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ABSTRACT

Multimodal Variational Autoencoders (VAEs) represent a promising group of gener-
ative models that facilitate the construction of a tractable posterior within the latent
space, given multiple modalities. Daunhawer et al. (2022) demonstrate that as the
number of modalities increases, the generative quality of each modality declines.
In this study, we explore an alternative approach to enhance the generative perfor-
mance of multimodal VAEs by jointly modeling the latent space of unimodal VAEs
using score-based models (SBMs). The role of the SBM is to enforce multimodal
coherence by learning the correlation among the latent variables. Consequently, our
model combines the superior generative quality of unimodal VAEs with coherent
integration across different modalities.

1 INTRODUCTION

The real-world data often has multiple modalities such as image, text, and audio, which makes
learning from multiple modalities an important task. Multimodal VAEs are a class of multimodal
generative models that are able to generate multiple modalities jointly. Learning from multimodal
data is inherently more challenging than from unimodal data, as it involves processing multiple data
modalities with distinct characteristics.

In order to learn the joint representation of these modalities, previous approaches generally preferred
to encode them to latent distribution that governs the data distribution across different modalities. In
general, we expect the following properties from a multimodal generative model:

Multiway conditional generation: Given the presence of certain modalities, it should be feasible to
generate the absent modalities based on the existing ones (Shi et al., 2019; Wu & Goodman, 2018).
The conditioning process should not be limited to specific modalities; rather, any modality should
serve as a basis for generating any other modality.

Unconditional generation: If we have no modality present to condition on, we should be able to
sample from the joint distribution so that the generated modalities are coherent (Shi et al., 2019).
Coherence in this case means that the generated modalities represent the same concept that is
expressed in the different modalities we have.

Conditional modality gain: When additional information is provided to the model through the
observation of more modalities, there should be an enhancement in the performance of the generated
absent modalities. In other words, the generation performance should consistently improve as the
number of observed (given) modalities increases.

Scalability: The model should scale as the number of total modalities increases. Moreover, the
model complexity shouldn’t become computationally inefficient when adding more modalities (Sutter
et al., 2020).

Other properties like joint representation where we want a representation that takes into account the
statistics and properties of all the modalities (Srivastava & Salakhutdinov, 2014; Suzuki et al., 2017)
can be easily learned from a multimodal model obtaining the above properties. Another property that
we have deferred for future work is weak supervision where we make use of multimodal data that
aren’t paired together (Wu & Goodman, 2018).

Naively using multimodal VAEs by training all combinations of modalities becomes easily intractable
as the number of models to be trained increases exponentially. We will need to train 2M − 1 different
combinations of models for each subset of the modalities. Since this is not a scalable approach,
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previous works have proposed different methods of avoiding this by constructing a joint posterior of
all the modalities. They do this by modeling the joint posterior over the latent space z: q(z|x1:M ),
where x1:M is the set of modalities. To ensure the tractability of the inference network q, prior works
have proposed using a product of experts (Wu & Goodman, 2018), mixture of experts (Shi et al.,
2019), or in the generalized form, mixture of the product of experts (MoPoE) (Sutter et al., 2021);
among the others.

Figure 1: A variational or
regularized auto-encoder will
be used for each individual
modality to get the latent rep-
resentation which then will
be used to train the score-
based model which will allow
the prediction of any modality
given some or none. The auto-
encoders are trained indepen-
dently in the first stage and the
respective z of each modality
will be used to train the score
network.

After selecting on how to fuse the posteriors of different modali-
ties, these approaches then construct the joint multimodal ELBO
and use it to train multimodal data. At inference time, they use the
modalities that are observed to generate the missing modalities. Wu
& Goodman (2018) intentionally adds ELBO subsampling during
training to increase the model’s performance on generating missing
modalities at inference time. Mixture of experts and mixture of prod-
ucts of experts subsample modalities as part of their training process
because of the posterior model is a mixture model. Subsampling of
the modalities, as pointed out by Daunhawer et al. (2022), results
in a generative discrepancy among modalities. We also observe that
conditioning on more modalities often reduces the quality of the
generated modality which goes contrary to one’s expectation. As
a model receives additional information, it should perform better
and better but this doesn’t happen in previous multimodal VAEs as
the generated modalities continue to have lower qualities as more
modalities are observed. Daunhawer et al. (2022) further concludes
that these models cannot be useful for real-world applications at this
point due to these failures.

To overcome these issues, instead of constructing a joint posterior,
we try to explicitly model the joint latent space of individual VAEs:
pθ(z1:M ). The joint latent model learns the correlation among the
individual latent space in a separate score-based model trained in-
dependently without constructing a joint posterior as the previous
multimodal VAEs. Therefore, it can ensure prediction coherence by
sampling from the score model while also maintaining the genera-
tive quality that is close to a unimodal VAE. And by doing so, we
avoid the need to construct the joint multimodal ELBO. We use the
independently trained unimodal VAEs to generate latent samples,
and use those samples to train a score network that models the joint latent space. This approach
is scalable as it only uses M unimodal VAEs and one score model, and it performs better as we
condition it on more modalities. That is, as the number of information available increases, the
more accurate marginal distribution we get, thus increasing the generative quality. Unconditional
generation from the joint distribution can also be done by sampling from the score model respecting
the joint distribution. Figure 1 describes the overall architecture of the model.

Our contributions include 1) we propose a novel generative multimodal autoencoder approach that
satisfies most of the appealing properties of multimodal VAEs, supported using extensive experimental
studies. 2) We introduce coherence guidance to improve the coherence of observed and unobserved
modalities. 3) We show that our model provides a valid variational lower bound on data likelihood.

