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Abstract
This paper studies the possibilities made open by the use of Lazy Clause Generation (LCG) based
approaches to Constraint Programming (CP) for tackling sequential classical planning. We propose
a novel CP model based on seminal ideas on so-called lifted causal encodings for planning as
satisfiability, that does not require grounding, as choosing groundings for functions and action
schemas becomes an integral part of the problem of designing valid plans. This encoding does not
require encoding frame axioms, and does not explicitly represent states as decision variables for
every plan step. We also present a propagator procedure that illustrates the possibilities of LCG to
widen the kind of inference methods considered to be feasible in planning as (iterated) CSP solving.
We test encodings and propagators over classic IPC and recently proposed benchmarks for lifted
planning, and report that for planning problem instances requiring fewer plan steps our methods
compare very well with the state-of-the-art in optimal sequential planning.
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1 Introduction

One of the most significant advances in classical planning was the realisation of Green’s [18]
vision for theorem proving as a framework for general problem solving, via the ground-
breaking seminal work of H. Kautz and B. Selman [29, 28]. Putting together the insights of
Blum and Furst [3], where planning becomes the problem of analysing whether goal states
are reachable in a suitably defined graph, with space efficient solutions to the frame problem
formulated in the Situation Calculus [32, 19], Kautz & Selman showed that formulating
planning problems in terms of satisfiability of Conjunctive Normal Form (CNF) formulas
was feasible and, at the time, highly scalable. Attention to planning as satisfiability has been
somewhat eclipsed since then with the development of planning algorithms based on direct,
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but lazy, incremental heuristic search over transition systems [4, 23, 21, 38, 51]. Yet deep
theoretical connections exist between planning as satisfiability and as heuristic search [15, 40]
questioning [41, 50] perceptions of either approach as being parallel or mutually exclusive.

Like R. Frost’s traveller in the woods this paper finds its way back to a crossroads in
the development and study of approaches to planning as satisfiability. One way is that of
the so-called GraphPlan encodings (linear and parallel), the other being that of so-called
causal encodings (ground and lifted) invented by Kautz, McAllester and Selman (KMS) [28].
Unlike Frost’s poem though, lifted causal encodings are clearly an approach seldom followed
in the literature in automated planning. Inspired by the formulation of nonlinear or partially-
ordered planning of McAllester and Rosenblitt [31], these encodings have polynomial size
over the lower bound on the number of plan steps in feasible plans. Importantly too, they do
away entirely with the need for explanatory frame axioms. Yet these very desirable properties
follow from the premise of not having to ground actions and predicates first, as otherwise
the unavoidable exponential blow outs obliterate any practical differences with GraphPlan
encodings.

In this paper we realize this potential by tapping into the power of Lazy Clause Generation
(LCG) [35], a ground-breaking technology that unifies propositional satisfiability (SAT) and
Constraint Programming (CP), and allows representing implicitly large tracts of complex
systems of constraints by suitably defined inference procedures, or propagators. These lazily
generate new constraints to record violations by assignments to decision variables, and
propagate information following from the consistency of assignments and constraints in order
to tighten the domains of variables. This, in addition to very sophisticated and performant
modeling tools and solvers [37], provide us the foundations to develop scalable planners that
follow the path laid by KMS lifted causal encodings. We have found these planners to clearly
outperform state-of-the-art optimal planning algorithms on benchmarks designed to be hard
to ground [7], while standing their ground on the IPC benchmarks.

Paper Overview. We start the paper with a precise formulation of the kind of planning
problems of interest to us and their solutions. We then introduce a formalism to describe
the structure of states and actions that is based on Functional STRIPS [13]. We assume
that all atoms in precondition and effects are equality atoms over suitably defined function
symbols and constant terms. These ground domain theories are then lifted [31]. With these
preliminaries in place, we introduce our encoding, for which we prove validity and provide a
characterisation of its complexity. After that, we explain how we leverage state-of-the-art
CP solvers to implement efficiently our encoding. We then present a method to do a concise
transformation of planning instances represented in PDDL to FSTRIPS. We end with an
evaluation of several planners built on top of our encoding and propagators, along with
a brief analysis of related work and a discussion of the significance and potential of this
research.

2 Formulation of Planning Problems

A problem planning instance (PPI) is given by a tuple P “ pS,A,Ñ, s0, SGq where S and A
are finite sets of states and actions, Ñ Ă S ˆAˆ S is the transition relation, where sÑa s

1

indicates that s1 is reachable from s via a, s0 P S is the initial state and SG Ă S is the set of
designated goal states. We say that a PPI admits a trajectory σ “ s0, a1, s1, . . . , si´1, ai, si
iff si´1 Ñai si for every i ą 0. In this paper the notion of planning problems is that of
optimization problems where we seek sequences σ “ s0, a1, s1, . . . , sk´1, ak, sk, that minimize
lengthpσq :“ k, and satisfies sk P SG. The set of σ sequences that satisfy sk P SG is referred
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to as the set of valid plans ΠP . The optimal cost of P is thus c˚ :“ minσPΠP lengthpσq.
When ΠP “ H, we say that P is infeasible and optimal cost is c˚ “ 8. We observe that
|S| ´ 1 is a trivial upper bound on c˚ when ΠP ‰ H. Non-trivial, feasibly computable upper
bounds are known [1] but only for PPIs with special structure.

2.1 Factored Planning Problems
A long recognised and adopted strategy to deal with large |S| is that of factoring states
and actions in PPIs as a preliminary step to develop algorithms that can deal with large
scale problems [36, 2]. We now present an account of FSTRIPS, a formalism to define such
factorings, where a domain theory expresses assumptions on the structure of states and
actions [12, Section 2.1].

