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Abstract

Graph Contrastive Learning (GCL) is an effec-
tive method for discovering meaningful patterns in
graph data. By evaluating diverse augmentations
of the graph, GCL learns discriminative represen-
tations and provides a flexible and scalable mech-
anism for various graph mining tasks. This paper
proposes a novel contrastive learning framework
by introducing Laplacian perturbation. The pro-
posed framework offers a distinct advantage by
employing an indirect perturbation method, which
provides a more stable approach while maintain-
ing the perturbation effects. Moreover, it exhibits a
wide range of applicability by not being restricted
to specific graph types. We demonstrate that a
spectral graph convolution based on the Laplacian
successfully extracts representations from diverse
graph types. Our extensive experiments on a vari-
ety of real-world datasets, covering multiple graph
types, show that the proposed model outperforms
state-of-the-art baselines in both node classifica-
tion and link sign prediction tasks.

1 INTRODUCTION

Contrastive learning, which maximizes the mutual informa-
tion between representations of augmented data, is a widely
used method that helps learn discriminative representations
from limited labeled data or self-supervised environments
[Chen et al., 2020a, He et al., 2020]. Recently, a growing
number of studies have successfully demonstrated the effec-
tiveness of contrastive learning in graph data. These studies,
known as Graph Contrastive Learning (GCL), make diverse
graph views through several graph perturbation methods
such as deleting or adding edges/nodes [You et al., 2020,
Zeng and Xie, 2021], random-walk sampling [Qiu et al.,
2020], or masking attributes [Zhu et al., 2021]. On the other

hand, JOAO [You et al., 2021] and AD-GCL [Suresh et al.,
2021] proposed novel graph encoders for contrastive learn-
ing. SimGRACE [Xia et al., 2022] added Gaussian noise to
graph encoders.

Majority of prior GCL techniques are designed for spe-
cific graph types. Many are confined to unsigned undirected
graphs, severely limiting their application domain. Several
algorithms that expand the applicability of GCL have been
proposed [Tong et al., 2021, Shu et al., 2021]. However,
these expanded schemes focused on a single graph type.
For example, DiGCL [Tong et al., 2021] and SGCL [Shu
et al., 2021] are customized for directed and signed directed
graphs, respectively. Although their approaches are inno-
vative, DiGCL is adequate for dense directed graphs only
and SGCL may fail to capture valuable network semantics
emanated from the balance theory [Heider, 1946, Holland
and Leinhardt, 1971].

This paper proposes a novel comprehensive Graph Con-
trastive Learning algorithm called UGCL1 (Universal GCL).
We devise a new data augmentation scheme based on mag-
netic Laplacian perturbation. UGCL claims to have wide ap-
plicability ranging from simple unsigned undirected graphs
to signed directed graphs. The magnetic Laplacian [Shubin,
1994, Olgiati, 2017, Colin de Verdière, 2013], initially stud-
ied in quantum physics, recently has been applied in graph
studies due to its Hermitian properties. Cucuringu et al.
[2020], Cloninger [2017] used the magnetic Laplacian for
clustering in directed graphs. Zhang et al. [2021] introduced
directed graph convolution based on a magnetic Laplacian.
Recent studies [Ko et al., 2023, Fiorini et al., 2022, He et al.,
2022] expanded the idea of magnetic Laplacian to signed
graphs by defining signed magnetic Laplacian.

The signed magnetic Laplacian captures the structure of
the graph by encoding both edge signs and directions with
complex values and phases. By adjusting the phase value
as a parameter, the Laplacian can be modified, leading us

1The source code is available at
https://github.com/twko05/UGCL.git.
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to introduce a Laplacian perturbation method. To the best
of our knowledge, this is the first attempt to apply perturba-
tion to the magnetic Laplacian matrix. Unlike the structural
perturbation methods that induce abrupt changes to graph
structures, phase perturbation enjoys the flexibility of fine
adjustments while maintaining the overall graph structure.

To perform graph convolutions on these augments, we intro-
duce a magnetic Laplacian-based spectral convolution layer,
inspired by the principles of graph signal processing [Def-
ferrard et al., 2016, Hammond et al., 2011]. Finally, we max-
imize the mutual information between the augmented repre-
sentations by reducing the node-level contrastive loss [Zhu
et al., 2021, Shu et al., 2021]. We conducted experiments
on real-world graph data of various types to demonstrate
the effectiveness of our method. The proposed framework
outperformed state-of-the-art baseline in node classification
and link sign prediction tasks.

The main contributions of this paper are as follows.

