
The pair of cosine covariance and polynomial covariance is easily seen as PyTorch-elementary cross-covariance
marginalizable using repeated partial integration. Similar to above, we get complex error functions when
trying to compute the integrals for the Pytorch-elementary cross-covariance marginalizability of the cosine
covariance when paired with either half-integer Matérn covariance or Wieder process covariance, rendering
these two pairs not Pytorch-elementary cross-covariance marginalizability in current version of PyTorch.

We summarize the results of the previous examples A.4, A.5, A.6, and A.7 in Table 1. We do not recommend
to reproduce most of these integrals without the help of a computer algebra system.

6The following Python code shows, that the error function in PyTorch does not support complex arguments in a recent
version.
»> torch.__version__
’2.0.1’
»> torch.erf(torch.tensor(complex(1,1)))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: "erf_vml_cpu" not implemented for ’ComplexFloat’

7For simplicity we consider a special case where parameters are set to 1. The following Maple code computes of the relevant
integral for the PyTorch-elementary covariance marginalizability of the cosine covariance function, subtracts the intended results,
and shows that this difference is zero. A direct computation seems impossible.
> simplify(

int(cos(x-xr)*cos(y-xr)*exp(-xr^2),xr=-infinity..infinity)
-sqrt(Pi)/2*cos(x-y)-cos(x+y)*sqrt(Pi)/2*exp(-1));

0

21

Under review as submission to TMLR

A.3 A cookbook of constructing P -elementary covariance marginalizable covariance functions

Knowing the base covariance functions, which are P -elementary (cross-)covariance marginalizable, we now
consider the standard constructions of composite covariance functions. We construct a cookbook that
states which of these constructions results in P -elementary (cross-)covariance marginalizable covariance
functions. As a first example, scaling covariance functions does not change their P -elementary cross-covariance
marginalizability.
Proposition A.8 (Scaling covariance functions). If a pair (k1, k2) of two covariance functions is P -elementary
cross-covariance marginalizable w.r.t. some measure µ then so is (σ2

1k1, σ
2
2k2) for any σ1, σ2 > 0.

Proof. The proof is obvious from the linearity of integrals.

Multiplying covariance functions on independent inputs keeps P -elementary cross-covariance marginalizability.
Proposition A.9 (Covariance functions with independent inputs). Consider a direct sum decomposition
Rd ∼= Rd1 ⊕ Rd2 with µ1 a finite measure on Rd1 and µ2 a finite measure on Rd2 . Assume that a covariance
function k factors over this decomposition, i.e. there are two covariance functions ki : Rdi ⊕Rdi → R, i = 1, 2,
with k(x, x′) = k1(x1, x

′
1) · k2(x2, x

′
2) for x = (x1, x2) ∈ Rd1 ⊕ Rd2 and x′ = (x′

1, x
′
2) ∈ Rd1 ⊕ Rd2 . If k1 resp.

k2 are P -elementary cross-covariance marginalizable w.r.t. µ1 resp. µ2, then so is k w.r.t. µ1 ⊗ µ2.

Proof. This follows directly from Fubini’s theorem on the order of integration.

One special case of this previous result is that the measure µ might be chosen as a product measure of a
bounded uniform measure in some coordinate directions and a Gaussian measure in different coordinate
directions.

The class of P -elementary covariance marginalizable covariance functions is not closed under addition, for
example the sum of a cosine covariance function and various other covariance functions is not Pytorch-
elementary covariance marginalizable w.r.t. uniform or Gaussian measures. However, the addition of pairs of
P -elementary covariance marginalizable covariance functions sometimes results in P -elementary covariance
marginalizable covariance functions.
Proposition A.10 (Sums of covariance functions). Assume that a pair (k1, k2) of two covariance functions is
P -elementary cross-covariance marginalizable and both k1 and k2 are P -elementary covariance marginalizable
w.r.t. some measure µ. Then, k1 + k2 is P -elementary covariance marginalizable.

Proof. Consider
∫

(k1(x1, xr) + k2(x1, xr))(k1(x2, xr) + k2(x2, xr)) dµ(xr)

=
∫
k1(x1, xr)k1(x2, xr) + k1(x1, xr)k2(x2, xr)

+ k2(x1, xr)k1(x2, xr) + k2(x1, xr)k2(x2, xr) dµ(xr)

=
∫
k1(x1, xr)k1(x2, xr) dµ(xr) +

∫
k1(x1, xr)k2(x2, xr) dµ(xr)

+
∫
k2(x1, xr)k1(x2, xr) dµ(xr) +

∫
k2(x1, xr)k2(x2, xr) dµ(xr)

All four integrals exist as P -elementary functions by assumption. Since the class of P -elementary functions is
closed under addition, the proposition holds.

Example A.11. By this proposition, all said for the cosine covariance function in Example A.7 also holds
for covariance functions from random Fourier features (Hensman et al., 2018), as these are just specific linear
combinations of cosine covariance functions.

22

Under review as submission to TMLR

As a direct corollary, if three or more covariance functions are all P -elementary covariance marginalizable
and pairwise P -elementary cross-covariance marginalizable w.r.t. some finite measure µ, then so is their sum.
Looking at Table 1 we hence see that e.g. the sum of a polynomial covariance function, a Wiener process,
and a squared exponential covariance function is P -elementary covariance marginalizable.

Adding measures keeps P -elementary cross-covariance marginalizability.
Proposition A.12 (Linear combinations of measures). If a pair (k1, k2) of two covariance functions is
P -elementary cross-covariance marginalizable w.r.t. both the measures µ1 and µ2, then so is (k1, k2) w.r.t.
a1µ1 + a2µ2 for a1, a2 ∈ R.

Proof. The proof is obvious from the linearity of integrals.

This fact allows to use IMSPE and T-IMSPE in domains that are no hyperrectangles, as long as the domain
can be reasonably approximated by hyperrectangles. We can even subtract measures this way, e.g. to cut out
parts of an area. One could even use negative measures as obtained from this proposition to avoid getting
information in certain areas.

B Proofs of closed form computability of IMSPE and T-IMSPE

We provide our proof of Theorem 4.4 about the computability of IMSPE and T-IMSPE for P -elementary
covariance marginalizable covariance functions and its corollaries. We do not claim novelty to the idea of this
proof, since similar proofs exist for the special case of polynomial covariance functions since (Sacks et al.,
1989b). The discussion of additional special cases are spread over the subsequent literature, see Subsection 3.1,
e.g. Lemma 3.1 in (Binois et al., 2019). In comparison to previous proofs, we provide a longer and more
explicit proof.

Proof of Theorem 4.4. Consider the 1 × 1-matrix k(xr|x∗, x) in the integral
∫
k(xr|x∗, x) dµ(xr).

from the definition of IMSPE. We can make the integrand more explicit as

k(xr|x, x∗) = k(xr, xr) − k(xr, (x, x∗))k((x, x∗), (x, x∗))−1k((x, x∗), xr)

= k(xr, xr) −
[
k(xr, x) k(xr, x∗)

] [k(x, x) k(x, x∗)
k(x∗, x) k(x∗, x∗)

]−1 [
k(x, xr)
k(x∗, xr)

]

The Schur complement

S∗ = k(x∗, x∗) − k(x∗, x)k(x, x)−1k(x, x∗),

the scalar σ2
∗ = k(x∗, x∗), and the vector

L := k(x∗, x)k(x, x)−1 = (k(x, x)−1k(x, x∗))T .

allows to describe the above matrix inverse in closed form.
[
k(x, x) k(x, x∗)
k(x∗, x) k(x∗, x∗)

]−1

=
[
k(x, x)−1 + k(x, x)−1k(x, x∗)S−1

∗ k(x∗, x)k(x, x)−1 −k(x, x)−1k(x, x∗)S−1
∗

−S−1
∗ k(x∗, x)k(x, x)−1 S−1

∗

]

=
[
k(x, x)−1 + S−1

∗ LTL −S−1
∗ L

−S−1
∗ L S−1

∗

]

= S−1
∗

[
S∗k(x, x)−1 + LTL −LT

−L 1

]

23

Under review as submission to TMLR

Having a closed form of the inverse, we can write

k(xr|x, x∗)

= k(xr, xr) −
[
k(xr, x) k(xr, x∗)

] [k(x, x) k(x, x∗)
k(x∗, x) k(x∗, x∗)

]−1 [
k(x, xr)
k(x∗, xr)

]

= k(xr, xr) −
[
k(xr, x) k(xr, x∗)

]
S−1

∗

[
S∗k(x, x)−1 + LTL −LT

−L 1

] [
k(x, xr)
k(x∗, xr)

]

= σ2
∗ − S−1

∗
[
k(xr, x) k(xr, x∗)

] [S∗k(x, x)−1 + LTL −LT

−L 1

] [
k(x, xr)
k(x∗, xr)

]

= σ2
∗ − S−1

∗
[
k(xr, x) k(xr, x∗)

] [S∗k(x, x)−1k(x, xr) + LTLk(x, xr) − LT k(x∗, xr)
−Lk(x, xr)k(x∗, xr)

]

= σ2
∗ − S−1

∗
(
S∗k(xr, x)k(x, x)−1k(x, xr) + k(xr, x)LTLk(x, xr)

− k(xr, x)LT k(x∗, xr) − k(xr, x∗)Lk(x, xr) + k(xr, x∗)k(x∗, xr)
)

= σ2
∗ − S−1

∗
(
S∗k(xr, x)k(x, x)−1k(x, xr)

+ k(xr, x)k(x, x)−1k(x, x∗)k(x∗, x)k(x, x)−1k(x, xr)
− k(xr, x)k(x, x)−1k(x, x∗)k(x∗, xr)
− k(xr, x∗)k(x∗, x)k(x, x)−1k(x, xr) + k(xr, x∗)k(x∗, xr)

)

Writing k(x, x) = CTC as Cholesky decomposition, CT
v := k(xr, x)/CT , Cv := C\k(x, xr), CT

∗ :=
k(x∗, x)/CT , C∗ := C\k(x, x∗), and the correlation c = k(xr, x∗) = k(x∗, xr) this simplies to

k(xr|x, x∗)
= σ2

∗ − S−1
∗
(
S∗k(xr, x)/CTC\k(x, xr) + k(xr, x)/CTC\k(x, x∗)k(x∗, x)/CTC\k(x, xr)

− k(xr, x)/CTC\k(x, x∗)k(x∗, xr) − k(xr, x∗)k(x∗, x)/CTC\k(x, xr)
+ k(xr, x∗)k(x∗, xr)

)

= σ2
∗ − S−1

∗
(
S∗C

T
v Cv + CT

v C∗C
T
∗ Cv − cCT

v C∗ − cCT
∗ Cv + c2)

= σ2
∗ − CT

v Cv − S−1
∗ CT

v C∗C
T
∗ Cv + S−1

∗ cCT
v C∗ + S−1

∗ cCT
∗ Cv − S−1

∗ c2

Now ∫
k(xr|x∗, x) dµ(xr) (I)

=
∫
σ2

∗ dµ(xr)
︸ ︷︷ ︸

(I.1)

−
∫
CT

v Cv dµ(xr)
︸ ︷︷ ︸

(I.2)

−
∫
S−1

∗ CT
v C∗C

T
∗ Cv dµ(xr)

︸ ︷︷ ︸
(I.3)

+
∫
S−1

∗ cCT
v C∗ dµ(xr)

︸ ︷︷ ︸
(I.4)

+
∫
S−1

∗ cCT
∗ Cv dµ(xr)

︸ ︷︷ ︸
(I.5)

−
∫
S−1

∗ c2 dµ(xr)
︸ ︷︷ ︸

(I.6)

Here, c2 and S−1
∗ are scalars, Cv is a vector of linear combinations of k(xr, x), C∗ is a vector of linear

combinations of k(x∗, x). This means that all entries are either constant or a constant times a product of
k(xr, z1) · k(xr, z2). All linear combinations and all constants can be computed via numerical linear algebra,
mostly using the Cholesky decomposition. In particular, these integrals, considered as functions in x∗, are
P -elementary, since k is P -elementary covariance marginalizable.

T-IMSPE is a way of applying IMSPE to specific GPs. Hence, the claim for T-IMSPE follows from that of
IMSPE.

Proof of Corollary 4.5. Initially, we compute a O(n3) Cholesky decomposition of the data covariance matrix
k(x, x). For each x∗, We make O(n2) evaluations of closed form functions and a small finite number of
forward and backward substitutions of Cholesky factors, each computable in O(n2).

24

Under review as submission to TMLR

The statistics literature, see e.g. (Gramacy, 2020), is also concerned with avoiding the Cholesky decomposition
in O(n3), which is possible by rank-one-update formulas of the covariance matrices. These computational
improvements are only possible when hyperparameters are not retrained between iterations.

C Detailed explicit formulas of T-IMSPE and IMSPE for squared exponential
covariance functions

We give very explicit formulas for T-IMSPE and IMPSE when using squared exponential covariance function.
Therefore, consider the 6 integrals in (I) on page 24 independently. We assume a squared exponential
covariance function

k : Rd × Rd → R : (x1, x2) 7→
d∏

h=1
σ2 exp

(
−1

2
((x1)h − (x2)h)2

ℓ2
h

)

= σ2 exp
(

−1
2

d∑

h=1

((x1)h − (x2)h)2

ℓ2
h

)

with automatic relevance determination. For simplicity, we assume µ to be a probability distribution, i.e.
µ(Rd) = 1, and later we will also specifically concentrate on Gaussian measures and uniform measures.

C.1 Integral (I.1)
∫
σ2

∗ dµ(xr) = σ2
∗ = k(x∗, x∗). This term is independent of x∗, as k is stationary.