A PPI P in Functional Strips is defined over a many-sorted first order logic theory with
equality, which we denote as LpP q “ pT,Φ,Πq. The constituents of such a theory capture
relevant properties of and relations between objects, and provide the basic building blocks to
factorize states s P S. T is a finite non-empty set of finite sets called types, or sorts, with
a possibly infinite set of variables xt1, xt2, . . . for each type t P T . The universe is the set
U “ YtPT t. Φ is a set of function symbols f P Φ, each of which is said to have a domain
Domf Ă t1 ˆ . . . ti ˆˆtdf where ti P T , and a range Cof P T . Π is a set of relation symbols.
In this paper, Π contains the standard relations of arithmetic e.g. “ă”, “ď”, “ą”, “ě ” in
addition to equality ““”. Some PPIs may specify as well domain specific relations, along
with their denotation, in addition to the former standard ones. We denote the maximum
function arity of the domain, maxfPΦ df , as Kf . States s P S in a Fstrips problem P are
semantic structures that set the interpretation of formulas over LpP q with fixed universe
U . Thus each s contains the graph [5] of each function f P Φ, providing the denotation for
functional terms fpt̄q, where t̄ P Domf . We note that SpP q is a finite set since types t P T
are finite sets too.

The transition relation Ñ is specified via suitably defined action schemas α P Act. α is
a non-logical symbol such that α R Φ Y Π. Actions αpx̄q capture sets of transitions in Ñ
parametrized by a tuple of typed variables x̄ “ pxt11 , . . . , x

tdα
dα
q. τpαq denotes the tuple of types

of parameters of α, τpαq “ pt1, . . . , tdαq. For each action schema αpx̄q we are given Preαpx̄q
a precondition formula over LpP q and variables x̄. In this paper we consider a fragment of
the formulas considered by [12], defined by the following grammar in Backus-Naur form

Preαpx̄q :“ J |

cardpPreαq
ľ

i“1
fipȳiq “ zi (1)

where J is the tautology, cardpPreαq denotes the number of equality atoms in the formula
Preα, ȳi Ă x̄, and zi P U . Additionally, we are given an effect formula Effα of the form

Effαpx̄q :“
cardpEffαq

ľ

j“1
fjpȳjq “ zj (2)

where cardpEffαq denotes the number of equality atoms in the formula Effα, ȳj Ă x̄ and
zi P U .

We now explain the FSTRIPS representation for the visitall problem domain from the
IPCs [26] in which an agent must visit all the cells in an n ˆ n square grid starting from
the center of the grid. In Visitall, we only have one type, T :“ tCu, where C is a set of cells
in the grid, the set of function symbols is Φ :“ tat, visitedu, and it has a domain specific
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relation Π :“ tconnectedu. It has one action schema move which allows the agent to move
between two connected cells of the grid, thus, Act “ tmoveu. The move schema takes two
parameters which we denote by x̄ :“ px1, x2q, where x1 is the current position of the agent
and x2 is the target position. The precondition and effect formulas of move are defined as
follows

Premovepx̄q :“ atpq “ x1 ^ connectedpx1, x2q “ J (3a)
Effmovepx̄q :“ atpq “ x2 ^ visitedpx2q “ J (3b)

The goal condition of visitall requires the agent to visit all cells in C

Goalmove :“
ľ

cPC

visitedpcq “ J (4)

A set of action schemas Act is systematic [31, 43] for a PPI P if and only if, for every
ps, a, s1q PÑ there is an action schema αpx̄q such that there exists a vector v̄ P t1 ˆ ¨ ¨ ¨ ˆ tdα
and the following conditions hold:

s |ù Preαpx̄q{v̄ (5a)
s1 |ù Effαpx̄q{v̄ (5b)
s1 |ù gpv̄q “ w, when s |ù gpv̄q “ w ^ Ew1,Effαpx̄q{v̄ |ù gpv̄q “ w1 (5c)

where φpx̄q{v̄ is the (ground) formula that results from replacing every occurrence of xi P x̄
by that of vi P v̄. The satisfiability relation in (5a)–(5c) is defined in a standard way [12].
In words, a set of action schemas Act is systematic whenever these capture every possible
reachability (or accessibility) relation between states s and s1. We note that one action
schema αpx̄q can satisfy the above for many ps1, a1, s

1
1q, ps2, a2, s

1
2q, ..., each of these tuples

providing the semantics of ground action αpv̄q. In this paper we further assume that action
schemas do not change the denotation of any symbol in Π (see section 5 for a discussion of
their treatment in our encoding).

We denote the maximal arity of action schemas in Act as Kα “ maxαPAct dα. The maximal
number of equality atoms in precondition formulas is written as Kpre “ maxαPAct cardpPreαq
(resp. Keff “ maxαPAct cardpEffαq for effects).

3 Planning as Satisfiability

The approach known as planning as satisfiability [29] proceeds by considering a sequence of
instances for a related decision problem, that of plan existence. We state the latter simply
as follows: given some PPI P and parameter Nπ, with actions and states defined in terms
of some domain theory, the task is to prove that a feasible trajectory σ exists such that
lengthpσq “ Nπ, or alternatively, certify that no such σ exists. The classic algorithm for
optimal planning in this framework thus considers the sequence of CSPs TP,n0 , TP,n1 , . . .,
TP,nk , . . . each of these a reduction of the plan existence problem for P and Nπ “ nk into that
of the satisfiability of a CSP TP,nk with suitably defined decision variables and constraints.
The sequence of natural numbers n0, n1, . . . , nk, . . . is typically, but not necessarily [48],
defined as n0 “ 0, n1 “ 1, and so on. When defined in this manner, as soon as TP,nk
is satisfiable, we have proven that c˚ “ nk. Scalable certification of infeasibility in this
framework has been an open problem until recently [8], yet still remains challenging.
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Symbol Description

acti Action assigned to slot i, i “ 1, . . . , Nπ

activeik Pin is active
argij Value of j-th argument of slot i, j “ 1, . . . , Kα

inik k-th input pin data of slot i

outil l-th output pin data of slot i

sptjk Output pin supporting k-th input pin of slot j

Table 1 Quick reference table for the decision variables in the model. Nπ is the number of slots,
Kα is the (constant) maximal number of arguments in any action schema α P Act.

