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Abstract

In fairness audits, a standard objective is to detect whether a given algorithm per-
forms substantially differently between subgroups. Properly powering the statistical
analysis of such audits is crucial for obtaining informative fairness assessments,
as it ensures a high probability of detecting unfairness when it exists. However,
limited guidance is available on the amount of data necessary for a fairness audit,
lacking directly applicable results concerning commonly used fairness metrics.
Additionally, the consideration of unequal subgroup sample sizes is also missing.
In this tutorial, we address these issues by providing guidance on how to determine
the required subgroup sample sizes to maximize the statistical power of hypothe-
sis tests for detecting unfairness. Our findings are applicable to audits of binary
classification models and multiple fairness metrics derived as summaries of the
confusion matrix. Furthermore, we discuss other aspects of audit study designs
that can increase the reliability of audit results.

1 Introduction

Disparities in machine learning models’ performance across demographic groups, subsequently re-
ferred to as unfairness, have been highlighted by audits in multiple domains including criminal justice
[1], face image analysis [2], lending [3], online advertising [4], hiring [5], and care management
[6]. Such audits have been influential to rollback products or advocate for improvements [7]. Thus,
fairness audits are an important mechanism for ensuring accountability for models.

Frameworks exist that provide guidance on how to define, execute, and report audits of algorithmic
systems [8, 9]. However, statistical aspects of fairness audits are largely overlooked except by a
few studies [10–13]. Audits produce estimates of unfairness based on limited samples collected in
the audit study. Therefore, standard considerations for making statistical inferences apply such as
representativeness of the study sample to the target population, specification of the hypotheses being
tested, and communicating uncertainty or statistical power of the tests. However, previous work often
does not report uncertainties in the unfairness estimates (e.g. [1, 2], ostensibly because the evaluation
datasets used in such studies are large). Importantly, there is not enough guidance on how to design
audits such that they are sufficiently powered to detect model unfairness. Previous guidances on
sample sizes (e.g. [14–16]) focus on evaluation metrics such as calibration slope or area under the
ROC curve which differ from the commonly-used fairness metrics such as false positive/negative
rate disparity, and hence are not directly applicable. Even though guidance exists for measures of
differences between groups in the clinical trial [17] and health disparities [18] literature, we are not
aware of works that present the formulae directly relevant to fairness metrics.

Sample size calculations are important to plan resources required to collect data since audits may not
have existing data to validate the models. This is often the case in external, independent audits where
the model developer might not be willing to share data (e.g. [19]). Auditors may require conducting
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total ng Y = + Y = −
Ŷ = + TPg FPg

Ŷ = − FNg TNg

Figure 1: Confusion matrix and derived performance metrics. The model predicts Ŷ for the target
class Y which is assumed to be either + or −. The ng data points in a group are divided into four parts
of the confusion matrix such that ng = TPg + FPg + FNg + TNg which respectively correspond
to number of true positives, false positives, false negatives, and true negatives. Demographic parity,
for instance, is the difference (TP1 + FP1)/n1 − (TP2 + FP2)/n2.

surveys, buying data, or querying expensive model services, thus, making data collection expensive.
In some cases it is possible to leverage existing open datasets such as images of parliamentarians
from across the world to audit facial image processing algorithms [2], data released under legal
obligations by lenders [3], or direct sharing by the model developer under strict terms [20]. However,
such datasets might not be readily available for domains such as healthcare, or we may want to
evaluate the model on a new target population not measured before. Focusing on such cases, we only
assume query-access to the model being audited (i.e. given an input feature vector, we can query its
prediction), and optionally, the ability to collect small amount of pilot data. We assume that the goal
of the audit is to conduct a hypothesis test for whether the model is fair. To this end, we describe the
sample size needed such that the probability of detecting unfairness is sufficiently high.

The main contribution of this work is to provide a tutorial on calculating sample sizes for fairness
audits. We provide sample size formulae that can be directly used for auditing common fairness mea-
sures including, but not limited to, demographic (or statistical) parity [21] and false positive/negative
rates disparity [22]. By providing simple-to-use formulae, our hope is to ease the adoption and
maximize the effectiveness of fairness audits. As with any sample size calculation, the number
of samples should be taken as a rough approximation. Knowing them can help to decide whether
existing data is sufficient and to plan resources for the audit.

