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Abstract

We propose REC-R 1, a general reinforcement learning framework that bridges large language
models (LLMs) with recommendation systems through closed-loop optimization. Unlike
prompting and supervised fine-tuning (SFT), REC-R1 directly optimizes LLM generation
using feedback from a fixed, black-box recommendation model—without relying on syn-
thetic SFT data from proprietary models like GPT-40. This avoids the substantial cost
and effort required for data distillation. To verify the effectiveness of REC-R1, we evaluate
REC-R1 on three representative tasks: product search, sequential recommendation, and
product re-ranking. Experimental results demonstrate that REC-R1 not only consistently
outperforms prompting- and SFT-based methods, but also achieves remarkable gains over
strong discriminative baselines, even when used with simple retrievers like BM25. More
impressively, REC-R1 preserves the general-purpose capabilities of the LLM, in contrast to
SFT, which often impairs instruction-following and reasoning. These findings suggest REC-
R1 as a promising foundation for continual task-specific adaptation without catastrophic
forgetting.

1 Introduction

Recommendation systems (RecSys) have become essential components in various real-world applications,
from e-commerce (Schafer et al., [1999; [Valencia-Arias et al.,2024) and video platforms (Lubos et al., [2023;
Covington et al.l 2016]) to news delivery (Raza & Ding} 2022; Wu et all 2023) and social media (Campana
& Delmastrol [2017). Despite the remarkable progress of RecSys over the decades, modern systems still face
fundamental limitations. Most notably, they lack open-domain world knowledge and struggle to understand
users’ underlying motivations and preferences (Lin et al [2025). These shortcomings often lead to subop-
timal recommendation performance, especially in complex scenarios such as when user intent is implicit or
expressed in natural language (Hou et al., 2024a; [He et al.l |2023]).

Recent advances in generative large language models (LLMs) have opened new possibilities for enhancing
recommendation systems (Xi et al.; 2024; |Bao et al., [2023]). Trained on massive web-scale corpora, LLMs
possess extensive open-world knowledge, alongside strong capabilities in natural language understanding and
reasoning (Achiam et al., |2023; |Grattafiori et all 2024} [Yang et all 2024} [Lin et al.| 2024]). These strengths
make LLMs particularly suitable for user-centric recommendation scenarios, where the key challenge is to
understand language-driven inputs, capture implicit user intent, and align recommendations with user needs.
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Figure 1: Illustration of how generative LLMs are applied in recommender systems (LLM4Rec), following the
taxonomy in |[Lin et al.| (2025). The upper row shows the use of LLMs for feature engineering, including (1)
Query Rewriting, where the LLM reformulates the input query to improve retrieval, and (2) User/Item-level
Feature Augmentation, where the LLM encodes user or item information into richer textual representations as
input to a downstream model. The lower row demonstrates the use of LLMs as Scoring/Ranking Functions,
including (3) Closed-Set Item Generation, where the LLM ranks a given candidate list, and (4) Open-Set
Item Generation, where the LLM directly generate candidate items and matches them to a product pool.
Note that this figure primarily reflects the inference-time setting—thus all LLMs are frozen. Our proposed
Rec-R1 is compatible with all paradigms shown here (see Appendix [Al).

As a result, recent studies have explored using LLMs in various stages of the recommendation pipeline,
including query rewriting (Peng et al.| [2024; |Li et all 2023b]), user intent summarization (Torbati et al.,
2023)), and so on, to improving the performance of downstream recommendation tasks such as retrieval and
ranking. These methods typically employ either zero- or few-shot prompting (Xi et al., 2024} Lyu et al., [2023;
Ren et al., 2024} [Li et al., [2023b) or supervised fine-tuning (SFT) (Luo et all 2024b; [Li et al., [2023a}; [Yang
et al.l 2023} [Liao et all 2024; |Ji et al., |2024)) to adapt LLMs to recommendation tasks. Figure [1| illustrates
the major paradigms where LLMs are applied in RecSys.

However, most existing approaches still treat LLMs and recommendation models as disjoint components,
with no closed feedback loop between LLM generation and recommendation performance (Peng
et al., [2024; [Zheng et al.l |2023; |Luo et al.l [2024b; [Li et al., 2023a; [Yang et al 2023} Liao et al., 2024). As a
result, LLMs are typically optimized using proxy objectives rather than being directly trained using feedback
from RecSys, which is often inconsistent with the ultimate goal of improving recommendation quality. More-
over, constructing high-quality supervision data for intermediate tasks—such as query rewriting—typically
requires either human annotation, LLM APIs (e.g., GPT-4), or mining from historical interaction logs (Peng
et al., 2024} [Hou et al., |2024a)). Nonetheless, these sources rarely produce data that is truly aligned with
optimal recommendation performance. Worse still, generating such data at scale is both time-consuming and
financially expensive, especially when relying on human annotation or commercial LLMs. Figure [2] presents
our proof-of-concept comparison that highlights the limitations of SF'T in terms of both effectiveness and
overhead.

To address these challenges, we propose REC-R1, a general framework that leverages reinforcement learning
(RL) to bridge generative LLMs and downstream black-box RecSys through closed-loop optimization. In
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Figure 2: Proof-of-concept comparison under a small-scale setup, illustrating the limitations of
SFT based on GPT-4o-generated data. (a) Performance on the ESCI dataset. The SFT baseline fine-
tunes using data generated by GPT-40, and its performance is inherently upper-bounded by the performance
of GPT-4o itself. (b) Comparison of training time and cost. The total time for SFT includes both the data
generation phase using GPT-40 and subsequent model fine-tuning. REC-R1 requires no additional data
generation, and we report the minimal training time and cost required to match the performance of the SFT
and GPT-40 model. See Appendix [D] for cost estimation details.

contrast to existing approaches that rely on static data and proxy supervision, REC-R1 enables LLMs
to learn directly from recommendation feedback—such as retrieval or ranking metrics—thus aligning the
generation process with the ultimate goal of improving recommendation quality. Specifically, given any
recommendation-relevant input, such as a user query or behavioral history, an LLM generates a textual
output that is consumed by a downstream recommendation model. This textual output varies in form
depending on the task, such as a rewritten query, a synthesized user profile, or an enriched textual description
of an item. The recommendation system then evaluates the quality of the LLM-generated text using rule-
based performance metrics (e.g., NDCG, Recall), which are transformed into reward signals for optimizing
the LLM via RL. Through repeated interaction with the recommendation system, the LLM gradually learns
to generate inputs that are better aligned with the system’s objectives, thereby improving recommendation
performance without relying on suboptimal intermediate supervision.

REC-R1 is model-agnostic and task-flexible: it can be integrated with a wide range of recommenda-
tion architectures—including sparse retrievers (e.g., BM25), dense discriminative models, and hybrid
pipelines—without requiring any modifications to their internal structures. It also supports diverse gen-
eration tasks as long as the generated text can be consumed by the downstream recommendation system.
Moreover, since REC-R1 relies solely on black-box feedback in the form of recommendation performance
metrics, it does not require access to model gradients or internal parameters, making it easy to deploy on
top of existing production systems. It also eliminates the need for constructing SFT data, allowing the
generative model to be optimized directly through interactions.

We evaluate REC-R1 in three representative recommendation scenarios—product search, sequential recom-
mendation, and product re-ranking—to demonstrate its effectiveness, though the framework itself is broadly
applicable to a wider range of recommendation tasks (see Appendix . In product search, we observe
that applying the REC-R1 framework significantly improves overall recommendation performance, achieving
state-of-the-art results on the evaluated benchmarks. In the sequential recommendation setting, REC-R1
leads to consistent gains. More importantly, it shows strong performance in cold-start scenarios, where user
profile information is absent, outperforming widely used sequential baselines. In product re-ranking, REC-
R1 also shows clear superiority over both strong cross-encoder and LLM-based reranker baselines. Beyond
performance gains, we further investigate whether REC-R1 preserves the general capabilities of the under-
lying language model. On the IFEval benchmark (Zhou et al., 2023), which measures instruction following
capabilities, REC-R1 maintains or even improves performance, while SFT causes a drop of over 27 points.
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Figure 3: Comparison of three paradigms for using LLMs in recommendation systems. (a)
Prompting uses a frozen LLM to generate textual inputs for the recommendation system, without any
model updates. (b) SFT trains the LLM to imitate outputs generated by a stronger model (e.g., GPT-40),
but the training process does not involve any RecSys feedback. (¢) REC-R1 introduces a closed-loop RL
framework, where the LLM is optimized directly using reward signals from the recommendation system,
without requiring external annotation or data distillation. Unlike SF'T, which relies on labeled intermediate
outputs (e.g., rewritten queries) from closed-source models, REC-R1 operates directly on the same data and
learns from the recommendation performance.

This suggests that REC-R1 enables task-specific adaptation without compromising the general-purpose ca-
pabilities of the initialized LLM. We summarize our main contributions as follows:

e We propose REC-R1, a general reinforcement learning framework that bridges generative LLMs and
recommendation systems through reward-driven optimization. Our approach is model-agnostic with
respect to the recommendation system and supports diverse tasks.

e We conduct extensive experiments on three representative recommendation tasks, i.e., product
search, sequential recommendation and product re-ranking, demonstrating that REC-R1 signifi-
cantly improves performance across different recommendation architectures. Notably, in product
search, REC-R1 improves the NDCG@100 score by up to 21.45 points for BM25-based retrievers,
and by up to 18.76 points for dense discriminative models, compared to their respective baselines.

e REC-R1 preserves the general-purpose capabilities of the initialized LLM while achieving strong task-
specific performance, outperforming supervised fine-tuning in both recommendation effectiveness and
instruction-following generalization.

2 Rec-R1

2.1 Problem Formulation

We begin by modeling how LLMs are integrated into RecSys. In this general setup, the LLM receives
an input s € S, which may represent a user query, behavioral history, or contextual information. The
LLM then generates a textual output a € A, such as a rewritten query, an enriched item description, or a
synthesized user profile. This output is consumed by a downstream recommendation model, which produces
a performance-based evaluation f(als) € R, such as NDCG, Recall, or any task-specific metric.

The behavior of the LLM is governed by a conditional generation policy mg(a|s) where 6 denotes the pa-
rameters of the generative LLM. The objective is to find a policy that maximizes expected recommendation
performance:

Hlé%X Es~p(s),a~ﬂ'g(a|s) [f(a|s)] (1)

Here, p(s) denotes the empirical distribution over recommendation-relevant inputs provided to the LLM.
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2.2 Theoretical Analysis of Existing Paradigms’ Limitations

While the goal in recommendation-oriented LLM usage is to maximize downstream performance E[f(a|s)],
existing paradigms fail to optimize this objective directly.

Prompting-based methods, including zero-shot and few-shot prompting, treat the LLM as a frozen generator.
These approaches rely on manually constructed prompts or few examples to elicit desirable outputs. However,
since the model parameters 6 are not updated, the policy mg(a|s) remains fixed and cannot adapt to task-
specific feedback, resulting in suboptimal recommendation performance.