2 METHODOLOGY

Assuming the each data point consists of M modalities: x1:M = (x1,x2, · · · ,xM ), our latent
variable model describes the data distribution as p(x1:M ) =

∑
z1:M

p(x1:M |z1:M )p(z1:M ), where
z1:M = (z1, z2, · · · , zM ) and zk is the latent vector corresponding to the kth modality. In contrast
to common multimodal VAE setups (Wu & Goodman, 2018; Shi et al., 2019), we don’t consider
any shared latent representation among different modalities, and we assume each latent variable1 zk
only captures the modality-specific representation of the corresponding modality k. Therefore, the

1For simplicity we use "variable" to refer to the group of variables that describe the latent representation of a
modality
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variational lower bound on log p(x1:M ) can be written as:

log p(x1:M ) ≥ Eq(z1:M |x1:M ) log
p(x1:M |z1:M )p(z1:M )

q(z1:M |x1:M )
. (1)

To simplify the joint generative model p(x1:M |z1:M ) and the joint recognition model q(z1:M |x1:M ),
we assume two conditional indenpendencies: 1) Given an observed modality xk, its corresponding
latent variable zk is independent of other latent variables, i.e., xk have enough information to describe
zk: zk ⊥ z−k|xk. 2) Knowing the latent variable zk of kth modality is enough to reconstruct that
modality: xk ⊥ x−k, z−k|zk. Using these conditional independencies the generative and recognition
models factorize as:

p(x1:M |z1:M ) =

M∏
k=1

p(xk|zk) and q(z1:M |x1:M ) =

M∏
k=1

q(zk|xk).

Therefore we can rewrite the variational lower bound as:

log p(x1:M ) ≥
∑

k
Eqϕk

(zk|xk) log pψk
(xk|zk)−DKL(

∏
k

qϕk
(zk|xk)||pθ(z1:M )), (2)

where ϕk and ψk are the parameterizations of the recognition and generative models, respectively,
and θ parameterizes the prior. If we assume the prior pθ(z1:M ) factorizes as

∏
k pθk(zk), then

the variational lower bound of log p(x1:M ) becomes
∑
k ELBOk, where ELBOk is the variational

lower bound of individual modality. However, such an assumption ignores the dependencies among
latent variables and results in a lack of coherence among generated modalities when using prior for
generating multimodal samples. To benefit from the decomposable ELBO but also benefit from the
joint prior, we separate the training into two steps. In step I, we maximize the ELBO with respect to ϕ
and ψ assuming prior p(z1:M ) =

∏
N (0, σI), which only regularizes the recognition models. In step

II, we optimize ELBO with respect to θ assuming a joint prior over latent variables. Therefore, in step
II maximizing the ELBO reduces to: minθDKL(

∏
k qϕk

(zk|xk)||pθ(z1:M )) and since recognition
model is constant w.r.t. θ, the step II becomes maxθ Ep(x1:M )E∏

k q(zk|xk) log pθ(z1:M ), which is
equivalent to maximum likelihood training of the parametric prior using sampled latent variables
for each data points. And during inference, we only need samples from pθ(z1:M ), thus we can
parameterize sθ(z1:M ) ≈ ∇z1:M

log(pθ(z1:M )) as the score model and train sθ(z1:M ) using score
matching (Hyvärinen & Dayan, 2005). In practice, the score matching objective does not scale
to the large dimension which is required in our setup, and other alternatives such as denoising
score-matching (Vincent, 2011) and sliced score-matching (Song et al., 2020a) have been proposed.

Here we use denoising score matching in the continuous form that diffuses the latent samples into
noise distribution and can be written in a stochastic differential equation (SDE) form (Song et al.,
2020b). The forward process will be an SDE of dz = f(z, t)dt+ g(t)dw where w is the Brownian
motion. To reverse the noise distribution back to the latent distribution, we use the trained score
model and sample iteratively from the reverse SDE dz =

[
f(z, t)− g(t)2∇z log pt(z)

]
dt+ g(t)dw.

The score network which approximates ∇z log pt(z) is trained using eq. 3:

θ∗ = argmin
θ

Et
{
λ(t)Ez(0)Ez(t)|z(0)

[∥∥sθ(z(t), t)−∇z(t) log p0t(z(t) | z(0))
∥∥2
2

]}
(3)

2.1 INFERENCE WITH MISSING MODALITIES

The goal of inference is to sample unobserved modalities (indexed by u ⊆ {1, · · · ,M}) given
the observed modalities (indexed by o ⊂ {1, · · · ,M}) from p(xu|xo). We define a variational
lower bound on log-probably log p(xu|xo) using posterior q(zu|xo) on the latent variables of the
unobserved modalities zu:

log p(xu|xo) = logEq(zu|xo)p(xu|xo, zu)

≥ Eq(zu|xo) log p(xu|xo, zu)

= Eq(zu|xo) log p(xu|zu), (4)
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where p(xu|zu) =
∏
k∈u pψk

(xk|zk) and pψk
(xk|zk) is the generative model for modality k. We

define the posterior distribution q(zu|xo) as the following:

q(zu|xo) =
∑

zo

[∏
i∈o

qϕi
(zi|xi)

]
pθ(zu|zo), (5)

where qϕk
(zk|xk) is the recognition model for modality k.

In order to sample from q(zu|xo), following eq. 5, we first sample zo for all observed modalities,
and then sample zu from pθ(zu|zo) by fixing zo which is the latent representation of the observed
modalities and updating the unobserved ones during sampling. When all modalities are missing, we
will update all modalities in the sampling step.

After running the sampling for T steps we use the generative models p(xu|zu) =
∏
k∈u pψk

(xk|zk)
to sample the unobserved modalities. We use the Predictor-Corrector (PC) sampling algorithm (Song
et al., 2020b) which is a mix of Euler-Maruyama and Langevin Dynamics (Welling & Teh, 2011) to
sample from the score model.