C.2 Integral (I.2)

∫
−CT

v Cv dµ(xr)

= −
∫
k(xr, x)/CTC\k(x, xr) dµ(xr)

= −
∫
k(xr, x)k(x, x)−1k(x, xr) dµ(xr)

= −
n∑

i,j=1

∫
k(xr, xi)

(
k(x, x)−1)

i,j
k(xj , xr) dµ(xr)

= −
n∑

i,j=1

(
k(x, x)−1)

i,j

∫
k(xr, xi)k(xj , xr) dµ(xr)

= −
n∑

i,j=1

(
k(x, x)−1)

i,j
· σ4 ·

∫ d∏

h=1
exp

(
−1

2
((xr)h − (xi)h)2 + ((xj)h − (xr)h)2

ℓ2
h

)
dµ(xr)

= −
n∑

i,j=1

(
k(x, x)−1)

i,j
· σ4 ·

d∏

h=1

∫
exp

(
−1

2
((xr)h − (xi)h)2 + ((xj)h − (xr)h)2

ℓ2
h

)
dµ(xr)

This should be integrable easily, e.g. for µ the continuous uniform distribution on [a1, b1] × . . .× [ad, bd] this
integral evaluates to

−
n∑

i,j=1

(
k(x, x)−1)

i,j
· σ4 · √

π
d

·
d∏

h=1
ℓh · exp

(
− ((xj)h − (xi)h)2

4ℓ2
h

)
·

erf
(

2ah−(xj)h−(xi)h

2ℓh

)
− erf

(
2bh−(xj)h−(xi)h

2ℓh

)

2ah − 2bh

25

Under review as submission to TMLR

or for µ = N (m,diag(s)) this integral evaluates to

−
n∑

i,j=1

(
k(x, x)−1)

i,j
· σ4 ·

d∏

h=1
ℓh ·

exp
(

−ℓ2
h((xj)h−mh)2−ℓ2

h((xi)h−mh)2−s2
h((xj)h−(xi)h)2

2ℓ2
h

(ℓ2
h

+2s2
h

)

)

√
ℓ2

h + 2s2
h

.

This term is independent of x∗.

C.3 Integral (I.3)

∫
−S−1

∗ CT
v C∗C

T
∗ Cv dµ(xr)

= −S−1
∗

∫
CT

v C∗C
T
∗ Cv dµ(xr)

= −S−1
∗

∫
k(xr, x)/CTC\k(x, x∗)k(x∗, x)/CTC\k(x, xr)µ(xr)

= −S−1
∗

∫
k(xr, x) · (CT \C\k(x, x∗))(k(x∗, x)/CT /C) · k(x, xr)µ(xr)

= −S−1
∗

∫
k(xr, x) · (κκT) · k(x, xr)µ(xr)

= −S−1
∗

n∑

i,j=1

∫
k(xr, xi) · κiκj · k(xj , xr)µ(xr)

= −S−1
∗

n∑

i,j=1
κiκj

∫
k(xr, xi) · k(xj , xr)µ(xr)

= −S−1
∗ σ4

n∑

i,j=1
κiκj

∫ d∏

h=1
exp

(
−1

2
(xr − xi)2 + (xj − xr)2

ℓ2

)
µ(xr)

= −S−1
∗ σ4

n∑

i,j=1
κiκj

d∏

h=1

∫
exp

(
−1

2
(xr − xi)2 + (xj − xr)2

ℓ2

)
µ(xr)

for κ =
(
CT \C\k(x, x∗)

)
= k(x, x)−1k(x, x∗). This should be integrable easily, e.g. for µ the continuous

uniform distribution on [a1, b1] × . . .× [ad, bd] this integral evaluates to

−
n∑

i,j=1
S−1

∗ σ4κiκj

√
π

d ·
d∏

h=1
ℓh

·
d∏

h=1
exp

(
− ((xj)h − (xi)h)2

4ℓ2
h

)
·

erf
(

2ah−(xj)h−(xi)h

2ℓh

)
− erf

(
2bh−(xj)h−(xi)h

2ℓh

)

2ah − 2bh

or for µ = N (m,diag(s)) this integral evaluates to

−
n∑

i,j=1
S−1

∗ σ4κiκj ·
d∏

h=1
ℓh ·

exp
(

−ℓ2
h((xj)h−mh)2−ℓ2

h((xi)h−mh)2−s2
h((xj)h−(xi)h)2

2ℓ2
h

(ℓ2
h

+2s2
h

)

)

√
ℓ2

h + 2s2
h

.

This term depends on x∗ (via κ).

26

Under review as submission to TMLR

C.4 Integral (I.4)

∫
S−1

∗ cCT
v C∗µ(xr)

=
∫
S−1

∗ k(x∗, xr)k(xr, x)/CTC\k(x, x∗)µ(xr)

= S−1
∗ σ2

∫ d∏

h=1
exp

(
−1

2
((x∗)h − (xr)h)2

ℓ2
h

)
k(xr, x)/CTC\k(x, x∗)µ(xr)

= S−1
∗ σ2

∫ d∏

h=1
exp

(
−1

2
((x∗)h − (xr)h)2

ℓ2
h

)
k(xr, x) · CT \C\k(x, x∗)µ(xr)

= S−1
∗ σ2

n∑

i=1
κi ·

∫ d∏

h=1
exp

(
−1

2
((x∗)h − (xr)h)2

ℓ2
h

)
k(xr, xi)µ(xr)

=
n∑

i=1
κi · S−1

∗ σ4 ·
∫ d∏

h=1
exp

(
−1

2
((x∗)h − (xr)h)2 + ((xr)h − (xi)h)2

ℓ2
h

)
µ(xr)

=
n∑

i=1
κi · S−1

∗ σ4 ·
d∏

h=1

∫
exp

(
−1

2
((x∗)h − (xr)h)2 + ((xr)h − (xi)h)2

ℓ2
h

)
µ(xr)

for κ =
(
CT \C\k(x, x∗)

)
= k(x, x)−1k(x, x∗). This should be integrable easily, e.g. for µ the continuous

uniform distribution on [a1, b1] × . . .× [ad, bd] this integral evaluates to
n∑

i=1
κi · S−1

∗ σ4 · √
π

d ·
d∏

h=1
ℓh

·
d∏

h=1
exp

(
− ((x∗)h − (xi)h)2

4ℓ2
h

)
·

erf
(

2ah−(x∗)h−(xi)h

2ℓh

)
− erf

(
2bh−(x∗)h−(xi)h

2ℓh

)

2ah − 2bh

or for µ = N (m,diag(s)) this integral evaluates to

n∑

i=1
κi · S−1

∗ σ4 ·
d∏

h=1
ℓh ·

exp
(

−ℓ2
h((x∗)h−mh)2−ℓ2

h((xi)h−mh)2−s2
h((x∗)h−(xi)h)2

2ℓ2
h

(ℓ2
h

+2s2
h

)

)

√
ℓ2

h + 2s2
h

.

This term depends on x∗.

C.5 Integral (I.5)
∫
S−1

∗ cCT
∗ Cvµ(xr). This is the same integral as the last one.

C.6 Integral (I.6)

∫
−S−1

∗ c2 dµ(xr) =
∫

−S−1
∗ k(xr, x∗)2 dµ(xr)

=
∫

−S−1
∗ σ4

d∏

h=1
exp

(
−1

2
((xr)h − (x∗)h)2

ℓ2
h

)2

dµ(xr)

= −S−1
∗ σ4

d∏

h=1

∫
exp

(
− ((xr)h − (x∗)h)2

ℓ2
h

)2

dµ(xr)

27

Under review as submission to TMLR

This is easily integrable, e.g. for µ the continuous uniform distribution on [a1, b1] × . . .× [ad, bd] this integral
evaluates to

−S−1
∗ σ4 · √

π
d ·

d∏

h=1
ℓh ·

erf(ah−(x∗)h

ℓh
) − erf(bh−(x∗)h

ℓh
)

2ah − 2bh

or for µ = N (m,diag(s)) this integral evaluates to

−S−1
∗ σ4 ·

d∏

h=1

ℓh · exp(− (mh−(x∗)h)2

ℓ2
h

+2s2
h

)
√
ℓ2

h + 2s2
h

.

This term depends on x∗.

C.7 All terms in (I) together

For µ the continuous uniform distribution on [a, b] we have:

∫
k(xr|x∗, x) dµ(xr)

= σ2
∗

−
n∑

i,j=1

(
k(x, x)−1)

i,j
· σ4 · √

π
d ·

d∏

h=1
ℓh

·
d∏

h=1
exp

(
− ((xj)h − (xi)h)2

4ℓ2
h

)
·

erf
(

2ah−(xj)h−(xi)h

2ℓh

)
− erf

(
2bh−(xj)h−(xi)h

2ℓh

)

2ah − 2bh

−
n∑

i,j=1
S−1

∗ σ4κiκj

√
π

d ·
d∏

h=1
ℓh

·
d∏

h=1
exp

(
− ((xj)h − (xi)h)2

4ℓ2
h

)
·

erf
(

2ah−(xj)h−(xi)h

2ℓh

)
− erf

(
2bh−(xj)h−(xi)h

2ℓh

)

2ah − 2bh

+ 2
n∑

i=1
κi · S−1

∗ σ4 · √
π

d ·
d∏

h=1
ℓh

·
d∏

h=1
exp

(
− ((x∗)h − (xi)h)2

4ℓ2
h

)
·

erf
(

2ah−(x∗)h−(xi)h

2ℓh

)
− erf

(
2bh−(x∗)h−(xi)h

2ℓh

)

2ah − 2bh

− S−1
∗ σ4 · √

π
d ·

d∏

h=1
ℓh ·

erf(ah−(x∗)h

ℓh
) − erf(bh−(x∗)h

ℓh
)

2ah − 2bh

= σ2
∗

−
n∑

i,j=1

((
k(x, x)−1)

i,j
+ S−1

∗ κiκj

)
· σ4 · √

π
d ·

d∏

h=1
ℓh

·
d∏

h=1
exp

(
− ((xj)h − (xi)h)2

4ℓ2
h

)
·

erf
(

2ah−(xj)h−(xi)h

2ℓh

)
− erf

(
2bh−(xj)h−(xi)h

2ℓh

)

2ah − 2bh

+ 2
n∑

i=1
κi · S−1

∗ σ4 · √
π

d ·
d∏

h=1
ℓh

28

Under review as submission to TMLR

·
d∏

h=1
exp

(
− ((x∗)h − (xi)h)2

4ℓ2
h

)
·

erf
(

2ah−(x∗)h−(xi)h

2ℓh

)
− erf

(
2bh−(x∗)h−(xi)h

2ℓh

)

2ah − 2bh

− S−1
∗ σ4 · √

π
d ·

d∏

h=1
ℓh ·

erf(ah−(x∗)h

ℓh
) − erf(bh−(x∗)h

ℓh
)

2ah − 2bh

For a multivariate normal µ = N (m, s) where s = diag(s1, . . . , sd) ∈ Rd×d we have:

∫
k(xr|x∗, x) dµ(xr)

= σ2
∗

−
n∑

i,j=1

(
k(x, x)−1)

i,j
· σ4 ·

d∏

h=1
ℓh ·

exp
(

−ℓ2
h((xj)h−mh)2−ℓ2

h((xi)h−mh)2−s2
h((xj)h−(xi)h)2

2ℓ2
h

(ℓ2
h

+2s2
h

)

)

√
ℓ2

h + 2s2
h

−
n∑

i,j=1
S−1

∗ σ4κiκj ·
d∏

h=1
ℓh ·

exp
(

−ℓ2
h((xj)h−mh)2−ℓ2

h((xi)h−mh)2−s2
h((xj)h−(xi)h)2

2ℓ2
h

(ℓ2
h

+2s2
h

)

)

√
ℓ2

h + 2s2
h

+ 2
n∑

i=1
κi · S−1

∗ σ4 ·
d∏

h=1
ℓh ·

exp
(

−ℓ2
h((x∗)h−mh)2−ℓ2

h((xi)h−mh)2−s2
h((x∗)h−(xi)h)2

2ℓ2
h

(ℓ2
h

+2s2
h

)

)

√
ℓ2

h + 2s2
h

− S−1
∗ σ4 ·

d∏

h=1

ℓh · exp(− (mh−(x∗)h)2

ℓ2
h

+2s2
h

)
√
ℓ2

h + 2s2
h

= σ2
∗

−
n∑

i,j=1

((
k(x, x)−1)

i,j
+ S−1

∗ κiκj

)
· σ4 ·

d∏

h=1
ℓh

d∏

h=1
·
exp

(
−ℓ2

h((xj)h−mh)2−ℓ2
h((xi)h−mh)2−s2

h((xj)h−(xi)h)2

2ℓ2
h

(ℓ2
h

+2s2
h

)

)

√
ℓ2

h + 2s2
h

+ 2
n∑

i=1
κi · S−1

∗ σ4 ·
d∏

h=1
ℓh ·

exp
(

−ℓ2
h((x∗)h−mh)2−ℓ2

h((xi)h−mh)2−s2
h((x∗)h−(xi)h)2

2ℓ2
h

(ℓ2
h

+2s2
h

)

)

√
ℓ2

h + 2s2
h

− S−1
∗ σ4 ·

d∏

h=1

ℓh · exp(− (mh−(x∗)h)2

ℓ2
h

+2s2
h

)
√
ℓ2

h + 2s2
h

D On Baselines

Here, we comment on our choice for entropy as the only baselines in the experimental Section 5. We chose
entropy as (only) baseline acquisition function, since it is the state of the art for active learning and safe active
learning in machine learning. This is different to Bayesian optimization, where multiple acquisition functions
are commonly used. In Appendix D.1 we give reasons why several classical methods are no suitable baselines.
Marginalized β-diversity and marginalized mutual information are acquisition functions we developed during
the paper and do not appear in the literature. They have no closed form, and their numerical approximations
are very sub-par in our preliminary ablation experiments in Appendix D.3. Furthermore, we comment the
superiority of entropy over IMSPE for GPs with trainable hyperparameters as remarked in Subsection D.2,
which excludes IMSPE as baseline.