Supervised fine-tuning forces the LLM to imitate outputs generated by a stronger model, such as GPT-4o.
Formally, this corresponds to maximizing the log-likelihood of actions sampled from the data-generating
policy g under the learned policy my:

Hl;lX Es~p(s),a~7rg(a|s) [log Yyl (a|s)} (2)

This maximum likelihood estimation (MLE) objective encourages the learned policy mg to imitate w4, but
does not consider the downstream performance f(a|s) during optimization. We now show that this training
procedure imposes a fundamental performance ceiling, which we formalize in the following fact.

Fact 1 (SFT Converges Toward the Data-Generating Policy). Let mq(als) be a fized data-generating policy,
and consider the supervised fine-tuning (SFT) objective:

mo- = arg max Eyp(s).am, (als) 108 To(al5)]- (3)
Assume:

(i) (Sufficient Expressivity) The policy class {mg(:|s)} is expressive enough to closely approrimate
the data-generating policy my(-|s), i.e., infg By op o) [DxL(my(:|5)||mo(-|5))] = 0.

(ii) (Optimization Convergence) The optimization process converges to a global mazimum of the
MLE objective.

(ii) (Data Sufficiency) Data-generating policy generates a sufficiently large amount of training sam-
ples, so the empirical distribution P(s,a) accurately approzimates the true distribution p(s)mg(als),
i.e.,
p(s,a) =5 p(s)my(als) as N — oo,

where N is the number of training samples generated.

Then the optimal policy me~ is the one that minimizes the KL divergence to the data-generating policy my:

Tox = arg mgin]ESNP(s) [Dxr (g (-|s) o (-[s))] - (4)

The proof can be found in Appendix Fact [T reveals a fundamental limitation of supervised fine-tuning:
the learned policy my« is inherently constrained to imitate the data-generating policy 7,. Consequently, the
recommendation performance of an SFT-trained model can at best approach—but never exceed—the per-
formance of the policy used to generate the training data (e.g., GPT-40). This fact is empirically supported
by our experiments on the ESCI dataset, as illustrated in Figure (a), where the performance of the SFT-
trained model closely matches but does not surpass GPT-40. However, as GPT-4o itself is not explicitly
optimized for the downstream recommendation task, its performance is typically suboptimal.

2.3 The Rec-R1 Framework

To overcome the limitations of prompting and SFT, we introduce REC-R1, a general framework that bridges
generative LLMs and recommendation systems through reinforcement learning. Rather than imitating a
static data-generating policy, REC-R1 directly optimizes the LLM policy my based on feedback from the
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downstream recommender—thereby aligning the generation process with the true objective: maximizing
recommendation performance. See Figure [3|for a comparison of these paradigms.

At its core, REC-R1 casts the LLM-RecSys interaction as a closed-loop optimization process, where the LLM
produces text (e.g., rewritten queries, user profiles, or item descriptions), and the recommendation model
evaluates the result using task-specific metrics. These evaluation scores are then transformed into scalar
reward signals for policy optimization via reinforcement learning.

A key strength of REC-R1 lies in its ability to optimize the LLM using direct feedback from the recommen-
dation system. This feedback is formalized as a scalar reward r = f(a|s) € R, which quantifies how well the
LLM-generated output a performs in the downstream task given input s. The reward can be instantiated
using any differentiable or non-differentiable metric that reflects recommendation quality, such as NDCGQK
and Recall@K. Formally, the optimization objective is to find a generation policy mp(als) that maximizes
the expected reward:

mgx Es~p(5), a~g(als) [f(als)]. (5)

Unlike SF'T, this objective does not rely on manually labeled supervision or imitation of a fixed policy.
Instead, it allows the model to continuously adapt its behavior to maximize performance on the downstream
recommendation tasks. From the perspective of the optimization objective, Eq. 2| minimizes a proxy loss
that indirectly relates to recommendation quality, whereas Eq. 5| directly optimizes the true recommendation
objective, ensuring alignment with the downstream evaluation metrics. Following DeepSeek-R1 (Guo et al.|
2025)), we adopt Group Relative Policy Optimization (GRPO) (Shao et al.| [2024) to optimize the LLM
policy. Compared to traditional algorithms such as PPO (Schulman et al., 2017), GRPO significantly
reduces memory consumption during training while maintaining competitive performance. Further, we use
rule-based reward functions derived from standard evaluation metrics (e.g., NDCG, Recall) rather than
training a separate reward model, which helps mitigate reward hacking and avoids introducing additional
biases.

3 Experiments

To validate the effectiveness of REC-R1, we conduct experiments on three representative recommendation
scenarios: product search (, sequential recommendation (, and product re-ranking ( We also
perform detailed analyses to examine the generalization ability after training ( More discussions and
analysis can be found in Appendix [F]and case study in Appendix [G]

3.1 Product Search

3.1.1 Experimental Setup

Task Definition. In the product search task, the user provides a natural language query s € S, which
expresses an information need (e.g., “a waterproof camera for hiking”). The goal of the recommendation
system is to retrieve a ranked list of items that best match this query. To improve retrieval quality, the LLM
generates a textual transformation a € A—such as a rewritten or clarified version of the query—which is
then fed into a downstream retriever.

The retriever returns a ranked list of candidate items based on the textual input a, and the system evaluates
performance using a relevance dictionary D that maps each original input s to its corresponding ground-
truth item list. The reward score f(a|s) € R is computed by comparing the retrieved list (from a) against
the target set D(s) associated with the original query s. We use NDCG@100 as the evaluation metric,
which captures both relevance and ranking position. This reward function serves as the feedback signal in
REC-R1 to optimize the LLM’s generation policy mg(a|s). While D is derived from the original datasets in
our experiments, in real-world deployments it can be constructed from various sources such as most recent
user interaction logs or click-through data, making REC-R1 promising to production-scale recommendation
systems.
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Table 1: Performance comparison of different methods on conventional product search (ESCI)
tasks. We report the NDCG@100 scores. The best performance score is denoted in bold, with the second
and third best underlined. The numbers in gray indicate the absolute improvement of REC-R1 over their
corresponding base retrievers (BM25 or BLAIR).

Model Video Games Baby Products Office Products Sports and Outdoors
Sparse retrieval baselines
BM25 12.44 15.12 23.96 19.48
GPT-404BMm2s5 26.06 23.05 27.98 27.38
Qwen-2.5-3B-Instruct ; 25 19.63 16.03 19.96 21.36
Dense retrieval baselines
RoBERTagpask 0.16 0.00 0.00 0.17
SimCSEpase 2.21 5.68 8.58 8.03
BLAIRgASE 9.75 15.20 17.19 17.08
RoBERTa;ArGE 0.00 0.00 0.00 0.00
SiHlCSELARGE 6.59 9.71 13.63 11.90
BLAIRARGE 15.88 15.96 21.17 18.30
GPT-404BLAIR-BASE 20.13 24.57 21.83 22.97
GPT-404BLAIR-LARGE 23.99 24.10 22.99 24.67
Qwen—Z.5—3B—Instruct+BLA1R,BASE 10.56 16.23 13.61 17.09
Qwen-2.5-3B-Instruct  BLAIR-LARGE 17.34 16.10 17.29 17.74
Ours
REC-R1-3Bipm2s 33.89 29.27 34.61 31.92
(+21.45) (+14.15) (4+10.65) (+12.44)
RrEC‘R1‘3B+BLAIR-BASE 28.51 29.24 33.98 30.71
(+18.76) (4+14.04) (4+16.79) (+13.63)
REC'R1'3B+BLAIR—LARGE 31.41 28.76 34.12 32.49
+15.53) (+12.80) (+12.95) (+14.19)

Datasets. We consider two distinct settings for product search: (1) conventional product search, where
the input query is a short phrase or keyword-based expression (e.g., “noise-canceling headphones”), and (2)
complex product search, where the input is a rich and long natural language context, often involving
implicit preferences or use-case scenarios. To evaluate these two settings, we adopt two datasets: the ESCI
dataset for conventional product search (Reddy et al. 2022) and the Amazon-C4 dataset for complex
product search (Hou et al., [2024a). More details can be found in Appendix For all experiments in
this paper, we report test performance based on the checkpoint that achieves the best validation score.

Baselines. We compare REC-R1 against a range of baselines. For sparse retrieval, we use the BM25, as
well as prompting-enhanced variants where a frozen LLM (GPT-40 or Qwen-2.5-3B-Instruct (Yang et al.)
2024))) rewrites the input query before retrieval. For dense retrieval, we include discriminative models such
as RoBERTa (Liu et al., |2019), SimCSE (Gao et al., |2021)), and BLAIR (Hou et al.||2024a)), with and without
prompting-based query rewriting. In contrast, REC-R1 starts from the Qwen-2.5-3B-Instruct model and is
trained via RL to generate rewritten queries that directly optimize retrieval performance.

3.1.2 Results

Results on ESCI. Table [I| reports NDCG@100 scores on the conventional product search benchmark
ESCI. We observe that REC-R1 consistently improves retrieval performance across all four domains and
retriever architectures. Notably, even when applied to the sparse BM25 retriever, REC-R1 yields substantial
gains—up to +21.45 NDCG points in the Video Games domain—demonstrating its ability to enhance classic
lexical systems. For dense retrievers such as BLAIR, REC-R1 brings improvements of up to +18.76 over the
base models, and consistently outperforms prompting-based rewriting with GPT-40. Remarkably, REC-R1
achieves the best performance across all four product categories, underscoring its effectiveness and overall
superiority.

Results on Amazon-C4. We further evaluate REC-R1 on the Amazon-C4 dataset, which contains complex
product search queries expressed in natural language. This setting also enables us to assess the model’s cross-
domain generalization ability: we train on queries from all categories except the four test domains (Video
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Table 2: Performance comparison of different methods on complex product search (Amazon-
C4) tasks. We report the NDCG@Q100 scores. The best performance score is denoted in bold, with the
second and third best underlined. The numbers in gray indicate the improvement of REC-R1 over their
corresponding base retrievers (BM25 or BLAIR).

Model Video Games Baby Products Office Products Sports and Outdoors
Sparse retrieval baselines
BM25 7.82 6.39 8.70 7.28
GPT-404BMm2s5 13.02 12.45 12.64 11.59
Qwen-2.5-3B-Instruct ; 25 10.33 8.62 9.61 9.05
Dense retrieval baselines
RoBERTagpask 0.22 0.12 0.33 0.13
SimCSEpase 6.05 6.22 3.71 4.33
BLAIRgASE 19.14 19.53 17.43 20.02
RoBERTa;ArGE 0.00 0.06 0.00 0.00
SiHlCSELARGE 5.03 7.43 5.41 8.12
BLAIRARGE 24.86 22.44 18.92 24.54
GPT-404BLAIR-BASE 21.12 19.54 17.22 22.68
GPT-404BLAIR-LARGE 23.40 21.00 18.69 25.74
QWBH—Q.5—3B—InStI"UCt+BLAIR,BASE 15.82 18.07 14.34 16.96
Qwen-2.5-3B-Instruct  BLAIR-LARGE 18.20 19.19 15.37 18.94
Ours
REC-R1-3Bipm2s 18.91 20.55 19.24 20.06
(+11.09) (+14.16) (+10.54) (+12.78)
RrEC‘R1‘3B+BLAIR-BASE 21.69 25.62 22.17 24.22
(4+2.82) (46.09) (+4.74) (+4.20)
REC'R1'3B+BLAIR—LARGE 26.51 27.04 23.10 27.40
(+1.65) (+4.60) (+4.18) (42.86)

Games, Baby Products, Office Products, and Sports and Outdoors), and evaluate performance on these
held-out domains.