2.2 COHERENCE GUIDANCE

The score-based model improves the coherence among predicted modalities, however, when the
number of unobserved modalities increases, it is more likely that the predicted modalities are not
aligned with the observed modalities. To address this issue, we use extra conditional guidance during
the reverse process for sampling (Dhariwal & Nichol, 2021). In particular, we train an energy-based
model that assigns low energy to a coherent pair of modalities and high energy to incoherent ones.
We define the energy-based model Eω(zo, zu) over the latent representations of an observed modality
zo and an unobserved modality zu. Here we assume that the latent representation of all modalities
has the same dimension. During training, we randomly select two modalities (xo,xu) as a positive
pair and substitute the second modality with an incoherent example xn in training data to construct
a negative pair (xo,xn). We train Eω using noise contrastive estimation (Gutmann & Hyvärinen,
2010):

max
ω

E(xo,xu)∼p(xo,xu),zo∼q(z|xo),zu∼q(z|xu) log
1

1 + exp (Eω ((zo, zu)))
(6)

+ Exo∼p(xo),xn∼p(xn),zo∼q(z|xo),zn∼q(z|xn) log
1

1 + exp (−Eω(zo, zn))
We also perturb the latent representations with the same perturbation kernel used to train the score
model. The final score function with coherence guidance has the following form:

s̃(zu) = sθ(zu)− γ∇zuEω(zo, zu), (7)

where γ controls the strength of guidance. During each step of inference, we randomly select xo
from observed modalities and randomly select xu from unobserved modalities and update the score
of zu using eq. 7.

3 RELATED WORKS

Our work is heavily inspired by earlier works on deep multimodal learning (Ngiam et al., 2011;
Srivastava & Salakhutdinov, 2014). Ngiam et al. (2011) use a set of autoencoders for each modality
and a shared representation across different modalities and trained the parameters to reconstruct the
missing modalities given the present one. Srivastava & Salakhutdinov (2014) define deep Boltzmann
machine to represent multimodal data with modality-specific hidden layers followed by shared hidden
layers across multiple modalities, and use Gibbs sampling to recover missing modalities.

Suzuki et al. (2017) approached this problem by maximizing the joint ELBO and additional KL
terms between the posterior of the joint and the individuals to handle missing data. Tsai et al.
(2019) propose a factorized model in a supervised setting over model-specific representation
and label representation, which capture the shared information. The proposed factorization is
q(z1:M , zy|x1:M ,y) = q(zy|x1:M )

∏M
k=1 q(zk|xk), where zy is the latent variable corresponding to

the label.
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Most current approaches define a multimodal variational lower bound similar to variational autoen-
coders Kingma & Welling (2014) using a shared latent representation for all modalities:

log p(x1:M ) ≥ Eqϕ(z|x1:M ) [log pψ(x1:M |z)]−DKL(qϕ(z|x1:M )∥p(z)). (8)

Similar to our setup pψ(x1:M |z) =
∏
k pψk

(xk|z), but qϕ(z|x1:M ) is handled differently. Wu &
Goodman (2018) use a product of experts to describe q: qPoE(z|x1:M ) = p(z)

∏M
k=1 qϕk

(z|xk).
Assuming p(z) and each of qϕk

(z|xk) follow a Gaussian distribution, qPoE can be calculated in a
closed form, and we can optimize the multimodal ELBO accordingly. To get a good performance
on generating missing modality, Wu & Goodman (2018) sample different ELBO combinations
of the subset of modalities. Moreover, the sub-sampling proposed by Wu & Goodman (2018)
results in an invalid multimodal ELBO (Wu & Goodman, 2019). The MVAE proposed by (Wu
& Goodman, 2018) generates good-quality images but suffers from low cross-modal coherence.
To address this issue Shi et al. (2019) propose constructing qϕ(z|x1:M ) as a mixture of experts:
qMoE(z|x1:M ) = 1

M

∑
k qϕk

(z|xk). However, as pointed out by Daunhawer et al. (2022), sub-
sampling from the mixture component results in lower generation quality, while improving the
coherence.

Sutter et al. (2021) propose a mixture of the product of experts for q by combining these two
approaches: qMoPoE(z|x1:M ) = 1

2M

∑
xm

q(z|xm), where q(z|xm) =
∏
k∈m q(z|xk) and m is

a subset of modalities. The number of mixture components grows exponentially as the number
of modalities increases. MoPoE has better coherence than PoE, but as discussed by Daunhawer
et al. (2022) sub-sampling modalities in mixture-based multimodal VAEs result in loss of gen-
eration quality of the individual modalities. To address this issue, more recently and in parallel
to our work, Palumbo et al. (2023) introduce modality-specific latent variables in addition to the
shared latent variable. In this setting the joint probability model over all variables factorizes as
p(x1:M , z,w1:M ) = p(z)

∏
k p(xk|z,wk)p(wk) and q factorizes as qMMVAE+(z,w1:M |x1:M ) =

qϕz (z|x)
∏
k qϕk

(wk|xk). Using modality-specific representation is also explored by Lee & Pavlovic
(2021), however, the approach proposed by Palumbo et al. (2023) is more robust to controlling
modality-specific representation vs shared representation. But since the shared component is a mix-
ture of experts of individual components, it can only use one of them at a time during inference which
limits its ability to use additional observations that are available as the number of given modalities
increase.

Sutter et al. (2020) propose an updated multimodal objective that consists of a JS-divergence term
instead of the normal KL term with a mixture-of-experts posterior. They also add additional modality-
specific terms and a dynamic prior to approximate the unimodal and the posterior term. Though these
additions provide some improvement, there is still a need for a model that balances coherence with
quality (Palumbo et al., 2023).

Wolff et al. (2022) propose a hierarchical multimodal VAEs for the task where a generative model of
the form p(x, g, z) and an inference model q(g, z|x1:M ) containing multiple hierarchies of z where
g holds the shared structures of multiple modalities in a mixture-of-experts form q(g|x1:M ). They
argue that the modality-exclusive hierarchical structure helps in avoiding the modality sub-sampling
issue and can capture the variations of each modality. Though the hierarchy gives some improvement
in results, the model is still restricted in capturing the shared structure in g discussed in their work.

Suzuki & Matsuo (2023) introduce a multimodal objective that avoids sub-sampling during training
by not using a mixture-of-experts posterior to avoid the main issue discussed by Daunhawer et al.
(2022). They propose a product-of-experts posterior multimodal objective with additional unimodal
reconstruction terms to facilitate cross-modal generations.