• This paper introduces a novel Universal Graph Con-
trastive Learning (UGCL).

• To the best of our knowledge, this is the first attempt
to introduce magnetic Laplacian perturbation.

• The magnetic Laplacian perturbation enables fine ad-
justments while keeping the graph topology.

• The proposed framework has wide applicability and
can be applied to various graph types.

• UGCL demonstrates enhanced graph representation
learning on diverse real-world graphs.

2 RELATED WORK

2.1 GRAPH CONTRASTIVE LEARNING

SimCLR [Chen et al., 2020a] and MoCo [He et al., 2020]
introduced contrastive learning methods for image classi-
fication, which have achieved significant success. These
works have stimulated numerous subsequent studies aim-
ing to enhance learning efficiency through self-supervised
approaches. DGI [Velickovic et al., 2019] and GMI [Peng
et al., 2020] are two pioneering attempts that brought the
contrastive learning mechanism to graph analysis by mea-
suring the mutual information between graphs and node
representations. InfoGraph [Sun et al., 2019] introduced
patch-level representation, while GCC [Qiu et al., 2020] uti-
lized random-walk sampling to create positive and negative
samples.

These early studies proved the feasibility of constrastive
learning in graph representation learning and ignited im-
mense research investigations leading to a plethora of clever
graph augmentation techniques [You et al., 2020, Zeng and
Xie, 2021, Zhu et al., 2021, You et al., 2021] and graph

encoding schemes [Shu et al., 2021, Xia et al., 2022, Suresh
et al., 2021, Xia et al., 2022]. These advancements have
led to various application studies including graph clustering
[Pan and Kang, 2021, Zhong et al., 2021], node embedding
[Zhu et al., 2021], DDI (Drug Drug Interaction) prediction
[Wang et al., 2021, Li et al., 2022], and recommendation
[Lin et al., 2022].

However, most existing GCL techniques are limited their
use to unsigned undirected graphs. To broaden the scope of
the GCL technique, DiGCL [Tong et al., 2021] introduced a
contrastive learning for directed graphs through perturbing
the teleport probability of a transition matrix. SGCL [Shu
et al., 2021] proposed a signed directed contrastive learning
by randomly altering the signs and directions of edges. How-
ever, both approaches have limitations and are restricted in
their applicability to all graph types. In light of this, this
study introduces a novel generalized graph contrastive learn-
ing framework with Laplacian matrix perturbation.

2.2 HERMITIAN ADJACENCY MATRIX AND
MAGNETIC LAPLACIAN

The traditional adjacency matrix, which utilizes 0s and 1s to
encode graph connectivity, possesses the advantageous prop-
erty of symmetry, allowing for efficient spectral analyses of
graphs. However, when it comes to dealing with signed or
directed graphs, binary encoding alone proves insufficient
for effective representation. Several studies have proposed
to use Hermitian adjacency matrices as an alternative to the
traditional adjacency matrix for directed graphs. Liu and Li
[2015], Guo and Mohar [2017] encode graph edges using
a Hermitian matrix form, which is equal to its conjugate
transpose. Bidirectional edges are encoded as 1, while two
types of unidirectional edges are represented by imaginary
numbers (i and -i). The plus and minus signs to the imagi-
nary number distinguish the edge directions. Mohar [2020],
Cucuringu et al. [2020] used complex numbers with various
phases to improve the interpretability of directed adjacency
matrices.

With the Hermitian matrix, we can define a magnetic Lapla-
cian. The magnetic Laplacian, originally used in quantum
mechanics for the analyses of charged particles under mag-
netic flux [Shubin, 1994, Olgiati, 2017, Lieb and Loss, 1993,
Colin de Verdière, 2013, Fanuel et al., 2018], has recently
emerged as a flexible and powerful tool for directed graph
analyses. Many algorithms based on the Hermitian matrix
were introduced including graph clustering [F. de Resende
and F. Costa, 2020, Cloninger, 2017], community detection
[Fanuel et al., 2017], and graph representation learning [Fu-
rutani et al., 2019]. MagNet [Zhang et al., 2021] proved
the PSD (Positive Semi-Definite) property of the proposed
directed magnetic Laplacian and introduced a spectral graph
convolution for directed graphs. Recently, several studies
[Ko et al., 2023, Fiorini et al., 2022, He et al., 2022, Singh



and Chen, 2022] proposed signed magnetic Laplacians to
apply the idea of magnetic Laplacian to signed graphs.