29

Under review as submission to TMLR

D.1 Classical baselines

ALM is just another name for the entropy, as described in Section 2.2. D-optimal designs are a non-active
version of entropy, as described in Section 3.1. IMSE, ALC, IV, and IVAR are just other names of IMSPE, as
commented in Section 3.1. A-optimal designs and V-optimal designs are non-active versions of IMSPE in
different interpretations, and hence not suitable for a comparison.

D.2 Comment on the state of the art, IMSPE, and entropy

We give a short discussion on IMSPE and entropy as aquisition functions for safe active learning without
time awareness. In the realm of statistics, IMSPE stands out as the state of the art, where the superior
theoretical properties of IMSPE are highly regarded. In contrast, in the field of machine learning, entropy
takes precedence as state of the art. Our preliminary experiments have indicated that both communities
make valid choices, and the divergence in state-of-the-art criteria arises from varied applications of GPs. In
statistical communities, there is a tendency to maintain fixed GP hyperparameters in active learning methods,
while in machine learning, hyperparameters are regularly optimized. Our experiments on time-varying
systems, where we do optimize hyperparameters, contradict these preliminary experiments, as IMSPE is
superior over entropy. In contrast to this, the ablation experiment in Appendix E.1 shows that without
seasonal change (a = 0), entropy outperforms T-IMSPE, which is identical to IMSPE for such time-constant
systems. We note that these findings are based on initial experiments, lack scientific rigor, need a thorough
follow-up, and are out of scope of this paper.

D.3 Comparison of IMSPE to marginalizing β-diversity and marginalizing mutual information

Maximizing the mutual information I(x∗;xr | x) (Krause et al., 2008) between a new datapoint x∗ w.r.t.
some points of interest xr conditioned on previously existing data x is a classic choice to place sensors or
to conduct measurements in active learning settings. It is originally restricted to discrete sensor positions,
where it leads to an NP hard decision problem. Despite this restriction, applicability of mutual information
has increased as discussed in Subsection 3.1.

For active learning purposes we can replace the mutual information by the squared β-diversity8 D2
β(x∗;xr |

x) := exp(I(x∗;xr)) (Leinster, 2021; van Dam, 2019; Chiu et al., 2014), as is is just a composition with a
monotonous and injective map. Instead of maximizing the (squared) β-diversity, we can also minimize the
inverse squared9 β-diversity D−2

β (x∗;xr|x). Consider x∗, xr ∈ R1×d and x ∈ Rn×d.

D−2
β (x∗;xr | x) = exp(I(x∗;xr | x))−2

= exp (H(xr | x) − H(xr | x∗, x))−2

=
exp

(
d
2 (1 + log(2π)) + 1

2 log (det (k(xr|x∗, x)))
)2

exp
((

d
2 (1 + log(2π)) + 1

2 log (det (k(xr|x)))
))2

= exp (log (det (k(xr|x∗, x))))
exp (log (det (k(xr|x))))

= det (k(xr|x∗, x))
det (k(xr|x))

= k(xr|x∗, x)
k(xr|x) determinant of 1x1-matrix

8The interpretation of β-diversity is that of the diversity between two groups. In our case, this we aim to minimize the
diversity between x∗ and xr, when conditioned on x.

9We were unable to find anything close to resembling a closed formula for any other power of the β-diversity.

30

Under review as submission to TMLR

The denominator is a constant w.r.t. x∗ and can be disregarded when minimizing D−2
β (x∗;xr|x) w.r.t. x∗.

We can write the numerator in terms of prior covariances:

k(xr|x∗, x) = k(xr, xr) − k(xr, (x∗, x))k((x∗, x), (x∗, x))−1k((x∗, x), xr)

Minimizing this acquisition function obviously leads to choosing x∗ ≈ xr, which is obviously a usually bad
choice, since any real form ob optimization is ignored in favor of just choosing the reference point. Similar
phenomena appear for multiple reference points xr, where each reference point leads to a local minima in the
loss landscape of x∗ 7→ k(xr|x∗, x). To prevent these attracting local minima in the loss landscape, one can
minimize the above criteria when averaged over xr:

∫
D−2

β (x∗;xr | x) dµ(xr) =
∫
k(xr|x∗, x)
k(xr|x) dµ(xr) average inverse squared β-diversity

∫
k(xr|x∗, x) dµ(xr) IMSPE

∫
− I(x∗;xr | x) dµ(xr) average negative mutual information

Here, we assume some (finite or probability) measure µ.

The average negative mutual information and the IMSPE are connected via a Jensen gap.
∫

− I(x∗;xr | x) dµ(xr)

= −
∫ (1

2 log (det (k(xr|x))) − 1
2 log (det (k(xr|x∗, x)))

)
dµ(xr)

= −
∫ (1

2 log (k(xr|x)) − 1
2 log (k(xr|x∗, x))

)
dµ(xr)

= 1
2

∫
log (k(xr|x∗, x)) dµ(xr) − 1

2

∫
log (k(xr|x)) dµ(xr)

Jensen
≤ 1

2 log
(∫

k(xr|x∗, x) dµ(xr)
)

− 1
2

∫
log (k(xr|x)) dµ(xr)

︸ ︷︷ ︸
constant in x∗

+= 1
2 log

(∫
k(xr|x∗, x) dµ(xr)

)
(equal up to a constant)

Here, the latter line is just one half the log of the acquisition function IMSPE. Hence, the mutual information
and IMSPE are closely connected. IMSPE has the advantage for continuous domains, as one can marginalize
the reference points in closed form.

The comparison to the inverse squared β-divergence D−2
β (x∗;xr | x) is more complicated. While D−2

β (x∗;xr |
x) = k(xr|x∗,x)

k(xr|x) and k(xr|x∗, x) are equal up to a factor that is constant in x∗. Sadly, this factor is not constant in
xr, over which we marginalize. Hence,

∫
k(xr|x∗, x) dµ(xr) and

∫
D−2

β (x∗;xr | x) dµ(xr) =
∫ k(xr|x∗,x)

k(xr|x) dµ(xr)
are differently weighed integrals. In the latter case, one weighs reference points xr higher if k(xr|x) ≈ 0, i.e.
reference points near the data points. We do not think that this is suitable in practice. In addition to no
closed form integrals and very suboptimal initial experiments, we did not pursue the β-diversity any further.

We elaborate on a preliminary empirical comparison between the marginalizations suggested above, and
not only between (T-)IMSPE and entropy. First, we were neither able to compute

∫
− I(x∗;xr | x) dµ(xr)

nor
∫
D−2

β (x∗;xr | x) dµ(xr) in closed form for any choice of covariance function we tried. Furthermore,
numerical or MC approximations to these integrals suffer from a problem: the appearance of local optima at
all points where the integral is numerically or stochastically evaluated. In preliminary experiments, this led to
the same suboptimal behavior as for finitely many reference points xr. More precisely, for the minimization
of both −I(x∗;xr|x) and D−2

β (x∗;xr | x), one chooses x∗ is a local optimum close to one of the xr. In fact,

31

Under review as submission to TMLR

1 2 3 4 5 6 7 8 9 10 11 12
−1

0
1
2
3
4
5
6
7
8
9

10

dimensions

lo
g-

od
ds

av
er

ag
e

po
st

er
io

r
va

ria
nc

e

entropy
IMSPE (numerically approximated integral with 1024 points)
IMSPE (numerically approximated integral with 256 points)
IMSPE (numerically approximated integral with 64 points)

IMSPE (closed form)

Figure 5: For various dimensions 1 ≤ d ≤ 12, we consider the average posterior variance over the interval
[−1, 1]d of a GP after adding a two datapoints. The first datapoints is at the origin, and the second datapoint
it optimized with 5 different acquisition functions. For a better visual representation, we print the average
variance σ2

avg, which is bounded between 0 and 1, in log-odds, i.e. as log
(

σ2
avg

1−σ2
avg

)
, where smaller is still

better. The prior GP is has a squared exponential covariance functions with all hyperparameters set to
one. The entropy acquisition functions (red) is very suboptimal, since the second point is always placed at a
position with maximal variance after adding the origin, which is the boundary of the domain. While the
numerical approximations to the intergral in the definition of IMSPE (shades of light blue) come close to
the symbolically computed IMSPE (dark blue), they rarely find the same optimum. For example in one
dimension, the optimally places points are at −1 (entropy), −0.633 (IMSPE approximated with 64 points),
−0.598 (IMSPE approximated with 256 points), −0.536 (IMSPE approximated with 1024 points), which are
at best near the real optimum at −0.532 (closed form IMSPE).

any data point in x will repel x∗ and any point in xr will attract x∗. This leads to many local optima, that
are not optimal for active learning. The many local optima are a problem for the optimization in safe active
learning, as many more starts of the optimization are necessary, leading to drastically increased computation
time. Further increasing the number of reference points xr leads to more, but less pronounced, local extrema;
this did not improve the situation. In Figure 5 we see how optimal the acquisition functions entropy, IMSPE,
and a numerical approximation of IMSPE are for placing a single data points in one to twelve dimension.

We cannot change the xr during a single optimization run, as this leads to unstable optimization. Even
choosing the xr different in every active learning step resulted in suboptimal exploration, as measurements
are not prioritized by being near the safety boundary, but by being close to one of the xr.

E Further results of the experiments

E.1 Further results for the seasonal change experiment

For the example about seasonal change from Subsection 5.1 the average amount of safe area that is recognized
as safe area is also similar for entropy (0.401 ± 0.048) and T-IMSPE (0.394 ± 0.039).

For the example about seasonal change from Subsection 5.1 we conducted an ablation study about the effect
on dwindling superiority of T-IMSPE over entropy, once the seasonal effect weakens. We consider learning a
system with seasonal changes of various changes, again by rotating the domain in the function

McCormick : (x1, x2) 7→
sin(x1 + x2) + (x1 − x2)2 − 1.5x1 + 2.5x2 + 1,

32

Under review as submission to TMLR

0 1 2 3 4 50

0.5

1

1.5

amount of seasonal change a

R
M

SE
in

sa
fe

ar
ea

T-IMSPE (ours)
Entropy

Figure 6: Box plots of the RMSE values in the safe area of the experiments from active learning with seasonal
changes in Appendix E.1. We compare the results of 25 runs between T-IMSPE (blue) and entropy (red) on
for various values of the strength of the seasonal change a. We see that T-IMSPE is superior to entropy for
larger values of a, whereas for smaller values of a we see the superiority of the entropy.

by the formula

ssnla : (t, x1, x2) 7→ −1 + 1
10 McCormick

(

1
2 cos

(
1
2 sin

(
at

10

))
x1 − 1

2 sin
(

1
2 sin

(
at

10

))
x2,

1
2 sin

(
1
2 sin

(
at

10

))
x1 + 1

2 cos
(

1
2 sin

(
at

10

))
x2

)
,

where a ∈ {0, 1, 2, 3, 4, 5} determines the strength (or speed) of the seasonal change. Note that in Subsection 5.1
we used a = 5. The value a = 0 corresponds to no seasonal change. We keep all other parameters as in the
main experiments.

In Figure 6 we see the results of this experiment. Entropy is superior for a ∈ {0, 1}, whereas for a ≥ 2 we
have that T-IMSPE results in lower RMSE values. This is in accord with both the literature as discussed in
Subsection D.2 and the results in this paper: entropy is the superior acquisition function when temporal
changes are non-existant or weak, whereas T-IMSPE is the superior acquisition function for applications with
temporal changes.

It remains an open practical question how to detect, whether a system is sufficiently enough time changing,
where we currently have no clear answer. Computation time is comparable between T-IMSPE, entropy and
IMSPE, so this is cannot guide a decision. We checked the length scales in direction of time as criterion, and
they were not sufficiently correlated with time variance. Perhaps one could use model selection for Gaussian
processes: if a GP that is constant in time direction is more suitable to model the data, then the system
might not be sufficiently time variant; this is speculative. It remains to guess for a potential user of T-IMSPE,
entropy, or IMSPE, which acquisition function is more suitable in a situation. If a system is noticably time
variant, we suggest T-IMSPE. Note that IMSPE behaves exactly as T-IMSPE if a system is constant in time;
hence, it might be a safe choice to always use (T-)IMSPE. In the borderline of mild or no time variance, all
methods show comparable performance and our preliminary experiments point to a strong dependence on
the dataset; in this overlap, the choice is not too relevant.

33

Under review as submission to TMLR

av
er

ag
e

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

0

1

2

3

4

5

6

R
M

SE
in

sa
fe

ar
ea

T-IMSPE (ours)
Entropy
IMSPE

Figure 7: Box plots of the RMSE values in the safe area of the experiments from active learning under drift
in Subsection 5.2. We compare the results of 500 runs between T-IMSPE (blue), entropy (red), and IMSPE
(green) on average during the runs (left) and then ascending at specific time steps. In contrast to the other
use cases, the drift prevents a major decrease of the RMSE over time. These are the raw values of Figure 2
from the main paper, where the difference of experiments with the same seeds were considered.

E.2 Further results for the drift experiment

Consider the experiment about drift in examples as discussed in Subsection 5.2. Due to the drift, any active
learning scheme won’t bring down the RMSE significantly. Instead, the goal is to hold the RMSE on an
acceptable level despite the drift. In the main paper, we shave shown the RMSE gain of T-IMSPE over
entropy in Figure 2. Figure 7 also shows the raw RMSE values.