Hwang et al. (2021) propose an ELBO that is derived from an information theory perspective that
encourages finding a representation that decreases the total correlation. They propose another ELBO
objective which is a convex combination of two ELBO terms that are based on conditional VIB and
VIB. The VIB term decomposes to ELBOs of previous approaches. The conditional term decreases
the KL between the joint posterior and individual posteriors. They use a product-of-experts as their
joint posterior.

Finally, parallel to our work, Xu et al. (2023) propose diffusion models to tackle the multimodal
generation which uses multi-flow diffusion with data and context layer for each modality and a shared
global layer.
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4 EXPERIMENTS

We run experiments on an extended version of PolyMNIST (Sutter et al., 2021) and high-dimensional
CelebAMask-HQ (Lee et al., 2020) datasets.

4.1 EXTENTED POLYMNIST

The original PolyMNIST introduced by Sutter et al. (2021) has five modalities and in order to study
the behavior of the methods on a larger number of modalities, we extended the number of modalities
to ten. Figure 2 shows samples of the Extended PolyMNIST data.

We compare our methods SBM-VAE and SBM-RAE, which substitute individual variational au-
toencoder with a regularized deterministic autoencoder (Ghosh et al., 2020); see Appendix A.1 for
the details of SBM-RAE, as well as their counterparts with coherence guidance SBM-VAE-C and
SBM-RAE-C with MVAE (Wu & Goodman, 2018), MMVAE (Shi et al., 2019), MoPoE (Sutter et al.,
2021), MVTCAE (Hwang et al., 2021), and MMVAE+ (Palumbo et al., 2023).

We use the same residual encoder-decoder architecture similar to (Daniel & Tamar, 2021) for all
methods except for MMVAE+ which performs poorly on this architecture. Therefore, we use the
original architecture described in Palumbo et al. (2023) for MMVAE+. See Appendix A.2 for details
of the used neural networks.

Figure 2: Updated PolyMnist Dataset

We use β-VAE for training baseline multimodal VAEs
and unimodal VAEs with Adam optimizer (Kingma & Ba,
2015). We use an initial learning rate of 0.001, and the
models are trained for 200 epochs with different β values
and the best model is selected using the validation set for
each baseline. The unimodal VAEs that are later used for
SBM-VAE and SBM-RAE use a latent dimension of 64
which is reshaped to 8x8. MMVAE+ also uses a total of 64
dimension latent vector. We increased the latent dimension
of the other baselines to 64 ∗ n where n is the number of
modalities the model uses to compensate the fact that they
don’t have modality specific representations. Other hyperparameters are discussed in Appendix A.2.

The score networks are trained with an initial learning rate of 0.0002 using the Adam optimizer.
We use the variance preserving SDE (VPSDE) as the perturbation kernel. We run PC (Predictor-
Corrector) sampling technique using 1 step Langevin Corrector for N = 100 number of steps to
generate samples from the score models. For the score models, zu, missing modalities, are initialized
from a Gaussian distribution of N (0,1). See Appendix A.3 for the details of training and sampling
using the score model.

Conditional generation is done for MVAE and MVTCAE using PoE of the posteriors of the given
modalities, and for the mixture models, a mixture component is chosen uniformly from the observed
modalities.

We evaluate all methods on both prediction coherence and generative quality. To measure the
coherence, we use a pre-trained classifier to extract the label of the generated output and compare
it with the associated label of the observed modalities Shi et al. (2019). The coherence of the
unconditional generation is evaluated by counting the number of consistent predicted labels from the
pre-defined classifier. We also measure the generative quality of the generated modalities using the
FID score (Heusel et al., 2017).

Figure 3 shows the generated samples from the third modality given the rest. The SBM-VAE generates
high-quality images with considerable variation, very close to the training dataset, while the baselines
generate more blurry images with a lower variation. We also study, how the conditional coherence
and FID change with the number of the observed modality. For an accurate conditional model, we
expect as we observe more modalities, the accuracy of conditional generation improves without
decreasing the quality. Figure 4 shows the FID score of the last modality as we increase the given
modalities and Figure 5 demonstrates the conditional coherence by measuring the accuracy of the
predicted images on the last modality given a different number of observed modalities.
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(a) SBM-VAE (b) MMVAE+ (c) MVTCAE (d) MoPoE (e) MVAE

Figure 3: Multiple conditionally generated samples for each digit from the third modality. Each
column shows samples, from 0 to 9, generated conditionally given the remaining modalities. (Please
see the appendix for the complete set that includes SBM-RAE and MMVAE.)
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Figure 4: The conditional FID of the last
modality generated by incrementing the given
modality at a time. The x-axis shows how
many modalities are given to generate the
modality and the y-axis shows the FID score
of the generated modality.
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Figure 5: The conditional accuracy of the
last modality generated by incrementing the
given modality at a time. The x-axis shows
how many modalities are given to generate the
modality and the y-axis shows the accuracy of
the generated modality.

As mentioned by Daunhawer et al. (2022), the other multimodal VAEs’ generative qualities decline
as we observe more modalities. This is shown by the high FID score of the generated modality for the
compared methods except for the SBM models and MMVAE+. SBM-based multimodal VAEs and
MMVAE+ both are equipped with a way to capture modality-specific representation, so increasing
the number of observed modalities does not affect their generation quality. The SBM exploits the
additional modalities to generate better and more accurate images as we increase the number of
modalities without losing quality. Even though the other multimodal VAEs have high coherence
as expected, however, as we increase the number of observed modalities the SBM-based models
achieve high coherence too. Similar experiments have been reported for predicting the first modality
in Appendix (see Figure 11 and Figure 12).

The plain score model suffers from low coherence when we have only one or two observed modalities.
But with the help of the coherence guidance, we can guide the model towards the correct output
and that helps increase the accuracy of SBM-VAE and SBM-RAE. In addition to that, increasing
the number of sampling steps from 100 to 1000 also helps when a few modalities are observed. We
demonstrate the effect of coherence guidance and the number of inference steps in Figure 7.