3 PROBLEM FORMULATION

Let G = (V, E) be a graph where V is a set of nodes and
E is a set of directed edges. As a weighted graph, we use
a sign matrix S to denote the sign of edges. The value of
S(u, v) is set to 1 if there exists a positive directed edge from
node u to node v, or -1 if there is a negative directed edge.
Each node has one of three possible relationships with other
nodes: none, positive, negative. This results in nine possible
relationships for each node pair, as shown in Figure 1(b).
The goal of this paper is to discover the latent features of
nodes as a low-dimensional embedding vector zu ∈ Rd as:

f(G) = Z, (1)

where Z ∈ R|V |×d is a node embedding matrix. Note that
we describe the proposed algorithm assuming signed di-
rected graphs, the most generic form of graphs. However,
the proposed scheme can be applied to any types of graphs
with a straightforward modification.

4 MAGNETIC LAPLACIAN

A graph Laplacian (L = D − A), where D is a diagonal
degree matrix, is a powerful tool to represent graph structure.
They not only have the positive semi-definite (PSD) prop-
erty but also have non-negative eigenvalues with associated
orthonormal eigenvectors when the graphs are unsigned and
undirected. GCN [Kipf and Welling, 2016] and ChebyNet
[Defferrard et al., 2016] proposed spectral graph convolu-
tion techniques based on those properties. However, in the
case of signed or directed graphs, the presence of complex
eigenvalues of the graph Laplacian makes it challenging to
satisfy the conditions for spectral convolution in the graph
Fourier transform.

Recent studies [Ko et al., 2023, Fiorini et al., 2022] em-
ployed novel signed directed magnetic Laplacian matri-
ces in representing the structure of signed directed graphs.
The magnetic Laplacian satisfies the PSD property and is
amenable to spectral graph analyses. First of all, we define
a complex Hermitian adjacency matrix.

Hq = As ⊙Pq, (2)

where As :=
1
2 (A+A⊺) is a symmetrized adjacency ma-

trix, and Pq is a phase matrix with complex numbers. ⊙ is
an element-wise multiplication operation. The definition of
the phase matrix is as:

Pq(u, v) :=
exp(iΘq(u, v)) + exp(iΘ

q
(u, v))

∥exp(iΘq(u, v)) + exp(iΘ
q
(u, v))∥+ ϵ

.

(3)

Figure 1: Encoding values of a signed directed graph via
complex Hermitian adjacency matrix. The parameter q con-
trols the phase angle. The blue and red arrows indicate
positive and negative edges, respectively.

Θq(u, v) =


q if S(u, v) = 1

π + q if S(u, v) = −1

i ∞ if S(u, v) = 0

Θ
q
(u, v) =


−q if S(v, u) = 1

π − q if S(v, u) = −1

i ∞ if S(v, u) = 0

where q ∈ [0, π/2] is a parameter that controls the encoding
phases. The effect of q is described in detail in Section 6. The
symmetrized adjacency matrix encodes the node connectiv-
ity, while the phase matrix encodes directions and signs of
edges with different phase values. Figure 1 illustrates the
edge encoding of the defined Hermitian adjacency matrix.
They uniquely encode all the nine node pair relationships
of signed-directed graphs. Each relation has a distinct phase
and magnitude combination. We can see that Hq is a com-
plex numbered skew-symmetric form, a complex Hermitian
matrix. We then define signed directed magnetic Laplacian
with the Hermitian adjacency matrix as follows:

Lq
U := Ds −Hq = Ds −As ⊙Pq, (4)

Lq
N := I− (Ds

− 1
2AsDs

− 1
2 )⊙Pq, (5)

where Ds is a symmetric degree matrix.

Ds(u, v) =

{∑
w∈V As(u,w) if u = v

0 if u ̸= v.

Lq
U and Lq

N are unnormalized and normalized signed di-
rected magnetic Laplacians, respectively.

Theorem 1. The unnormalized and normalized signed
directed magnetic Laplacians are positive semi-definite.

xT Lq
Nx ≥ 0 x ∈ Rn.



Theorem 2. The eigenvalues of the normalized magnetic
Laplacians are in the range of [0, 2].

Proofs of Theorems are reported in Supplementary Material.
By Theorem 1, the Laplacians are diagonalizable by a spec-
tral decomposition. For example, the normalized Laplacian
is diagonalized as:

Lq
N = UΛU†. (6)

Each column of the matrix U is eigenvector uk and U† is a
conjugate transpose of U. Λ is a diagonal matrix where the
elements are k-th eigenvalues Λk,k = λk. The eigenvalues
and eigenvectors contain the structural information of the
signed directed graph. We leverage this matrix to define
spectral graph convolution.