4 Lifted Causal CP Model

We start by giving a high-level account of our proposed encoding of CSPs TP,Nπ and explain
the roles played by the decision variables in Table 1. Central to our encoding is the notion
of plan step or slot, of which we have one for each action in a plan. In contrast with the
causal encoding of KMS, slots are totally ordered thus greatly simplifying the definition
of persistence that we use to deal with the frame axioms. To each slot exactly one action
schema α P Act needs to be assigned (variables acti), which in turn restricts choices on
the possible values for the arguments (variables argij) of the schema α as per τpαq. The
assignments to the variables acti and argij determine the choices of input and output pins
for a slot. A pin is a vector of decision variables which we use to represent equality atoms
fpȳq “ z. These variables choose the function symbol f , terms (constants in U) ȳ (a vector)
and z. Input pins of slot i thus encode the equality atoms in Preαpx̄q{v̄ required to be
true in state si´1, and output pins the atoms in Effαpx̄q{v̄ required to be true in si, where
αpv̄q is the ground action selected by the assigned schema and (possibly partially) assigned
values to arguments. These dependencies between the variables of a slot are depicted in
Figure 1(a), and Figure 1(b) illustrates the active constraints between variables when the
move action schema is chosen at slot i in the visitall problem domain. The move schema has
two arguments representing the current position and the target position of an agent in an
nˆ n grid. Thus, when acti “ move, we require that argi1 P C and argi2 P C, the input pin
ini1 is assigned the function symbol at and the variable yi1 holds an equality relation with
argi1.

We note that we create up front variables for arguments and pins following from Kα, Kf ,
Kpre and Keff , all constants given by the data in an instance P . For a given slot i, argument
variables argij that are not used by the schema assigned are set to a special null constant.
To disable pins not needed to represent atoms in preconditions or effect formulas we have a
Boolean variable activeik that indicates if they are being used. Finally, variables sptjk allow
choosing what output pin is supporting a given input pin. These variables allow encoding
causal links [31] without referring explicitly to atoms.

4.1 Variables and Constraints

We now give a formal and precise account of the variables and constraints in the model. Let
Nπ be the maximal number of slots in a valid plan. For every slot i “ 1, . . . , Nπ we have
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Figure 1 paq Constraint graph depicting dependencies between the decision variables to model
slots (plan steps). There is one vertex for every decision variable, and there is an edge between
two variables whenever they appear together in the definition of at least one constraint. pbq Active
constraints when the move action schema is chosen in visitall.

integer variables acti P rActs1 to choose the action schema α P Act assigned to it. Argument
variables argij select the values of the variables introduced by lifting, and their domains
correspond to the types τjpαq, whenever acti “ α

pacti “ αq Ñ argij P rτjpαqs, j “ 1, . . . , dα (6)

The choice of action schema assigned to a slot restricts the choices of (ground) precondi-
tion and effect formulas. As introduced above, the input and output pins of a slot i are
the vectors of decision variables that select function symbols, arguments and values inik
:“ pgik, xik1, . . . , xikN̄f , yikq and outil :“ phil, xil1, . . . , xilN̄f , yilq. Consistency of schema,
preconditions and effects assigned to slot i is enforced by

pacti “ αq Ñ pgik “ fkq ^ bindpfk, x̄ik, yik, argiq (7a)
pacti “ αq Ñ phil “ flq ^ bindpfl, x̄il, yil, argiq (7b)

for k “ 1, . . . , cardpPreαq and l “ 1, . . . , cardpEffαq. argi is the vector of argument variables
for slot i. The predicate bind in (7a) and (7b) ensures that subterms x̄ and y of equality
atoms in preconditions and effects are consistent with the definition of schema α, expanding
into the following

df
ľ

j“1

ˆ Kα
ł

j2“1
pxj “ argij2q

˙

^

Kα
ł

j2“1
py “ argij2q (8)

The dependencies induced by constraints (6)–(8) are depicted in Figure 1,
States are represented implicitly in our model, and in order to ensure that no change on

the initial state s0 is allowed without an event in the plan that explains any changes we rely
on the notion of causal consistency or persistence

1We use the notation rSs to designate the indexing of the elements of a set, e.g. rSs “ 1, 2, . . . for
S “ te1, e2, . . .u.
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§ Definition 1. Let fpx̄q be a functional term f P Φ and y a valid value in Cof . We say that
the truth of atom fpx̄q “ y persists between slots i and j, 0 ď i ă j ď Nπ, if (1) f : x̄ ÞÑsi y,
and (2) for every slot j1, i ă j1 ă j, there is no pin outj1l “ phj1l, x̄j1l, yj1lq such that hj1l “ f ,
x̄j1l “ x̄, and yj1l ‰ y.

This ensures that states sj are given either by 1) function and value assignments in the
initial state s0 that have persisted through (ground) actions ai encoded in slots i, 0 ă i ă

j, or 2) an assignment made by some action ai encoded in some slot i, 0 ă i ă j, that has
persisted through the actions aj1 encoded by slots j1, i ă j1 ă j. For example, in visitall, an
atom atpq “ c1 in the intial state, where c1 is the initial position of the agent, is said to have
persisted until slot 3 iff the atom holds at slot 1 and 2.

