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Abstract

Deep neural networks (DNNs) have revolutionized video action recognition, but their in-
creasing use in critical applications also makes them attractive targets for attacks. In par-
ticular, backdoor attacks have emerged as a potent threat, enabling attackers to manipulate
a DNN’s output by injecting a trigger, without affecting the model’s performance on clean
data. While the effectiveness of backdoor attacks on image recognition is well-known, their
impact on video action recognition is not yet fully understood. In this work, we revisit
the traditional backdoor threat model and incorporate additional video-related aspects to
that model. Contrary to prior works that studied clean label backdoor attacks against video
action recognition and found them ineffective, our paper investigates the efficacy of poisoned
label backdoor attacks against video action recognition and demonstrates their effectiveness.
We show that existing poisoned-label image backdoor attacks could be extended temporally
in two ways, statically and dynamically. Furthermore, we explore real-world video backdoors
to highlight the seriousness of this vulnerability. Finally, we study multi-modal (audiovisual)
backdoor attacks against video action recognition models, where we show that attacking a
single modality is enough for achieving a high attack success rate. Our results highlight
the urgent need for developing robust defenses against backdoor attacks on DNNs for video
action recognition.

1 Introduction

The deployment of deep neural networks (DNNs) in real-world applications necessitates their safety and
robustness against possible vulnerabilities and security breaches. To meet this requirement, investigating
adversarial attacks, particularly backdoor attacks, is essential. Backdoor attacks or neural trojan attacks
exploit the scenario where a user with limited computational capabilities downloads pre-trained DNNs from
an untrusted party that we refer to as the adversary. The adversary provides the user with a model that
performs well on an unseen validation set, but produces a pre-defined class label in the presence of an
attacker-defined trigger (called the backdoor trigger). This association is created by training the DNN on
poisoned training samples, which are samples polluted by the attacker’s trigger (Li et al., 2022). Unlike
clean-label attacks, the adversary in poisoned-label attacks also switches the label of the poisoned samples
to the intended target label.

While the topic of backdoor attacks and defenses for 2D image classification models has garnered a lot of
attention in the research community (Barni et al., 2019; Gu et al., 2019; Hammoud & Ghanem, 2021), the
same cannot be said about these concepts in the realm of video action recognition models. This lack of
attention may be attributed to a previous study (Zhao et al., 2020) that suggested that image backdoor
attacks are not very effective on videos, particularly in the context of clean-label attacks. However, it should
be noted that this study solely focused on clean-label attacks, which are known to be weaker than their
poisoned-label counterparts (Turner et al., 2019). Additionally, the study adopted the 2D backdoor attack
threat model without taking into account video-specific considerations that could have a significant impact
on the efficacy of backdoor attacks in this domain.
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Extending backdoor attacks from the image to video domain is more challenging than previously thought
given the temporal dimension. This dimension introduces new challenges that must be considered to achieve
a successful attack, mainly due to the nature of preprocessing applied in video systems. Consequently, further
research in this area is warranted. Therefore, to address this gap, we revisit and revise the 2D poisoned-label
backdoor threat model by incorporating additional constraints that are inherently imposed by video systems.
These constraints mainly stem from the presence of the temporal dimension. We explore two ways to extend
image backdoor attacks to the video domain: static and dynamic. Then, we present three novel natural
video backdoor attacks to highlight the risks associated with backdoor attacks in the video domain. We test
the attacked models against three 2D backdoor defenses and analyze the reasons that lead to the failure of
those defenses. Moreover, we investigate audiovisual backdoor attacks for the first time, where we evaluate
the importance and contribution of each modality to the performance of the attack for both late and early
fusion settings. We demonstrate that attacking a single modality is enough to achieve a high attack success
rate.

Contributions. In summary, our contributions are two-fold. First, we revisit the traditional backdoor
attack threat model and incorporate video-related aspects, such as video subsampling and spatial cropping.
We also extend existing image backdoor attacks to the video domain in two different ways, statically and
dynamically, and propose three novel natural video backdoor attacks. Second, we investigate audiovisual
backdoor attacks against video action recognition models, which to our knowledge, has not been explored
before. Through extensive experiments, we provide evidence that the previous perception of image backdoor
attacks in the video domain is far from being comprehensive, especially when viewed in the poisoned-label
attack setup.