E.3 Further results for the rail pressure experiment

Subsection 5.3 considered the rail pressure experiment for dynamic systems. Here, we show additional
results. Also, the amount of safe area that is recognized as safe area is drastically larger for T-IMSPE, see
Figure 8. Table 2 shows some additional numerical results. In addition, this tables serves as an ablation for
the maximal distance in an elipsiodal norm, allowed by the safe active learning algorithm in this experiment.
This axis-parallel ellipse with semi-axes 80.3 and 2.17 is actually a circle in scaled space (see Appendix F.1
for the formula for scaling) of radius 0.1. Increasing the radius to 0.15 or 0.2, i.e. allowing more dynamic
behaviour, massively decreases the quality of the results in safe active learning.

F Technical Details on experiments

Our implementation is done in the PyTorch environment (Paszke et al., 2017).

All our GPs use the squared exponential covariance function with a separate length scale ℓi as hyperparameter
for each input (automatic relevance determinantion). Additionally, we use the signal variance σ2

f and noise
variance σ2

n as as additional hyperparameters, as in (Rasmussen & Williams, 2006). The GP has a constant
mean function m as hyperparameter. For the initial training of the GP hyperparameters, we use the SQP10

10Without constraints, this is basically a Newton optimization.

34

Under review as submission to TMLR

250 500 750 1000

10 %

20 %

30 %

40 %

50 %

60 %

steps

Recall dynamic safe eval
entropy

T-IMSPE (ours)

Figure 8: This diagram show the increase in recall for classifying the safe validation data correctly into as
safe in the rail pressure model from Subsection 5.3. Entropy (red) show a slow incline, whereas our approach
T-IMSPE rises faster, resulting in much higher recalls. The dashed line is the mean of 100 runs, the area
shows the 2σ area and the solid lines show the same 5 exemplary runs as Figure 3.

Table 2: We show various additional results on dynamic railpressure experiment from Subsection 5.3. We
compare entropy (first three rows) to T-IMSPE (seconod three rows) with three different maximal distances
(0.1, 0.15, and 0.2) for each step in scaled space. The experiment in the paper used the clear superior distance
of 0.1. The first row shows the computation time in seconds on an NVIDIA RTX3080 GPU of all 1000
safe active learning steps. Here, entropy clearly takes longer, even though in theory it should have a fast
evaluation time by a small constant factor. Debug outputs indicates that entropy leads to significantly more
failed optimization runs, where the safety and other constraints could not be kept. Both approaches choose
over 90 % of points as being safe, with T-IMSPE achieving 99 % safety. Our safety criterion of two standard
deviations of the GP model prediction stay below the safety bound would predict that—ignoring model
error—independently chosen points are about 97.7 % safe. The last row shows the recall of our safety criterion
on safe trajectories, i.e. the percentage of safe trajectories in the test data, which are recognized as being
safe. In these recall values, T-IMSPE is more than twice as good as entropy. See also Figure 8, where the
recall values are plotted over time, instead of the average as here. Results are the mean of all five seeds, with
standard deviation in brackets.

strategy max. distance comp. time (s) safe points (%) static recall (%)
0.1 13093(±334) 97.5(±0.4) 18.3(±6.4)

Entropy 0.15 14022(±653) 94.0(±0.3) 16.5(±2.6)
0.2 15604(±1129) 90.3(±0.2) 9.2(±2.3)
0.1 3792(±212) 99.0(±0.4) 38.5(±3.4)

T-IMSPE (ours) 0.15 3915(±179 97.1(±0.7) 32.8(±3.6)
0.2 4305(±271) 93.3(±1.2) 25.6(±7.2)

implementation from PyGranso (Liang et al., 2022; Curtis et al., 2017). After each new measurement, we
retrain all hyperparameters with 30 steps of ADAM. When training hyperparameters, instead of minimizing
the negative log likelihood, we minimizing the negative log a-posteriori. This is the same GP for both
acquisition functions entropy and T-IMSPE.

The choice of a GP with squared exponential covariance function for all experiments might be unintiutive.
Specific covariance functions might have improved the results of the examples, e.g. periodic or cosine covariance
functions for the experiment with seasonal chance in Section 5.1. However, there are several reasons for
experiments with a standard covariance function such as the squared exponential covariance.

35

Under review as submission to TMLR

1. We did not want to assume any specific time-varying structure (other than dynamic structure in the
third experiment) in our covariance function.

2. We prefer a consistent approach over several experiments.

3. The GP used in the seasonal change experiment in Section 5.1 does not directly model periodic
behavior. Despite this, T-IMSPE still steers the data acquisition such that even a GP with a
uninformative covariance functions learns the periodic behavior, see Figure 2. We see it as an
advantage to T-IMSPE that periodic structures are automatically captured with a standard Gaussian
process.

4. We conducted preliminary experiments with a periodic covariance function in the seasonal change
experiment in Section 5.1. These experiments used the numerical approximations to T-IMSPE, since
there is no closed form version for the periodic covariance in T-IMSPE, see Table 1. The results
were as follows: Safe active learning behaved very suboptimal with all acquisition functions when
we trained the hyperparameter for the period length of the periodic covariance function, since the
hyperparameter for the period length was hard to learn in a Gaussian process with multiple inputs
and few measurement points. This lead to many local optima, most of which showed very suboptimal
behavior, and very overfit models. When we manually set the period to the correct value (something
that seems to be unreasonable in many practical examples) and used a numerical approximation
to T-IMSPE, entropy was superior to the numerically approximated T-IMPSE. This is consistent
(and one of many reasons) for our observation in Appendix D that numerically evaluated integrals
perform suboptimally.

We choose the following priors for the experiments. For the seasonal change experiment from Subsection 5.1
and for the drift experiments from Subsection 5.2 the priors are

softplus−1(ℓt) ∼ N (5, 12)
softplus−1(ℓx) ∼ N (0, 12)
softplus−1(σf) ∼ N (1, 12)
softplus−1(σn) ∼ N (−3, 12)

m ∼ N (10, 0.012)

for softplus(x) = log(1 + exp(x)), temporal length scale ℓt and spatial length scale ℓx. For the rail pressure
experiments from Subsection 5.3 the priors are

softplus−1(ℓ) ∼ N (0.5, 0.12)
softplus−1(σf) ∼ N (0.5, 0.12)
softplus−1(σn) ∼ N (−3, 0.12)

m ∼ N (11.77, 0.012).

For the rail pressure example, it is particularly important to have conservative priors, since otherwise safety
constraints are kept much less often. The priors for the mean are particularly strict. This prevents small
mean functions and hence exploration into unsafe area which are deemed safe due to unsuitable extrapolation.
Taking the mean as trainable hyperparameter with prior instead of fixing it allows for flexible models once
enough data is collected. While using GPyTorch (Gardner et al., 2018), we reimplemented the priors to avoid
inconsistencies in GPyTorch.

The optimization for safe active learning is done again using the SQP implementation from PyGranso with
3 random restarts. In case of the first or second unsuccessful optimization, where no point keeping the
constraints could be found, we start an additional optimizations with new starting points, such that at most
5 restarts are performed. In the optimizer, all tolerances are set to 10−4 and maximal 200 iterations are
allowed. The most important constraints, the safety constraint, is taken msafe(x∗|x, y) + 2

√
ksafe(x∗|x) < c,

36

Under review as submission to TMLR

where c is the constraint and msafe(x∗|x, y) resp.
√
ksafe(x∗|x) are the mean resp. standard deviation of the

posterior GP at x∗. This corresponds to α = 0.977.

We adapted entropy (mildly) to the time-variant case: we maximize the variance by only allowing the current
time step, similar to the usage of the acquisition function in (Fiducioso et al., 2019). However, to the best of
the authors’ knowledge, IMSPE is the only acquisition function that allows to specify that knowledge should
be collected to add information for future time steps.

The finite measure for T-IMSPE in the experiment with seasonal changes and for the drift experiments
are chosen as 1D×[t0,t0+10], where t0 is the current time point, D is the allowed spatial domain, and 1 is
the indicator function. In other words, we want to reduce the variance equally over D and up to 10 time
steps into the future. For the rail pressure experiment, we chose 1D4 as measure for T-IMSPE, to search for
trajectories that reduce the variance over the space of all trajectories. The exponent 4 in D4 is due to having
4 time steps in our NX model.

As in the seasonal change example, the drift example starts with 8 initial measurements at times 0, . . . , 7
positioned at the inital points of a Sobol sequence in the safe area. Afterwards, 100 further measurements
at times 8, . . . , 107 are conducted according to the two respective safe active learning criteria entropy and
T-IMSPE.

In the rail pressure example, we also model real world safety procedure, mirroring a similar procedure in
(Zimmer et al., 2018; Tebbe et al., 2024). Once a measurement is not safe, we jump back to the area that
was initially declared as safe. Note that the jump back itself is not necessarily safe itself, due to potentially
being a long trajectory. However, once inside the area that was initially declared as safe, the behavior will
quickly stabilize, which is not necessarily the case outside of the initially safe domain. The NX structure was
chosen similar to (Zimmer et al., 2018; Tebbe et al., 2024), i.e. based on expert knowledge. If, in a different
application, this expert knowledge is not available, one can use techniques for NX structure optimization
to find a suitable value, e.g. from (Yassin et al., 2010). The domain is D = [1000, 4000] × [0, 60], the safety
constraint is to keep the rail pressure below 18, and the initially known safe domain for steady state behavior
is [2093, 2414] × [14.36, 23.0]. Bigger jumps result in uncontrollable dynamic behavior, hence we restrict
(nk+1, vk+1) to an ellipse around (nk, vk) with axis-parallel semi-axes 80.3 and 2.17. We choose 256 initial
measurements in the known safe domain, while keeping distances between points short enough that the initial
measurements are all safe. After an unsafe measurements with rail pressure above 18, we will return to the
safe domain to stabilize the dynamic behavior.

F.1 Formulas for the experiments

The formula of the seasonal change experiment in Subsection 5.1 uses the classical McCormick function
(McCormick, 1976)

McCormick : (x1, x2) 7→
sin(x1 + x2) + (x1 − x2)2 − 1.5x1 + 2.5x2 + 1,

in the formula

ssnl : (t, x1, x2) 7→ −1 + 1
10 McCormick

(

1
2 cos

(
1
2 sin

(
t

2

))
x1 − 1

2 sin
(

1
2 sin

(
t

2

))
x2, (5)

1
2 sin

(
1
2 sin

(
t

2

))
x1 + 1

2 cos
(

1
2 sin

(
t

2

))
x2

)
.

See Figure 9 for a visual representation of this function. We consider this function in the spatial domain
[−4, 4]2, where the area [−0.5, 0.5] × [−1, 1] is deemed save initially. Measurements at (t, x1, x2) are deemed
safe if ssnl(t, x1, x2) < 0.

37

Under review as submission to TMLR

1.25
1

0.75
0.5 0.25 0

−0.
25

−0.25

−0.25

−0.
5

−0.5

−0.5

−
0.

75

−0.75

−0.75

−0.7
5 −1

−1−4 −2 2 4

−4

−2

2

4

x1

x2

t = 0.0
1.25

1
0.75

0.5 0.25 0

0

−0.25

−0.25

−0.25

−0.5

−0.5

−0.5

−0.
75

−0.75
−0.75

−1

−
1

−4 −2 2 4

−4

−2

2

4

x1

x2

t = 1.0

0.75 0.5 0.25
0

0

−0.25

−0.25
−0.25

−0.5

−0.5−0.5

−0.7
5

−0.75−0.75

−1

−1

−4 −2 2 4

−4

−2

2

4

x1

x2

t = 2.0
0.75

0.5 0.25
0.25 0

0

−0.25

−0.25−0.25

−0.5

−0.5−0.5

−0.75

−0.75
−0.75

−1

−1

−4 −2 2 4

−4

−2

2

4

x1

x2

t = 3.0

0.75 0.5 0.25

0.25 0
0

−0.25

−0.25
−0.25

−0.5

−0.5−0.5

−0.75

−0.75
−0.75

−1

−1

−4 −2 2 4

−4

−2

2

4

x1

x2

t = 4.0
1

0.75
0.5 0.25 0

0

−0.25

−0.25

−0.25

−0.5

−0.5

−0.5

−0.7
5

−0.75
−0.75

−1

−
1

−4 −2 2 4

−4

−2

2

4

x1

x2

t = 5.0

Figure 9: Plots of the function from (5) for the seasonal change experiment for various values of t.

The formula of the drift experiment in Subsection 5.2 is given by

drft : (t, x1, x2) 7→ 1
1000

((
2 + sin

(
t

2

))
t+ 1

)

·
(

Rosenbrock(x1, x2) − 25 + t

10

) (6)

for the classical Rosenbrock function (Rosenbrock, 1960)

Rosenbrock : (x1, x2) 7→ (8 · |x2
1 − x2| + (1 − x1)2).

This function is visualized in Figure 10 and Figure 11. We consider this function in the spatial domain
[−4, 4]2, where the area [−0.5, 0.5] × [−1, 1] is deemed save initially. Measurements at (t, x1, x2) are deemed
safe if drft(t, x1, x2) < 0. Note that the safe area is decreasing as t increases.

For easier and long term reproducibility11, we provide the full formula of the rail pressure model form
Subsection 5.3. The formula contains the injection time tk, which is set to a constant for these experiments,
as in (Zimmer et al., 2018).

11E.g. since code attached to papers might vanish after a few years or is no longer compatible with newer library versions.