As shown in Table[2] REC-R1 achieves the best performance across all four domains and retriever architec-
tures, demonstrating strong generalization beyond the training distribution. This cross-domain evaluation
highlights REC-R1’s ability to generalize from training on one set of product categories to effectively han-
dling unseen categories during testing. Moreover, prompting-based query rewriting using frozen LLMs (e.g.,
GPT-40 or Qwen-Instruct) either yields negligible improvement or even degrades performance—particularly
on dense retrievers. In contrast, both BM25 and dense models see notable gains when combined with
REC-R1, indicating the value of interaction-based learning. By receiving direct feedback from the recom-
mendation system during training, the LLM gradually learns how to rewrite queries in a way that maximizes
downstream task performance.

Note that we do not report SFT results in our tables, as prior analysis (Theorem shows that, under
sufficient data and optimization, the learned policy from SFT converges toward the data-generating model
(e.g., GPT-40). Therefore, we use GPT-4o performance as a practical reference point. Across both ESCI
and Amazon-C4, REC-R1 consistently outperforms GPT-4o-based prompting methods—demonstrating its
potential to go beyond the limitations of the SFT paradigm in both performance and adaptability.

3.2 Sequential Recommendation
3.2.1 Experimental Setup

Task Definition. In this task, the model receives a user’s historical interaction sequence s € S (e.g., a list of
previously viewed or purchased items) and is expected to recommend the most relevant next item. To support
this process, the LLM generates a text a € A—a query describing what the user probably will purchase next.
This could take the form of key attributes, product type, or usage scenario, serving as a query-like signal
to input the downstream retriever. To evaluate performance, we define a relevance dictionary D that maps
each historical sequence s to the ground-truth next item. The reward score f(als) € R is computed by
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Table 3: Performance comparison of different methods on the sequential recommendation task
on Amazon Beauty dataset. We report the Recall@k (R) and NDCG@k (N) scores. The best performance
score is denoted in bold. The numbers in gray indicate the absolute improvement of REC-R1 over the
initialized policy, i.e., Qwen-2.5-3B-Instruct.

Transductive Setting Inductive Setting
R@10 N@10 R@50 N@50 R@10 N@10 R@50 N@50

Text-aware SRec baselines

Model

SASReC | BLAIR-BASE 3.72 1.55 7.81 2.44 0.20 0.90 1.40 0.35
_SASRecBLAIRLARGE 390 212 874 317 040 015 150 040

UIliSReC+BLA[R,BASE 4.09 2.23 8.74 3.21 3.70 2.08 6.20 2.61

UniSRec{BLAIR-LARGE 4.09 2.17 8.55 3.17 3.60 2.08 6.00 2.60

Query rewriting baselines
GPT-401BMm25 0.00 0.00 1.48 0.33 1.00 0.50 2.90 0.90
Qwen-2.5-3B-Instruct ; gyas 1.30 0.75 2.41 0.98 1.80 0.84 3.60 1.25

Ours
REC-R1-3BiBMm2s 3.53 1.74 5.76 2.22 6.00 3.38 8.30 3.89

(+2.23)  (40.99)  (+3.35)  (+1.24)  (+4.20)  (+2.54) (4+4.70)  (+2.64)

comparing the retrieved items (from a) against the target set D(s) using standard retrieval metrics such as
Recall@K and NDCG@K. In our implementation, we use NDCG@QK as the training reward for REC-R1. In
real-world systems, the dictionary D can be constructed from user interaction logs, purchase sequences, or
other behavioral data sources.

Dataset. We conduct experiments on the Amazon Beauty dataset following the split protocol from [Hou
et al.| (2024al), where data are partitioned into training, validation, and test sets by absolute timestamp. To
evaluate different generalization capabilities, we define two test-time settings: (1) Transductive setting:
All candidate items in the test sequence (both history and target) have appeared in the training set; (2)
Inductive setting: None of the test-time items are seen during training.

Baselines. We compare REC-R1 with two families of baselines: (1) Text-aware Sequential Recommendation
(SRec) models, including SASRec (Kang & McAuley}, [2018]) and UniSRec (Hou et al.l |2022)), combined with
BLAIR as the item encoder (base and large variants). These methods use sequence modeling with features
from textual encoders. (2) Prompting-based query rewriting, where frozen LLMs (GPT-40 or Qwen-2.5-3B-
Instruct) generate rewritten inputs from user histories, which are then fed into a retriever (e.g., BM25).

3.2.2 Results

Table [B] summarizes the performance under both transductive and inductive settings. We observe that
the prompting-based baselines using frozen LLMs (e.g., GPT-40 and Qwen-2.5-3B-Instruct) perform poorly
across the board—highlighting the difficulty of this task for generic LLMs without adaptation. However,
when trained under the REC-R1 framework, the finetuned Qwen-2.5-3B-Instruct model exhibits significant
performance gains, especially in the inductive setting. For instance, in Recall@10 and NDCG@50, REc-R1
improves upon its initialized policy by +4.20 and +2.64 points respectively. Moreover, REC-R1 outperforms
strong sequential baselines like UniSRec in the inductive setting, demonstrating its superiority in cold-start
or unseen-item scenarios.

In the transductive setting, REC-R1 remains competitive but lags behind specialized SRec models. This is
not surprising, as traditional sequential recommendation methods are explicitly trained on large-scale user-
item sequences and directly model sequential dependencies. In contrast, REC-R1 leverages LLMs to generate
natural language queries about the user’s next likely purchase—relying on their strength in reasoning and
generalization. However, next-item prediction based solely on interaction history is often not a task that
lends itself to explicit reasoning in language space. The relationship between past and future items may be
weak or non-causal, making it inherently difficult for LLMs to perform this task effectively. More analysis
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Table 4: Performance comparison of different re-rankers on ESCI. We report the NDCG@10 scores
across four domains. The best performance is denoted in bold. The numbers in gray indicate the improve-
ment of REC-R1 over its corresponding initialized model, i.e., Qwen2.5-3B-Instruct.

Model Video Games Baby Products Office Products Sports and Outdoors
Cross-encoder re-rankers
Qwen3-Reranker-4B 44.29 46.41 48.06 47.42
Qwen3-Reranker-8B 44.28 44.95 47.73 44.51
LLM-based re-ranker baselines
Qwen2.5-3B-Instruct 5.38 9.21 4.26 4.37
GPT-40 61.57 56.18 53.62 53.62
Ours
REc-R1-3B 53.04 57.08 60.91 62.91

(+47.66) (447.87) (+56.65) (+58.54)

of why REC-R1 performs better in the inductive setting than in the transductive setting can be found in

Appendix [E:2:4]
3.3 Product Re-ranking

3.3.1 Experimental Setup

Task Definition. In the product re-ranking task, the input is a natural language query and an initial
candidate list of m items, denoted as s = (¢,C) € S where ¢ is the user query and C = [iy,...,iy] is
the candidate set. The goal is to reorder C' so that items more relevant to ¢ are ranked higher. Given
s, the LLM produces a € A, a re-ranked list of the m candidates (i.e., a permutation of C), denoted by
a = [ir(1),--»ix(m)] € A, where 7 is a permutation function over {1,...,m}. To evaluate performance, we
define a relevance dictionary D that maps each input s to corresponding ground-truth item list. The reward
score f(als) € R is computed by comparing the re-ranked list a against the target item list D(s). We use
NDCG®@10 as the ranking metric.

Dataset and Baselines. We conduct experiments on the ESCI dataset (Reddy et al.l [2022]). The candidate
items C are retrieved using the Rec-R1-Retriever given the user query, and subsequently used for the re-
ranking stage. To ensure fair comparison, all re-ranking models operate on the same candidate lists obtained
from the Rec-R1-Retriever. We compare REC-R1 with two families of baselines: (1) traditional cross-
encoder re-rankers (Zhang et all [2025), where we adopt the state-of-the-art open-source Qwen3-Reranker
family, including the 4B and 8B variants; and (2) LLM-based re-rankers, including GPT-40 and Qwen2.5-
3B-Instruct, which directly generate ranking orders conditioned on the query and candidate list. Further
implementation details and hyperparameters are provided in Appendix [E.3]

3.3.2 Results

Table [] shows the re-ranking performance of different models on the ESCI dataset. From the table, REc-R1
consistently achieves the best overall performance across all domains. Notably, compared with the initialized
Qwen2.5-3B-Instruct model, REC-R1 delivers very large improvements. Furthermore, against SoTA open-
source embedding/reranker models (Qwen3-Reranker family), REC-R1 demonstrates substantial superiority.
These results confirm that REC-R1 ’s optimization framework can also be applied to the closed-set item
generation paradigm within LLM4Rec, further supporting our claim that Rec-R1 provides a general way to
bridge LLMs and RecSys.

3.4 Does Rec-R1 Forget? A Generalization Analysis

While REc-R1 is explicitly designed to enhance recommendation performance, an important question is
whether it can preserve the general-purpose capabilities of the underlying language model. To this end,
we compare three models: (1) Qwen-2.5-3B-Instruct; (2) Qwen-2.5-3B-Instruct (SFT), fine-tuned on
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Qwen-2.5-3B-Instruct N Qwen-2.5-3B-Instruct (SFT) Rec-R1-3B

ESCI MMLU IFEval GSM8K MBPP  HumanEval

Figure 4: Generalization analysis across six benchmarks. We compare the initialized model (Qwen-2.5-
3B-Instruct), its SFT variant trained on GPT-4o-generated SFT-data (ESCI), and our REC-R1-3B model
trained via RL. Note that Rec-R1 is only trained on the task-specific ESCI data, whose format
drastically differs from the other benchmark datasets.

ESCI query rewriting data generated by GPT-4o; and (3) Rec-R1-3B, trained using our RL framework on
the same ESCI task, but without access to GPT-40 outputs. We evaluate all models across six tasks spanning
different axes of generalization: ESCI (recommendation), MMLU (factual knowledge), IFEval (instruction
following), GSM8K (math reasoning), and two coding benchmarks: MBPP and HumanEval. Results are
shown in Figure [l On ESCI, SFT yields improvements over the base model, while REC-R1 achieves
substantially higher gains—without relying on GPT-4o-generated data. On MMLU, all models—including
REC-R1 —achieve comparable accuracy. This suggests that neither SFT nor REC-R1 compromises the
model’s general knowledge.