The many possible cause-and-effect relations between output and input pins that may
justify the causal consistency of a plan are modelled via so-called (causal) support variables,
sptjk P

`

r0, j ´ 1s ˆ r1,Keffs
˘

Ytnullu, for each slot 0 ă j ď Nπ and input pin 1 ď k ď Kpre.
The domain of these variables is the set of two-dimensional vectors whose first element is
the index of the slot i and the second the index l of the output pin supporting injk, plus a
dummy vector null that indicates that input pin injk does not have a causal support assigned.
The following constraints enforce that every active pin has a matching supporting one

sptjk “ null Ñ ␣activejk (9a)
sptjk “ pi, lq Ñ outil “ injk (9b)

sptjk “ pi, lq Ñ
ľ

iăj1ăj

persistspoutj1l, injkq (9c)

for each 1 ď j ď Nπ and 0 ď i ă j. Constraint (9a) excuses input pins that are inactive
from having a causally supporting output pin. Constraint (9b) ensures that the values for
functions, domain and valuation set by pins injk and outil are matching. Constraint (9c)
encodes the requirement of causal supports to not be interfered by any ground action set for
intermediate slots i ă j1 ă j. persistspoutil, injkq in constraint (9c) expands into the formula

phil ‰ gjkq _ px̄il ‰ x̄jkq _ pyil “ yjkq (10)

In the specific case of visitall, the constraints (9) and (10) impose additional constraints on
the input and output pin variables than the ones depicted in Figure 1(b), thus, restricting
the choices of acti and argi as well. For example, if spt31 “ p1, 3q, then the constraint
(9b) requires that the assignment to out13 :“ pat, y13q matches that of in31 :“ pat, y31q, i.e.
y13 “ y31, and the constraints (9c) and (10) ensure that the assignment to out13 persists
through slot 2, i.e. the (ground) action a2 does not affect the interpretation of at. It is easy
to see that when spt31 “ p1, 3q, the choice of y13 in turn affects arg31 since arg31 holds an
equality relation with y31.
Additionally, whenever we assign action schemas α to slots i we mark input and output pins
as being active

acti “ αÑ activeik, acti “ αÑ ␣activeik1 (11a)
acti “ αÑ activeil, acti “ αÑ ␣activeil1 (11b)

with indices ranging as follows: 1 ď k ď cardpPreαq, cardpPreαq ă k1 ď Kpre, 1 ď l ď

cardpEffαq, cardpEffαq ă l1 ď Keff . Initial and goal states are accounted for in the following
way. To model the initial state, we define slot 0 to consist exclusively of a set of (output)
pins out0l where l ranges over the indexing of the set

F :“
ď

fPΦ
Domf (12)
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and each pin is set as per constraints, for each l P rFs

out0l “ pfl, x̄l, yq (13)

and y P Cof such that fl : x̄l ÞÑs0 y. Goal states are modelled too by having the slot Nπ to
have special structure, in this case by only having input pins inNπk with k ranging over the
indexing of the set of equality atoms φk ” fkpx̄kq “ yk in the goal formula

ľ

φkPGoal

inNπk “ pfk, x̄k, ykq ^ activeNπk (14)

4.2 Analysis: Systematicity and Complexity
We first establish as fact that our encoding is systematic [31].

§ Theorem 2 (Systematicity). Let TP,Nπ “ pX , Cq be the CSP given by the decision variables
X in Table 1 and set of constraints C (6)–(14), for some suitable choice of Nπ. There exists
an assignment ξ onto variables X that satisfies every constraint in C if an only if there exists
a feasible solution σ to the PPI P , whose actions are given by slots, argument, input and
output pin variables values.

Proof. See 4. đ

Giving bounds on the number of variables generated for a CP model is not as informative
as doing so for CNF formulas due to the advanced pre-solving techniques that state-of-the-art
CP solvers employ [37], that may introduce auxiliary Boolean variables and eliminate variables
whose values can be determined without searching. Assuming that no such transformations
are applied to the CSP, the set of sptjk variables and their domain constraints, which are
required to be encoded explicitly by LCG solvers [35], is the largest and is OpN2

πKmaxq where
Kmax “ max t Kpre, Keff u. In the IPC benchmarks, this results often in just a quadratic
rate of growth as Kmax is usually much smaller than Nπ for optimal plans. Yet, as we will
see in our Evaluation, this is not always the case, and we get cubic rates.

5 Programming the Model with CpSat

To implement the CP model introduced in the previous section we have used the LCG
solver bundled in Google’s Or-Tools package, CpSat [37]. At the time of writing this,
CpSat is the state-of-the-art LCG solver as adjudicated by the latest results of the Minizinc
challenge [49]. A key feature of CpSat we rely on is the extensive support for different variants
of so-called elementp¨q constraints [24]. These constraints implement variable indexing, a
key modeling feature in CP, and correspond with the statement v̄x “ z, that reads as “the
element at position x of vector v̄ must be equal to z”. The power of these constraints lies
in the possibility of elements of v̄ “ pv1, . . . , vmq, x and z being all decision variables. We
write elementp¨q constraints using Hooker’s [24] notation

elementpx, z | v̄q (15a)
elementppx1, x2q, z | V q (15b)

where (15a) implements the statement v̄x “ z, and (15b) implements V px1, x2q “ z that
reads as “the element of matrix V at coordinates x1, x2 must be equal to z”. x, x1 and x2
are thus index variables that locate one decision variable within a collection.
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In our implementation, the action assigned to slot i, acti is an index variable, which
depends on the data assigned to input and output pins as per constraints (7) and (8). Both
of these constraints can be encoded compactly using (15a)