2 Sample size calculations

Denote the performance of the given model on a target population by M . This could be the accuracy,
false positive rate, or different ways of measuring model performance. Suppose the population is
partitioned into non-overlapping groups, such as using protected attributes like sex and race/ethnicity
(or intersections thereof). Let us denote the performance for subgroup g by Mg. Many unfairness
measures are expressed as the difference in performances between two groups, i.e. U = M1−M2 (see
[23] for examples). We assume that group 1 is the privileged and group 2 is the disadvantaged group,
in that we believe U to be non-negative. For more than two groups, one can compare performance
with respect to a reference group, say, the privileged group. We restrict to binary classification models
for exposition. The calculations can be extended to more than two classes.

An example of an unfairness metric is demographic parity, which is the difference between the
fraction of positively predicted points between the two groups. Thus, in this case, Mg is the fraction
of individuals from group g predicted to be positive. We will provide sample size calculations for
various metrics that summarize the confusion matrix [24] (see Figure 1 and Table 1).

Before performing any sample size calculations, we must first define the sampling design. Since we
are interested in measuring group-wise performances, we need to collect enough samples from each
group. One way to accomplish this is through a stratified random sampling design where individuals
from each group are sampled at random with a fixed probability and independently from other
individuals. There are more complex designs that might be more suited to the problem context; here
we focus on stratified sampling for its applicability and simplicity. Note that for certain performance
measures such as demographic parity, we do not need to collect the true labels Y . In general, we need
the group membership, true label, and the features for computing the model predictions.

Defining the hypothesis test. We want to test whether the unfairness exceeds some pre-specified
tolerance. That is, the null and the alternative hypotheses are

H0 :U(M1,M2) ≤ Utol

Halt :U(M1,M2) > Utol.
(1)
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Table 1: Variance of performance metrics in each group. Denote the fraction of total positives
(i.e. prevalance) by MP = (TP + FN)/n and the fraction of positive predictions are denoted
by MPP = (TP + FP )/n. Denote fraction of true positives by MTP = TP/n, true negatives
MTN = TN/n, false positives MFP = FP/n, and false negative MFN = FN/n. Then, true
positive rate (or recall, sensitivity) is the ratio MTPR = MTP /MP and true negative rate (or
specificity) is MTNR = MTN/(1−MP ). We can define accuracy, false positive/negative rates and
positive/negative predictive values as functions of TP, TN,FP, FN . All metrics are calculated on
the subset of data for the group. So, MTPR for a group g refers to the ratio MTP,g/(MTP,g+MFN,g).
We omit the g in subscript for conciseness.

Performance metric Mg Group-wise variance σ2
M,g

Demographic parity MPP (1−MPP )
True positive rate (TPR) or false negative rate (FNR) 1

MP
MTPR(1−MTPR)

True negative rate (TNR) or false positive rate (FPR) 1
1−MP

MTNR(1−MTNR)

Precision/Positive predictive value (PPV) 1
MPP

MTPR(1−MTPR)

Negative predictive value (NPV) 1
1−MPP

MTNR(1−MTNR)

Here, Utol is the minimum tolerated unfairness which can be set to 0. We want to find the minimal
sample size n and allocation (n1, n − n1) that achieves the specified power for the test at a given
significance level.

The test statistic for conducting this hypothesis test is as follows. Let n denote the number of samples
in the study, with n1, n − n1 samples from the two groups. Given this, we estimate the group
performances M̂1 and M̂2 from n1 and n − n1 samples respectively. The estimate of unfairness
Û is the difference between the two. We use the test statistic as (Û − Utol)/σ̂U , where σ̂U is any
consistent estimate of the standard deviation of unfairness (discussed later). The null is rejected if the
test statistic exceeds some threshold. The threshold is chosen to control the Type I error (also called
significance level) at level α (e.g. 0.05) while maximizing power 1− β (e.g. 0.8). Recall that Type I
error is defined as falsely rejecting the null hypothesis when true (declaring a fair model as unfair)
and power is defined as correctly rejecting the null hypothesis when false (declaring an unfair model
as so).