38

Under review as submission to TMLR

0.
1

0
.1

0
.1

0

0

0

0

0

−4 −2 2 4

−4

−2

2

4

x1

x2

t = 0.0

0.
5

0
.5

0.
25

0.
25

0
.25

0
.25

0.
1

0.
1

0
.1

0
.1

0

0

0

0

0

−4 −2 2 4

−4

−2

2

4

x1

x2

t = 1.0

1 0.
75

0
.75

0.
5

0.
5

0
.5

0
.5

0.
25

0.
25

0
.25

0
.25

0.
1

0.
1

0
.1

0
.1

0

0

0

0

0

−
0
.1

−0.1−
0
.1

−0.
1

−
0.

1

−
0.

1

−4 −2 2 4

−4

−2

2

4

x1

x2

t = 2.0

1.
25

1
.25

1

1
1

0.
75

0.
75

0
.75

0
.75

0.
5

0.
5

0
.5

0
.5

0.
25

0.
25

0
.25

0
.25

0.
1

0.
1

0
.1

0
.1

0

0

0

0

0

−0.1−
0
.1

−0.1

−
0.

1

−4 −2 2 4

−4

−2

2

4

x1

x2

t = 3.0

1.
25

1
.25

1
.25

1
1

1
1

0.
75

0.
75

0
.75

0
.75

0.
5

0.
5

0
.5

0
.5

0.
25

0.
25

0
.25

0
.25

0.1

0
.1

0.1 0.
1

0.
1

0

0

0

0

0

−0.1

−
0
.1

−0.1

−
0.

1

−4 −2 2 4

−4

−2

2

4

x1

x2

t = 4.0

1.
25

1
.25

1
.25

1
1

1
1

0.
75

0.
75

0
.75

0
.75

0.
5

0.
5

0
.5

0
.5

0.
25

0.
25

0
.25

0
.25

0.1

0
.1

0.1 0.
1

0.
1

0

0

0

0

0

−0.1

−
0
.1

−0.1

−
0.

1

−4 −2 2 4

−4

−2

2

4

x1

x2

t = 5.0

Figure 10: Plots of the function from (6) for the drift experiment for various values of t.

Scaling
vk = (vk − 2253.3056464309)/803.10036183397

vk−1 = (vk−1 − 2253.3096911602)/803.0960165043
vk−2 = (vk−2 − 2253.3137973002)/803.09162233565
vk−3 = (vk−3 − 2253.3179648508)/803.08718748759

nk = (nk − 38.215389287748)/21.683961765866
nk−1 = (nk−1 − 38.215412400486)/21.68392095213
nk−3 = (nk−3 − 38.215460803251)/21.683841783813

tk = (0.7 − 0.70942737910475)/0.53560619117677
tk−2 = (0.7 − 0.70941240606961)/0.53561824817519
tk−3 = (0.7 − 0.70940475206843)/0.5356235081677

Initialization
y = 0
s = vk · (−0.81905999667818) + vk−1 · (−0.019794720460163) + vk−2 · 0.27304841361022 + vk−3 · (−0.73207404858355)

+ nk · (−3.7029124975669) + nk−1 · (−0.046790795114252) + nk−3 · 2.2697846410235
+ tk · 0.25841712144651 + tk−2 · (−0.28806898337401) + tk−3 · 0.3373995160564

39

Under review as submission to TMLR

0.
1

0
.1

0
.1

0

0

0

0

0
−4 −2 2 4

−4

−2

2

4

x1

x2

t = 0.0

1.
25

1.
25

1
.25

1
.25

1

1

1

1

0.
75

0.
75

0
.75

0
.75

0.
5

0.
5

0
.5

0
.5

0.2
5

0
.25

0.25

0.
25

0.
25

0.
1

0
.1

0.1

0.
1

0.
10

0

0

0

0

−0.1

−
0
.1

−0.1

−
0.

1

−4 −2 2 4

−4

−2

2

4

x1

x2

t = 20.0

1.25

1
.25

1.25 1.
25

1.
25

1

1

1

1

1

0.
75

0
.75

0.75

0.
75

0.
75

0.
5

0
.5

0.5

0.
5

0.
50.2

5

0
.25

0.25

0.
25

0.
25

0.1

0
.1

0.1

0.
1

0.
1

0

0

0

0

0

−0.1

−
0
.1

−0.1

−
0.

1

−4 −2 2 4

−4

−2

2

4

x1

x2

t = 40.0

1.
25

1.
25

1
.25

1
.25

1

1

1

1

0.7
5

0
.75

0.75

0.
75

0.
75

0.
5

0
.5

0.5

0.
5

0.
50.2

5

0
.25

0.25

0.
25

0.
25

0.1

0
.1

0.1

0.
1

0

0

0

0

−0.1

−
0
.1

−0.1

−
0.

1
−4 −2 2 4

−4

−2

2

4

x1

x2

t = 60.0

1.2
5

1
.25

1.25

1.
25

1.
25

1

1

1

1

1

0.7
5

0
.75

0.75

0.
75

0.5

0
.5

0.5

0.
5

0.25

0
.25

0.25

0.
25

0.1

0
.1

0.1

0.
1

0

0

0

0

−0.1

−
0
.1

−0.1

−
0.

1

−4 −2 2 4

−4

−2

2

4

x1

x2

t = 80.0 1.2
5

1
.25

1.25

1.
25

1.
25

1

1

1

1

0.75

0
.75

0.75

0.
75

0.5

0
.5

0.5

0.
5

0.25

0
.25

0.25

0.
25

0.1

0
.1

0.1

0.
10

0

0

0−0.1−
0
.1

−0.1

−
0.

1

−4 −2 2 4

−4

−2

2

4

x1

x2

t = 100.0

Figure 11: Plots of the function from (6) for the drift experiment for various values of t.

40

Under review as submission to TMLR

y = y + 0.031692908952064 · cos(s) + 0.068402277004024 · sin(s)
s = vk · 0.33752150846961 + vk−1 · 0.22665058943887 + vk−2 · 0.0036308221642449 + vk−3 · 1.0767220185346

+ nk · 3.2393608709891 + nk−1 · 0.19726557402639 + nk−3 · (−4.0903224279171)
+ tk · 0.33875023498879 + tk−2 · (−0.027486115217298) + tk−3 · 1.7015867079337

y = y + 0.0024380870537466 · cos(s) + 0.026928849707532 · sin(s)
s = vk · 0.095036088014746 + vk−1 · 0.22714724983666 + vk−2 · (−0.252352037575) + vk−3 · (−0.18437125084529)

+ nk · (−0.96603866774145) + nk−1 · (−0.025618018257457) + nk−3 · (−3.2018494389618)
+ tk · 0.33880919065233 + tk−2 · 0.15883552468638 + tk−3 · 1.7038404546954

y = y + 0.03593989016575 · cos(s) − 0.061165600194329 · sin(s)
s = vk · (−0.30750892970496) + vk−1 · (−0.23891396825039) + vk−2 · (−0.44176279406099) + vk−3 · 0.98871809597707

+ nk · (−5.0299200351586) + nk−1 · 0.20496686667996 + nk−3 · 1.0113286004103
+ tk · (−0.89964906559001) + tk−2 · (−1.6251295055196) + tk−3 · −1.1594042648733

y = y + 0.016985328578553 · cos(s) − 0.062906411043536 · sin(s)
s = vk · 0.54473897047707 + vk−1 · 0.19648071480935 + vk−2 · (−0.80191433634961) + vk−3 · (−0.31176920243484)

+ nk · 0.48317144030955 + nk−1 · 0.34539198746364 + nk−3 · 6.3642693877505
+ tk · 1.6686848402237 + tk−2 · 0.50810563186527 + tk−3 · 1.6627586231958

y = y − 0.010472575984009 · cos(s) − 0.034856454748811 · sin(s)
s = vk · (−0.90932965603186) + vk−1 · 0.0040861403775149 + vk−2 · (−0.18367251852817) + vk−3 · (−0.8384362134349)

+ nk · 1.1095932478839 + nk−1 · 0.33627852300982 + nk−3 · 0.80578324978802
+ tk · (−0.11488487559319) + tk−2 · (−0.70000840599637) + tk−3 · 0.50949820156166

y = y + 0.08771158424235 · cos(s) − 0.056379754715369 · sin(s)
s = vk · (−0.34681438881798) + vk−1 · 0.043514921077717 + vk−2 · 0.12046630595345 + vk−3 · (−0.11064217792073)

+ nk · 12.409726448748 + nk−1 · 0.12883850899569 + nk−3 · −13.632000414936
+ tk · (−0.19971464610846) + tk−2 · 0.046228428472665 + tk−3 · 0.12515304947418

y = y − 0.055589202591183 · cos(s) − 0.17750376299084 · sin(s)
s = vk · 0.5126466445729 + vk−1 · 0.12860832423111 + vk−2 · (−0.21064805610633) + vk−3 · (−0.50620018378431)

+ nk · 5.236695403519 + nk−1 · (−0.24441406130094) + nk−3 · (−4.3045949100653)
+ tk · 0.61624905468049 + tk−2 · 2.1138749574221 + tk−3 · −0.32086813690263

y = y − 0.018944359148021 · cos(s) − 0.024568581080264 · sin(s)
s = vk · (−0.90786223620836) + vk−1 · 0.25228903489171 + vk−2 · (−0.53485124507674) + vk−3 · (−1.8522537551352)

+ nk · 1.5666089210993 + nk−1 · (−0.24489915142453) + nk−3 · (−3.8189488996167)
+ tk · 0.54909352731943 + tk−2 · 0.9272179256372 + tk−3 · 1.8009119972273

y = y + 0.018516761200688 · cos(s) + 0.031299127609342 · sin(s)
s = vk · 0.84723127607948 + vk−1 · 0.050280388584138 + vk−2 · 0.16693223406574 + vk−3 · (−0.60517770461978)

+ nk · (−0.79132263098257) + nk−1 · 0.084043948902495 + nk−3 · 0.55685759728236
+ tk · 0.34486591580833 + tk−2 · 1.4416809309088 + tk−3 · −0.53320421692272

y = y − 3.4990059374596 · cos(s) + 0.68253876032375 · sin(s)
s = vk · (−0.19681773285744) + vk−1 · 0.058254908022228 + vk−2 · (−0.42707928242563) + vk−3 · 0.10819564756371

+ nk · 0.04704308876312 + nk−1 · 0.086127140665846 + nk−3 · (−0.024740149959336)
+ tk · 0.93632616781613 + tk−2 · (−0.035165710684237) + tk−3 · 0.6569247940928

y = y − 0.17115042174198 · cos(s) − 0.28252973516886 · sin(s)
s = vk · (−0.0019037079266071) + vk−1 · 0.18580405652159 + vk−2 · 0.25080372029813 + vk−3 · (−0.38404653550615)

+ nk · (−2.6288831462221) + nk−1 · (−0.2747417045966) + nk−3 · 2.1320451793595
+ tk · (−1.045444967573) + tk−2 · (−0.79282650529856) + tk−3 · 0.031010778657905

y = y + 0.059811477926127 · cos(s) + 0.15289618520218 · sin(s)
s = vk · 0.19814051576479 + vk−1 · 0.12473129275844 + vk−2 · 0.18289812163033 + vk−3 · (−0.040240761962992)

+ nk · (−3.3405395082573) + nk−1 · 0.11291153891139 + nk−3 · (−2.1744195857812)
+ tk · 0.16544111454727 + tk−2 · 1.0327303718767 + tk−3 · 1.5923228862532

y = y − 0.010118619494568 · cos(s) − 0.0074420349679962 · sin(s)
s = vk · (−0.11678811433869) + vk−1 · 0.40545196498035 + vk−2 · (−0.32209724522756) + vk−3 · (−1.2191020365812)

+ nk · (−7.0124770086352) + nk−1 · 0.03675927486414 + nk−3 · 5.5603653868838

41

Under review as submission to TMLR

+ tk · 0.37164881797739 + tk−2 · (−1.5113345858393) + tk−3 · 0.66274581255803
y = y + 0.086117006049066 · cos(s) − 0.04913820310423 · sin(s)
s = vk · (−0.32593022105524) + vk−1 · 0.079875980525919 + vk−2 · 0.099870348032266 + vk−3 · (−0.67291405487035)

+ nk · (−0.37666675860489) + nk−1 · 0.20938689455095 + nk−3 · 9.1755464525272
+ tk · 2.2122935682262 + tk−2 · 0.16197494065924 + tk−3 · −0.018643916230819

y = y + 0.0022606327417702 · cos(s) + 0.023805375609675 · sin(s)
s = vk · 0.84460551424592 + vk−1 · (−0.33094975587693) + vk−2 · (−0.010826144353245) + vk−3 · 0.27948211496192

+ nk · 0.17197033871996 + nk−1 · (−0.097541935974101) + nk−3 · (−0.30621259089848)
+ tk · (−0.35493284958512) + tk−2 · (−0.1698519033907) + tk−3 · 0.70620227752212

y = y − 0.053636933766471 · cos(s) + 0.40565361766112 · sin(s)
s = vk · 0.17876901517902 + vk−1 · 0.070199320612956 + vk−2 · 0.14344749513824 + vk−3 · (−0.46963022472564)

+ nk · 6.3748083838038 + nk−1 · 0.11207349357088 + nk−3 · (−4.1269050756988)
+ tk · 0.63174216577317 + tk−2 · (−0.10275316910193) + tk−3 · −0.1838974495232

y = y + 0.0091583716548813 · cos(s) + 0.064570155156537 · sin(s)
s = vk · 0.13173338939796 + vk−1 · (−0.28009532216854) + vk−2 · 0.092772965987904 + vk−3 · (−1.5059798078413)

+ nk · (−2.1352598181993) + nk−1 · 0.10509416454745 + nk−3 · (−0.53606803801543)
+ tk · (−0.18990485591095) + tk−2 · 0.77387432217994 + tk−3 · −0.23630436139784

y = y + 0.024383694318798 · cos(s) − 0.073684695482718 · sin(s)
s = vk · 0.8804356524727 + vk−1 · (−0.14927153177112) + vk−2 · (−0.057756555652038) + vk−3 · 1.0075676397375