elementpacti, gik | pf1, f2, . . . , fj , . . . , f|Act|qq (16a)
elementpacti, xikl | pν1, ν2, . . . , νj . . . , ν|Act|qq (16b)
elementpacti, yik | pµ1, µ2, . . . , µj . . . , µ|Act|qq (16c)

where fj is a function symbol, νj and µj are the argument variables of slot i or constants
that are consistent with the definition of action schema when acti “ j. fj is assigned a
special function when the input pin is inactive in the action schema, thus accounting for
literals ␣activeik.
To give the readers a better intuition of the element constraints above, we revisit the example
of visitall. Visitall only has one action schema move, and hence, the element constraints are
uncomplicated. Consider the input pin ini1 in the Figure (1)(b), the constraint (16a) for the
pin is written as elementpacti, gi1 | patqq, the constraint 16b as elementpacti, xi1l | plqq, and
lastly the constraint (16c) as elementpacti, yi1 | pargi1qq, where l is a dummy symbol which
accounts for inactive variables These constraints then ensure that the variables of the slot i
are internally consistent for all possible assignments to acti.

The support variables sptjk are index variables with two elements, pi, lq, the first being the
index of a slot and the second the index of an output pin. As discussed in the previous section,
variables sptjk depend on the data of input pin injk. Output pins outjl and constraints (9a)
and (9b) can be accounted for using elementp¨q in its matrix form (15b)

elementppi, lq, injk | Hq (17)

where H is the data of all output pins in a 2-dimensional grid. Constraint (17) thus requires
that the data of the output pin at the row i (slot i) and column l (l-th pin) of H is equal to
that in injk. The matrix H includes a specially defined element, containing the data used to
represent inactive pins, whose index is assigned to sptjk when the k-th input pin at slot j is
inactive, thereby encoding constraint (9a).

We exploit other modeling features offered by CpSat to implement the persistp¨q predicate
given in Equation (10)

u_ v1 _ . . ._ vo _ . . ._ vdf _ w (18a)
uÑphil ‰ gjkq (18b)
vo Ñpxilo ‰ xjkoq (18c)
w Ñpyil “ yjkq (18d)

where u, vo and w are auxiliary Boolean variables created for each poutj1l, injkq pair, and 1
ď o ď Kf . CpSat does not represent explicitly constraints (18b), (18c) and (18d). Instead,
it collects them into a precedences propagator as inequalities between integer variables. The
precedences propagator uses the Bellman-Ford algorithm to detect negative cycles in the
constraint graph of inequalities, and propagates bounds on the integer variables [34]. Still,
OpN2

πKpreKeffKf q variables are generated in the worst-case, e.g. Opn5q if all these quantities
belong to the same order of magnitude. In most of the benchmarks we use to test planners
using these encodings, the number of preconditions, effects and arity of functions are much
smaller than Nπ, thus generating Opn2q variables.

Encoding static relations with table constraints. Some PPIs contain domain
specific relations that are not affected by the action schemas. For example, in visitall the
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relation connected is static and its interpretation is fixed by the specification of the initial
state. We encode the dependency of the input pin variables on these static relations using
table constraints which allow us to specify a set of allowed (or forbidden) assignments to
a tuple of variables, i.e. for a static relation R, we encode the constraint as tablepinik, Rq,
where the pin inik is specially designed to represent a tuple in R. This is more efficient
than using the element constraints (17) since CpSat translates them into a concise CNF
formulation.

Propagator for Required Persistence. We recall constraint (9c) that enforces the
requirement that whenever an output pin outil is to provide causal explanation for an input
pin injk, the atom described by the former is not interfered with by any other output pins
in intermediate slots. Clearly, the number of variables and clauses (18a) is proportional to
j ´ i, bringing the potential number of variables generated to be Opn6q. While such a rate of
growth seems unsustainable for non-trivial instances, the empirical results we obtain clearly
show that this worst-case does not always follow for many domains widely used to evaluate
planning algorithms.

To avoid this blow up, yet keep the strong inference offered by the system of con-
straints (18), we introduce specific propagator that interfaces with CpSat precedences
propagator and checks whether constraint (9c) is satisfied. The propagator activates whenever
an assignment in the CDCL search fully decides the variables in input pin injk. We then
check, for every slot j1, 0 ă j1 ă j, whether the current assignment has fully decided some
output pin outj1l, and proceed to evaluate the persistence predicate in Equation (9) on the
assignment. If the former evaluates to false, we have a conflict between the assignment and
constraint (9c). We then generate the following blocking clause or reason to explain it

␣pφoutj1l
^ φinjkq _

`

LBpsptjk1q ą j1q (19)

where φ formulae are the conjunction of equality atoms that bind variables in pins to the
values in the current assignment. sptjk1 is the first element (variable) in sptjk and LB is
a function provided by CpSat that allows to access the lower bound of the domain of a
variable in constant time.

Searching for plans. Our algorithm for planning as satisfiability uses a strategy to find
plans that is analogous to the notion of lookaheads in Approximate Dynamic Programming.
Like in the classic algorithm described earlier in the paper, we generate a sequence of CSPs
TP,k1 , TP,k2 , . . ., TP,ki , . . . with k0 “ 0 and ki ´ ki´1 ě 1 for i ą 0.