However, striking differences emerge on IFEval. Here, SFT suffers a dramatic performance drop—losing
over 27 points—while Rec-R1 not only avoids degradation but actually improves slightly over
the original model. This highlights a key advantage of our REC-R1: by optimizing directly for task-
specific performance without overriding the model’s generative distribution via next token prediction, REC-
R1 preserves instruction-following capabilities more effectively. We observe a similar trend on GSM8K, where
REC-R1 improves upon the initialized model while SFT lags far behind. In contrast, both SFT and REC-R1
maintain strong performance on coding tasks like MBPP and HumanEval. This is likely because our SFT
data involved JSON-style outputs to facilitate answer extraction, which do not interfere with the model’s
code generation ability. These results highlight the promise of Rec-R1 as a new paradigm for
LLM adaptation—one that enables strong task-specific improvements without compromising
general capabilities.

4 Conclusion

In this work, we present REC-R1, a reinforcement learning framework that bridge LLMs with recommenda-
tion systems through direct feedback. Rec-R1 achieves strong performance across tasks and retrievers while
preserving general-purpose capabilities, offering a scalable alternative to prompting and SFT.
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A Applying Rec-R1 to Diverse Recommendation Paradigms

Figure[I] provides a taxonomy of how generative LLMs are incorporated into recommender systems, adapted
from |[Lin et al.| (2025). The taxonomy is divided into two main categories: LLM for Feature Engineering
and LLM as Scoring/Ranking Functions, each with two sub-paradigms. In our experiments, we validate
the applicability of REC-R1 across all of the four major paradigms:

¢ Query Rewriting: In the product search task, we use BM25 as the retriever, and the LLM generates
rewritten user queries to improve retrieval. This corresponds to the top-left panel of Figure [I| and
demonstrates the of REC-R1 for textual query rewriting.

e User-Level Feature Augmentation: When combined with dense discriminative models such as
BLAIR, the LLM augments the input query with semantically richer expressions of user intent. This
mirrors the top-right panel of Figure[I] where LLMs act as textual feature generators for downstream
ranking models.

e Open-Set Item Generation: In the sequential recommendation task, the LLM is provided only
with user-side information (e.g., purchase history), and is required to generate a textual prediction
of the next item. This text is then matched against the item pool to select the final recommendation.
This aligns with the bottom-right panel of Figure

e Closed-Set Item Generation: In the product re-ranking task, the LLM is trained to rank or
score candidates conditioned on user query and initialized product candidates through reward signals
from ranking quality. This aligns with the bottom-left panel in Figure Notably, prior work in
this direction has largely relied on prompting (Zhang et al.l 2023a} Hou et al.| |2024b; |Di Palma
et al. 2023; |Di Palmay, [2023)) or SFT (Yang et al., 2023} |[Luo et al., 2024b)). However, as shown in
our generalization experiments, such approaches may lead to catastrophic forgetting. In contrast,
REC-R1 maintains strong domain-specific performance without sacrificing general capabilities (7
making it a more robust solution.

These results collectively highlight the versatility of REC-R1 —it is applicable across diverse paradigms in
recommender systems, and agnostic to the architecture of the retriever or scoring model.

A Path Toward Unified Training. Given its compatibility across paradigms and its ability to retain
general-purpose capabilities, we believe REC-R1 provides a strong foundation for continual, reinforcement-
based alignment of LLMs with evolving recommendation goals. Future work will explore extending REC-R1
into more tasks, ultimately enabling lifelong recommendation agents that adapt flexibly to new tasks and
domains without retraining from scratch.

B Related Work

B.1 Generative LLMs for Recommendation Tasks

Recently, large language models (LLMs) have significantly impacted recommendation systems by leveraging
their strong generalization, reasoning, and semantic understanding abilities. These approaches can be broadly
categorized into several main directions.

Feature Engineering and Augmentation. LLMs have been extensively used to enrich recommendation
data. They generate auxiliary features that enhance user profiling and item understanding, thus addressing
data sparsity and improving the recommendation quality (Xi et al.| [2024} [Liu et al., 2025; [Torbati et al.|
2023; |Shi et al.l 2023; |[Li et al.l [2024).

LLM as Scoring and Ranking Functions. Researchers have adapted LLMs as direct ranking or scor-
ing components within recommendation pipelines. Methods such as P5 (Geng et al.l [2022)), M6-Rec (Cui
et al [2022), and InstructRec (Zhang et al., 2023b) explore LLMs’ ability to simultaneously handle multi-
ple recommendation subtasks, including scoring, generation, and re-ranking. Models like RecRanker (Luo
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et al| [2024a)) further leverage LLMs’ natural language understanding to integrate multiple ranking strategies
effectively.

Conversational and Interactive Recommendations: LLMs facilitate more sophisticated interactions
between users and recommendation systems through conversational agents, significantly enhancing user
engagement and recommendation explainability (Luo et al., [2024a; [Zhou et al., |2020; |Gao et al., [2023b)).

For a comprehensive review of how recommender systems benefit from LLMs across different pipeline stages
and application scenarios, readers can refer to the recent survey by |Lin et al.| (2025]). Notably, our proposed
REC-R1 framework is broadly applicable across these paradigms—it is not tailored to any specific application
scenario or retriever architecture, but instead provides a general modeling and optimization approach for
aligning LLMs with recommendation tasks via closed-loop learning.

B.2 Reinforcement Learning for Recommendation Systems

Before the era of large language models (LLMs), reinforcement learning (RL) had been explored in rec-
ommendation systems for various objectives, such as optimizing long-term user satisfaction and improving
sequential decision-making. These works typically reformulate recommendations as a Markov Decision Pro-
cess (MDP), enabling agents to learn from user interaction sequences (Wang et al., |2020; Zhao et al., 2018).
For example, Liu et al|(2023) extend DDPG to session-based recommendation, while Xin et al.| (2020)) pro-
pose self-supervised RL with SQN and SAC. Additional efforts incorporate negative sampling, contrastive
learning, and reward modeling to enhance learning signals (Ren et al., |2023; Xin et al., |2022ajb). Different
from these approaches, which aim to improve the recommendation model itself, our method treats the rec-
ommender as a black-box environment. We instead apply RL to optimize the LLM’s generation policy, using
feedback from the recommendation system to guide LLM training, which enables task-specific alignment
without altering the underlying recommender.

In contrast, with the rise of LLMs, recent efforts begin to explore how to integrate RL and LLM to improve
recommendation systems. For instance, |[Jeong et al.| (2023) apply RLHF to align a language model with
factuality, personalization, and appeal in movie recommendations. However, their framework uses a reward
model trained offline, without interacting with the recommender system in the loop—mirroring the RLHF
setup of InstructGPT. This approach not only lacks real-time adaptation to system feedback but also risks
reward hacking. Other efforts take alternative views: [Sun et al.| (2024)); |Lu et al.| (2024) attempt to bring
in RecSys feedback but either restrict to DPO-style offline preference tuning (easily overfit on the static
datasets) or narrow scenarios like sequential recommendation with fixed candidate sets.

Different from all of the above, our method REC-R1 directly optimizes the LLM with real-time reward
signals from the recommendation system. The recommender is treated as a black-box environment, and
the LLM adapts its generation policy (e.g., query rewriting or user profile generation) to maximize actual
downstream task performance. This closed-loop RL training allows for general applicability across various
recommendation tasks and retrievers, without relying on complex reward models or curated preference labels.

B.3 LLMs for Query Rewriting

A growing body of research has investigated using large language models for query rewriting in retrieval
tasks. In particular, recent works have explored leveraging LLMs to reformulate queries either in a zero-shot
manner or via supervised fine-tuning (Gao et al. 2023a; [Khattab & Zaharial [2020; [Ye et al., [2023} [Mackie
et al.| 2023} [Liu et al.,[2022). These methods demonstrate that LL.Ms can generate semantically richer queries
that better align with downstream retrieval models, thereby improving recall and ranking performance.

While these works provide important insights into query rewriting and optimization, there remain several key
differences compared with our proposed Rec-R1 framework. First, closed-loop recommendation feedback:
prior methods typically rely on synthetic or proxy reward signals, whereas we directly employ recommenda-
tion evaluation metrics (e.g., NDCG, Recall) from downstream models as reward signals—thus establishing
a true closed-loop interaction between the LLM and the recommender system. Second, model scale and
capability: most existing approaches were developed before the LLM era and used relatively weak models
without strong reasoning or generalization abilities. In contrast, our work explicitly adapts powerful open-
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domain LLMs to recommendation scenarios, addressing the capability gap of traditional RecSys. Finally,
task scope: prior studies primarily focused on improving search query refinement, while our framework is
designed to support a broader range of recommendation tasks.

C Theorems and Proofs

C.1 Proofs of Fact[1]

Lemma 1 (MLE Minimizes KL Divergence). Let m4(a|s) be a fized target policy (e.g., the data-generating
policy), and let wg(als) be a parameterized policy class. Consider the following mazimum likelihood estimation
(MLE) objective:

max Esnp(s),anmg(als) [log o (als)].

Then mazimizing this objective with respect to 0 is equivalent to minimizing the expected Kullback-Leibler
(KL) divergence between the target policy mq and the parameterized policy mg:

minE, ) [Dice (7 ([s) o (-]s))] -

Proof. We start by considering the expected negative log-likelihood under the distribution induced by ,:
Eswp(s),arwrg(a\s) [7 10g o (a|s)] = IE:srvp(s)Earwrg(a\s) [7 IOg o (a|s)] (6)

= Eop(s) | molals)( —logma(als)) | (7)
By definition of the KL divergence, we have the identity:

D) = 3y o) o 2212

Rearranging terms gives:

Eqrr, (als) [ l0g mo(als)] = Diw (g (-[5) 7o (:|s)) + H(mg(|s)),

where H(my(:|s)) = —>_, mq(als)logmy(als) is the entropy of the fixed distribution m4(:|s), which is inde-
pendent of 6.

Taking expectation over s ~ p(s), we obtain:
Esmp(s),ammy(als)[— l0g ma(als)] = Esvp(s) [DL(mg(+|5) |70 (+]5))] + Esup(s) [Hmg (-] 5))]-

Since the second term is independent of 8, minimizing the negative log-likelihood is equivalent to minimizing
the KL divergence. Thus the lemma follows. O

Below is the proof of Fact

Proof. By Lemma 1, the supervised fine-tuning (SFT) objective of maximizing the expected log-likelihood:
HlélX Eswp(s),awwg (als) UOg o (a|5)}
is equivalent to minimizing the KL divergence:

mein Eqp(s)[Dxr(mg(-[8) 7o (-]5))]-
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Under assumption (iii) (Data Sufficiency), as the number of samples N — oo, the empirical distribution
P(s,a) almost surely converges to the true distribution p(s)my(als). Hence, the empirical optimization ob-

jective:
1
N Z log mg(als)
(s,a)~p(s,a)

almost surely converges to the true expectation:
Esmp(s),a’\/ﬂ'y((lls)[log 7r9(a|s)].