2 Related Work

Backdoor Attacks. The concept of backdoor attacks was first introduced in (Gu et al., 2019), where
a patch was added to a subset of training images to create a backdoor that could be triggered by an
attacker at will. This attack, called BadNet, sparked further research in the field. Soon after, (Liu et al.,
2017a) proposed optimizing for the values of the patch to make the backdoor attack more effective. As the
community continued to develop backdoor attacks, it became evident that the invisibility of the trigger was
crucial to evade human detection. In response, researchers proposed new techniques to blend the trigger with
the image rather than stamping it, such as (Chen et al., 2017). (Li et al., 2021b) used the least significant
bit algorithm from steganography literature to generate backdoor attacks, while (Nguyen & Tran, 2021)
generated warping fields to warp the image content as a trigger. (Doan et al., 2021) designed learnable
transformations to generate optimal backdoor triggers.

As the spatial (Liao et al., 2020; Ren et al., 2021; Chen et al., 2021; Liu et al., 2020; Turner et al., 2019;
Li et al., 2021b; Salem et al., 2022; Wang et al., 2022; Xia et al., 2022) and latent domains (Yao et al.,
2019; Qi et al., 2022; Doan & Lao, 2021; Zhong et al., 2022; Zhao et al., 2022b) were extensively explored
with various backdoor attacks, the frequency domain started to gain attention (Hammoud & Ghanem, 2021;
Zeng et al., 2021b; Feng et al., 2022; Wang et al., 2021b; Yue et al., 2022). (Hammoud & Ghanem, 2021)
utilized frequency heatmaps proposed in (Yin et al., 2019) to create attacks that targeted the most sensitive
frequency components of the network. (Feng et al., 2022) proposed blending low-frequency content from a
trigger image with training images as a poisoning technique.

In this context, our work stands out as we extend the 2D backdoor threat model to the video domain by
incorporating video-related aspects into it. We also extend five poisoned-label image backdoor attacks into the
video domain and propose three novel natural video backdoor attacks. By doing so, we fill a crucial gap in
the literature and provide valuable insights into the effectiveness of backdoor attacks in the video domain.

Backdoor Defenses. Backdoor attacks have been met with swift opposition in the form of various defenses.
These defenses typically fall into five categories: preprocessing-based (Doan et al., 2020; Liu et al., 2017b;
Qiu et al., 2021), model reconstruction-based (Liu et al., 2018; Zheng et al., 2022; Wu & Wang, 2021; Li
et al., 2021a; Zeng et al., 2021a), trigger synthesis-based (Guo et al., 2020; Shen et al., 2021; Hu et al., 2021;
Tao et al., 2022; Guo et al., 2019; Qiao et al., 2019; Wang et al., 2019; Liu et al., 2019), model diagnosis-
based (Xiang et al., 2022; Liu et al., 2022a; Dong et al., 2021; Kolouri et al., 2020; Zheng et al., 2021), and
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sample-filtering based (Chen et al., 2018; Tang et al., 2021; Javaheripi et al., 2020; Tran et al., 2018a; Gao
et al., 2019; Hayase et al., 2021). Early backdoor defenses, such as the one proposed in (Wang et al., 2019),
posited that backdoor attacks create a shortcut between all samples and the poisoned class. To address
this, they developed an optimization method to identify triggers of abnormally small norms that would flip
all samples to one label. Later, multiple improved iterations of this method were proposed, such as (Liu
et al., 2019; Guo et al., 2019; Zeng et al., 2021a). Other defenses, like fine pruning (Liu et al., 2018), suggest
that the backdoor is triggered by specific neurons that are dormant in the absence of the trigger, and thus
propose pruning the least active neurons on clean samples. Similarly, STRIP (Gao et al., 2019) showed
that blending clean samples with other clean samples would yield a higher entropy compared to when clean
images are blended with poisoned samples. Activation clustering (Chen et al., 2018) uses KMeans to cluster
the activations of a potentially poisoned dataset into two clusters and identify poisoned samples based on
the large silhouette distance between them.

Our work shows that current image backdoor defenses have limited effectiveness against backdoor attacks in
the video domain, especially against our proposed natural video attacks. As the field continues to develop,
it is essential to keep pushing the boundaries of backdoor defense research to ensure that our models remain
secure in the face of increasingly sophisticated attacks.

Video Action Recognition. Video action recognition is an essential task in computer vision that aims to
recognize human actions from video data. Two types of models are commonly used to recognize actions in
videos: CNN-based networks and transformer-based networks.