To each TP,ki we impose the Pseudo-Boolean objective

ki
ÿ

j“1
enabledj (20)

where enabledj are auxiliary Boolean variables which we use to “switch off” slots via
constraints ␣enabledj Ñ actj ą |Act|. If CpSat proves that the resulting optimization
problem has finite optimal value z then we know that c˚ “ z and the search terminates as
we have found an optimal plan. If CpSat finds an upper bound z, that is, a sequence of
feasible solutions are found but it is not possible to prove optimality of the last one within
the time limit set, then we know that c˚ ď z. If CpSat proves the tightest upper bound to
be 8 (e.g. the problem is unsatisfiable) then we have proved a deductive lower bound [15],
as we know that c˚ ą ki. In this last case, we repeat the process above with TPki`1 until a
solution is found, or the allowed time to search for plans is exhausted.
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6 Functional transformation of a PDDL task

Benchmarks in planning are not expressed in FSTRIPS directly but in PDDL [20], a defacto
abstract representation of a PPI used by the research community. PDDL is defined by the
tuple P “ ⟨U, T,P, Act, s0, γ⟩, where U is a set of objects, T P 2U is a collection of types,
P is a set of predicates, Act is a set of action schemas, s0 is the initial state, and γ is goal
formula. For a given predicate P P P of arity dP, there are two associated literals, the
positive atom Ppx̄q and negative atom ␣Ppx̄q, where x̄ is tuple of variables px1, x2, . . . , xdPq,
the domain of xi corresponds to a type ti P T . We denote maxPPP dP as KP. A simple
reformulation of PDDL planning task into FSTRIPS representation is to treat each predicate
P P P as a Boolean function or a mapping, fP : DomfP ÞÑ CofP , DomfP Ď t1 ˆ t2ˆ, . . . ,ˆtdP ,
CofP “ tJ,Ku. Thus, pfPpx̄q “ Jq denotes Ppx̄q and pfPpx̄q “ Kq denotes ␣Ppx̄q. Mappings
that go beyond Boolean functions can yield a more compact FSTRIPS representation for
CP. Hence, we present in this section a novel method to derive a more concise functional
transformation of predicates P.

Any function f : Domf ÞÑ Cof has an associated binary relation, a mapping, Rf :“
tpx, yq | fpxq “ y, x P Domx, y P Domyu. A predicate P P P of arity 2 also has an associated
binary relation, RP :“ tpx, yq | Ppx, yq, x P Domx, y P Domyu. If the relation RP is a
mapping, then we can create a more concise transformation, i.e. fP : Domx ÞÑ Domy, instead
of fP : Domx ˆ Domy ÞÑ tJ,Ku. Moreover, 0-ary, 1-ary and n-ary predicates can all be
mapped into the binary case without loss of generality, i.e. Ppq can be substituted by Ppc1, c2q,
c1, c2 P Domc,Domc X U “ H, Ppyq by Ppc, yq, and for n ě 2, Ppx, yq replaces the predicate
Ppu1, . . . , unq, where x is a tuple in the set of combinations of parameters of length n ´ 1
and y is the parameter which is excluded from x. For example, in the PDDL specification
of visitall, at is a 1-ary predicate which represents the current position of the agent. We
can map at into the binary case by introducing a constant A, and then, transform it into a
function as at : tAu ÞÑ C since the agent can take at most one position on the grid. Thus,
for each predicate P P P, there is an associated binary relation RP :“ tpx, yq | Ppx, yq, x P
Domx, y P Domyu. There are two necessary and sufficient conditions for a binary relation
to be a mapping, p1q it is right-unique, and p2q it is left-total. A binary relation RP is right
unique iff @ x1, x2 P Domx, y1, y2 P Domy, Ppx1, y1q ^ Ppx2, y2q ^ px1 “ x2q Ñ py1 “ y2q. It
is left-total iff @ x P Domx, D y P Domy, Ppx, yq. Since, the states s P S set the interpretation
of predicate P, we have to at-least prove that the right-unique and left-total conditions hold
in SRP , the set of states reachable from s0, to make a case for the more concise functional
transformation.

§ Theorem 3. If RP is a mapping in all possible interpretations s P SRP , then P 1, the
transformation of the problem P which encodes the predicate P as a function fP : Domx ÞÑ

Domy, has the same set of reachable states as P , i.e. SRP “ SRP 1

Proof. See 5 đ

A sufficient condition for the right-unique property to hold in all interpretations s P SRP is
that the negation of right-unique condition is false in SRPr Ě SRP , where Pr is a relaxation of P .
Thus, we can do a relaxed reachability analysis of the formula ψP :“ Dx1, x2, y1, y2, Ppx1, y1q^

Ppx2, y2q ^ px1 “ x2q ^ py1 ‰ y2q to test whether the right-unique condition holds for all
s P SRPr , i.e. the right-unique property holds if ψP is unreachable in Pr. The relaxation
is important since checking the reachability of the condition in P is as hard as solving
the problem itself. To this end, we extend the hm heuristic [17], which is an admissible
approximation of the optimal heuristic function h˚, to the first order logic existential formula
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of the form ψ :“ Dx̄, ψL ^ ψEQ, where x̄ :“ px1, x2, . . . , xnq is a vector of parameters, ψL
is a conjunction of literals whose interpretation is set by the states s P SRΠ , and ψEQ is
an equality-logic formula2. We then use the extension of hm to test the reachability of
the formula ψP, i.e. if hmpψPq “ 8, then ψP is unreachable, and hence, the right unique
condition holds in all interpretations s P SRP of P. Also, we note that, if RP is right-unique,
the left-total property is trivial to satisfy. For each x P Domx, if Ey P Domy, Ppx, yq, then
we map x to l, a dummy constant symbol.

hmpψPq can be efficiently computed using dynamic programming with memoization. For
a fixed value of m, the complexity of the above procedure is low polynomial in the number
of nodes, i.e. the number of first-order logic formulas Op|P|m ¨ 2KP q. An important property
of the procedure to compute hm is that it is entirely lifted, i.e. no ground atom would occur
in the formulas obtained through regression if no action schema has ground atoms. This is
specially useful in hard-to-ground(HTG) domains where the size of ground theory renders
the translation methods [21] used by most planners intractable.