5 MODEL FRAMEWORK

We propose two perturbation stages: structure perturbation
and Laplacian perturbation. The structure perturbation di-
rectly perturbs the graph data, resulting in a significant per-
turbation effect. However, it can hinder the convergence of
learning. In contrast, the Laplacian perturbation indirectly
influences the graph data. It introduces limited alterations
while still maintaining effective perturbation effects.

5.1 STRUCTURE PERTURBATION

Structure perturbation consists of two types of perturbation:
edge sign perturbation and edge direction perturbation. In
edge sign perturbation, we randomly alter the signs of edges
in a given graph. For instance, we sample p% of positive
edges and change their signs to negative, and do the same
to negative edges. Similarly, we sample r% of edges and
reverse their directions. Random edge perturbation yields
a perturbed graph view, G̃ = (V, Ẽ , S̃). Figure 2 shows an
example of structure perturbation.

A moderate degree of perturbation can allow the model to
learn robust representations from noisy real-world data and
uncover relationships that were previously hidden. This can
ultimately enhance the model’s generalization performance.
Many existing studies [You et al., 2020, Zeng and Xie, 2021,
Qiu et al., 2020, Zhu et al., 2021, You et al., 2021] solely
depend on this kind of sturucture perturbation. However,
excessive perturbation can lead to loss of graph informa-
tion. The significance of the information in edge signs and
directions is acknowledged by the balance and status theo-
ries [Heider, 1946, Holland and Leinhardt, 1971]. A single
change in edge sign or direction can lead to violations of bal-
ance or status theories in all triads associated with that edge.
Even perturbing a few edges can result in a catastrophic
disruption to the semantics of the graph. Therefore, we in-
troduce a novel Laplacian perturbation that allows robust
alterations to the original graphs.

Figure 2: Structure perturbation of a signed directed graph.
Dashed edges indicate perturbed edges.

5.2 LAPLACIAN PERTURBATION

The magnetic Laplacian can be modified by adjusting the
parameter q. By varying the q value, we can obtain differ-
ent magnetic Laplacian matrices from a given graph struc-
ture. With this property, we implement Laplacian perturba-
tion through q variation, selecting q values from 0 to 0.5π.
Despite variations of the Laplacian matrix caused by the
q, the underlying graph structure remains unaltered. This
technique of Laplacian perturbation is an effective way to
augment graphs without distorting the original data. The
meaning of Laplacian perturbation is analyzed in Section 6.

The overall perturbation procedure of UGCL consists of
two steps; structure perturbation and Laplacian perturbation.
We create two different perturbed graph views, G̃1 and G̃2

by applying edge-based structure perturbation to the orig-
inal graph. Then, we obtain the perturbed signed directed
magnetic Laplacians, L̃

q1

1 and L̃
q2

2 , from each of the two
structurally perturbed graph views with sampled q values.

5.3 GRAPH ENCODER

5.3.1 Spectral Convolution via Magnetic Laplacian

We define a graph encoder with the perturbed Laplacian
matrix. The signed directed magnetic Laplacian Lq , is diag-
onalizable with eigenvector matrix U, and diagonal eigen-
value matrix Λ thanks to its PSD property. Several studies
on graph convolution [Defferrard et al., 2016, Hammond
et al., 2011] have utilized the eigenvectors as the discrete
Fourier modes in graph signal processing. The transforma-
tion of graph signals is performed through the graph Fourier
transform, x̂ = U†x. A spectral convolution operation of
the graph signal is described as:

gθ ∗ x = UgθU
†x, (7)

where gθ = diag(θ) is a trainable filter. For efficient calcu-
lation, Hammond et al. [2011] proposed a truncated Cheby-
shev polynomial expansion of the filter by:

gθ′(Λ) ≈
K∑

k=0

θ′kTk(Λ). (8)



Figure 3: Model overview. There are two structurally perturbed graph views and get perturbed Laplacians from them.
Defined graph encoder with the perturbed Laplacians. Contrastive objectives are calculated after projection heads.

Here, T0(x) = 1, T1(x) = x, and Tk = 2xTk−1(x) +
Tk−2(x) for k ≥ 2. θ′k are Chebyshev coefficients, and
Λ = 2

λmax
Λ− I is a normalized eigenvalue matrix where

λmax is the largest eigenvalue. Equation (7) becomes a
simplified form of spectral graph convolution as

gθ′ ∗ x =

K∑
k=0

θ′kTk(L)x, (9)

where L = 2
λmax

L− I analogous to Λ.