2D CNN-based methods leverage the power of pre-trained image recognition networks with specifically
designed modules to capture the temporal relationship between multiple frames (Wang et al., 2016; Lin
et al., 2019; Luo & Yuille, 2019; Wang et al., 2021a). These methods are computationally efficient as they
use 2D convolutional kernels. On the other hand, 3D CNN-based methods utilize 3D kernels to jointly capture
the spatio-temporal context within a video clip, which results in stronger spatial-temporal representations
(Tran et al., 2015; Feichtenhofer et al., 2019; Feichtenhofer, 2020; Tran et al., 2019). To further improve
the initialization process, I3D (Carreira & Zisserman, 2017) inflated the weights of 2D pre-trained image
recognition models to adapt them to 3D CNNs. Additionally, S3D (Xie et al., 2018) and R(2+1)D (Tran
et al., 2018b) proposed to disentangle spatial and temporal convolutions to reduce computational cost while
maintaining accuracy.

Recent advances in transformer-based action recognition models have shown to achieve better performance
on large training datasets compared to CNN-based models, such as (Arnab et al., 2021; Fan et al., 2021; Liu
et al., 2022b; Bertasius et al., 2021).

In this work, we evaluate the robustness of three state-of-the-art action recognition architectures, namely I3D,
SlowFast, and TSM, against backdoor attacks.

Audiovisual Action Recognition. In recent years, a growing number of action recognition models have
incorporated audio data alongside visual frames to enhance their understanding of complex activities such
as "playing music" or "washing dishes" (Hu et al., 2019; Morgado et al., 2021; Hu et al., 2020; Alwassel et al.,
2020). To bridge the gap between audio and visual modalities, researchers have introduced the Log-Mel
spectrogram, a 2D representation of audio data in the time and frequency domain that can be processed
by existing CNN and transformer-based models (Arandjelovic & Zisserman, 2017; 2018; Korbar et al., 2018;
Xiao et al., 2020).

There are two common approaches to integrating audio and visual data in action recognition models: early
fusion and late fusion. Early fusion involves merging the audio and visual features before classification,
which can improve the model’s ability to capture relevant features (Kazakos et al., 2019; Xiao et al., 2020).
However, early fusion also runs the risk of overfitting to the training data (Song et al., 2019). In contrast,
late fusion treats the audio and visual networks as separate entities and independently makes predictions for
each modality, which are then aggregated to make a final prediction (Ghanem et al., 2018).

Despite recent progress, little is known about the vulnerabilities of audiovisual action recognition models to
backdoor attacks. To our knowledge, this is the first study to investigate the impact of backdoor attacks on
both early and late fusion audiovisual action recognition models.
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Figure 1: Traditional Backdoor Attack Pipeline. After selecting a backdoor trigger and a target label,
the attacker poisons a subset of the training data referred to as the poisoned dataset (Dp). The label of the
poisoned dataset is fixed to a target poisoning label specified by the attacker. The attacker trains jointly on
clean (non-poisoned) samples (Dc) and poisoned samples leading to a backdoored model, which outputs the
target label in the presence of the backdoor trigger.

3 Video Backdoor Attacks

3.1 The Traditional Threat Model

The conventional threat model for backdoor attacks originated from research on 2D image classification
models (Gu et al., 2019). In this model, the victim outsources the training process to a trainer who has
access to the victim’s training data and network architecture. The victim only accepts the model provided by
the trainer if it performs well on the victim’s private validation set. The attacker’s objective is to maximize
the efficacy of the embedded backdoor attack (Li et al., 2022). Clean data accuracy (CDA) is used to
measure the model’s performance on the validation set, while the attack success rate (ASR) indicates the
percentage of test examples not labeled as the target class that are classified as the target class when the
backdoor pattern is applied. To achieve this, the attacker adds a backdoor trigger to a subset of the training
images and changes the labels of those images to a target class of their choice in the poisoned-label setup
before training begins. A more potent backdoor attack is one that is visually imperceptible (often measured
in terms of ℓ2/ℓ∞-norm, PSNR, SSIM, or LPIPS) and achieves both a high CDA and a high ASR. This is
summarized in Figure 1.