We also study unconditional coherence, which has been reported in Figure 6. We evaluate un-
conditional accuracy by counting the number of consistent labels across different modalities after
classifying the generated images using a pre-trained classifier. 71% of generated images using SBM
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Figure 6: Unconditional coherence. The
x-axis shows the number of coherent
modalities and the y-axis shows the
percentage of such coherent predicted
modalities in the generated output
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Figure 7: Effect of having the energy-based
coherence guidance model and number of
sampling steps
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(a) Unconditional FID
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(b) Conditional FID
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(c) Conditional accuracy

Figure 8: a) unconditional FID (b) conditional FID and c) conditional accuracy of the generated first
modality given the rest of modalities by increasing the number of trained modalities.

models are coherent which are considerably better than the other baselines. Our result shows that
MVTCAE performs poorly in unconditional generation.

Finally, we study the scalability of methods given a different number of data modalities (see Figure 8).
We first train the models with different numbers modalities and then evaluate unconditional FID for
the first modality (for unconditional FID we don’t use coherence guidance since there is no observed
modality), conditional FID for the first modality given the rest, and conditional accuracy of the
first modality given the rest. The performance of our proposed methods is consistent and superior
across different number of data modalities. Specifically, both SBM-VAE-C and SBM-RAE-C show
consistent FID and coherence, for which the complexity of the sampling from prior remains the same
as we increase the number of data modalities. Further details as well as more generated samples have
been reported in Appendix A.4.

4.2 CELEBAMASK-HQ

Figure 9: A sample of image
and associated mask from the
CelebAMask-HQ dataset (At-
tribute not shown)

The images, masks, and attributes of the CelebAMask-HQ dataset
can be treated as different modalities of expressing the visual charac-
teristics of a person. A sample from the dataset is shown in Figure 9.
The images and masks are resized to 128 by 128. The masks are
either white or black where all the masks given in the CelebAMask-
HQ except the skin mask are drawn on top of each other as one
image. We follow the pre-processing of Wu & Goodman (2018) by
selecting 18 out of 40 existing attributes as described. We compare
SBM-VAE, SBM-VAE-C, SBM-RAE, SBM-RAE-C, MoPoE, MVT-
CAE, and MMVAE+. See Appendix A.6 for the experimental setups
of these methods.

We evaluate the generation quality of the image modality using FID score and generation accuracy
of mask and attribute modalities using sample-average F1 score. Table 1 shows how our methods

8
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compare with the baselines in the presence of zero (unconditional), one, or two observed modalities.
We have also reported the performance of a supervised model trained to predict attributes and masks
directly given the images. SBM-VAE (and SBM-VAE-C) generates high-quality images compared to
baselines, in both conditional and unconditional settings, while on the mask and attribute modalities,
MoPoE and MVTCAE achieve a better F1 score. This is consistent with the capacity of MoPoE and
MVTCAE for joint representation which is more useful for MAP prediction. We can also observe
that conditional guidance consistently improves the coherence of score-based models.

(a) SBM-VAE image (b) SBM-VAE mask
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Male
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(c) SBM-VAE attribute

Figure 10: Unconditional generation using SBM-VAE

Table 1: CelebAMask-HQ Result

Attribute Image Mask

GIVEN Both Img Both Mask Attr Unc Both Img

F1 F1 FID FID FID FID F1 F1

SBM-RAE 0.62(±0.03) 0.6(±0.004) 84.9(±0.19) 86.4(±0.02) 85.6(±0.48) 84.2(±0.25) 0.83(±0.001) 0.82(±0.001)

SBM-RAE-C 0.66(±0.03) 0.64(±0.004) 83.6(±0.05) 82.8(±0.05) 83.1(±0.14) 84.2(±0.05) 0.83(±0.004) 0.82(±0.004)

SBM-VAE 0.62(±0.003) 0.58(±0.005) 81.6(±0.10) 81.9(±0.03) 78.7(±0.25) 79.1(±0.07) 0.83(±0.001) 0.83(±0.001)

SBM-VAE-C 0.69(±0.005) 0.66(±0.001) 82.4(±0.1) 81.7(±0.29) 76.3(±0.7) 79.1(±0.3) 0.84(±0.02) 0.84(±0.001)

MoPoE 0.68(±0.002) 0.71(±0.004) 114.9(±0.32) 101.1(±0.16) 186.7(±0.28) 164.8(±0.62) 0.85(±0.002) 0.92(±0.001)

MVTCAE 0.71(±0.001) 0.69(±0.004) 94(±0.45) 84.2(±0.32) 87.2(±0.08 162.2(±1.08) 0.89(±0.001) 0.89(±0.003)

MMVAE+ 0.64(±0.003) 0.61(±0.002) 133(±14.28) 97.3(±0.04) 153(±0.49) 103.7(±0.61) 0.82(±0.03) 0.89(±0.002)

Supervised 0.79(±0.001) 0.94(±0.001)

Finally, we show the unconditional generation across different modalities using SBM-VAE in Fig-
ure 10. Please see Appendix A.7 for more qualitative samples on the CelebAMask-HQ dataset.

5 CONCLUSION AND DISCUSSION

Multimodal VAEs are an important tool for modeling multimodal data. In this paper, we provide a
different multimodal posterior using score-based models. Our proposed method learns the correlation
of latent spaces of unimodal representations using a joint score model in contrast to the traditional
multimodal VAE ELBO. We show that our method can generate better-quality samples and at the
same time preserves coherence among modalities. We have also shown that our approach is scalable
to multiple modalities. We also introduce coherence guidance to improve the coherence of the
generated modalities with the observed modalities. The coherence guidance effectively improves the
coherence of our score-based models. Our proposed methods assume the presence of all modalities
during training which is a limitation of the current work, and in future research, we are going to
address this issue. Moreover, compared to traditional multimodal VAEs, score-based multimodal
VAEs require an expensive sampling procedure during inference, which creates a trade-off between
the quality and coherence of the prediction and the computational cost.
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A APPENDIX

A.1 SBM-RAE

Regularized autoencoders (RAEs) (Ghosh et al., 2020) can be used instead of VAEs in our setting.
RAEs assume a deterministic encoder and regularize the latent space directly by penalizing L2 norm
of the latent variables:

LRAE = LREC + β||z||22 + λLREG, (9)

where LREC is the reconstruction loss for deterministic autoencoder and LREG is the decoder regular-
izer. In our setup, we don’t use any decoder regularizer.