The hypothesis test defined in (1) is suitable for external audits since rejecting the null would mean
that the model is unfair. Utol is specific to the problem and the performance metric. The auditor might
refer to unfairness of the system prior to model deployment (such as standard of care in healthcare
settings) to decide currently acceptable unfairness and set it as Utol. We would want high power so as
to declare unfairness when present. Internal audits might prefer switching the null and alternative
hypotheses to be able to conclude that the model is fair.

Asymptotic behavior of the test statistic. To find the sample size needed to power the hypothesis
test, we first find the asymptotic distribution of the test statistic. In particular, using the central
limit theorem and the delta method (Theorem 3.7 in DasGupta [25]), the estimates of the subgroup
performance measures considered in Figure 1 converge to a Normal distribution with variances
shown in Table 1. See Appendix B for details. Consequently, the test statistic converges to a Normal
distribution with mean (U −Utol)/σU and variance 1 where σ2

U = σ2
M,1/n1+σ2

M,2/n2. Here, σ2
M,g

are group-level variances that depend on the performance measure M .

Determining sample size and optimal allocations. The sample size for the test needed to achieve
power of 1− β while controlling Type I error at level α is calculated assuming unfairness is equal to
some τ > Utol. In particular, the minimum sample size to achieve the desired Type I error and power
is

n = (Z1−α/2 + Z1−β)
2(σ2

M,1/p1 + σ2
M,2/(1− p1))/(τ − Utol)

2 (2)
where Z is the inverse CDF of the standard Normal distribution and p1 is the fraction of samples
(n1/n) we will allocate to group 1 (e.g. see Wittes [17]). Note that the presumed level of unfairness
τ should be selected based on prior knowledge about the model. The smaller the difference between
τ and Utol, the more samples we will need.

We can find the optimal allocation p1 that minimizes the required sample size n by solving the first-
order optimality condition for (2) in terms of p1. The optimal allocation is p1 = σM,1/(σM,1+σM,2),
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which is also known as Neyman allocation [26] in survey sampling literature. That is, we should
allocate samples in proportion to the variability of the metric in the groups. We note that the allocation
is not simply to have equal number of samples per group. How much to over- (or even under-) sample
the minority group depends on the variances. Sample size under the optimal allocation is

n = ((Z1−α/2 + Z1−β)(σM,1 + σM,2)/(τ − Utol))
2. (3)

To use these sample size formulae, we need estimates of group performances to estimate the group
standard deviations σM,g using the Table 1. These can be approximated from data used to train the
model or from previously-conducted audits for the model when available. We can alternatively run a
small pilot study to estimate the metrics. Since we will adapt the data collection in the main study by
estimates from the pilot study, this may bias our unfairness estimates. This can be avoided by pooling
estimates from pilot and main studies as described in Singh and Chunara [18].

We illustrate the sample size calculations on an income prediction model trained on American
Community Survey data [27] in Appendix A. We observe that sample sizes widely vary depending
on the metric. For example, auditing for disparity in TPR requires around 1.6 times as many samples
as for demographic parity, mainly due to the increased variance of the unfairness estimate for the
TPR metric.

2.1 Other considerations

Even before doing sample size calculations, it is important to define the target population of the
audit. This is typically the population which will be subjected to the model predictions such as loan
applicants from a lender’s area of operation. Identifying the target population is important to ensure
that the study collects a representative sample. There might be a mismatch in the target population
and the sample collected due to infeasibility of randomly sampling the target population. In this case,
our inferences need to stated in terms of the sampled population.

While collecting data for the audit, there are many statistical biases to keep in mind. The target
labels collected during the study may differ from the way target label was defined in the model
and/or at deployment. Thus, the unfairness identified in the audit might not correspond to the actual
unfairness of the model. Finally, there might be non-compliance or selective responses for subjects
in the audit which leads to missing data or selection bias in the unfairness estimates. These and
other considerations standard in the clinical study literature (e.g. [17]) should be kept in mind while
analysing and interpreting the audit results.