More formally, we denote the classifier which is parameterized by θ as fθ : X → Y. It maps the input
x ∈ X , such as images or videos, to class labels y ∈ Y. Let Gη : X → X indicate an attacker-specific
poisoned image generator that is parameterized by some trigger-specific parameters η. The generator may
be image-dependent. Finally, let S : Y → Y be an attacker-specified label shifting function. In our case,
we consider the scenario in which the attacker is trying to flip all the labels into one particular label, i.e.,
S : Y → t, where t ∈ Y is an attacker-specified label that will be activated in the presence of the backdoor
trigger. Let D = {(xi, yi)}N

i=1 indicate the training dataset. The attacker splits D into two subsets, a
clean subset Dc and a poisoned subset Dp, whose images are poisoned by Gη and labels are poisoned by S.
The poisoning rate is the ratio α = |Dp|

|D| , generally a lower poisoning rate is associated with a higher clean
accuracy. The attacker trains the network by minimizing the cross-entropy loss on Dc ∪ Dp, i.e., minimizes
E(x,y)∼Dc∪Dp

[LCE(fθ(x), y)]. The attacker aims to achieve high accuracy on the user’s validation set Dval

while being able to trigger the poisoned-label, t, in the presence of the trigger, i.e., fθ(Gη(x)) = t, ∀x ∈ X .

3.2 From Images to Videos

When it comes to video recognition, the traditional backdoor threat model must be adjusted to account for
the additional temporal dimension that videos possess. This extra dimension adds complexity to the game
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Figure 2: Static vs Dynamic Backdoor Attacks. Static backdoor attacks apply the same trigger across
all frames along the temporal dimension. On the other hand, dynamic attacks apply a different trigger per
frame along the temporal dimension.

between attackers and victims. Attackers now have an additional dimension to hide their backdoor trigger,
making it even more imperceptible. The backdoor attack can be applied to all frames or a subset of frames,
either statically (with the same trigger applied to each frame) or dynamically (with a different trigger applied
to each frame).

However, video recognition models pose a new challenge for backdoor attacks, as models are tested on
multiple sub-sampled clips with various crops (Lin et al., 2019; Carreira & Zisserman, 2017; Feichtenhofer
et al., 2019), potentially destroying the backdoor trigger. If the trigger is applied to a single frame, it may
not be sampled, and if the trigger is applied to the corner of an image, it may be cropped out.

Our work sheds light on these video-related aspects to be considered in backdoor attacks tailored against
video action recognition systems. In Section 4.2, we explore the impact of the number of frames poisoned
on clean data accuracy (CDA) and attack success rate (ASR), and demonstrate how existing 2D methods
can be extended both statically and dynamically for the video domain. For instance, BadNet (Gu et al.,
2019) applies a fixed patch as a backdoor trigger, which can be applied either statically or dynamically by
changing the position and pixel values of the patch for each frame. Figure 2 illustrates a BadNet attack
applied in both a static and dynamic manner. Furthermore, we investigate how simple yet natural video
"artifacts" such as lag, motion blur, and compression glitches can be utilized as naturally occurring realistic
backdoor triggers.

To the best of our knowledge, the only previous work that has considered backdoor attacks for video action
recognition is (Zhao et al., 2020), which directly adopted the threat model presented in Subsection 3.1
without considering any video related aspects.

3.3 Audiovisual Backdoor Attacks

Videos often come with accompanying audio signals, opening up the possibility for audio-visual backdoor
attacks. This leads to the intriguing question of how backdoor attacks would perform in a multi-modal
setup, where both the video and audio modalities could be attacked. To explore this question, we conduct
experiments in Section 4.4 that aim to answer the following questions: (1) What effect does having two
attacked modalities have on CDA and ASR?; (2) What happens if only one modality is attacked while the
other is left clean?; (3) What is the difference in performance between late and early fusion in terms of CDA
and ASR?

4 Experiments

4.1 Experimental Settings

In this section, we provide details about the datasets, network architectures, attack settings, evaluation
metrics, and implementation details used in our experiments.
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Figure 3: Visualization of 2D Backdoor Attacks. Image backdoor attacks mainly differ according
to the backdoor trigger used to poison the training samples. They could be extended either statically or
dynamically based on how the attack is applied across the frames.

Datasets. We consider three standard benchmark datasets used in video action recognition: UCF-101
(Soomro et al., 2012), HMDB-51 (Kuehne et al., 2011), and Kinetics-Sounds (Kay et al., 2017). Kinetics-
Sounds is a subset of Kinetics400 that contains classes that can be classified from the audio signal, i.e.classes
where audio is useful for action recognition (Arandjelovic & Zisserman, 2017). Kinetics-Sounds is particu-
larly interesting for Sections 4.3 and 4.4, where we explore backdoor attacks against audio and audiovisual
classifiers.