5.3.2 Spectral Convolution Layer

We define the spectral convolution layer with the approx-
imated spectral convolution operation Equation (9). We
set the maximum polynomial order K as 1, and assume
λmax = 2 to make it practical. Like GCN [Kipf and Welling,
2016], we set θ = θ′0 = −θ′1. Then we have approximated
convolution layer as:

gθ′ ∗ x ≈ θ(I+ (D
− 1

2
s AsD

− 1
2

s )⊙Pq)x. (10)

By the following renormalization trick:

I+ (D
− 1

2
s AsD

− 1
2

s )⊙Pq → D
− 1

2

s AsD
− 1

2

s ⊙Pq, (11)

where, As = As + I and Ds(i, i) =
∑

j As(i, j). The
spectral convolution layer is defined as:

Xl+1 = (D
− 1

2

s AsD
− 1

2

s ⊙Pq)XlW. (12)

Xl+1 ∈ R|V |×F is the convoluted graph signals or represen-
tations after the l-th layer. W ∈ RC×F is a learnable matrix.
C and F are the numbers of input and output channels,
respectively. The renormalization trick prevents gradient
vanishing and exploding problems.

5.3.3 Graph Encoder

As the output of the convolution layer has both real and
imaginary values, we apply an unwinding operation to con-
catenate the features in the common domain.

X
(L)
unwind = [real(X(L))||imag(X(L))⊗ (−i)]. (13)

A fully connected layer after unwinding finally yields the
node representations as

Z = σ(X
(L)
unwindW

L+1 +B(L+1)). (14)

Z ∈ R|V |×D is an augmented node representation. We apply
a projection head in advocate of [Jacovi et al., 2021, Chen
et al., 2020b]. A non-linear transformation g(·) maps the
representations to another latent space that can enhance
the discriminative power of contrastive learning. M is a
projected latent of the augmented representation.

M = g(Z). (15)

5.4 CONTRASTIVE OBJECTIVE

5.4.1 Inter-view Loss

The contrastive objective aims to align the latent of the
same node while differentiating that of other nodes. Two
identical nodes from different graph views are considered as
an inter-positive pair, while other node pairs are considered
inter-negative pairs. For example, a node u from G̃1 and the
same node u from G̃2 are the inter-positive pair. On the other
hand, other nodes {v ∈ V; v ̸= u} from G̃2 are the inter-
negative pair with the node u of G̃1. Even though the nodes
in the inter-positive pair come from different graph views,
they are the same nodes. Therefore, we aim to maximize
the agreement of positive pair latent, mu

1 and mu
2 . For the

same reason, we minimize the agreement of negative pair



latent, mu
1 and mv

2. The goal of the inter-view objective is
to maximize the similarity of positive pairs and minimize
the similarity of negative pairs.

Linter =
1

|V |
∑
u∈V

log
exp((mu

1 · mu
2 )/τ)∑

v∈V exp((mu
1 · mv

2)/τ)
(16)

5.4.2 Intra-view Loss

While the inter-view loss compares the latent representations
of nodes between two distinct graph views, the intra-view
loss calculates the discriminative loss within a single graph
view. It is essential to differentiate the latent representations
of all nodes from each other, as each node possesses unique
characteristics. The objective is to make the latent of all
nodes being distinctive. The intra-loss is defined as:

Lintra =
1

K

K∑
k=1

1

|V |
∑
u∈V

log
1∑

v∈V,u̸=v exp((mu
k · mv

k)/τ)
,

(17)
where k indicates the graph view index. The contrastive loss
is the sum of the inter- and intra-view loss functions.

Lcontrastive = Linter + Lintra (18)

5.5 PREDICTION

The augmented two graph views are the input to graph
encoders and they make two node representations, Z1 and
Z2. The representations are concatenated and fed into the
output layer that produces the final node embedding as,

R = σ([Z1 ∥ Z2]Wout + Bout). (19)

The final embedding is utilized for downstream tasks such
as predicting the edge sign from u to v. The prediction layer
is defined as:

ŷu,v = σ([ru||rv]Wpred + Bpred). (20)

For semi-supervised learning, the proposed model is trained
by the following objective function with weight parameter
α.

L = α× Lcontrastive + Llabel. (21)

6 THEORETICAL ANALYSIS

6.1 MEANING OF THE q VALUE

The phases of signed directed magnetic Laplacian are con-
trolled by the parameter q. The q value affects the sensitivity
to the sign and direction information by determining the
phase angle between the real and imaginary axes. When
the q is small, the phase difference between the two reverse

Figure 4: Effect of q value.

edges is small. The Laplacian places less emphasis on direc-
tional information. In an extreme case of q = 0, direction
information is ignored and becomes an undirected model.
On the contrary, a large q value also decreases the validity
of the encoding. When q = π/2, a positive edge from node
u to node v, and a negative edge from node v to node u are
encoded to the same value. Figure 4 describes the effect of
q value.