7 Evaluation

Our experiments consist in running a given planner on a PPI, ensuring that the solver process
runs on a single CPU core (Intel Xeon running at 2GHz). We impose resource usage limits
both on runtime (1800 s) and memory (8 GBytes). We used [45] Downward Lab’s module to
manage the parallel execution of the experiments.

We compare the performance of CpSat solving our model, with and without propagators
for persistence constraints, with that of notable optimal and satisficing domain-independent
planners. The former include, in no particular order, lmcut [22], symbolic-bidirectional(sbd)
[51], the baseline at the optimal track of the International Planning Competition (IPC) 2018,
cpddl [10], a very efficient implementation of symbolic dynamic programming and many other
pre-solving techniques that analyse the structure of actions in the instance, delfi1, a portfolio
solver [27] and winner of optimal planning track in IPC 2018, and lisat [25], a recently proposed
lifted planner which has state-of-the-art performance on hard-to-ground (HTG) benchmark,
it solves an encoding of lifted classical planning in propositional logic using a highly efficient
SAT solver Kissat [11] written in C. Satisficing planners include the satisficing variant
of lisat, Madagascar [42], a SAT planner which was the runner-up of Agile track in IPC
2014, and lifted implementations of BFWS planners, BFWS([RX, h

add]) and BFWS([RX, h
ff ])

[7] which have state-of-the-art satisficing performance on HTG benchmark [7, 30]. We use
PLadd

Rx
and PLff

Rx
to denote the lifted implementations of BFWS planners, and lisat and lisat

to denote satisficing implementation of lisat with and without londex [6] constraints. All
optimal planners were configured to minimise the plan-length.

We evaluate all planners on the HTG benchmarks and the instances from the optimal
track of the IPC [26]. Testing the planners on the HTG instances is significant as the
size of U is very large, and as a result explicit grounding is either infeasible or greatly
stresses the implementation of key techniques (match trees, compilation into finite-domain
representations) [21] that heuristic search planners rely on to be competitive. Comparing the
performance with IPC instances allows us to control for implementation-dependant factors
and also see how CpSat copes with quickly growing numbers of variables and constraints.
This is so because instances in the IPC benchmark tend to require significantly higher number
of plan steps for some domains (like logistics). We also tested a 3-action lifted formulation

2See the definition of hm over first-order logic formulae in the Appendix A.
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of blocksworld where actions are move(x,y,z), move-to-table(x,y), and move-from-table(x,y)
which we think is significant as it measures the sensitivity of planners to long-studied
formulations of the same domain.

In addition to the IPC instances, we evaluate the planners on the multi-modal project
scheduling problems (MMPSP) from the ’j10’ set in PSPLIB [47]. The scheduling benchmarks
are of particular interest to us since they exercise a different combinatorial structure than
the IPC instances. While the IPC instances tend to have smaller and non-numeric sorts, the
scheduling instances usually have numeric duration and resources. To test the sensitivity
of the planners to the distinguishing features of scheduling problems we performed an
ablation study by scaling up the duration of the jobs in MMPSP by a factor of 2, 8, and 16,
respectively.

CpSat Hyperparameters. CpSat offers great flexibility to configure what pre-solving
techniques, restarting policies, and branching heuristics are used. In our experiments, we
used the default branching heuristic settings, and chose the luby policy for managing restarts.
CpSat default branching heuristic settings tries first to fix values of literals appearing in CNF
clauses (which may have been lazily generated by some propagator) selecting the former with
classical activity-based variable selection heuristics [37]. Integer variables are only considered
after all Boolean literals are fixed. We use the linear scan algorithm of Perron et al. [37] to
optimise Eq. (20).

Implementations of Lifted Causal Encodings. We have tested two implementations
of constraints (9c). The first uses the formulation in Eqs. 18. The second one uses the
persistence propagator. We will refer to them as CP0 and CPPP, respectively. We set k1 to
goal count for the CSP TP,k1 in our experiments, then used a luby sequence to set ki for i ą 1.
We use the same strategy for satisficing planning except we scale the luby sequence by a factor
of 5 and allocate a time-budget Bi for the CSP TP,ki . Bi is set such that the planner has
sufficient time to explore a sliding window over plan-lengths, Bi :“ mintr, r ¨ pki´ lbi´1q{W u,
where r is the total remaining time-budget, lbi´1 is the lower bound on the plan-length
returned by the CSP TP,ki´1 , and W is the size of the sliding window which is a planner
parameter. We set W “ 50 in our experiments.

In order to assess the effectiveness of the functional transformation, we generated the
functional representation using the method described at the end of the previous section, We
refer to the encoding using functional representation as CPfn

0 and CPfn
PP.

Hard-to-ground Optimal Solution Satisficing Solution
Domain CP0 CPfn

0 CPPP CPfn
PP lisat lmcut sbd cpddl delfi1 CPfn

0 CPfn
PP lisat lisat MpC PLadd

Rx PLff
Rx

blocks-3ops(40) 40 40 40 40 40 0 0 0 0 40 40 40 12 0 10 10
blocks-4ops(40) 40 40 40 40 40 10 0 1 0 40 40 40 20 4 19 17
childsnack(144) 48 48 48 48 49 7 73 81 58 144 144 144 144 66 94 96
ged(156) 23 30 22 31 35 18 12 14 18 37 29 58 28 30 156 156
ged-split(156) 22 24 22 24 26 18 22 30 22 40 38 46 28 150 154 153
logistics(40) 27 35 22 36 28 7 12 0 8 40 40 40 0 0 40 40
org-syn-MIT(18) 18 18 18 18 18 2 2 13 2 18 18 18 10 0 18 18
org-syn-alk(18) 18 18 18 18 18 18 18 18 18 18 18 18 18 0 18 18
org-syn-orig(20) 13 13 15 15 20 0 1 2 1 5 9 14 1 0 13 13
pipes-tkg(50) 15 15 15 17 20 8 12 13 10 23 25 10 23 10 45 46
rovers(40) 3 7 3 8 3 7 2 0 2 11 10 4 0 0 39 40
visitall3D(60) 25 25 24 34 35 33 12 12 24 33 49 46 39 12 57 57
visitall4D(60) 23 23 23 35 34 16 6 6 6 30 44 48 36 6 42 41
visitall5D(60) 27 26 26 33 33 11 0 0 0 32 44 54 38 0 40 40
Total(902) 342 362 336 397 399 155 172 190 169 511 548 580 397 278 745 745