In order to generate a sample from the latent space, RAEs require to fit separate density estimators on
the latent variables. In our case, the score models are responsible for generating samples from the
latent space, which makes RAE a compelling choice for our setup. RAEs are capable of learning more
complex latent structures, and expressive generative models such as score models can effectively
learn that structure to generate high-quality samples.

A.2 MODEL ARCHITECTURES AND EXPERIMENTAL SETUPS FOR EXTENDED POLYMNIST

The extended PolyMnist dataset was updated from the original PolyMnist dataset by Sutter et al.
(2020) with different background images and ten modalities. It has 50,000 training set, 10,000
validation set, and 10,000 test set. The VAEs for each modality are trained with an initial learning
rate of 0.001 using a β value of 0.1 where all the prior, posterior, and likelihood are Gaussians. This
also applies to all multimodal VAEs except MMVAE+ which uses Laplace distribution instead of
Gaussian. The RAE for each modality was trained using the mean squared error loss with the norm of
||z||22 regularized by a factor of 10−5 and a Gaussian noise added to z before feeding to the decoder
with mean 0 and variance of 0.01 where the hyperparameter values were tuned using the validation
set. The encoders and decoders for all models use residual connections to improve performance and
are similar in structure to the architecture used in Daniel & Tamar (2021) except for MMVAE+ were
we used the original model because the model’s performance doesn’t generalize to different neural
net architecture. For MMVAE+, modality-specific and shared latent sizes are each 32 and the model
was trained similarly to the code provided by the paper 2 with the IWAE estimator with K=1. The
detailed architecture can be found by referring to the code that is attached. We used latent size of 64
for our models and MMVAE+ and we increased the latent dimension of the other baselines to 64 ∗ n
where n is the number of modalities because they don’t have any modality specific representation.
We chose the best β value for each model using the validation set. For MoPoE and MMVAE, β of
2.5 was chosen, for MMVAE+ 5, for MVAE 1 and for MVTCAE 0.1.

The neural net of SBM-VAE and SBM-RAE is a UNET network where we resize the latent size to
8x8. For SBM-VAE, samples are taken from the posterior at training time and the mean of posterior
is taken at inference time. For SBM-RAE, the zs are taken directly. We use a learning rate of 0.0002
with the Adam optimizer (Kingma & Ba, 2015). The detailed hyperparameters are shown in table
2. We use the VPSDE with β0 = 0.1 and β1=5 with N = 100 and the PC sampling technique with
Euler-Maruyama sampling and langevin dynamics. For modalities less than 10, we use β0 of 1, the
others hyperparameters remain the same. The energy-based model is a simple MLP with the softplus
activation. We follow equation 6 to train the models.

Table 2: Score Hyperparameters PolyMnist

Model βmin βmax N LD per step EBM-scale batch-size

SBM 10mod 0.1 5 100 1 1000 256
SBM below 10mod 1 5 100 1 1000 256

2MMVAE+ code is taken and updated from the official repo provided at https://github.com/epalu/mmvaeplus
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A.3 TRAINING AND INFERENCE ALGORITHM

We follow the Song et al. (2020b) to train the score models using the latent representation from the
encoders. The following algorithms 1, 2 show the training and inference algorithm we use.

Algorithm 1 Training

Require: M , N , ▷ M - modality, N -epochs
z = []
for i = 1 to M do

Get xi ▷ Get the input x from modality i
Sample zi from q(z|xi) ▷ Sample z from the encoder
Append zi to z

end for
for epoch = 1 to N do

Diffuse z
Compute sθ(z, t)
Calculate loss using equation 3 multiplied by σ2

t
Backpropagate and update the weights of the SBM

end for

Algorithm 2 Inference

if Unconditional then
Sample z from N (0, I) and stack to get Z

else if Conditional then
Sample z from N (0, I) if missing
Sample z from encoder q(z|xi) if present
Stack all z

end if
for i = 1 to n do ▷ n is number of sampling iterations

Update missing zs by the following equation using the PC sampling
if use guidance then

Add gradient from EBM to the score
end if

end for
Feed the z to the respective decoder to get output

1 2 3 4 5 6 7 8 9
Number of Observed Modalities

50

75

100

125

150

175

200

FI
D

SBM-VAE-C
SBM-RAE-C
MoPoE
MMVAE
MVAE
MVTCAE
MMVAE+

Figure 11: The conditional FID of the first
modality generated by incrementing the given
modality at a time. The x-axis shows how
many modalities are given to generate the
modality and the y-axis shows the FID score
of the generated modality.
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Figure 12: The conditional accuracy of the
first modality generated by incrementing the
given modality at a time. The x-axis shows
how many modalities are given to generate the
modality and the y-axis shows the accuracy of
the generated modality.
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Model Avg Coherence Avg FID

MVAE 0.751(±0.001) 139.47(±0.055)

MMVAE 0.969(±0.055) 176.49(±0.135)

MoPoE 0.982(±0.001) 163.31(±0.590)

MVTCAE 0.983(±0.001) 77.69(±0.200)

MMVAE+ 0.937(±0.130) 110.65(±0.0005)

SBM-VAE 0.967(±0.001) 73.29(±0.080)

SBM-RAE 0.968(±0.001) 81.70(±0.120)

Table 3: Conditional Performance

A.4 ABLATION STUDY

A.4.1 EXTENDED POLYMNIST RESULTS

Here we show additional graphs for different modalities in addition to the ones shown in the main
paper. Figure 11 shows the same setup as figure 4 in the main paper but for another modality.

We also show the average conditional coherence and average conditional FID for each model
averaging over the modalities generated given the rest. Table 3 shows the result of that. Figure 13
and 14 show the results per modality.