Network Architectures. We adopt standard practice and fine-tune a pretrained I3D network on the target
dataset using a dense sampling to sub-sample 32 frames per video (Carreira & Zisserman, 2017). In Section
4.2, we also present results using TSM (Lin et al., 2019) and SlowFast (Feichtenhofer et al., 2019) networks.
All three models use ResNet-50 as the backbone and are pretrained on Kinetics-400. For the audio modality,
we train a ResNet-18 from scratch on Mel-Spectrograms composed of 80 Mel bands sub-sampled temporally
to a fixed length of 256, similar to (Arandjelovic & Zisserman, 2017).

Attack Setting. For the video modality, we extend and evaluate several image-based backdoor attacks to
the video domain, including BadNet (Gu et al., 2019), Blend (Chen et al., 2017), SIG (Barni et al., 2019),
WaNet (Nguyen & Tran, 2021), and FTrojan (Wang et al., 2021b). We also explore three additional natural
video backdoor attacks. For the audio modality, we consider two attacks: sine attack and high-frequency
noise attack. Following (Gu et al., 2019; Hammoud & Ghanem, 2021; Nguyen & Tran, 2021), the target
class is arbitrarily set to the first class of each data set (class 0), and the poisoning rate is set to 10%.
Unless otherwise stated, the considered image backdoor attacks poison all frames of the sampled clips during
training and evaluation.

Evaluation Metrics. As is commonly done in the backdoor literature, we evaluate the performance of the
model using clean data accuracy (CDA) and attack success rate (ASR) explained in Section 3. CDA measures
the validation/test accuracy on an unseen dataset, thereby measuring the model’s generalizability. On the
other hand, ASR measures the effectiveness of the attack when the poison is applied to the validation/test
set. Additionally, we test the attacked models against some of the early 2D backdoor defenses, specifically
activation clustering (AC) (Chen et al., 2018), STRIP (Gao et al., 2019), and pruning (Liu et al., 2018).

Implementation Details. Our method is built on MMAction2 library (Contributors, 2020), and follows
their default training configurations and testing protocols, except for the learning rate and the number of
training epochs (check Supplementary). All experiments were run using 4 NVIDIA A100 GPUs.

4.2 Video Backdoor Attacks

Extending 2D Backdoor Attacks to the Video Domain. In Section 3.2, we mentioned that existing
image backdoor attacks can be extended to the video domain, either statically or dynamically. "statically"
refers to applying the same trigger across all frames, while "dynamically" refers to applying different triggers
for each frame. To examine this, we consider five attacks with varying backdoor triggers: BadNet, Blend,
SIG, WaNet, and FTrojan.

BadNet uses a patch as a trigger, Blend blends a trigger image with the original image, SIG superimposes
a sinusoidal trigger to the image, WaNet warps the content of the image, and FTrojan poisons a high- and
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UCF101 HMDB51 KineticsSound

CDA(%) ASR(%) CDA(%) ASR(%) CDA(%) ASR(%)
Baseline 93.95 - 69.59 - 81.41 -
BadNet 93.95 99.63 69.35 98.89 82.97 99.09
Blend 94.29 99.26 68.37 86.73 82.12 97.54
SIG 93.97 99.97 68.50 99.80 82.84 99.87
WaNet 94.05 99.84 68.95 99.61 82.38 99.09
FTrojan 94.16 99.34 68.10 97.52 82.45 97.86

Table 1: Statically Extended 2D Backdoor Attacks. Statically extending 2D backdoor attacks to the
video domain leads to high CDA and ASR across all three considered datasets.

UCF101 HMDB51 KineticsSound

CDA(%) ASR(%) CDA(%) ASR(%) CDA(%) ASR(%)
Baseline 93.95 - 69.59 - 81.41 -
BadNet 94.11 99.97 69.08 99.54 82.25 99.74
Blend 94.21 99.44 67.03 95.95 81.67 95.79
SIG 94.24 100.00 68.63 100.00 82.84 100.00
WaNet 94.29 99.79 69.22 99.80 82.25 99.61
FTrojan 94.16 99.34 67.19 98.69 82.25 95.27

Table 2: Dynamically Extended 2D Backdoor Attacks. Dynamically extending 2D backdoor attacks
to the video domain leads to high CDA and ASR across all three considered datasets.

mid- frequency component in the discrete cosine transform (DCT). Figure 3 showcases all five attacks on a
single video frame.

We can take each of these methods to the next level by changing the trigger for each frame dynamically.
For example, BadNet can change the patch location, Blend can blend different noise per frame, SIG can
adjust the frequency of the sine component, WaNet can generate a new warping field for each frame, and
FTrojan can select a different DCT basis to perturb. Keep in mind that Blend and FTrojan are generally
imperceptible. Visualizations and saliency maps for each attack are available in the Supplementary.