3 Conclusion

Independent audits of machine learning models are challenging in part because the training or
validation data are typically not available to the auditors. However, reliable estimates of unfairness
are important to create public awareness of model failures and demand updates to the model. We
present a method to aid auditors in deciding the number of samples needed to test for unfairness. The
method applies to common fairness metrics expressed as differences (or other differentiable functions)
of group-wise performance metrics, for example, demographic parity, and false positive/negative rate
disparities.

As further work, the method can be extended to include performance metrics such as area under the
ROC curve and calibration slope. An important next step is to address practical considerations such
as missing data or measurement error in group membership or labels [28]. We may want to audit for
a large number of groups, especially when considering intersectional identities. How do we reduce
the sample sizes required in this case while sharing information across the groups? Also, if there
are other types of audits being conducted (e.g. for model calibration or stability [5]), how does one
collect a single dataset so that all the different audits are properly powered? The statistical aspects
of the audits that we highlight are complementary to aspects such as independence and integrity of
the auditing organization, and efficient communication of the audit results to the policy makers and
public. Together these may ensure that audits become a widely-adopted mechanism for keeping
model developers accountable for their societal impact.
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A Example

We apply our method to evaluate fairness of an income prediction model trained on survey data. Amer-
ican Community Survey (ACS) data contains responses on education, housing, health, demography,
and many other variables from a representative sample of the US households [29].

Experiment setup. We consider the task of predicting income level of an individual from attributes
related to their education, work, and demography. Prediction target is binary (high vs low income
binarized at the income threshold of 50, 000 USD). We randomly split the dataset into train (70%)
and test (30%). We train a gradient boosting classification model on the train data, and compute the
unfairness and sample sizes on the test data. We evaluate disparity in model performance between
white and Black or African American population groups. In our processed data, Black or African
American population group constitutes 7% of the total data points (2562 out of 38869 points). True
positive rate for white population is 0.79 which is 11 percentage points higher than for the Black or
African American population at 0.68. Table 2 gives an example of the sample sizes obtained from (3)
for unfairness defined by different performance metrics.

Take for instance demographic parity (DP). Rate of positive predictions MPP,1,MPP,2 in Black or
African American and white population groups on the test set are 0.3478, 0.4404 respectively. Thus,
the unfairness value is 0.093 which we take as τ . Group variances σ2

M,1, σ
2
M,2 from Table 1 are

0.227, 0.246. Plugging these in (3) we get the minimum required sample size to detect τ is

n ≈ (Z1−0.05/2 + Z1−0.2)
2 × (0.2271/2 + 0.2461/2)2/0.0932 ≈ 855.
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Table 2: Example of sample size calculations for an income prediction model on ACS data. We
report the unfairness (its absolute value) and sample sizes needed to detect that value for different
metrics. We evaluate the n at optimal allocation for different unfairness metrics and for a hypothesis
test at α = 0.05, β = 0.2, Utol = 0. We set τ to be the actual unfairness estimate for the metric
computed on the test data. Sample sizes vary a lot depending on the metric of interest. The sample
size for NPV is 846,671 mainly because we required an extremely precise value of τ = 0.003. Note
that the numbers are only meant to illustrate the sample size formulae and are not for direct use.

Performance metric M Presumed unfairness τ Sample size n

DP 0.09 855
TPR 0.11 1,379
TNR 0.03 6,540
PPV 0.06 4,364
NPV 0.003 846,671

B Derivations

Asymptotic distribution of performance metrics. We first note that for many performance metrics,
M̂g are sample averages or ratios of sample averages. For example, accuracy is an average of correct
predictions, (TP + TN)/n. This implies that (M̂1, M̂2) follows a multivariate Normal distribution
asymptotically by the central limit theorem. It has mean M1,M2 and the variance depends on the
particular performance metric M . This follows from Fuller [30, Theorem 1.3.2] for data collected by
simple random sampling without replacement in each group independently. Throughout we ignore the
finite sample correction which multiplies (1− n/N) to the variance where N is the population size.
We assume that the sample size is negligible compared to the population size such that n/N → 0.
This is the case while surveying large populations.