A.4.2 β ABLATION

In Table 4, we discuss how β of the unimodal VAE affects the conditional FID and the conditional
coherence of SBM-VAE. As the score model is trained on the samples from the posterior, samples
that have good reconstruction are important for the score model to learn well. This is also evident in
the result as lower β values have better result than higher β values as VAEs with lower β values have
better reconstruction. The score model also learns the gap created in unconditional sampling due
to this trade-off as the score model transforms normal Gaussian noise to posterior samples during
inference. The table shows a score model on the first two modalities of Extended PolyMnist trained
using different β values of 0.1,0.5, and 1 and their average conditional result.

In figure 15, 16, 18, and 15, we also show results of different β values for MMVAE+ and MVTCAE
predicting the last modality as the number of observed modalities is increased from 1 to 9.
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Figure 13: Conditional Accuracy (Coherence)
of each modality given the rest.
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Figure 14: Conditional FID of each modality
given the rest.

A.5 MODE COVERAGE

In this section, in addition to FID, we discuss an evaluation technique for unconditional generation.
We generate 10,000 unconditionally generated images from the multimodal Extended PolyMnist
dataset and count how many digits are generated from the 10,000 images for each digit. A good model
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Figure 15: The conditional accuracy of the
last modality generated by incrementing the
given modality at a time for different βs of
MMVAE+
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Figure 16: The conditional FID of the last
modality generated by incrementing the given
modality at a time for different βs of MM-
VAE+.
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Figure 17: The conditional accuracy of the
last modality generated by incrementing the
given modality at a time for different βs of
MVTCAE
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Figure 18: The conditional FID of the last
modality generated by incrementing the given
modality at a time for different βs of MVT-
CAE.

β Avg Coherence Avg FID

0.1 0.905(±0.001) 52.12(±0.045)

0.5 0.780(±0.001) 102.85(±0.050)

1 0.714(±0.003) 108.35(±0.295)

Table 4: Effect of β on SBM-VAE

should generate all digits uniformly covering all the distribution of the dataset. Figure 19 shows
the counts of each modality in a bar graph for SBMVAE, SBMRAE, MMVAE+, and MVTCAE.
Our models cover and MMVAE+ cover most modes almost uniformly where as MVTCAE has some
non-uniformity. Our models also have the highest unconditional coherence which means they also
generate coherent outputs at the same time which is an ideal property.

A.5.1 FINE-TUNNING THE GENERATIVE MODELS USING MISSING MODALITES

We can further finetune the generative model (decoder) to increase the overall coherence. During
training, we assume all the modalities are present. This condition is necessary for training pθ in the
described setup 3. However, we are interested in conditional queries of p(.|xo), we can achieve a
tighter lower bound by further optimizing the pψ(xu|zu) for sample from q(zu|zo,xo). We update

3We leave training pθ with missing modalities for future work.
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Figure 19: Mode Coverage
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Table 5: Conditional Coherence with different amounts of data given [different score-net]

Model Drop Probability

0.1 0.3 0.5 0.7 0.9 Avg

MoPoE 0.980 0.959 0.915 0.856 0.799 0.901(±0.066)

MMVAE 0.973 0.970 0.969 0.971 0.970 0.970(±0.001)

MVAE 0.735 0.638 0.521 0.430 0.317 0.528(±0.147)

MVTCAE 0.984 0.976 0.942 0.895 0.776 0.914(±0.076)

MMVAE+ 0.936 0.936 0.940 0.938 0.938 0.0.937(±0.001)

SBMRAE 0.949 0.944 0.896 0.686 0.425 0.78(±0.201)

SBMVAE 0.984 0.932 0.875 0.671 0.277 0.747(±0.258)

SBMVAE-ft-0.1 0.997 0.980 0.873 0.600 0.270 0.744(±0.276)

SBMVAE-ft-0.3 0.993 0.975 0.842 0.539 0.336 0.737(±0.258)

SBMVAE-ft-0.5 0.996 0.994 0.915 0.700 0.260 0.773(±0.278)

SBMVAE-ft-0.7 0.969 0.944 0.893 0.588 0.279 0.734(±0.265)

SBMVAE-ft-0.9 0.799 0.802 0.753 0.534 0.236 0.624(±0.217)

the parameters of decoders to maximize the conditional log-likelihood:

max
ψ

Eq(zu|zo,xo) log pψ(xu|zu)

= max
ψ

1

K

K∑
k=1

log pψk
(xku|zku) zku ∼ q(.|zo,xo) (10)

For each training example in the batch, we randomly drop each modality with probability p. Eq. 10
will increase the likelihood of the true assignment of the dropped modalities given the observed
modalities. We evaluate this experiments on a different score model trained using NCSN Song &
Ermon (2019) and with unimodal VAEs with β=0.5.

Figure 21 shows the conditional coherence of different finetuned models with varying p. As it can be
seen in the figure, the coherence improves by a small amount but the downside of this is that it comes
with worse FID values due to the fact we are only finetuning the generative model of the VAE.

Table 5 shows the conditional performance when any modality is dropped by a probability p from
0.1 to 0.9. The table also includes finetuned SBMVAE (SBMVAE-ft) evaluations in addition to all
models. SBMVAE-ft with drop probability 0.5 improves the overall coherence of SBMVAE by some
amount.

A.5.2 QUALITATIVE RESULTS FOR EXTENDED POLYMNIST

Here we show some conditionally generated samples and unconditional generation from each model.
Conditional samples are shown in figures 23 and 24 and unconditional samples in figure 25.