Thus, under assumptions (i) (Sufficient Expressivity) and (ii) (Optimization Convergence), the optimiza-
tion process applied to the empirical objective finds the global optimum that minimizes the expected KL
divergence. Formally, we have:

Tg= = arg mein Eswp(s) [DKL (WQ(' ‘8) ”71—9(' ‘8))]
This completes the proof. O

C.2 SFT Performance Bound in Terms of KL Divergence

In this subsection, we investigate the performance gap between the supervised fine-tuning (SFT) policy 7spr
and the fixed target policy m,. Our goal is to establish that the difference in expected return between any
policy m and 4 is controlled by their expected KL divergence. This provides a theoretical justification that
SFT, which minimizes the KL divergence to m,, achieves performance within O(y/k) of the teacher policy
Tg.

Let the downstream metric f(a | s) be bounded in [0, Riax], and define the performance of a policy 7 as

J(?T) = Es~p(s) ]Ea~7r(»\s)[f(a | 5)] .

Then, we have the following theorem, which is a simplified version of the classic performance difference
theorem (Schulman et al., 2015)).

Theorem 1 (Performance Difference Upper Bound). Let 7 be any policy and my be the data-generating
(teacher) policy. Suppose the downstream metric is bounded by 0 < f(a | s) < Rmax. Then the performance
difference satisfies

|J(m) = J(mg)| < Rmax\/% Eqnpis) [Dru(mg(- | s) [ 7(- | 5))].

Proof. Fix a state s. Define
P(a) =my(als), Qa)=m(als), gs(a)=H4 e o,1].
The reward difference at s can be written as
A(s) = Eanqlf(a | )] ~ Eanrlf(a] )] = Rmax (Eqlgs] ~ Erlg,]).
By the dual representation of total variation,

[A(S)] < Runax TV(7(- | 5), (- | 5)).

Since the performance of a policy m and 7, is defined as

J(m) = EsupEonglf(al s)], J(mg) = EsupEanr[f(a]s)].

Then we can write
J(m) — J(ﬂ'g) = Esp A(s).
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By applying the inequality |[E[X]| < E[|X]|], we obtain

|[J(m) = J(mg)] = [EsnplA@)]| < EsnpllA(S)]] < Runax B [TV(7(- | 5), mg(- | 5))] -

Next, by Pinsker’s inequality, for each s we have

TV(7(- | 5),mg( | ) < \/% Dy(mg (- | 5) [ 7(- | 5))-

Averaging over s and applying Jensen’s inequality for the concave square root, we conclude

E.[TV] < /4 Eo[Dicw(my(- | 5) || w(- | 9)))-

Combining these inequalities gives the desired bound.

Done. O

Implication for wgpr. Since Theorem [I] established that mgpT minimizes the expected KL divergence to
g, the above result implies that the performance difference between mgpr and 7, is at most O(y/k), where

k= Eop(s) [Drr(mg (- | 8) | mser(- | )]

Thus, mspr’s performance is limited by the teacher policy 7.

C.3 Dominance of RL Objective over SFT

We now compare the performance of the REC-R1 solution 7ry, with that of the SFT solution wgpr. Recall
that the performance of a policy 7 is defined as

J(Tf) = Es~p(s),a~7r(-\s)[f(a | S)],

Then, we have the following theorem.

Theorem 2 (Superiority of RL over SFT). Let m, denote the teacher policy, and let mgpr € II be the
supervised fine-tuning solution obtained by minimizing Eq ps)[DxL(7my(- | s)||7(- | 5))] over the policy class
II. Let wry, € argmaxycr J(7) denote the RL solution, i.e., the policy in I1 that mazimizes the expected
reward. Then

J(mrL) = J(7sFT)
Proof. From Theoremm7 we know that the performance gap between mgpr and the teacher policy m, satisfies

|J(msrT) — J(7g)| < esFr,

where ESFT — Rmax %H and kK = ]Eswp(s) [DKL('/Tg(' | S)H'/TSFT(' | S))]
Since 7Ry, is by definition the maximizer of J(7) over II, and wspr € II, we directly have

J(mrL) = J(7sFT)-
Done. O
Implication. This theorem shows that reinforcement learning (REC-R1), by explicitly optimizing the
downstream objective J(m), is guaranteed to achieve performance no worse than SFT. In particular, while

mspr is constrained to imitate 7, (with performance at most O(y/k) close to the teacher), the RL policy gy,
can potentially surpass the teacher by exploiting exploration and reward optimization.
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D Estimated Cost of SFT Data Generation and Rec-R1 Model Training

To assess the cost-effectiveness of our approach, we compare it against a supervised fine-tuning (SFT) baseline
that relies on GPT-4o-generated instruction data. The SFT pipeline requires two stages: (1) generating 5,408
samples using GPT-40, which costs approximately $10.82 based on OpenAlI’s pricing ($2.50 per million input
tokens and $10.00 per million output tokens), and (2) training the model on two NVIDIA A100 GPUs for
35 minutes (2 epochs), which adds an additional $4.78 (at an on-demand rate of $4.10/hour per A100 via
AWS). The total cost for SFT amounts to approximately $15.60.

In contrast, REC-R1 requires no external data generation: it trains directly on synthetic data produced
online by itself during learning. Remarkably, with only about 210 seconds of training on the same two
A100 GPUs (costing just $0.48), REC-R1 already matches and even surpasses the performance of the
SEFT-trained model. Moreover, performance continues to improve with further training. This comparison
highlights the substantial cost-efficiency of REC-R1: it achieves superior performance at less than 1/30 of
the SF'T pipeline cost.

While our cost comparison is conducted on a small-scale experiment, the implications become more pro-
nounced in real-world deployments. Supervised fine-tuning methods typically require generating millions
of training examples and running long training cycles, leading to substantial costs in both data creation
and computation. In contrast, REC-R1 eliminates the need for offline data generation and learns efficiently
through online interaction, making it a significantly more cost-effective and practical solution for large-scale
recommendation systems.

E Additional Experiment and Results Details

E.1 Product Search
E.1.1 Dataset Details

For the conventional setting, we use the ESCI dataset processed by [Hou et al.| (2024al), a benchmark derived
from Amazon product search logs. Following their preprocessing protocol, we focus on four representative
product categories: Video Games, Baby Products, Office Products, and Sports and Outdoors. We construct
category-specific splits with 4,510 training examples, 898 validation examples, and 798 test examples. For
all ESCI experiments, we use the same item pool as [Hou et al.| (2024a), which contains 1,367,729 product
listings. Each category uses the full item pool for retrieval.

For the complex setting, we use the Amazon-C4 dataset introduced in Hou et al| (2024a)), which contains
complex natural language product queries. Since the released dataset provides only category-labeled test
queries, we treat the four domains used in ESCI as our test set, and use queries from all other domains
as the training and validation data. This results in 18,126 training examples, 2,722 validation examples,
and 1,722 test examples. The corresponding item pool consists of 1,058,417 products, identical to that used
by Hou et al.| (2024a). As with ESCI, each domain-specific split uses the full item pool for retrieval. This
cross-domain setup allows us to evaluate the generalization capability of REC-R1 when applied to unseen
product categories in a more realistic, open-ended retrieval scenario.

E.1.2 Implementation Details

We implement REC-R 1 using the VeRL libraryﬂ and run all experiments on two NVIDIA A100 80GB GPUs.

Retriever Setup. We support both sparse and dense retrievers in our framework. For sparse retrieval,
we use Pyserini (Lin et al., [2021) with Lucene’s BM25 implementation. Following standard practice, we set
the BM25 hyperparameters as k1 = 1.2 and b = 0.75. For dense retrieval, we build HNSW-based FAISS
(Johnson et al) 2019) indices. The dense embeddings are first L2-normalized to enable cosine similarity
search. We use IndexHNSWFlat with M = 32 and efConstruction=200 to balance search accuracy and
indexing speed.

Thttps://github.com/volcengine/verl
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Table 5: Prompt used in REC-R1 for product search tasks with BM25, where the LLM generates structured
query terms based on a user query.

Prompt Template for Rec-R1 + BM25 (Product Search)

<|im_start|>system

You are a helpful AI assistant. You first think about the reasoning process in the
mind and then provide the user with the answer.

<|im_end|>

<|im_start|>user

You are an expert in query generation. Given a query, your task is to create query
terms to retrieve the most relevant products, ensuring they best meet customer needs.

Below is the query:
“° {user_query}

Show your work in <think>\think> tags. Your final response must be in JSON format
within <answer>\answer> tags. The generated query should use Boolean operators (AND,
OR) to structure your query logically. For example,

<answer>

{ "query": =xxx }

</answer>.

<|im_end|>

<|im_start|>assistant

Let me solve this step by step.

<think>

Training Configuration. We use Group Relative Policy Optimization (GRPO) as our reinforcement
learning algorithm, following the implementation in VeRL. The language model is initialized from Qwen-2.5-
3B-Instruct, and optimized with KL-regularized policy gradients. To control policy divergence, we apply a
low-variance KL loss with coefficient 0.001.

Each prompt is used to generate 12 sampled responses using top-p sampling (p = 0.95) and temperature
0.6. The rollout engine uses vVLLM with memory budget capped at 30% GPU utilization. Training is run
for 5 epochs with a learning rate of 1le—6, global mini-batch size of 256, and micro-batch size of 2. We also
enable gradient checkpointing and use Fully Sharded Data Parallelism (FSDP) with parameter and gradient
offloading for memory efficiency.

We use NDCG@1000 as the reward during training (instead of NDCG@100 at evaluation time) to reduce
reward sparsity and stabilize learning. All other parameters follow VeRL defaults unless otherwise specified.

The prompts for product search can be found in Table [] for BM25 and Table [6] and [7] for Dense retrievers.

E.1.3 Additional Analysis: The Role of Prompt Design and Exploration in RL

In this section, we investigate how different prompt strategies affect retrieval performance when paired with
dense retrievers—particularly BLAIR, which is pretrained using user reviews and item metadata through
contrastive learning. Our hypothesis is that aligning the generation style of the query rewriting process with
the pretraining distribution of the retriever could lead to better synergy and downstream performance.

As shown in Table using generic prompts (Table@ to rewrite queries into natural language variations yields
limited or even negative impact across all models, including GPT-40 and Qwen-2.5-3B-Instruct. Moreover,
initializing REC-R1 with such rewriting behavior also results in modest performance.

To address this, we experimented with a more targeted prompt strategy: instructing the model to convert
the input query into a user-style review (Table , which better mirrors the training data format used
by BLAIR. Interestingly, without reinforcement learning, this “review-style rewriting” strategy alone often
hurts performance. However, when training REC-R1 under this revised prompting strategy, we observe that
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Table 6: Prompt used in REC-R1 for product search tasks with dense retrievers, where the LLM expands
the original query with semantically relevant information to improve retrieval.