+ nk · (−2.4857722942484) + nk−1 · 0.15649829748824 + nk−3 · 2.5030070853474
+ tk · 1.3304923152072 + tk−2 · (−0.12114833963005) + tk−3 · −0.31746502804656

y = y + 0.084057404036463 · cos(s) + 0.080342220979079 · sin(s)
s = vk · (−0.45892995128513) + vk−1 · (−0.087896961270462) + vk−2 · (−0.28713116616515) + vk−3 · (−0.37405851179436)

+ nk · (−1.6627204298282) + nk−1 · (−0.10621951132626) + nk−3 · (−0.19502828709312)
+ tk · (−0.088310579759066) + tk−2 · (−1.2096077751772) + tk−3 · 1.2425887574684

y = y − 0.10632114607956 · cos(s) + 0.028028588569602 · sin(s)
s = vk · 0.31768351305308 + vk−1 · 0.060754198486302 + vk−2 · 0.013545521015915 + vk−3 · (−0.7766269370097)

+ nk · (−0.61787733817351) + nk−1 · 0.10467080505564 + nk−3 · 1.2082028035424
+ tk · (−0.37850368236208) + tk−2 · 0.4094129670629 + tk−3 · −0.53695066829666

y = y + 0.43252746651226 · cos(s) + 0.016552122636672 · sin(s)
s = vk · 0.25758237719377 + vk−1 · (−0.25356195272768) + vk−2 · (−0.6786377277186) + vk−3 · (−1.0718851905902)

+ nk · 0.83322277658286 + nk−1 · (−0.30758875879175) + nk−3 · (−0.63470396094589)
+ tk · 1.2643960155815 + tk−2 · (−1.0684094036204) + tk−3 · 0.45116263179746

y = y − 0.0074853421942671 · cos(s) − 0.068405137339272 · sin(s)
s = vk · (−0.26216784296152) + vk−1 · (−0.41730575070274) + vk−2 · 0.015155508164056 + vk−3 · (−0.24359833967796)

+ nk · (−0.12071617316971) + nk−1 · (−0.16570655132297) + nk−3 · (−1.7909030170594)
+ tk · (−0.40755201770749) + tk−2 · (−1.0229730332706) + tk−3 · −0.68446950944111

y = y − 0.049061333210103 · cos(s) − 0.18136933353012 · sin(s)
s = vk · (−0.17677316792512) + vk−1 · (−0.025469605233643) + vk−2 · (−0.1910114792626) + vk−3 · 0.92943887248222

+ nk · 0.35620276653333 + nk−1 · (−0.23245634977757) + nk−3 · (−1.8916035502678)
+ tk · 0.74548920174067 + tk−2 · (−0.40759478019872) + tk−3 · −1.1381431030634

y = y − 0.016909584800276 · cos(s) + 0.10722899471275 · sin(s)
s = vk · (−0.43977970353579) + vk−1 · (−0.15622561448743) + vk−2 · 0.64811378783201 + vk−3 · (−0.14286146577477)

+ nk · 0.66032866159992 + nk−1 · (−0.29121017753958) + nk−3 · (−2.2201938034659)
+ tk · 0.22837161242404 + tk−2 · 1.0452005681998 + tk−3 · 2.7703274410098

y = y + 0.047939907064817 · cos(s) + 0.058542345464866 · sin(s)
s = vk · 0.80878100421884 + vk−1 · (−0.1832152414184) + vk−2 · 0.79808714115796 + vk−3 · 0.32102197337873

+ nk · 0.30887569585679 + nk−1 · (−0.019982765911454) + nk−3 · (−0.048597787228745)
+ tk · 0.83984658398251 + tk−2 · 0.095459155459479 + tk−3 · −1.5308996912961

y = y − 0.027583794700889 · cos(s) − 0.015807980686177 · sin(s)
s = vk · 0.75135425825118 + vk−1 · 0.32907884453582 + vk−2 · 0.083193143066692 + vk−3 · 0.63183684850071

42

Under review as submission to TMLR

+ nk · 1.453284313977 + nk−1 · (−0.043615950135482) + nk−3 · (−0.91140517823509)
+ tk · 0.38237529105443 + tk−2 · 0.32872090921479 + tk−3 · −0.12651777143292

y = y − 0.051786986817071 · cos(s) − 0.082560931826909 · sin(s)
s = vk · 0.011668877891523 + vk−1 · (−0.041078264870397) + vk−2 · 0.62851420706784 + vk−3 · (−0.6894866112561)

+ nk · 4.157527054699 + nk−1 · (−0.16842535817262) + nk−3 · (−4.8078863734826)
+ tk · (−0.34741726477873) + tk−2 · (−0.65921610281342) + tk−3 · 0.86790778494934

y = y − 0.084121464323058 · cos(s) − 0.11677906289896 · sin(s)
s = vk · (−0.46558466749701) + vk−1 · (−0.18491041977008) + vk−2 · (−0.17118747295036) + vk−3 · 0.49679229476403

+ nk · 2.5697896940838 + nk−1 · (−0.066126179601844) + nk−3 · (−0.82627814981748)
+ tk · 0.31777498840923 + tk−2 · 0.84316776324651 + tk−3 · 0.95729808447415

y = y − 0.11881647098682 · cos(s) − 0.0028600422974877 · sin(s)
s = vk · 1.6037567163433 + vk−1 · 0.00053758943283798 + vk−2 · (−0.32091470765556) + vk−3 · 0.97084640098594

+ nk · (−2.9941574018056) + nk−1 · (−0.46712568401221) + nk−3 · (−1.8116137105656)
+ tk · 0.054856490528935 + tk−2 · 0.48579759317903 + tk−3 · −0.24774637606093

y = y + 0.015369878517688 · cos(s) − 0.0014170875474372 · sin(s)
s = vk · (−0.23987681510562) + vk−1 · (−0.25593431278915) + vk−2 · 0.0019787299505214 + vk−3 · (−0.32541985863337)

+ nk · (−2.9560371696221) + nk−1 · (−0.34906715633717) + nk−3 · (−3.7363276022986)
+ tk · 0.042673616217396 + tk−2 · (−0.58697902541369) + tk−3 · −0.7759755094146

y = y − 0.015786717443258 · cos(s) + 0.024975094967218 · sin(s)
s = vk · (−0.22583019727704) + vk−1 · (−0.077395441495797) + vk−2 · (−0.90070097121186) + vk−3 · (−1.3515781775198)

+ nk · 0.96817936231753 + nk−1 · 0.016511460088508 + nk−3 · (−0.80685627363305)
+ tk · (−1.4141167726755) + tk−2 · (−0.14414186371363) + tk−3 · −1.1413811739829

y = y + 0.03439862320363 · cos(s) − 0.046598080481382 · sin(s)
s = vk · 0.36159338585778 + vk−1 · 0.024673785898007 + vk−2 · (−0.49530279421355) + vk−3 · (−0.53200062724239)

+ nk · 4.7428418297513 + nk−1 · (−0.13520534322518) + nk−3 · 2.7194971849481
+ tk · (−0.34157058625228) + tk−2 · (−0.14560613302904) + tk−3 · −1.3550265164725

y = y − 0.011518035023694 · cos(s) − 0.053273940541563 · sin(s)
s = vk · 0.43925709965552 + vk−1 · 0.045770084803915 + vk−2 · (−0.28623521155044) + vk−3 · (−0.36182542785672)

+ nk · 1.8435442636642 + nk−1 · 0.13764671627122 + nk−3 · (−1.7369880310385)
+ tk · (−0.67718098088346) + tk−2 · 0.96181819307071 + tk−3 · 0.90188716127572

y = y + 0.23288826713576 · cos(s) − 0.15672951801364 · sin(s)
s = vk · 0.064598397316458 + vk−1 · (−0.096604519115184) + vk−2 · (−0.39600241189883) + vk−3 · 0.82081540685491

+ nk · 3.7967918536811 + nk−1 · (−0.32479462323413) + nk−3 · (−6.8163120661345)
+ tk · (−0.66256830456833) + tk−2 · (−0.72268349097057) + tk−3 · −0.60484037951159

y = y − 0.0046388898142893 · cos(s) − 0.079687036388495 · sin(s)
s = vk · 0.37445329094819 + vk−1 · (−0.363050810254) + vk−2 · (−0.85538049193332) + vk−3 · 0.52346497545624

+ nk · 4.1858898231664 + nk−1 · (−0.15817295606714) + nk−3 · (−6.0893988831619)
+ tk · 0.45630187667385 + tk−2 · (−0.074689397657911) + tk−3 · −0.44773066097934

y = y + 0.044154822592607 · cos(s) − 0.13794930346985 · sin(s)
s = vk · (−0.059317512967557) + vk−1 · (−0.11022537799313) + vk−2 · 0.31400317452795 + vk−3 · (−0.75274374233922)

+ nk · 1.0373155190017 + nk−1 · 0.30714349808628 + nk−3 · (−3.5554839662073)
+ tk · (−1.2221273756119) + tk−2 · 0.50864317961329 + tk−3 · −0.84515229970508

y = y − 0.060686607415732 · cos(s) − 0.088015554200766 · sin(s)
s = vk · (−0.29244085118027) + vk−1 · (−0.019183333270204) + vk−2 · (−0.077483622043874) + vk−3 · (−1.0736630167229)

+ nk · 3.04419549621 + nk−1 · (−0.11645011564443) + nk−3 · (−3.7448151043279)
+ tk · (−1.0090715552592) + tk−2 · (−2.0064460721785) + tk−3 · −1.0847868318571

y = y + 0.064300654108802 · cos(s) + 0.025756630419533 · sin(s)
s = vk · 0.20500545105685 + vk−1 · 0.042721643850222 + vk−2 · (−0.28239556672529) + vk−3 · 0.029533614880545

+ nk · (−0.50155646564908) + nk−1 · (−0.17524499316815) + nk−3 · 5.6667285838448
+ tk · 0.24892316862687 + tk−2 · (−0.57378696284797) + tk−3 · 1.6207438609699

43

Under review as submission to TMLR

y = y + 0.053651372132957 · cos(s) − 0.019255348978032 · sin(s)
s = vk · 0.80835434001989 + vk−1 · 0.033730865058327 + vk−2 · (−0.36192000465059) + vk−3 · 0.068972098703966

+ nk · 0.39392332382431 + nk−1 · 0.02545045216391 + nk−3 · 1.8776375750048
+ tk · 0.84579939266458 + tk−2 · (−0.83045785788514) + tk−3 · −0.48607999231105

y = y − 0.11951754174837 · cos(s) − 0.015213137309564 · sin(s)
s = vk · 0.61621830446052 + vk−1 · (−0.20213981234134) + vk−2 · (−0.68587765032013) + vk−3 · (−0.16699261687744)

+ nk · 0.57880370456389 + nk−1 · (−0.097281575761222) + nk−3 · (−0.10123488308088)
+ tk · (−0.65262972664406) + tk−2 · (−0.77807867134149) + tk−3 · 0.43874433329463

y = y + 0.67897256508403 · cos(s) + 0.45842360791261 · sin(s)
s = vk · 0.69715873877587 + vk−1 · (−0.066252785620862) + vk−2 · 0.27855742844366 + vk−3 · (−0.72016847115053)

+ nk · 9.004546581274 + nk−1 · (−0.023021945093869) + nk−3 · (−8.0358050609837)
+ tk · 0.070269407451441 + tk−2 · (−0.17145826222352) + tk−3 · 0.23371762786191

y = y − 0.11558159654724 · cos(s) + 0.1280981152627 · sin(s)
s = vk · 0.061123532802879 + vk−1 · 0.31117935807833 + vk−2 · (−0.042175847334849) + vk−3 · 1.0643277928174

+ nk · 3.571742118105 + nk−1 · 0.060501661631117 + nk−3 · (−3.1048698462113)
+ tk · 0.40682378280127 + tk−2 · 0.83377672510518 + tk−3 · −1.0219143195115

y = y + 0.12748200297507 · cos(s) + 0.049135256473724 · sin(s)
s = vk · (−0.44209301626502) + vk−1 · 0.054516649430299 + vk−2 · (−0.71758192434574) + vk−3 · 0.69285987658271

+ nk · (−1.9573420448319) + nk−1 · 0.37990622043178 + nk−3 · (−2.4086154903417)
+ tk · (−0.31509319788408) + tk−2 · 0.91215670154238 + tk−3 · −0.40144522153246

y = y − 0.034712965813719 · cos(s) + 0.046483858820691 · sin(s)
s = vk · (−0.8115922537416) + vk−1 · 0.015683113181554 + vk−2 · 0.041448036256392 + vk−3 · (−0.58974637492163)

+ nk · 1.0023351224226 + nk−1 · (−0.10293406857145) + nk−3 · (−0.81923159078529)
+ tk · (−1.0525319967428) + tk−2 · (−0.4659667165728) + tk−3 · −1.2676270486531

y = y − 0.068291348633799 · cos(s) + 0.077118109718707 · sin(s)
s = vk · (−0.6870714685788) + vk−1 · (−0.16954182644662) + vk−2 · (−0.15518803300695) + vk−3 · (−0.10882766625271)

+ nk · 0.95457462902051 + nk−1 · (−0.23744205001861) + nk−3 · (−0.36616055202298)
+ tk · 0.3541862497669 + tk−2 · 0.057071813041939 + tk−3 · −0.18828258229724

y = y − 0.12766999274979 · cos(s) + 0.37594579379313 · sin(s)
s = vk · (−1.2233133350886) + vk−1 · 0.2818169111056 + vk−2 · 0.68768773694539 + vk−3 · 0.30228449129992