6.2 ANALYSIS OF THE LAPLACIAN
PERTURBATION

Direct perturbations to nodes, edges, or attributes of the
graph can lead to significant differences between the per-
turbed graph view and the original graph. In contrast, the
proposed Laplacian perturbation, achieved through the vari-
ation of the q value, indirectly influences the graph data.
Analyzing the exact nature of this perturbation and how it
differs from the original graph is challenging. To address
this issue, we analyze the impact of Laplacian perturbation
on the graph information by quantifying graph entropy.

Von Neumann entropy is a widely used form to quantify
graph entropy. Ye et al. [2014] introduced the Von Neumann
entropy of a directed graph with Laplacian matrix as:

H(GD) =
Tr[L]
|V |

− Tr[L2]

|V |
.

Leveraging the Von Neumann entropy of directed graphs,
we derive Theorem 3 which states that the entropy of a
signed directed graph is less than or equal to the sum of the
entropy of a positive edge graph and a negative edge graph.

Theorem 3. Von Neumann Entropy of a Signed Directed
Graph

H(G) ≤ H(G+
D) +H(G−

D).

G is a signed directed graph. G+
D and G−

D are the graph with
positive edges and the graph with negative edges, respec-
tively. The Von Neumann entropy of a signed directed graph
satisfies the upper bound. This theorem is proved in Supple-
mentary Material. Then, we quantify the effect of Laplacian



Signed Convolution Contrastive Learning Proposed

Dataset Metric SGCN SDGNN SDGCN DiGCL GCA SimGRACE SGCL UGCL-S UGCL-L UGCL
B

itc
oi

n-
A

lp
ha AUC 0.782 0.835 0.858 0.814 0.838 0.823 0.849 0.896 0.883 0.886

Macro-F1 0.668 0.683 0.723 0.653 0.671 0.657 0.712 0.740 0.744 0.754
Micro-F1 0.899 0.909 0.923 0.907 0.913 0.919 0.923 0.947 0.942 0.949
Binary-F1 0.941 0.947 0.958 0.950 0.953 0.957 0.959 0.973 0.969 0.971

B
itc

oi
n-

O
T

C AUC 0.832 0.879 0.887 0.852 0.868 0.859 0.893 0.914 0.902 0.910
Macro-F1 0.710 0.751 0.773 0.725 0.743 0.725 0.781 0.803 0.796 0.802
Micro-F1 0.886 0.902 0.911 0.904 0.907 0.906 0.920 0.935 0.930 0.937
Binary-F1 0.924 0.938 0.950 0.948 0.948 0.948 0.956 0.964 0.962 0.965

E
pi

ni
on

s AUC 0.848 0.914 0.939 0.839 0.911 0.913 0.876 0.941 0.943 0.942
Macro-F1 0.741 0.831 0.850 0.726 0.814 0.812 0.798 0.861 0.865 0.863
Micro-F1 0.893 0.912 0.925 0.887 0.913 0.915 0.909 0.934 0.936 0.936
Binary-F1 0.937 0.944 0.956 0.936 0.950 0.951 0.948 0.962 0.963 0.963

Sl
as

hd
ot

AUC 0.740 0.849 0.886 0.813 0.870 0.865 0.783 0.900 0.891 0.902
Macro-F1 0.688 0.729 0.780 0.667 0.750 0.745 0.683 0.792 0.785 0.789
Micro-F1 0.786 0.823 0.855 0.813 0.842 0.833 0.811 0.864 0.859 0.863
Binary-F1 0.869 0.889 0.908 0.887 0.902 0.895 0.884 0.915 0.911 0.914

Table 1: Link sign prediction performance. Bold and underline indicate the best and the second performance respectively.
The performances are the average score of ten experiments with different seed sets.

perturbation through the change in the Von Neumann en-
tropy by q value variation.

Definition 1. Perturbation Error Given a perturbation term
∆q, we define the perturbation error of the Von Neumann
entropy caused by Laplacian perturbation.

∆H(G, q,∆q) = H(G, q)−H(G, q +∆q).

Theorem 4. Perturbation Error of a Signed Directed
Graph

∆H(G+
D, q,∆q),∆H(G−

D, q,∆q) ≤ ∆H(G, q,∆q),

∆H(G, q,∆q) ≤ ∆H(G+
D, q,∆q) + ∆H(G−

D, q,∆q).