Prompt Template for Rec-R1 4+ Dense Retriever (Product Search)

<|im_start|>system

You are a helpful AI assistant. You first think about the reasoning process in the
mind and then provide the user with the answer.

<|im_end|>

<|im_start|>user

You are an expert in generating queries for dense retrieval. Given a customer

query, your task is to retain the original query while expanding it with additional
semantically relevant information, retrieve the most relevant products, ensuring
they best meet customer needs. If no useful expansion is needed, return the original
query as is.

Below is the query:
“~ {user_query} T

Show your work in <think>\think> tags. Your final response must be in JSON format
within <answer>\answer> tags. For example,

<answer>

{ "query": =xxx }

</answer>.

<|im_end|>

<|im_start|>assistant

Let me solve this step by step.

<think>

the model gradually learns to generate review-style queries that significantly enhance retrieval performance.
REC-R1 not only recovers from the initially degraded performance but also surpasses all baselines across all
four domains, achieving new state-of-the-art results with both BLAIR-BASE and BLAIR-LARGE.

This experiment also sheds light on the importance of guided exploration in reinforcement learning, especially
in language generation tasks with extremely large action spaces. In our setting, the LLM selects an action
at each token position, and the final output is a long sequence—meaning the search space is exponentially
large. Without meaningful initial guidance, for those very hard problems, early exploration can easily fall
into suboptimal regions, from which recovery is difficult due to sparse or misleading reward signals.

E.1.4 Comparison with Other Fine-Tuning Strategies: Rejection Sampling and DPO

To better understand the strengths of our method, we compared REC-R1 against two widely used fine-tuning
strategies—Rejection Sampling Fine-Tuning and Direct Preference Optimization (DPO)—within the ESCI
+ BM25 setting. Table [9] summarizes the NDCG performance across four product domains.

Rejection Sampling Fine-Tuning involved filtering training examples where outputs from top-performing
LLMs (GPT-4o, Claude-3.5-Sonnet, Claude-3-Haiku) achieved an NDCG greater than 0.5. These examples
were then used to fine-tune the Qwen-2.5-3B-Instruct model.

DPO was trained by selecting, for each training instance, the best and worst candidate queries (by NDCG)
from the same LLM pool. The model was fine-tuned for one epoch using these pairs. However, the results
were substantially lower across all domains.

From the results, we can observe a clear performance gap between REC-R1 and the two baseline fine-tuning
methods. While DPO provides a theoretically grounded approach to preference learning, its reliance on static
preference pairs—without any feedback from the downstream task environment—Ilimits its generalization
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Table 7: Prompt used in REC-R1 for Amazon-C4 dense retrieval with BLAIR, where the LLM rewrites
queries into review-style texts aligned with BLAIR’s pretraining objective.

Prompt Template for Rec-R1 + Dense Retriever (Amazon-C4, Review-Style Rewriting)

<|im_start|>system

You are a helpful AI assistant. You first think about the reasoning process in the
mind and then provide the user with the answer.

<|im_end|>

<|im_start|>user

You are an expert in query rewriting for dense retrieval systems. Rewrite the
following product search query as if you are a real customer writing a natural,
authentic review after using the product. Maintain the meaning and details of

the original query, but shift the tone to be more casual, emotional, and based on
personal experience. Include specific comments about product performance that match
the query’s intent.

# Below is the product search query:
# ~ " {user_query} "7

Show your work in <think> </think> tags. Your final response must be in JSON format
within <answer> </answer> tags. For example,

<answer>

{ "query": =xxx }

</answer>.

<|im_end|>

<|im_start|>assistant

Let me solve this step by step.

<think>

ability. The poor performance of DPO across all domains suggests that, in complex ranking scenarios, such
offline preference supervision may be insufficient and prone to overfitting.

Rejection sampling achieves moderately better results. However, this approach still lacks a mechanism to
iteratively refine the policy based on task-specific feedback. In contrast, REC-R1 benefits from a closed-loop
optimization process, where model updates are continually guided by performance within the recommenda-
tion environment.

E.1.5 Applicability to Alternative Backbone Models

To evaluate the generalizability of REC-R1, we conducted additional experiments using a variety of backbone
models beyond Qwen-2.5-3B. Specifically, we tested REC-R1 on smaller models such as Qwen-2.5-0.5B and
Qwen-2.5-1.5B, as well as on a different model family—LLaMA-3.2-3B. All experiments were performed
under the same ESCI + BM25 setting, with results presented in Table

The results show a consistent and significant performance boost when applying REC-R1 across all backbone
sizes and architectures. For instance, REC-R1-0.5B achieves an average improvement of over 13 points in
NDCG compared to the base Qwen-2.5-0.5B model, outperforming even some larger models. Similarly,
REC-R1 applied to LLaMA-3.2-3B yields results comparable to or better than its Qwen-based counterpart,
despite architectural differences.

E.1.6 Comparison with Modern Strong Query Rewriting Baselines

We further compared REC-R1 with several recent and strong LLM-assisted query rewriting and expansion
baselines on both the ESCI dataset and the Amazon-C4 corpus with BM25 retrieval. The compared baselines
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Table 8: Performance comparison between general query rewriting and review-style query rewriting under
BLAIR-Base and BLAIR-Large. We observe that while prompting alone offers marginal or negative gains,
REC-R1 achieves significant improvements—especially when aligned with the inductive biases of dense re-
trievers (e.g., BLAIR pre-trained on review-style text).

Model Video Games Baby Products Office Products Sports and Outdoors
Base retriever

BLAIRpasE 19.14 19.53 17.43 20.02
BLAIR ARGE 24.86 22.44 18.92 24.54
Using general query rewriting prompts

GPT-404BLAIR-BASE 21.12 19.54 17.22 22.68
GPT-404BLAIR-LARGE 23.40 21.00 18.69 25.74
Qwen-2.5-3B-Instruct  BLAIR-BASE 15.82 18.07 14.34 16.96
QWGH—2.5—3B—In5tI"uCtJrBLAIR_LARGE 18.20 19.19 15.37 18.94
REC-R1-3B, BLAIR-BASE 19.65 20.85 18.91 22.29
REC-R1-3B BLAIR-LARGE 19.26 21.63 18.93 21.64
Models convert queries into reviews

GPT-404BLAIR-BASE 20.61 19.35 17.63 21.74
GPT-404BLAIR-LARGE 16.59 15.14 15.05 16.76
Qwen-2.5-3B-Instruct 1 pLAIR-BASE 19.40 16.73 15.59 18.50
QWEH—2.5—3B—IIIStI‘11Ct+BLAIR,LARGE 22.06 18.31 16.51 20.65
REC-R1-3B prAIR-BASE 21.69 25.62 22.17 24.22
REC‘R1‘3B+BLAIR-LARGE 26.51 27.04 23.10 27.40

Table 9: Comparison of NDCG performance across product domains using different fine-tuning strategies
under the ESCI + BM25 setup.

Model Video Games Baby Products Office Products Sports and Outdoors
Qwen-2.5-3B-Rej-Sample 22.92 20.67 27.01 24.89
Qwen-2.5-3B-DPO 14.53 12.57 13.52 13.32
REC-R1-3B 33.89 29.27 34.61 31.92

include DocT5Query (Nogueira et all, [2019), RetPO (Yoon et all, [2025), LLM4CS (Mao et al., [2023), and
AdaQR (Zhang et all 2024). Results are summarized in Tables|11] and

On ESCI, REC-R1 achieves substantial gains over all baselines across the four domains. On Amazon-
C4, the performance gap is even more striking. REC-R1 surpasses all competing approaches by large
margins. Overall, these results clearly demonstrate that REC-R1 consistently outperforms modern strong
LLM-assisted query rewriting baselines.

E.2 Sequential Recommendation

E.2.1 Dataset Details

We conduct our sequential recommendation experiments on the Amazon Beauty dataset curated by [Hou
et al.| (2024a)). Following their protocol, we split the data chronologically based on absolute timestamps into
training, validation, and test sets. The final splits include 96,778 training samples, 3,538 validation samples,
and 1,538 test samples—comprising 1,000 inductive and 538 transductive test cases. All experiments use
the Amazon Beauty item pool containing 43,982 unique products, consistent with the setting in [Hou et al.
(2024a).

E.2.2 LLM Input Construction for Sequential Recommendation

To adapt the sequential recommendation task for use with generative LLMs, we convert each user’s interac-
tion history into a natural language format. Specifically, for each historical item, we concatenate the titles
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Table 10: NDCG performance of REC-R1 across different backbone models under the ESCI + BM25 setting.

Model Video Games Baby Products Office Products Sports and Outdoors
Qwen-2.5-0.5B 10.88 12.93 20.21 17.09
REC-R1-0.5B 27.18 25.14 34.80 30.70
Qwen-2.5-1.5B 15.14 14.09 21.77 15.84
REC-R1-1.5B 31.68 26.46 32.92 30.87
LLaMA-3.2-3B 19.16 16.87 19.35 16.90
REC-R1-3B (LLaMA) 32.41 29.40 34.26 31.39

Table 11: Comparison with modern query rewriting baselines on the ESCI + BM25 setting. We report
NDCG@100 across four domains. The best performance is denoted in bold.

Model Video Games Baby Products Office Products Sports and Outdoors
DocT5Query 15.02 14.37 17.19 16.83
RetPO 23.43 17.88 19.00 20.80
LLM4CS 23.29 24.02 28.06 28.00
AdaQR 23.53 20.59 29.02 26.36
REC-R1 33.89 29.27 34.61 31.92

using newline characters (\n) as separators. To ensure compatibility with the LLM’s input length limit (set
to 512 tokens in our experiments), we retain only the latest 10 items from the history list. The resulting
text sequence serves as the context for generation.

This processed history text is then formatted into a prompt for the LLM to generate a guess of the next
item the user might want. An example of this prompt format is shown in Table

E.2.3 Implementation Details

The training setup for the sequential recommendation task largely mirrors that of product search, including
the use of the VeRL library and two NVIDIA A100 80GB GPUs. One notable difference lies in the input
length configuration: we set max prompt length to 512 (instead of 256), since each input includes a full
user history list composed of multiple product titles, which tends to be significantly longer than single-turn
queries in product search. All other hyperparameters remain unchanged.

E.2.4 Additional Analysis: Why Rec-R1 Performs Better in the Inductive Setting?

Notably, we find that REC-R1 achieves stronger performance in the inductive setting compared to the trans-
ductive one—despite the latter having more item overlap with training data. This may seem counterintuitive
at first, but we believe the reason lies in the nature of our framework and the task formulation.

In the transductive setting, many test items have already appeared in the training data. Traditional models
can exploit this overlap through direct memorization or overfitting to item co-occurrence patterns. However,
in REC-R1, the LLM is trained to infer the next item via natural language generation, which requires
capturing underlying intent or semantics. When the task itself lacks a strong logical mapping from history
to future items—as is often the case in sequential recommendation—language-based reasoning becomes less
effective and may even introduce noise.