A.6 CELEBMASKHQ EXPERIMENTAL SETUP

The CelebMaskHQ dataset is taken from Lee et al. (2020) where the images, masks, and attributes are
the three modalities. All face part masks were combined into a single black-and-white image except
the skin mask. Out of the 40 attributes, 18 were taken from it similar to the setup of Wu & Goodman
(2018). The encoder and decoder architectures are similar to Daniel & Tamar (2021) except MMVAE+
for the same reason as in PolyMNIST. A latent size of 256 was used for SBM models and MMVAE+,
and a latent size of 1024 was used for MVTCAE and MoPoE. For MMVAE+, modality-specific and
shared latent sizes are each 128 trained with IWAE estimator with K=1. For SBM-VAE, the image
VAE was trained using Gaussian likelihood, posterior, and prior with β = 0.1. The same applies for
the mask VAE but with β = 1. The attribute VAE uses Gaussian prior and posterior with a bernoulli
likelihood. This applies to all other baselines with the exception of MMVAE+ which uses laplace
likelihood and prior. We select the best β for the baselines from [0.1,0.5,1,2.5,5]. MoPoE use β of
0.1, MVTCAE 0.5 and MMVAE+ 5. For SBM-RAE, β values of 10−4, 10−5, 10−4 and Gaussian
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Figure 20: Plot of finetuning experiment using
different p values on how it affects conditional
FID (different score model). The conditional
FID of the last modality generated by incre-
menting the given modality at a time. The
x-axis shows how many modalities are given
to generate the modality and the y-axis shows
the FID of the generated modality.
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Figure 21: Plot of finetuning experiment using
different p values on how it affects conditional
coherence (different score model). The condi-
tional accuracy of the last modality generated
by incrementing the given modality at a time.
The x-axis shows how many modalities are
given to generate the modality and the y-axis
shows the accuracy of the generated modality.

(a) SBM-VAE (b) SBM-RAE (c) MMVAE+ (d) MVTCAE (e) MoPoE (f) MMVAE (g) MVAE

Figure 22: Conditional Samples from the third modality given the rest

(a) SBM-VAE (b) SBM-RAE (c) MMVAE+ (d) MVTCAE (e) MoPoE (f) MMVAE (g) MVAE

Figure 23: Conditional Samples from the first modality given the rest

noises of mean 0 and variance of 0.001, 0.001, 0.1 were added to z before feeding to the decoder for
the image, mask, and attribute modality respectively and the best performing one was selected.

The score-based models use a UNET architecture with the latent size reshaped into a size of 16x16.
We take the mean of the posterior during training and inference time for SBM-VAE where as the z
were taken during both times for SBM-RAE. Table 6 shows the detailed hyperparameters used for
the score models. DiffuseVAE hyperparameters and models are the same ones used in Pandey et al.
(2022) with formulation 1 for the 128x128 CelebHQ dataset. The energy based model uses an MLP
network. We train 3 pairs of models for each combination of modality.
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(a) SBM-VAE (b) SBM-RAE (c) MMVAE+ (d) MVTCAE (e) MoPoE (f) MMVAE (g) MVAE

Figure 24: Conditional Samples from the sixth modality given the rest

(a) SBM-VAE (b) SBM-RAE (c) MMVAE+

(d) MVTCAE (e) MoPoE (f) MMVAE

(g) MVAE

Figure 25: Unconditional Samples where each of the columns are unconditional samples from each
modality

Model βmin βmax N LD per step EBM-scale batch-size

SBM 0.1 20 1000 1 2000 256

Table 6: Score Hyperparameters CelebMaskHQ
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A.7 CELEBA ABLATION

A.7.1 HIGH QUALITY IMAGE GENERATION FOR CELEBAHQ

In our setup, we use a normal variational autoencoder which makes it suitable for baseline comparison
and training compute requirements. But since variational autoencoders suffer from low-quality and
blurry images, compared to other SOTA generative models such as diffusion models (Dhariwal
& Nichol, 2021), in order to get higher-quality, we can do two things. The first is to use a high
quality pre-trained auto-encoder and train the score model on it which is possible because we have
independent two phase training stages. The second is to further increase the quality of the output
of the decoder using DiffuseVAE model (Pandey et al., 2022). We illustrate the latter case here
where the generated samples from SBM-VAE are fed into DiffuseVAE as shown in Figure26. The
DiffuseVAE helps in generating high quality images from the low quality ones without changing the
image characteristics. As the figure shows, the quality of the images is much better while preserving
the attributes and the masks given to generate them.

Male +
Mouth_Slightly_Open +

Straight_Hair

Male +
Gray_Hair +
Straight_Hair

(a) SBM-VAE output (b) DiffuseVAE output

Figure 26: Higher quality image generation using DiffuseVAE given mask and attribute shown in the
first two columns

A.7.2 CELEBMASKHQ QUALITATIVE RESULT

In this section, we show samples from the CelebHQMASK dataset where the generated images are
conditioned on different modalities. Figure 27 shows unconditionally generated outputs from each
modality. Figure 28 shows different samples where only the image is given, Figure 29 shows different
samples where the mask is given, Figure 30 shows different samples where the attribute is given.
Figures 32, 31, 33 show different samples where a combination of the two modalities are given and
the remaining modality is predicted.

A.8 EXPERIMENT ON THE MHD DATASET

In this section, we discuss an additional experiment consisting of an audio modality. We use the
audio and image modalities from the MHD dataset by Vasco et al. (2022). The image modality is
from the MNIST dataset and the audio is a recording of each digit. We use the same encoder-decoder
architecture from Vasco et al. (2022) with latent size 64. We conduct experiments on three models:
SBMVAE, MVTCAE, and MMVAE+ and we report the result in table 7. The result shows our
approach works in the presence of audio modality also.

Model Aud -> Img Coherence Img->Aud Coherence Unc Coherence

SBMVAE 0.86 0.85 0.84
MVTCAE 0.66 0.82 0.36
MMVAE+ 0.45 0.44 0.25

Table 7: MHD Image-Audio result

21



Under review as a conference paper at ICLR 2024
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Figure 27: Unconditional generation
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Figure 28: Mask and Attribute generation given Image
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Figure 29: Image and Attribute generation given Mask
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Figure 30: Image and Mask generation given Attribute
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Figure 31: Attribute generation given Image and Mask
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Mouth_Slightly_Open +

Smiling +

Wavy_Hair +
(a) SBM-RAE (b) SBM-VAE (c) MoPoE

Figure 32: Mask generation given Image and Attribute
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Figure 33: Image generation given Mask and Attribute
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