Tables 1 and 2 show the CDA and ASR of the I3D models attacked using various attacks on UCF-101,
HMDB-51, and Kinetics-Sounds. Contrary to the conclusion presented in (Zhao et al., 2020), which focuses
on clean label backdoor attacks, we find that poisoned label backdoor attacks are highly effective in the video
domain. The CDA of the attacked models is very similar to that of the clean unattacked model (baseline),
surpassing it in some cases. Furthermore, extending attacks dynamically almost always improves CDA and
ASR compared to extending them statically.

Natural Video Backdoors. A more sophisticated attack is one that appears natural and can evade human
detection (Ma et al., 2022; Xue et al., 2021; Wenger et al., 2022; Zhao et al., 2022a). There are several natural
"glitches" that occur in the video domain, which can be exploited to create a natural backdoor attack. For
instance, videos may contain frame lag, motion blur, video compression corruption, camera focus or defocus,
and so on. In Table 3, we present the CDA and ASR of three natural backdoor attacks: frame lag (lagging
video), video compression corruption (which we refer to as Video Corruption), and motion blur. Surprisingly,
these attacks were able to achieve both high clean data accuracy and high attack success rate. Additional
information about those attacks are available in the Supplementary.

Attacks Against Different Architectures. To investigate the behavior of backdoor attacks against
different video recognition models, we experimented with a subset of attacks against two additional archi-
tectures: TSM, a 2D-based model, and SlowFast, another 3D-based model, on UCF-101. As shown in Table
4, all the attacks considered perform significantly well in terms of CDA and ASR against both TSM and
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UCF101 HMDB51 KineticsSound

CDA(%) ASR(%) CDA(%) ASR(%) CDA(%) ASR(%)
Baseline 93.95 - 69.59 - 81.41 -
Frame Lag 92.94 97.20 68.04 98.76 82.51 98.19
Video Corrupt. 94.26 99.87 69.22 99.22 81.74 98.51
Motion Blur 93.97 99.92 68.17 97.52 82.19 99.22

Table 3: Natural Video Backdoor Attacks. Natural attacks against video action recognition models
could achieve high CDA and ASR while looking completely natural to human inspection.

SlowFast TSM
CDA(%) ASR(%) CDA(%) ASR(%)

Baseline 96.72 - 94.77 -
BadNet 96.64 99.47 94.69 97.78
SIG 96.70 99.97 94.77 99.47
FTrojan 96.25 98.52 94.21 100.00
Frame Lag 96.43 99.97 94.63 97.96
Video Corruption 96.54 99.76 95.08 98.97
Motion Blur 96.46 99.55 94.50 99.39

Table 4: Dynamic Video Backdoor Attacks Against Different Architectures (UCF-101). When
tested against architectures other than I3D such as TSM and SlowFast, both image and natural backdoor
attacks can still achieve high CDA and high ASR.

SlowFast architectures. This demonstrates the effectiveness of these attacks across different types of models.
It is interesting to note that our proposed natural video backdoor attacks were also successful in attacking
TSM, despite its 2D-based architecture.

Recommendations for Video Backdoor Attacks. As mentioned in Section 3.2, the attacker must
consider the number of frames to poison per video, taking into account that the video will be sub-sampled
and randomly cropped during evaluation. Since the attacker has access to the processing pipeline used
for training (they trained the network), they can take advantage of this knowledge during the attack. For
instance, if the video processing involves sub-sampling the video into clips of 32 frames and cropping the
frames into 224×224 crops, the attacker could provide the network with an attacked video of temporal length
32 frames and spatial size 224×224, hence bypassing sub-sampling and cropping. However, the system may
enforce a specific length of input video, which may be longer than the sub-sampled clips.

This raises the question of how many frames the attacker should poison. While a smaller number of poisoned
frames makes the attack less detectable, it may also make it less effective. Figure 4 shows the attack success
rate of backdoor-attacked models trained on clips of 1, 8, 16, and 32 frames, and a randomly sampled
number of poisoned frames (out of 32 total frames) when evaluated on clips of 1, 8, 16, and 32 poisoned
frames (out of 32 total frames). "Random" refers to training on a varying number of poisoned frames per
clip. Note that training the model against the worst-case scenario (single frame), which mimics the case
where only one of the poisoned frames is sub-sampled, provides the best guarantee of achieving a high attack
success rate.