For true positive rate (TPR), we need the joint distribution of TP and P which is the following,

√
n

(
M̂TP −MTP

M̂P −MP

)
∼ N

((
0
0

)
,

[
MTP (1−MTP ) MTP (1−MP )
MTP (1−MP ) MP (1−MP )

])
Similarly, for true negative rate (TPR), we need the joint distribution of TN and N which is the
following,

√
n

(
M̂TN −MTN

M̂N −MN

)
∼ N

((
0
0

)
,

[
MTN (1−MTN ) MTN (1−MP )
MTN (1−MP ) MP (1−MP )

])
Asymptotic distribution of ratios of performance metrics. Now, we require the asymptotic
distribution of ratios of TP and P , or TN and N . Distribution of differentiable functions of Normally
distributed random variables can be computed by the delta method. Denote some performance metrics
of interest arranged in the vector M, for instance, (MTP ,MTN ,MP ).

Theorem 1 (Delta method e.g. Theorem 3.7 in DasGupta [25]) Given a sequence of k-
dimensional random vectors {M̂n} such that

√
n(M̂n − θ)

distr.−−−→ Nk(0,Σ(θ)). Consider a
function d : Rk → R where d is once-differentiable at θ and ∇d(θ) is the gradient vector at θ. Then,
we have √

n
(
d(M̂n)− d(θ)

)
distr.−−−→ N

(
0,∇d(θ)⊤Σ(θ)∇d(θ)

)
(4)

provided ∇d(θ)⊤Σ(θ)∇d(θ) is positive definite.

By Theorem 1, the empirical estimate of the performance metric d(M̂) follows a Normal distribution
asymptotically with mean d(M) and variance ∇d(M)⊤Σ∇d(M).

Variance for estimated TPR which is M̂TP /M̂P is 1
nMP

MTPR(1−MTPR). Similarly variance for
estimated TNR is 1

n(1−TP )MTNR(1−MTNR).
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Asymptotic distribution of unfairness metrics. We need to compute the variance of the unfairness
estimate Û . By definition, unfairness is a difference, M̂1 − M̂2, of statistically independent quantities
since we compute the metrics separately on independently-sampled groups. Thus the asymptotic
variance of unfairness estimate is the sum of variances, σ2

U = σ2
M,1/n1 + σ2

M,2/n2. We can combine
the above to get variance for disparity in TPR as

σ2
U =

1

MP,1
MTPR,1(1−MTPR,1) +

1

MP,2
MTPR,2(1−MTPR,2).

For the hypothesis test, we use the test statistic as (Û − Utol)/σ̂U . For a consistent estimate σ̂U

converges to σU . Then, the test statistic converges to a Normal distribution with mean (U −Utol)/σU

and variance 1 by applying the Slutsky’s theorem. Now we do sample size calculations for the test.

Sample size calculation. Denote standard deviation under the null and alternative hypotheses by
σU,null, σU,alt respectively. We want significance level α which means the following holds for the
test statistic.

sup
u≤Utol

P

(
Û − Utol

σU,null
> Z1−α/2

∣∣∣U = u

)
≤ α

=⇒ P

(
Û − Utol

σU,null
> Z1−α/2

∣∣∣U = Utol

)
≤ α

The following should hold as well for power 1− β.

inf
u≥τ

P

(
Û − u

σU,alt
> Z1−α/2

∣∣∣U = u

)
≥ 1− β

=⇒ P

(
Û − Utol

σU,alt
> Z1−α/2

∣∣∣U = τ

)
≥ 1− β

=⇒ P

(
Û − τ

σU,alt
> Z1−α/2 −

(τ − Utol)

σU,alt

∣∣∣U = τ

)
≥ 1− β

Setting Z1−α/2 − (τ−Utol)
σU,alt

≤ −Z1−β , we have by rearranging terms that

σ2
U,alt ≤

(τ − Utol)
2

(Z1−α/2 + Z1−β)2

⇐⇒ n ≥
(Z1−α/2 + Z1−β)

2(σ2
M,1/p1 + σ2

M,2/(1− p1))

(τ − Utol)2

We can replace p1 by the optimal allocation σM,1/(σM,1 + σM,2) to get the minimum sample size.

C Code availability

Code to query ACS data is taken from the folktables packages [27]. Scripts to
compute the sample sizes will be made available at https://github.com/harvineet/
sample-size-fairness-audits.
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