Signed directed perturbation error is described with lower
and upper bounds. And we can notice that the graph en-
tropy varies by the q value variation even though the degree
matrix and adjacency matrix are fixed. This perturbation
error caused by Laplacian perturbation provides contrastive
information in various magnitudes for the encoder. It helps
the encoder to focus more on the graph structure rather than
just learning from the supervised learning. The proof of
Theorem 4 is in the Supplementary Material.

In this subsection, we investigate the impact of Laplacian
perturbation on graphs and infer the resulting variations.
This analysis demonstrates the effectiveness of Laplacian
perturbation as an alternative method that avoids direct per-
turbation of the graph structure. By preserving the graph’s
structural integrity while inducing meaningful perturbations,

Dataset # nodes # pos edges # neg edges ratio (%)
Bitcoin-Alpha 3,783 22,650 1,536 93.7
Bitcoin-OTC 5,881 32,029 3,563 90.0

Epinions 131,828 717,667 123,705 85.3
Slashdot 82,144 425,072 124,130 77.4

Table 2: Dataset statistics.

Laplacian perturbation proves to be highly valuable across
various applications.

7 EXPERIMENTS

To demonstrate the effectiveness and universality of our
model, we evaluate it on various graph datasets. We con-
duct node classification tasks on unsigned undirected graphs
and link sign prediction tasks on signed directed graphs.
Through the experiments, we aim to address the following
research questions:

• RQ1: Does UGCL have better representation learning
ability compared to state-of-the-art baselines?

• RQ2: How does UGCL demonstrate its universality
across different types of graphs?

• RQ3: How do the perturbation methods of UGCL af-
fect the performance?

• RQ4: How do the model components of UGCL affect
the performance?



7.1 LINK SIGN PREDICTION (RQ1)

7.1.1 Baselines

We implemented seven baselines to compare the model per-
formance. There are three signed graph convolution models
and four constative learning models.

• SGCN [Derr et al., 2018] defines (un)balanced path
based on the balanced theory for neighbor aggregation.

• SDGNN [Huang et al., 2021] proposed four weight
matrices to aggregate neighbor features by edge types.

• SDGCN [Ko et al., 2023] proposed a magnetic Lapla-
cian to overcome the limitation of graph Laplacian.

• GraphCL [You et al., 2020] randomly perturbs graph
structures by dropping or adding edges and nodes.

• GCA [Zhu et al., 2021] proposed score-based graph
augmentation and node-level contrastive objective.

• SimGRACE [Xia et al., 2022] introduced a graph en-
coder perturbation rather than graph augmentation to
overcome the cumbersome augmentation search.

• SGCL [Shu et al., 2021] is a GCL for signed directed
graphs, which perturbs the edge sign and directions.

7.1.2 Experimental Result

Table 1 summarizes the link sign prediction results. The re-
sults are the average of ten independent experiments. There
are two variants of UGCL; UGCL-S is a model with struc-
ture perturbation, and UGCL-L is a model with Laplacian
perturbation. The results show that UGCL and its variants
always perform the best on all datasets and in all metrics.
We can infer that the proposed model learns the node repre-
sentation properly from the signed directed graphs.

SGCL or SDGCN demonstrates the second-best perfor-
mance, following the proposed model. SDGCN achieves
good performance by leveraging its signed directed spectral
convolution, which effectively utilizes the sign and direction
of edges. However, its performance is limited in the context
of semi-supervised learning. On the other hand, SGCL is a
contrastive learning model specifically designed for signed
graphs, and its strong performance on most datasets val-
idates the effectiveness of contrastive learning. However,
SGCL exhibits poor performance on the Epinions and Slash-
dot datasets. Although the structure perturbation methods
of SGCL and the proposed model share similarities, the pro-
posed model mitigates the drawbacks of structure perturba-
tion by incorporating Laplacian augmentation. Furthermore,
UGCL benefits from an advanced spectral graph encoder
compared to the simple GNN encoder utilized in SGCL.

7.2 UNIVERSALITY OF UGCL (RQ2)

The signed directed magnetic Laplacian has the capabil-
ity to represent various graph types. For instance, in the
case of vanilla graphs where all edges are assumed to be
bidirectional and positive (S = 1), the encoding of edges
is done using 0, 1, resulting in a Laplacian equivalent to
the traditional graph Laplacian. When dealing with un-
signed directed graphs, the edges are encoded using 0, 1,
1
2 (cosq+isinq), 1

2 (cosq−isinq), which resembles the Lapla-
cian definition in MagNet [Zhang et al., 2021]. In essence,
the traditional graph Laplacian and the Laplacian employed
in MagNet can be viewed as special cases of our encoding.
Similarly, the signed undirected graph can be handled as
well. Consequently, the signed directed magnetic Laplacian
proves to be applicable to all graph types, and the Laplacian
perturbation method exhibits wide-ranging utility.