Defenses Against Video Backdoor Attacks. We now explore the effectiveness of extending existing
2D backdoor defenses against video backdoor attacks. Optimization-based defenses such as Neural Cleanse
(NC) (Wang et al., 2019), I-BAU (Zeng et al., 2021a), and TABOR (Guo et al., 2019) , which involve a
trigger reconstruction phase, are extremely computationally expensive when extended to the video domain.
In the presence of the temporal dimension, the trigger space becomes significantly larger, and instead of
optimizing for a 224×224×3 trigger, the defender must search for a 32×224×224×3 trigger (assuming 32
frame clips are used), making it difficult and costly to solve. On the other hand, the attacker can design and
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Figure 4: Effect of the Number of Poisoned Frames (UCF-101). Different colors refer to different
number of frames poisoned during the training of the attacked model. Training the model with a single
poisoned frame performs best for various choices of the number of frames poisoned during evaluation.

Frame
Lag

Motion
Blur SIG BadNet FTrojan

Elimination Rate(%) 0.00 0.00 34.21 33.77 34.12
Sacrifice Rate(%) 13.08 12.82 15.17 14.25 13.00

Table 5: Activation Clustering Defense (UCF-101). Whereas Activation Clustering provides partial
success in defending against image backdoor attacks, it fails completely against natural attacks.

Figure 5: Pruning Defense (Kinetics-Sounds). Pruning is completely ineffective against image backdoor
attacks extended to the video domain and natural video backdoor attacks. Even though the clean accuracy
has dropped to random, the attack success rate is maintained at very high levels.

embed their attack in both spatial and temporal dimensions, making it challenging to reverse engineer the
trigger.

We examine the efficacy of three well-known defenses that can be extended to the video domain without
adding computational overhead. The first defense, Activation Cluster (AC) (Chen et al., 2018), calculates
the activations of a neural network on clean test set samples and a potentially poisoned inspection set. PCA
is applied to reduce the dimensionality of the activations, and the projected activations are clustered into
two classes and compared against the activations of the clean set. The second defense, STRIP (Gao et al.,
2019), blends clean samples with potentially poisoned samples and measures the entropy of the predicted
probabilities to check for abnormalities. Poisoned samples typically exhibit low entropy compared to clean
samples. The third defense, pruning (Liu et al., 2018), proposes that backdoors are often embedded in
specific neurons in the network that are only activated in the presence of a trigger. By pruning these
dormant neurons, the backdoor can be eliminated.
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Baseline Sine Attack High Frequency Attack
CDA(%) 49.21 47.21 47.61
ASR(%) - 96.36 95.96

Table 6: Audio Backdoor Attacks (Kinetics-Sounds). Both sine attack and the high-frequency band
attack perform similarly to baseline in terms of CDA while being able to achieve high ASR.

Figure 6: STRIP Defense (UCF-101). Whereas
the entropy of image backdoor attacks is very low com-
pared to that of clean samples, the proposed natural
backdoor attacks have a natural distribution of en-
tropies similar to that of clean samples.

Table 5 shows that AC has only limited success
in defending against image backdoor attacks and
fails entirely against the proposed natural backdoor
attacks. The elimination rate refers to the ratio
of correctly detected poisoned samples to the to-
tal number of poisoned samples, while the sacri-
fice rate refers to the ratio of incorrectly detected
clean samples to the total number of clean sam-
ples. Meanwhile, Figure 6 illustrates that the en-
tropy of the clean and poisoned samples for the nat-
ural attacks is very similar, making it challenging for
STRIP to detect them, while BadNet and FTrojan
are detectable. Lastly, Figure 5 demonstrates that
pruning the least active neurons reduces CDA with-
out decreasing ASR. This finding holds not only for
natural attacks but also for extended 2D attacks,
suggesting that image backdoor defenses are not ef-
fective in the video domain.

4.3 Audio Backdoor Attacks

Attacks against audio networks have been relatively
limited, with most previous attacks involving adding
a low-volume one-hot-spectrum noise in the fre-
quency domain, which leaves highly visible artifacts
in the spectrogram (Zhai et al., 2021). Another attack involves adding a non-audible component outside
the human hearing range (Koffas et al., 2022), which is unrealistic since most spectrograms filter out those
frequencies. In this work, we propose two attacks which we test against Kinetics-Sounds dataset: the first
involves adding a low-amplitude sine wave component with f = 800Hz to the audio signal, while the second
involves adding band-limited noise with a frequency range of 5kHz < f < 6kHz. Figure 7 shows the spec-
trograms and absolute differences between the attacked and clean spectrograms. Since no clear artifacts are
observed in the spectrograms, human inspection fails to detect the attacks. Table 6 shows the CDA and
ASR rates of the backdoor-attacked models for both attacks, which achieve a relatively high ASR.