In contrast, the inductive setting removes such memorization shortcuts, as the target items are completely
unseen during training. This forces the model to rely on more transferable semantic patterns, which better
aligns with REC-R1 ’s learning mechanism. The LLM is incentivized to produce generalized, meaningful
descriptions that reflect what kind of item could come next—rather than relying on item identity. As a
result, the inductive setting provides a clearer signal for reward-driven optimization, enabling REC-R1 to
shine where conventional models struggle.
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Table 12: Comparison with modern query rewriting baselines on Amazon-C4 + BM25. We report
NDCG@100 across four domains. The best performance is denoted in bold.

Model Video Games Baby Products Office Products Sports and Outdoors
DocT5Query 3.90 5.81 4.93 6.43
RetPO 5.20 1.40 1.64 2.54
LLM4CS 13.05 9.97 11.51 11.05
AdaQR 12.98 9.15 10.47 10.41
REC-R1 26.51 27.04 23.10 27.40

Table 13: Prompt format used for LLM-based generation in the sequential recommendation task. The input
includes the user’s purchase history and instructs the model to output structured query terms for the next
likely purchase.

Prompt Template Used for LLM Input in Sequential Recommendation

<|im_start|>system

You are a helpful AI assistant. You first think about the reasoning process in the
mind and then provide the user with the answer.

<|im_end|>

<|im_start|>user

You are an intelligent shopping assistant that helps predict what users may want to
purchase next. Below is a list of items a user has purchased recently. Your task

is to infer one or multiple kinds of products they may want to buy next, and generate
relevant query terms that can be used to search for these potential products.

Below is the user purchase history:
~° {purchase__history}

Show your work in <think>\think> tags. Your final response must be in JSON format
within <answer>\answer> tags. The generated query should use Boolean operators (AND,
OR) to structure your query logically. For example,

<answer>

{ "query": =xxx }

</answer>.

<|im_end|>

<|im_start|>assistant

Let me solve this step by step.

<think>

E.3 Product Re-ranking
E.3.1 Dataset Details

We build the re-ranking dataset starting from the ESCI corpus curated by Hou et al.| (2024a). For each
split (train/validation/test), we first obtain initial candidate lists using the Rec-R1-Retriever trained in
the Product Search task (Section , combined with BM25 retrieval. We select the top-16 items as the
candidates. To ensure data quality, we filter out samples with zero retrieval performance, i.e., those for
which the upstream retriever achieves NDCG@20 = 0. After filtering, each data point consists of the user
query, the candidate list (input to the re-ranker), and the corresponding ground-truth relevant items. We
finally obtain 2,166, 521, and 465 samples for the train, validation, and test splits, respectively.
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Table 14: Prompt used for the product re-ranking task.

Prompt Template for Rec-R1 + Product Re-ranking

<|im_start|>system

You are a helpful AI assistant. You first think about the reasoning process in the
mind and then provide the user with the answer.

<|im_end|>

<|im_start|>user

You are an expert in product reranking. Given a customer query and a list of
candidate products, your task is to rerank the products so that the most relevant
items to the query are placed at the top. Consider semantic meaning, product
attributes, and customer intent.

Below are the candidate products (item_id and metadata):
# " "{candidates} """

Below is the query:
# ~ " {user_query} ~°°

Show your work in <think> </think> tags. Your final response must be in JSON format
within <answer> </answer> tags. The output JSON should contain the reranked list

of item_ids in order of relevance. The length of the reranked list should match the
number of input candidates. For example,

<answer>

{ "reranked_items": ["Item_4", "Item_8", "Item_x", ..., all candidate item_ids in
order] }

</answer>

<|im_end|>

<|im_start|>assistant

Let me solve this step by step.

<think>

E.3.2 Implementation Details

The overall training and evaluation setup follows the same configuration as in the product search and sequen-
tial recommendation tasks. We highlight the key differences below: (1) the LLM prompts are specifically
designed for the re-ranking scenario, as shown in Table and (2) the input/output length limits are
adjusted, with max prompt length set to 3000 and max response length set to 1024.

E.4 Evaluation of Generalization and Forgetting

E.4.1 Implementation Details

To assess whether REC-R1 preserves the general-purpose capabilities of the underlying LLM while achiev-
ing strong task-specific performance, we evaluate all models across a suite of generalization benchmarks.
Specifically, we consider six datasets spanning different task types and reasoning skills:

« ESCI (NDCG®@100) - Product search recommendation, serving as the target task of optimization.

o MMLU (Accuracy) — A factual knowledge benchmark covering multiple-choice questions across
various domains (Hendrycks et al., |2020)).

o IFEval (Strict Accuracy) — A benchmark designed to evaluate instruction-following and alignment
with user intent (Zhou et al., |2023]).

o GSMB8K (5-shot, EM) — Math reasoning with elementary school word problems in a few-shot
setting, measured by exact match (Cobbe et al., 2021)).
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o« MBPP (3-shot, pass@1) — A coding benchmark consisting of short Python problems, evaluated
using pass@1 (Austin et al, 2021)).

o« HumanEval (0-shot, pass@1) — A high-quality Python programming test measuring zero-shot
code generation performance (Chen et all 2021)).

All evaluations are conducted using the 1lm-evaluation-harness library (Gao et al|2024) to ensure consis-
tency and reproducibility. For ESCI, we directly compute NDCG@100 based on model-generated rewritings.
For all other datasets, we use the official protocols defined in 1lmeval.

E.4.2 Additional Analysis: Impact of Reasoning and JSON Format in SFT

To better understand the effects of prompt format on supervised fine-tuning (SFT), we explore four SFT
variants that differ in whether the training data includes intermediate reasoning steps and whether the
answers are wrapped in structured JSON format. We use GPT-4o-generated data on the ESCI product
search task for training all four SFT models. Table shows results on ESCI, and Table evaluates
generalization to broader benchmarks.

On the task-specific ESCI dataset, all SFT variants outperform the base model (Qwen-2.5-3B-Instruct),
demonstrating the effectiveness of supervised fine-tuning on task-specific data. However, all variants fall
short compared to REC-R1, which uses the same data but trains via reinforcement learning. This highlights
the advantage of reward-driven learning in aligning with downstream task metrics.

We then assess the general-purpose capabilities of these models. On MMLU, a knowledge-intensive bench-
mark, all SFT variants retain performance close to the original model (within 2 points), suggesting factual
knowledge is preserved. In contrast, IFEval results reveal catastrophic forgetting across the board—all
SFT variants suffer 20-30 point drops in instruction-following accuracy, regardless of format. This under-
scores the risk of overfitting in SFT, where tuning on narrow task data compromises broader generalization.

An interesting observation arises on GSMS8K: the variant with JSON formatting but no reasoning shows
improved performance over the base model (+4.7). We hypothesize that the strict output format (JSON)
acts as a “shield,” isolating the fine-tuning effects from interfering with the model’s native reasoning process.
In contrast, the reasoning-heavy variants modify the generative behavior more substantially, harming out-
of-domain reasoning.

On the coding benchmarks (MBPP, HumanEval), all four SFT variants exhibit comparable or slightly
improved performance relative to the original model—regardless of whether the training outputs used JSON
format. This suggests that coding ability is relatively robust to task-specific SFT, and may even benefit
from it. One possible explanation is that the ESCI task, although unrelated to coding, implicitly encourages
structured generation and logical formatting (e.g., conditionally constructed queries or Boolean expressions),
which aligns well with the formal nature of code generation.

In contrast, REC-R1 avoids these trade-offs altogether. Rec-R1 improves task-specific performance
while maintaining general capabilities across reasoning, knowledge, and code generation. These
results provide further evidence that REC-R1 is a more stable and generalizable learning framework than
conventional SET.

E.5 Evaluations on Standard IR Benchmarks

To further examine the generality of our framework, we conducted evaluations on several widely used infor-
mation retrieval (IR) benchmarks, including MS MARCO (Nguyen et al. [2016), two representative datasets
from BEIR (Thakur et al) 2021) (NFCorpus and FEVER), as well as the TREC Deep Learning tracks
DL’19 and DL’20 (Dai et al., [2024)). Results are summarized in Table Across all benchmarks, REC-R1
consistently outperforms the baselines. These results further validate the effectiveness and robustness of our
framework under standard IR benchmarks, even though retrieval is not the primary focus of this paper.
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Table 15: Performance on ESCI datasets across different domains. Note: The REC-R1 results here may differ
slightly from Table [1] due to using the checkpoint at step 1400 instead of step 1390. This minor difference
has negligible impact on performance. We report the performance of models under different training steps
because evaluation on validation and test set is done every 10 steps and models are saved every 100 steps.
We use the 1400-step checkpoint for consistency in follow-up experiments.

Model Reasoning JSON ESCI (Games) ESCI (Baby) ESCI (Office) ESCI (Sports)
Qwen-2.5-3B-Instruct - - 19.63 16.03 19.96 21.36
Qwen-2.5-3B-Instruct (SFT) v v 25.70 19.66 27.34 24.82
Qwen-2.5-3B-Instruct (SFT) X v 26.87 22.83 26.10 26.42
Qwen-2.5-3B-Instruct (SFT) X X 25.08 21.50 28.75 25.18
Qwen-2.5-3B-Instruct (SFT) v X 23.31 20.77 24.34 24.78
REC-R1-3B (1400 steps) - - 32.92 29.62 35.05 31.21

Table 16: Performance on general-purpose reasoning and coding benchmarks. Color-coded deltas show
change from baseline Qwen-2.5-3B-Instruct.

Model Reasoning JSON MMLU IFEval GSM8K MBPP HumanEval
Qwen-2.5-3B-Instruct - - 65.4 58.2 63.4 53.6 46.3

Qwen-2.5-3B-Instruct (SFT) v v 63.7 (-1.7) 31.4 (-26.8) 35.7 (-27.7) 54.8 (+1.2) 53.6 (+7.3)
Qwen-2.5-3B-Instruct (SFT) X v 64.1 (-1.3) 30.5 (-27.7) 68.1 (+4.7) 50.4 (-3.2) 57.3 (+11.0)
Qwen-2.5-3B-Instruct (SFT) X X 64.3 (-1.1) 34.4 (-23.8) 37.3 (-26.1) 52.2 (-1.4)  53.6 (+7.3)
Qwen-2.5-3B-Instruct (SFT) v X 63.6 (-1.8) 35.0 (-23.2) 50.2 (-13.2) 55.4 (+1.8) 52.4 (+6.1)
REC-R1-3B (1400 steps) - - 65.3 (-0.1) 60.1 (+1.9) 69.1 (+5.7) 54.4 (+0.8) 46.3 (+0.0)

E.6 Comparison with RL-for-Search Approaches

Recent studies have also applied reinforcement learning with verifiable reward (RLVR) for search. We high-
light two representative approaches—Search-R1 ([Jin et al.,|[2025) and ConvSearch-R1 (Zhu et all 2025)—and
compare them against our proposed Rec-R1.