+ nk · 2.9491625036004 + nk−1 · 0.021740132213148 + nk−3 · (−0.78981562725561)
+ tk · (−1.1797429142248) + tk−2 · (−1.3043266779761) + tk−3 · 0.27035547879731

y = y − 0.0043180756877553 · cos(s) − 0.039611362195905 · sin(s)
s = vk · 0.40396480218111 + vk−1 · 0.036748442602898 + vk−2 · (−0.61937693804835) + vk−3 · 0.27402193978315

+ nk · (−1.7842147913316) + nk−1 · 0.18969225643528 + nk−3 · 2.5576465009336
+ tk · (−0.15063584259683) + tk−2 · (−2.0517360876039) + tk−3 · 1.775081107002

y = y + 0.020784074404751 · cos(s) − 0.10852650573083 · sin(s)
s = vk · 0.4028289598915 + vk−1 · (−0.073175411728252) + vk−2 · (−0.53458882076387) + vk−3 · 0.29728563312547

+ nk · 0.62698706643598 + nk−1 · (−0.1625781539619) + nk−3 · (−0.17510801055693)
+ tk · 0.51199125506705 + tk−2 · 0.54716019643085 + tk−3 · −1.3632242063645

y = y + 0.3427433447271 · cos(s) + 0.29556700908644 · sin(s)
s = vk · 0.24719249279029 + vk−1 · 0.53888175734965 + vk−2 · 0.82640950274578 + vk−3 · 0.77593890535894

+ nk · (−1.4871335430835) + nk−1 · 0.063923384775276 + nk−3 · (−1.4823186298831)
+ tk · 0.45828293578681 + tk−2 · 0.61353634209822 + tk−3 · −0.030632200465192

y = y − 0.079967881764442 · cos(s) − 0.039971495234953 · sin(s)
s = vk · 0.012422692796249 + vk−1 · 0.28588048766519 + vk−2 · (−0.14705908711552) + vk−3 · 1.0347973283625

+ nk · (−3.0289662397224) + nk−1 · (−0.21657919993359) + nk−3 · (−3.0576659047943)
+ tk · (−0.52152583763585) + tk−2 · 0.60779451482956 + tk−3 · 1.5724457442509

y = y + 0.016197643889979 · cos(s) − 0.02311509558311 · sin(s)
s = vk · (−0.61141511700201) + vk−1 · 0.13290626223625 + vk−2 · 0.095219977256908 + vk−3 · (−0.14657309929045)

+ nk · (−4.1277646553299) + nk−1 · 0.11068453286229 + nk−3 · 2.8747029628855

44

Under review as submission to TMLR

+ tk · (−0.54215387567982) + tk−2 · (−0.45116706073738) + tk−3 · 1.7741546185254
y = y − 0.040138849880116 · cos(s) + 0.074962524125227 · sin(s)
s = vk · (−0.39107551291792) + vk−1 · 0.12274660608723 + vk−2 · (−0.60178277343316) + vk−3 · 0.6602659147272

+ nk · 1.5156204231173 + nk−1 · (−0.010184729966952) + nk−3 · (−1.8673434534205)
+ tk · 0.28893976397337 + tk−2 · (−0.77075294468846) + tk−3 · −0.19924946508226

y = y − 0.20336766861947 · cos(s) + 0.33595325035672 · sin(s)
s = vk · 0.013413509884823 + vk−1 · 0.040304867605146 + vk−2 · 0.79704844922216 + vk−3 · 0.83154542377705

+ nk · 0.14268370176646 + nk−1 · 0.11559116505276 + nk−3 · 1.9640395532104
+ tk · 1.38891577714 + tk−2 · 0.34927172570989 + tk−3 · 0.46568732037223

y = y + 0.069177423378979 · cos(s) − 0.061434451343931 · sin(s)
s = vk · 0.23627975818342 + vk−1 · 0.026179118145544 + vk−2 · (−0.43496460935533) + vk−3 · (−0.2957285364787)

+ nk · 0.8359053206001 + nk−1 · (−0.13529122795089) + nk−3 · (−0.59076809851459)
+ tk · (−0.31742811991633) + tk−2 · (−1.5477420509238) + tk−3 · 0.5490837993564

y = y + 3.0717135720378 · cos(s) + 0.42595342511833 · sin(s)
s = vk · (−0.33577157755192) + vk−1 · (−0.1890541145897) + vk−2 · (−0.044115794840124) + vk−3 · 0.25836953839076

+ nk · 2.6503599150371 + nk−1 · (−0.18131623386889) + nk−3 · 3.0719027772353
+ tk · 0.24558608715437 + tk−2 · 0.90474113435491 + tk−3 · −1.4636261033049

y = y + 0.025265155820038 · cos(s) + 0.0082123072262535 · sin(s)
s = vk · 0.25459319593585 + vk−1 · (−0.388183457583) + vk−2 · (−0.57560753449426) + vk−3 · 0.076838701081425

+ nk · 2.100720398664 + nk−1 · (−0.099082438310629) + nk−3 · 0.58133229208003
+ tk · (−0.016242740362897) + tk−2 · 1.1969145539546 + tk−3 · −2.6154766617621

y = y − 0.055206719748503 · cos(s) − 0.037797398860482 · sin(s)
s = vk · (−0.25188182923633) + vk−1 · (−0.18007007905242) + vk−2 · (−0.36475152983176) + vk−3 · (−0.087203328561246)

+ nk · 0.48076813999135 + nk−1 · (−0.17766311279376) + nk−3 · 1.688345899356
+ tk · (−0.096706131852119) + tk−2 · (−0.14158435712413) + tk−3 · −0.29487491948705

y = y − 0.03430882993683 · cos(s) + 0.15894107821953 · sin(s)
s = vk · 0.40576220232117 + vk−1 · 0.080362129537167 + vk−2 · 0.27772777647952 + vk−3 · 0.4482599293108

+ nk · 2.2325772254501 + nk−1 · (−0.13769785324422) + nk−3 · (−3.8766768620419)
+ tk · (−0.041222843424161) + tk−2 · (−0.27890131495352) + tk−3 · 0.19552807997064

y = y + 0.040853423247748 · cos(s) + 0.026081877370598 · sin(s)
s = vk · 1.0486970586256 + vk−1 · 0.58480202365134 + vk−2 · 0.19761511597858 + vk−3 · (−0.48318636514403)

+ nk · 2.1692622059488 + nk−1 · 0.104324832837 + nk−3 · 3.0013041490242
+ tk · (−0.0013034081387521) + tk−2 · (−0.2755002819141) + tk−3 · −1.5566669526027

y = y − 0.0013882997029764 · cos(s) − 0.015511807781405 · sin(s)
s = vk · (−0.31386081002059) + vk−1 · 0.1293020499412 + vk−2 · 0.11529795460325 + vk−3 · (−0.24822392526695)

+ nk · (−3.3160561798488) + nk−1 · 0.44706491421305 + nk−3 · (−1.8294190352312)
+ tk · (−0.053453033705414) + tk−2 · (−0.49280245287429) + tk−3 · 0.19694055980245

y = y − 0.060980637003501 · cos(s) + 0.14055568329736 · sin(s)
s = vk · 0.25994500139995 + vk−1 · (−0.078939580699695) + vk−2 · (−0.01494390554366) + vk−3 · 0.47595755604079

+ nk · 0.81351882927992 + nk−1 · 0.071500271326471 + nk−3 · (−0.55798198062438)
+ tk · (−1.1381046703675) + tk−2 · (−1.0426145502673) + tk−3 · −0.59339919002787

y = y − 0.089029068082855 · cos(s) + 0.004576124468916 · sin(s)
s = vk · (−0.73157058341543) + vk−1 · 0.3700308214291 + vk−2 · 0.33500770801749 + vk−3 · 0.018024187931452

+ nk · 1.2205331546415 + nk−1 · (−0.18169028160815) + nk−3 · (−4.4857174787933)
+ tk · (−0.75684286937228) + tk−2 · 0.34485953827102 + tk−3 · 0.085304783163633

y = y + 0.085377058203667 · cos(s) + 0.031528621633092 · sin(s)
s = vk · (−0.15242786643233) + vk−1 · 0.0025867522449353 + vk−2 · 0.44500713480761 + vk−3 · (−0.79318481758384)

+ nk · (−1.7823408419956) + nk−1 · 0.20269196179305 + nk−3 · (−4.8894343557039)
+ tk · 0.65510375537264 + tk−2 · 0.80417195998693 + tk−3 · 0.8577866112518

y = y + 0.014358954022024 · cos(s) + 0.029772391811455 · sin(s)
s = vk · (−0.063928130376962) + vk−1 · (−0.0046039198715692) + vk−2 · 0.67747500772939 + vk−3 · 0.43190885676114

45

Under review as submission to TMLR

+ nk · 0.91902505388909 + nk−1 · 0.20261839326194 + nk−3 · (−2.7174511895402)
+ tk · 0.62376436068261 + tk−2 · (−1.5480884497021) + tk−3 · −1.9334713339308

y = y + 0.00092096943883582 · cos(s) + 0.051218065835908 · sin(s)
s = vk · 0.17447009697427 + vk−1 · 0.16264768985038 + vk−2 · 0.6126307557983 + vk−3 · 0.38821088563286

+ nk · 1.6460486822933 + nk−1 · 0.11904629785382 + nk−3 · 4.4526474812372
+ tk · (−1.2874473677698) + tk−2 · (−0.53353562411878) + tk−3 · −0.94954520859861

y = y + 0.0041032472616334 · cos(s) + 0.026064196886314 · sin(s)
s = vk · (−0.11381273673559) + vk−1 · (−0.11309789711385) + vk−2 · 0.40577937398995 + vk−3 · (−0.60012174166095)

+ nk · (−3.0754731732655) + nk−1 · 0.00059941618785972 + nk−3 · (−2.255890362792)
+ tk · (−0.22475924599207) + tk−2 · (−0.37080176484437) + tk−3 · 0.24450911270488

y = y − 0.037312990607426 · cos(s) − 0.13923789452907 · sin(s)
s = vk · 0.73311134921818 + vk−1 · 0.30884254753799 + vk−2 · 0.19912824792272 + vk−3 · 0.47867765355674

+ nk · (−9.9376866939528) + nk−1 · (−0.26458859522512) + nk−3 · (−3.4585407939256)
+ tk · (−0.64018780183579) + tk−2 · 0.87941998857369 + tk−3 · −1.1364026640412

y = y − 0.0080843906837836 · cos(s) + 0.0085226826746696 · sin(s)
s = vk · 0.77106503579505 + vk−1 · (−0.090102588331579) + vk−2 · 0.18881987091193 + vk−3 · 0.74168758914324

+ nk · (−4.6126095589984) + nk−1 · 0.12580729209152 + nk−3 · 0.61363369687333
+ tk · (−0.24884677386098) + tk−2 · (−0.65843414165576) + tk−3 · −2.2102908294502

y = y + 0.015989293279952 · cos(s) − 0.012531332785732 · sin(s)
s = vk · (−0.32634568173872) + vk−1 · 0.041571313604241 + vk−2 · (−0.76226551693684) + vk−3 · (−0.059375361674349)

+ nk · 3.5742752522233 + nk−1 · (−0.14970045182107) + nk−3 · 0.97835294350369
+ tk · 0.10905628141524 + tk−2 · 0.23364474393908 + tk−3 · 0.94102444425663

y = y − 0.0064939405986199 · cos(s) − 0.046195210898848 · sin(s)
s = vk · (−0.89739581078345) + vk−1 · 0.14111364565511 + vk−2 · (−0.29049561000264) + vk−3 · (−0.23732677579395)

+ nk · 0.73573877375747 + nk−1 · 0.20717826702202 + nk−3 · 1.0510327826059
+ tk · (−1.89027936533) + tk−2 · 0.98497827877588 + tk−3 · −1.361749264021

y = y + 0.040109282095949 · cos(s) + 0.034693150867751 · sin(s)
s = vk · (−0.5826919870097) + vk−1 · 0.021842676690041 + vk−2 · (−0.48892035358605) + vk−3 · 0.63536266921571

+ nk · 4.1600250518594 + nk−1 · 0.25507730526919 + nk−3 · (−2.2829257029429)
+ tk · (−1.1224303280368) + tk−2 · (−0.39902675894711) + tk−3 · −1.0826638376451

y = y − 0.039981510039405 · cos(s) − 0.017204146455158 · sin(s)
s = vk · 0.030230176956927 + vk−1 · (−0.296730661779) + vk−2 · 0.011517022440393 + vk−3 · 0.055187508805417

+ nk · (−1.9566404265983) + nk−1 · 0.077188842592816 + nk−3 · 2.068856413021
+ tk · 1.1795985503023 + tk−2 · 0.68331050991756 + tk−3 · 2.7860010644792

y = y − 0.058584871580974 · cos(s) − 0.017393943656854 · sin(s)
s = vk · 0.31822709333089 + vk−1 · (−0.014271464298613) + vk−2 · 0.70535523626635 + vk−3 · 0.2742032039563

+ nk · 1.4570613279171 + nk−1 · 0.11385902494481 + nk−3 · (−0.99207722105192)
+ tk · (−0.65912129020136) + tk−2 · 1.3836058945175 + tk−3 · 1.7607664501676

y = y + 0.091013521410747 · cos(s) − 0.016028891176556 · sin(s)
s = vk · (−0.86802514838381) + vk−1 · (−0.3354593208007) + vk−2 · (−0.41552143253572) + vk−3 · 0.20824900545061