4.4 Audiovisual Backdoor Attacks

In this section, we explore the combination of video and audio attacks to create a multi-modal audiovisual
backdoor attack. We achieve this by taking the attacked models from Sections 4.2 and 4.3 and applying early
or late fusion. Early fusion involves extracting video and audio features using our trained video and audio
backbones and then training a classifier on the concatenation of the features. Late fusion, on the other hand,
has the video and audio networks make independent predictions on the input, and the individual logits are
aggregated to produce the final prediction. To address the three questions posed in Section 3.3, we conduct
experiments in which both modalities are attacked and others in which only a single modality is attacked
for both early and late fusion setups (Table 7). Our findings are summarized as follows: (1) Attacking
both modalities consistently improves ASR and even CDA in some cases. (2) Attacking a single modality
is sufficient to achieve a high ASR in the case of early fusion but not late fusion. (3) Early fusion enables
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Figure 7: Clean and Attacked Audio Spectrograms. The utilized audio backdoor attacks are not only
audibly imperceptible but also leave no perceptible artifacts in the Mel spectrogram. The spectrogram of
each attack is followed by the absolute difference of the attacked spectrogram with the clean one.

Late Fusion Early Fusion
Clean Audio Sine Attack High Freq. Attack Clean Audio Sine Attack High Freq. Attack

Clean Video 80.25 / - 81.74 / 70.98 80.96 / 77.91 84.72 / - 83.48 / 92.23 83.94 / 93.72
BadNet 77.33 / 66.97 78.63 / 99.74 77.33 / 99.87 87.50 / 99.29 85.10 / 99.87 85.75 / 100.00
Blend 79.60 / 75.06 80.76 / 99.68 79.08 / 99.61 86.08 / 98.19 83.55 / 99.81 85.43 / 99.87
SIG 78.50 / 68.33 80.12 / 99.87 79.02 / 100.00 86.92 / 99.81 84.97 / 100.00 85.95 / 100.00
WaNet 77.66 / 68.39 79.79 / 99.94 79.02 / 99.94 86.46 / 98.96 84.97 / 100.00 85.88 / 100.00
FTrojan 79.66 / 67.16 80.76 / 99.48 79.99 / 99.29 86.08 / 98.58 84.65 / 99.94 85.49 / 100.00
Frame Lag 79.08 / 63.41 80.57 / 99.74 79.47 / 99.87 86.08 / 98.19 84.59 / 99.94 84.65 / 100.00
Video Corruption 78.11 / 64.57 78.24 / 99.68 77.66 / 99.94 86.59 / 99.29 84.59 / 100.00 85.43 / 100.00
Motion Blur 79.79 / 69.24 80.70 / 99.68 79.86 / 99.94 86.40 / 98.58 84.65 / 100.00 85.62 / 100.00

Table 7: Audiovisual Backdoor Attacks (Kinetics-Sounds). The entries in the table report the
CDA(%)/ASR(%) of attacking late and early fused audiovisual networks. When a single modality is attacked,
late fusion has a low ASR compared to early fusion. When both modalities are attacked, the ASR of both
late and early fusion are high.

the best of both worlds for the attacker, with a high CDA and an almost perfect ASR. Conversely, late
fusion experiences significant drops in ASR in the unimodal attack setup. An interesting observation from
these experiments is that if the outsourcer can outsource the most expensive modality while training other
modalities in-house, applying late fusion could serve as a defense mechanism, particularly in the presence of
more clean modalities.
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5 Conclusion

In conclusion, our work has demonstrated the potential impact of poisoned-label backdoor attacks on both
unimodal and multi-modal video action recognition models. We have shown how existing image backdoor
attacks can be adapted to the video domain, and we have also proposed novel natural video backdoor attacks
that are resilient to existing defenses. Additionally, we have explored audio backdoor attacks that can be
applied in a human inaudible manner. Finally, we have investigated the effect of combining video and audio
attacks on an audiovisual action recognition model. Our results indicate that poisoning multiple modalities
can lead to extremely high attack success rates, while poisoning a single modality may not be as effective in a
late fusion setup. We hope that our work will encourage further research into backdoor attacks and defenses
in the video domain, and we emphasize the importance of developing more robust defenses to protect against
such attacks.
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