To demonstrate the wide applicability of our approach, we
conducted a node classification task on different graph types.
However, due to space limitations, we have provided the
results in the Supplementary Material. It is worth noting
that the proposed UGCL model performs well even on both
undirected graphs and directed graphs, further highlighting
its versatility and effectiveness across different graph types.

7.3 PERTURBATION ANALYSIS (RQ3)

Figure 5 illustrates the performance variation with respect
to the edge perturbation ratio, where Laplacian perturbation
is not utilized in this particular experiment. The results in-
dicate that the performance improves initially with a small
perturbation ratio, but starts to decline when the ratio ex-
ceeds 0.1. This observation highlights the effectiveness of
structure perturbation when applied in moderation, while
also emphasizing the potential risks associated with exces-
sive perturbation.

Figure 6 displays the performance variation in response
to Laplacian perturbation, where structure perturbation is
not employed in this specific experiment. We set q = π/4
and introduce Gaussian noise with zero mean and vary-
ing standard deviations. The x-axis represents the standard
deviation of the Gaussian noise. Similar to structure pertur-
bation, performances are low when the standard deviation is
zero, indicating no Laplacian perturbation. The results show
an initial increase in performance followed by a decrease.
Compared to structure perturbation, Laplacian perturbation
demonstrates lower sensitivity to the perturbation ratio. This
suggests that Laplacian perturbation can provide more stable
and robust perturbation effects.

While graph augmentations are essential in contrastive learn-
ing, excessively large-scale perturbations can be detrimental
to the training process. Structure perturbation provides di-
rect contrastive information, but it runs the risk of compro-



Figure 5: Structure perturbation analysis. The x-axis indicates the perturbing ratio.

Figure 6: Laplacian perturbation analysis. The x-axis indicates noise variance.

mising the network semantics. On the other hand, Laplacian
perturbation offers indirect perturbations to the graph data
while maintaining effectiveness. In UGCL, these two aug-
mentation techniques are combined to achieve efficient and
stable graph augmentation, striking a balance between in-
formative perturbations and preserving the integrity of the
network semantics.

7.4 ABLATION STUDY (RQ4)

We check the effects of UGCL components though ablation
studies. Table 3 shows the F1 scores and w/o struct, w/o
Lapla, and w/o aug are the variation of perturbation methods.
Especially, w/o aug, which turns off both perturbations,
shows the lowest performance. As we expected, the model
leverages the advantage of contrastive learning. It shows
that perturbation are important in our model. w/o contrast
is a model with α = 0 and the model uses label loss only.
Note that it does not mean that the model does not utilize the
benefits of contrastive learning. Even though the contrastive
loss weight is zero, label loss is calculated with augmented
representations of graph views. w/o proj is a model without
a projection head. It is confirmed that the projection head
is useful for robust contrastive learning [Jacovi et al., 2021,
Chen et al., 2020b].

8 CONCLUSION

This paper proposes UGCL, a graph contrastive learning
framework. It incorporates two levels of perturbation, struc-
ture and Laplacian. Structure perturbation involves modi-
fying the signs and directions of random edges. Although

Bitcoin-Alpha Bitcoin-OTC Epinions Slashdot
UGCL 0.949 0.937 0.936 0.863

w/o struct 0.942 0.930 0.936 0.859
w/o Lapla 0.947 0.935 0.934 0.864
w/o aug 0.919 0.913 0.920 0.853
w/o contrast 0.940 0.931 0.929 0.855
w/o proj 0.942 0.932 0.931 0.858

Table 3: The results of ablation study.

this perturbation may lead to the loss of graph information,
it enhances the noise robustness. Laplacian perturbation
changes the phase parameter q during each training iteration.
It does not directly impact the graph structure but rather in-
fluences the magnetic Laplacian. The efficacy of Laplacian
perturbation is verified through both theoretical analysis and
empirical experiments. By utilizing the perturbed Laplacian,
we define a spectral graph encoder. The proposed frame-
work demonstrates its wide applicability to all graph types.
Through extensive evaluations on diverse real-world graphs,
the proposed framework consistently demonstrates superior
performance compared to other existing approaches.
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