+ nk · (−3.8462053401617) + nk−1 · 0.026213222748612 + nk−3 · (−0.17350927185547)
+ tk · 1.409010967085 + tk−2 · 0.89354106903164 + tk−3 · 1.2971490987342

y = y − 0.019081474586905 · cos(s) − 0.022425834954556 · sin(s)
s = vk · (−0.25793449504941) + vk−1 · 0.71037864534253 + vk−2 · 0.7267138173557 + vk−3 · 1.1998813791212

+ nk · 3.5053884111367 + nk−1 · 0.14584112687278 + nk−3 · (−2.9387848525964)
+ tk · (−0.23244674942071) + tk−2 · (−1.4816666350978) + tk−3 · −0.16874633991965

y = y + 0.0095682147175978 · cos(s) + 0.011403276459972 · sin(s)
s = vk · 0.74100143992648 + vk−1 · 0.19894178799665 + vk−2 · 0.018332770745976 + vk−3 · (−0.63276674310163)

+ nk · 2.3105586916758 + nk−1 · (−0.26716792155061) + nk−3 · (−2.0023305883282)
+ tk · (−0.044046540936418) + tk−2 · (−0.61801259397661) + tk−3 · 0.019247008483582

46

Under review as submission to TMLR

y = y + 0.38594893233202 · cos(s) + 0.13289299422207 · sin(s)
s = vk · (−0.21210027099482) + vk−1 · 0.23213437753485 + vk−2 · 0.32295060672409 + vk−3 · 0.37943237695541

+ nk · (−0.098498100939365) + nk−1 · (−0.06472187290408) + nk−3 · (−3.7431422682593)
+ tk · (−1.4681947230847) + tk−2 · 1.5739407894498 + tk−3 · −1.3693647285006

y = y − 0.0057533003864996 · cos(s) − 0.053911558965515 · sin(s)
s = vk · (−0.3294642883148) + vk−1 · (−0.08221291323503) + vk−2 · 0.21569623682358 + vk−3 · (−0.74270301815544)

+ nk · 0.19744550085899 + nk−1 · (−0.26914920486125) + nk−3 · 1.3797277456814
+ tk · (−0.35061993574076) + tk−2 · 0.65226836204528 + tk−3 · 0.9871671568106

y = y + 0.063113280244711 · cos(s) + 0.094482739846245 · sin(s)
s = vk · (−0.0024102825865738) + vk−1 · (−0.31836713541293) + vk−2 · (−0.034270346647274) + vk−3 · 0.52430545902216

+ nk · (−1.6725636427132) + nk−1 · 0.05855420600357 + nk−3 · (−0.33719717795816)
+ tk · 0.53398251160395 + tk−2 · 0.96179910045751 + tk−3 · 0.762603622521

y = y + 0.15792444770157 · cos(s) − 0.022371143214056 · sin(s)
s = vk · 0.75413364712181 + vk−1 · (−0.45647784695528) + vk−2 · 1.0265422834213 + vk−3 · (−0.68153086045924)

+ nk · (−1.2594124711685) + nk−1 · (−0.13599007237109) + nk−3 · (−1.7556455791042)
+ tk · (−0.19956850595755) + tk−2 · (−0.95035708496566) + tk−3 · −0.73805599735145

y = y − 0.081925089440202 · cos(s) + 0.017141090759093 · sin(s)
s = vk · (−0.45156317334975) + vk−1 · (−0.32357922653324) + vk−2 · 0.7760892474274 + vk−3 · 0.43832634996747

+ nk · 3.9279769394259 + nk−1 · (−0.11136671902838) + nk−3 · (−0.7575971715878)
+ tk · 0.37561305045973 + tk−2 · 0.17832902806532 + tk−3 · 0.24555793334044

y = y + 0.13738424777592 · cos(s) + 0.053265857701089 · sin(s)
s = vk · (−0.6906030480701) + vk−1 · 0.41163068958208 + vk−2 · (−0.4027333293875) + vk−3 · 0.31605385389028

+ nk · 0.076494241743703 + nk−1 · (−0.19652125245129) + nk−3 · 6.2120166079051
+ tk · (−0.14757603720768) + tk−2 · (−1.756674274605) + tk−3 · −1.9280803867154

y = y − 0.03549032657104 · cos(s) + 0.017672908686963 · sin(s)
s = vk · (−0.48235174914102) + vk−1 · (−0.14505745567104) + vk−2 · (−0.89285023189899) + vk−3 · (−0.65796650618568)

+ nk · (−1.7818085457027) + nk−1 · (−0.077077512049044) + nk−3 · (−3.1546989700182)
+ tk · 0.28593200288056 + tk−2 · (−1.7965952265115) + tk−3 · 0.68987570372033

y = y − 0.033383596761382 · cos(s) + 0.01708951694821 · sin(s)
s = vk · (−0.43372466387743) + vk−1 · 0.0070073398159157 + vk−2 · 0.28432167179528 + vk−3 · 0.34117314551252

+ nk · (−0.91625966586057) + nk−1 · 0.19353827335367 + nk−3 · (−0.24508433580305)
+ tk · (−0.70501247944371) + tk−2 · (−1.1859299029664) + tk−3 · 0.86604144279862

y = y − 0.11207783813209 · cos(s) − 0.066353923098077 · sin(s)
s = vk · 1.0530682027985 + vk−1 · 0.28636638293607 + vk−2 · 0.57150450833751 + vk−3 · (−0.11144645862663)

+ nk · (−3.0725638863648) + nk−1 · (−0.17342818569404) + nk−3 · 1.0228359792419
+ tk · (−0.92256310608875) + tk−2 · 2.2013540385711 + tk−3 · 1.2926329931788

y = y − 0.030808166862244 · cos(s) + 0.038739528019412 · sin(s)
s = vk · 0.21742569239359 + vk−1 · (−0.30008192867895) + vk−2 · 0.0090961284191189 + vk−3 · 0.59998484535416

+ nk · (−6.836350335213) + nk−1 · (−0.24115220856752) + nk−3 · (−4.492997778579)
+ tk · (−0.095675525034475) + tk−2 · 0.76763340402437 + tk−3 · −0.39440568040737

y = y − 0.0060646128345046 · cos(s) + 0.0020001498578622 · sin(s)
s = vk · 0.33592101311812 + vk−1 · 0.29300517495018 + vk−2 · (−0.081008193206153) + vk−3 · 0.65788763344974

+ nk · 0.49443884363231 + nk−1 · (−0.14546781842356) + nk−3 · 2.6823414085615
+ tk · 0.1016495953276 + tk−2 · 0.71731959720856 + tk−3 · 0.49214444361749

y = y + 0.049365601607823 · cos(s) − 0.11114151241192 · sin(s)
s = vk · (−0.12313743363216) + vk−1 · 0.054325631391886 + vk−2 · 0.44523931940928 + vk−3 · (−0.29965463301554)

+ nk · (−6.5319333906529) + nk−1 · 0.10456259009935 + nk−3 · 6.4734343584366
+ tk · (−0.26451209770456) + tk−2 · (−0.032280273582581) + tk−3 · 0.10726501135496

y = y − 0.18747373692342 · cos(s) + 0.13584975865301 · sin(s)
s = vk · 0.4006160658585 + vk−1 · (−0.21283083202285) + vk−2 · (−0.068312192457003) + vk−3 · 0.20618038289807

+ nk · (−2.4511429858129) + nk−1 · (−0.052334463687479) + nk−3 · 2.1087287187327

47

Under review as submission to TMLR

+ tk · (−0.29875820186742) + tk−2 · (−0.80743257379728) + tk−3 · −0.66277883318956
y = y + 0.10927821611682 · cos(s) − 0.16980173269916 · sin(s)
s = vk · 0.27701655987021 + vk−1 · (−0.18859547586744) + vk−2 · 0.58822055078665 + vk−3 · (−0.169705037502)

+ nk · (−5.2430251385084) + nk−1 · (−0.014934294393431) + nk−3 · 4.9214388242382
+ tk · (−1.0679270513252) + tk−2 · (−0.82405027514928) + tk−3 · 0.48310683714814

y = y + 0.036114118023937 · cos(s) + 0.02177097381349 · sin(s)
s = vk · 0.76812303505839 + vk−1 · (−0.21549786958375) + vk−2 · (−0.56064503290645) + vk−3 · 0.41941568588048

+ nk · (−4.3821816595169) + nk−1 · (−0.28204286471956) + nk−3 · 0.95775292601595
+ tk · 0.27313504970283 + tk−2 · (−0.60848484526538) + tk−3 · −1.019094971232

y = y + 0.022156600266183 · cos(s) − 0.071298248083971 · sin(s)
s = vk · 0.98327764735988 + vk−1 · 0.076033702180366 + vk−2 · (−0.15793453359845) + vk−3 · 0.71950716503931

+ nk · (−0.47354412535569) + nk−1 · 0.24127484360951 + nk−3 · 0.7659084120113
+ tk · 0.83200048015893 + tk−2 · (−0.26268813906648) + tk−3 · −1.2054529288702

y = y − 0.064087023224232 · cos(s) + 0.079679907842945 · sin(s)
s = vk · 0.8916980909554 + vk−1 · 0.076720953877967 + vk−2 · (−0.45019093325921) + vk−3 · 0.36548965680332

+ nk · 0.21068731421127 + nk−1 · 0.44490303586371 + nk−3 · 0.56120813986296
+ tk · (−0.011496002719082) + tk−2 · (−1.0078130376216) + tk−3 · 0.44490598310089

y = y − 0.15284350315258 · cos(s) − 0.070732848135661 · sin(s)
s = vk · (−0.29091377550497) + vk−1 · (−0.32912199707093) + vk−2 · (−0.4298165020062) + vk−3 · 0.59574409894471

+ nk · (−2.8754419446166) + nk−1 · (−0.086683256116449) + nk−3 · 1.6454379877669
+ tk · 0.25938854556758 + tk−2 · (−0.97475354208878) + tk−3 · 0.10806979810943

y = y − 0.24232239333697 · cos(s) − 0.081581950149644 · sin(s)
s = vk · 0.17893792251594 + vk−1 · 0.16954010216603 + vk−2 · 0.51201140789787 + vk−3 · (−1.0523064897854)

+ nk · (−1.167040024119) + nk−1 · (−0.10698900931449) + nk−3 · 1.626316962915
+ tk · (−0.0072453457587813) + tk−2 · (−0.0092316317016417) + tk−3 · −0.011162384381199

y = y − 0.29386565010948 · cos(s) + 0.65135209764835 · sin(s)
s = vk · 0.0063606034904218 + vk−1 · 0.071501324376628 + vk−2 · (−0.48863571434896) + vk−3 · 0.14135732422574

+ nk · (−3.4840052050416) + nk−1 · 0.24675318111587 + nk−3 · (−1.6449484288109)
+ tk · (−0.56672822756487) + tk−2 · (−1.1501495313197) + tk−3 · −0.86455150613677

y = y + 0.055390731056039 · cos(s) + 0.04739767721103 · sin(s)
s = vk · 1.0269981893507 + vk−1 · (−0.082951886079255) + vk−2 · 0.22708479699296 + vk−3 · (−0.42111959856584)

+ nk · 0.27806038339095 + nk−1 · (−0.11855285965653) + nk−3 · (−0.80495473348493)
+ tk · 1.1492815648505 + tk−2 · 0.15774188423831 + tk−3 · −0.28823932935373

y = y − 0.42557167422989 · cos(s) + 0.13885157000596 · sin(s)
s = vk · 0.39965111097893 + vk−1 · 0.13710749855091 + vk−2 · 0.26849312382293 + vk−3 · 0.81666717467468

+ nk · 2.4997475602785 + nk−1 · 0.25828347457931 + nk−3 · 5.392425989108
+ tk · 0.3779202358358 + tk−2 · (−1.3746223919269) + tk−3 · 1.2911730603403

y = y + 0.025005799753262 · cos(s) + 0.02534531537369 · sin(s)
s = vk · 0.75270340663039 + vk−1 · 0.2712441950529 + vk−2 · (−0.051316020031209) + vk−3 · 0.81218286537538

+ nk · 0.33584399773702 + nk−1 · (−0.073024756911837) + nk−3 · (−0.078118634689732)
+ tk · (−1.044296955018) + tk−2 · (−0.78289236871129) + tk−3 · 1.2210752978127

y = y + 0.0032374278105146 · cos(s) + 0.068392460514006 · sin(s)
Unscaling and return
return y · 5.1489801806121 + 14.886169231027

48

	Introduction
	Background
	Gaussian processes (GPs)
	Safe active learning
	Integrated mean squared prediction error (IMSPE)

	Related work
	Acquisition functions for active learning
	Active learning in dynamic systems
	Safe learning

	T-IMSPE - Time-aware Integrated mean squared prediction error
	T-IMSPE for GPs with time amongst its inputs
	T-IMSPE for GPs with NX-structure
	P-elementary functions for closed form (T-)IMSPE
	Computability in closed form

	Experiments
	Experiment: seasonal change
	Experiment: drift
	Dynamic real world system: rail pressure

	Conclusion
	On P-elementary covariance marginalizable covariance functions
	Motivating example
	Examples of P-elementary covariance marginalizable covariance functions
	A cookbook of constructing P-elementary covariance marginalizable covariance functions

	Proofs of closed form computability of IMSPE and T-IMSPE
	Detailed explicit formulas of T-IMSPE and IMSPE for squared exponential covariance functions
	Integral (I.1)
	Integral (I.2)
	Integral (I.3)
	Integral (I.4)
	Integral (I.5)
	Integral (I.6)
	All terms together

	On Baselines
	Classical baselines
	Comment on the state of the art, IMSPE, and entropy
	Comparison of IMSPE to marginalizing beta-diversity and marginalizing mutual information

	Further results of the experiments
	Further results for the seasonal change experiment
	Further results for the drift experiment
	Further results for the rail pressure experiment

	Technical Details on experiments
	Formulas for the experiments