Search-R1. As described in Section 3.4 of their paper, Search-R1 relies solely on a single exact-matching
reward. In contrast, Rec-R1 directly optimizes downstream recommendation metrics (e.g., Recall, NDCG) as
the reward function. This distinction is crucial: due to the nature of RLVR optimization, Search-R1 cannot
explicitly constrain the quality of the intermediate retrieval process, while Rec-R1 is directly aligned with
the final RecSys evaluation objectives. As shown in Tables [18 and Rec-R1 consistently and significantly
outperforms Search-R1 across all domains in both ESCI and Amazon-C4 datasets.

ConvSearch-R1. ConvSearch-R1 differs in its reward design: instead of directly optimizing evaluation
metrics, it introduces a piecewise-defined reward function (Eq. (1) in their paper). Their motivation is to
mitigate reward sparsity, arguing that optimizing NDCG@3 directly would result in too few positive signals.
However, we argue that such sparsity is only a problem if one insists on optimizing at a very small cutoff (e.g.,
k = 3). In fact, optimizing at larger k implicitly improves smaller-k NDCG as well. Moreover, ConvSearch-
R1’s reward formulation does not directly align with evaluation metrics. Empirically, Rec-R1 consistently
outperforms ConvSearch-R1 on both ESCI and Amazon-C4 (Tables [1§ and [19).

In summary, Rec-R1 distinguishes itself by (i) reward design that is directly tied to RecSys evaluation metrics,
and (ii) consistently stronger empirical performance on LLM4Rec tasks compared to recent RL-for-search
baselines.

E.7 Rec-R1 under Multi-Objective Reward Optimization

The reward structure in REC-R1 is designed to be general and flexible. Formally, the reward is defined
as a function f(als), where s denotes the input state and a the model output. This formulation naturally
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Table 17: Performance on standard IR benchmarks. We report MRR@10 for MS MARCO and
NDCG@10 for BEIR and TREC DL datasets. The best performance is denoted in bold.

Model MS MARCO NFCorpus FEVER DL’19 DL’20
BM25 44.80 14.67 44.25 42.31  47.80
Qwen2.5-3B-Instruct 23.00 29.23 46.68 43.56  52.24
GPT-40 39.43 30.67 53.94 099.87  54.72
Rec-R1 53.13 34.00 66.38 63.25 59.71

Table 18: Comparison with RL-for-search approaches on ESCI + BM25 (NDCG@100). Rec-R1
consistently outperforms both Search-R1 and ConvSearch-R1 across all domains.

Model Video Games Baby Products Office Products Sports and Outdoors
Search-R1 18.03 17.38 22.67 19.62
ConvSearch-R1 23.67 22.35 27.89 25.64
Rec-R1 33.89 29.27 34.61 31.92

supports multi-objective optimization: f(als) can be extended to incorporate multiple reward signals via
linear combination, such that the optimization encourages trajectories with higher aggregated rewards.

To further validate the flexibility of our framework, we conducted additional experiments to examine whether
Rec-R1 can be stably trained under a multi-reward setting. Specifically, we combined two types of rewards:
(i) a downstream metric reward (e.g., Recall or NDCG), which measures recommendation quality; (ii) a
format reward, which ensures well-structured and valid outputs; (iii) Category Consistency Reward, which
measures the proportion of retrieved items belonging to the same category as the ground-truth items given
a query. The results are shown in Table 20] Rec-R1 continues to perform strongly across all domains,
substantially outperforming baseline LLMs such as Qwen2.5-3B-Instruct and GPT-40, while maintaining
training stability.

These findings indicate that Rec-R1 is not limited to single-metric optimization but can be readily extended
to multi-objective reward structures, offering a flexible framework for incorporating diverse recommendation
signals.

F Discussion and Future Directions

In this section, we reflect on several insights and limitations emerging from our experiments, and highlight
future directions for building stronger recommendation-oriented LLMs.

LLMs Can Learn to Recommend Without Access to the Item Space. In our product search
experiments, REC-R1 operates without any access to the downstream item catalog—it only receives the
user query s and generates a rewritten query a, without knowing which products exist in the recommender’s
database. Despite this apparent limitation, REC-R1 consistently delivers strong performance across domains.
This aligns surprisingly well with human behavior: when people search for products, they rarely know the
exact contents of a platform’s inventory. Instead, they refine their queries iteratively based on vague goals and
system feedback. REC-R1, trained in a closed loop with the recommender, learns this refinement process
efficiently via reinforcement learning. This result highlights the potential of LLMs to simulate user-side
reasoning, making them powerful agents for optimizing recommender interaction.

Toward Better Integration with Sequential Recommendation. Our sequential recommendation
setup frames the LLM as a next-item predictor: it receives a history of product titles and generates a guess
of the next likely item in natural language, which is then fed to a retriever. While this approach works well in
the inductive setting—where test items are unseen—it underperforms traditional models in the transductive
case. We have previously explain it in A promising direction is to use LLMs not as generation agents,
but as feature augmentation modules: the LLM could enrich each item in the user history with additional
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Table 19: Comparison with RL-for-search approaches on Amazon-C4 + BM25 (NDCG@100).
Rec-R1 achieves significant improvements across domains.

Model Video Games Baby Products Office Products Sports and Outdoors
Search-R1 12.06 9.12 10.21 9.96
ConvSearch-R1 13.57 13.08 13.62 13.34
Rec-R1 26.51 27.04 23.10 27.40

Table 20: Performance under multi-objective reward setting on ESCI + BM25 (NDCG@100).
Rec-R1 combines format reward, NDCG, and category consistency reward.

Model Video Games Baby Products Office Products Sports and Outdoors
Qwen2.5-3B-Instruct 19.63 16.03 19.96 21.36
GPT-40 26.06 23.05 27.98 27.38
Rec-R1 (multi-reward) 33.06 29.39 34.22 32.27

descriptive or contextual information. These enriched sequences could then be encoded using text encoders
like BLAIR and passed into standard SRec models. This hybrid approach could combine LLMs’ semantic
understanding with the modeling power of sequential architectures for the transductive setting.

Initialized LLM’s capabilities Matter. Our findings underscore the importance of the base LLM’s
capabilities when applying reinforcement learning to complex decision-making tasks. Like traditional RL
pipelines that rely on imitation learning to bootstrap strong initial behaviors—e.g., in high-stakes environ-
ments like Go and MOBA games (Silver et al.l 2016; [Vinyals et al.,[2019)—REC-R1 also benefits significantly
from a well-initialized model. In our experiments, Qwen-2.5-3B-Instruct provides a strong general-purpose
foundation. However, we also observe that this general strength does not guarantee effectiveness on every
domain-specific task. For instance, in sequential recommendation, the base model lacks any prior expe-
rience in predicting the next item from user histories—resulting in a weak starting point for RL-based
optimization. This raises a compelling direction: could domain-specific pretraining or instruction tuning
(e.g., training LLMs to imitate existing sequential recommender outputs) better equip models to serve as
REC-R1 agents? Combining domain-aware LLMs with REC-R1 could unlock more powerful and seman-
tically aligned generation strategies, especially for tasks like sequential recommendation. We leave it as a
future work.

Leveraging RecSys Feedback: From Static Logs to Live Interaction. A core advantage of REC-
R1 lies in its ability to leverage feedback signals from recommendation systems. In our experiments, these
signals are derived from historical interaction logs that are commonly available in large-scale recommender
platforms. While the current feedback is log-based, this setup aligns well with real-world deployment,
where user interactions are continuously collected in vast quantities. In practice, maintaining an up-to-date
stream of logs allows REC-R1 to stay aligned with evolving user preferences and content trends. Moreover,
REC-R1 is fully compatible with real-time feedback: it can be trained via online interactions with a live
recommendation engine, where the LLM receives immediate performance signals (e.g., engagement rates or
conversions). This makes REC-R1 a flexible framework capable of serving as a foundation for LLM-based
recommendation systems that evolve with real-world usage.

G Case Study

To better understand the behavior and effectiveness of REC-R1, we present qualitative case studies from
the product search task (ESCI dataset) and the sequential recommendation task (Amazon Beauty
dataset). These cases offer insights into how REC-R1 generates more effective textual inputs than prompting-
based methods.
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Figure 5: Qualitative comparison of retrieval results on the ESCI Video Games domain. We visualize the
top-8 items retrieved by BM25 using different query formulations: the original user query (play station 3),
a rewritten query by GPT-4o0, and the output of our REC-R1. Ground-truth relevant items are shown at
the top. REC-R1 significantly improves NDCG@100 by generating a highly detailed and semantically rich
query, enabling precise matching with relevant items. Items correctly retrieved (i.e., appearing in the target

set) are highlighted with red bounding boxes.
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G.1 Product Search: ESCI

Figure [f] illustrates a query rewriting example from the ESCI Video Games domain. The user’s original
query is simply "play station 3", which fails to retrieve any relevant items using BM25 (NDCG@100 = 0.00).
When using GPT-4o for rewriting, the generated Boolean query covers many relevant keywords (e.g., “Slim”,
“controller”, “games”) but lacks grounding in product-specific terminology, leading to limited improvement

(NDCG@100 = 7.42).

In contrast, REC-R1 generates a highly detailed and context-rich query that resembles human-level product
search behavior. It incorporates specific configurations (e.g., storage size, “Blu-ray”, “used” vs. “new”),
product features, and variant types, all while maintaining semantic coherence. This significantly improves
retrieval accuracy, correctly retrieving most of the target items (NDCG@100 = 78.53). Items that hit the
target list are marked with red boxes in Figure 5] clearly demonstrating REC-R1 ’s superiority in aligning
generation with downstream relevance signals.

G.2 Sequential Recommendation: Amazon Beauty

Figure [6] shows a case from the Amazon Beauty dataset. The user previously purchased a set of products.
The goal is to predict the next item the user is likely to purchase. GPT-40 generates a broad and somewhat
vague Boolean query with high-level categories such as “makeup brushes” or “serum”, failing to capture the
continuity in user intent. As a result, none of the retrieved items match the target (NDCG@10 = 0.00).

REC-R1, on the other hand, generates a natural-sounding pseudo-review that maintains semantic consistency
with the user’s history while narrowing in on likely next items—such as winged eyeliner and related cosmetic
tools. This leads to successful retrieval of the ground-truth target item (NDCG@10 = 43.06), as highlighted
in red.
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Figure 6: Case study on the Amazon Beauty dataset for the sequential recommendation task. Given a
user’s historical purchase sequence (top-left), we compare the top-5 items retrieved by BM25 when queries
are generated by GPT-40 (top) and REC-R1 (bottom). Ground-truth target items are shown at the top-
right. REC-R1 produces a more contextually relevant and descriptive query, enabling accurate retrieval of
both target items, significantly outperforming GPT-40. Items correctly retrieved are highlighted with red
bounding boxes.
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