Table 2 Coverage of different planners on hard-to-ground benchmark domains

Performance over benchmarks We now discuss the observed performance (see
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Figure 2 Ablation study on the runtime performance of lisat and CPfn
PP by scaling up the

duration of the jobs in MMPSP by a factor of 2, 8 and 16, respectively.

Table 2)3 measured as coverage or number of instances solved optimally (or sub-optimally)
per problem domain in each benchmark. Also, we look closely at the sensitivity of lisat and
CPfnPP to increasing duration of jobs in Figure 2.

The CP Planners perform very well on all formulations of the HTG instances of blocksworld
domain. Table 2 reveals that every configuration of the CP planner solves the full set of
HTG instances. Comparing the results on blocksworld across to the IPC instance set3, we see
the CPfn

PP planner performs strongly too, even when the IPC instances require much higher
number of plan steps than the HTG ones.

The CP planners and baseline lisat planners find feasible plans for many HTG childsnack
instances, significantly more than the state-of-the-art PL baselines, but have trouble finding
optimal plans. For any given childsnack instance, there is a huge number of possible optimal
plans that are permutations of each other. Without specific guidance, our planners struggle
with symmetries to obtain proofs of optimality quickly. Another structural feature of optimal
plans which is revealed to be problematic is the plan-length. Domains where plans require
many actions (HTG ged) are very challenging for our planners, with lisat performing better
and the PL baseline having remarkably good performance in all of these instances, and
Madagascar too when its techniques to bundle several actions apply.

In rovers, the concise encoding of dependency of preconditions on static relations using
the table constraints (see Section 5) helps the CPfn

PP achieve better optimizing performance
than the baselines. The initial states of HTG rovers instances may have 10, 000s of atoms
to specify the static relations, which otherwise would make the number of constraints (13)
and (10) to blow up.

The satisficing performance of lisat with londex constraints against lisat which does not
use londex shows impressive gains in coverage by exploiting the structure of feasible plans
to guide the search. The londex implementation of lisat restricts the supporter-supportee
distance to 1, initially. If UNSAT, it increases the distance limit by 1 and solves again. It
repeats the procedure until timeout or it finds a solution. This indicates a potential for
improving the satisficing performance of the CP encoding by designing and integrating
planning specific heuristics into the CP solvers.

Overall, all optimizing configurations of the CP planners perform much better than the
baseline heuristic search planners on the HTG benchmark. The functional transformation of

3Table 3 in the Appendix
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the PDDL tasks shows impressive performance gains, thereby highlighting the importance
of a concise encoding of the planning problems. The performance of CP encoding with
simple transformation of the PDDL task lags slightly behind lisat. With the functional
transformation CPfn

PP planner catches up to lisat and their coverage is about the same.
In the MMPSP instances, however, the CP approach shows its advantage over all other

baseline planners. As we can see in Figure 2, while the CPfn
PP is slightly ahead of lisat for the

original problems, scaling the durations only slowly degrades CPfn
PP, but immediately makes

a significant difference to lisat since it must encode much larger time domains, while CpSat
only lazily grounds the integers encoding times. We note that all the baseline heuristic
planners exceeded the memory limit on the original problem set itself.

Lastly, in the IPC instances3, the CPfn
PP planner performs much better than the baseline

lisat. However, all CP planners as well as lisat do not perform as well as the baseline heuristic
search planners. With an exception of blocks-3ops and organic-synthesis, the coverage of the
CP planners is lower than that of heuristic search planners. This is an artifact of heuristic
search being the dominant approach to planning [16]. Heuristic search planners work well
with features showcased in the IPC instances, including significantly longer plans. On the
other hand, their performance suffers in problem domains with large numeric types, specially
over Resource-constrained planning(RCP) problems [33].

8 Related Work

While causal encodings are the road less travelled in planning as satisfiability, there is
significant related work worth mentioning. Formulations based on the event calculus [46]
exist yet are rarely acknowledged. We note that the event calculus Initiates predicate
corresponds to our notion of output pins, Holds corresponds to our notion of input pin,
and Terminates is very much equivalent to our persistence predicate in Eq. (9). Constraint
Programming was a natural target for research seeking more compact encodings very early [52],
yet our most direct inspiration was the Cpt planning system [53], which in some of its later
versions4 used a notion of propagator for its causal link constraints, very close to that later
formalized by Ohrimenko et al. Previous work have proposed grounded encodings that used
KMS notion of operator splitting [9, 44], which are structurally similar to our constraints for
representing ground actions. Our formulation is entirely lifted, and the only ground atoms we
are forced to use are those present in initial and goal state formulas. We end acknowledging
that the power of elementp¨q constraints and their applications to automated planning were
revealed to us after the careful study of Francis et al. [14] and Francès and Geffner [13].

9 Discussion

This paper demonstrates that KMS notion of lifted causal encodings are an approach to
planning as satisfiability that has become viable thanks to the notable advances in CP over
the last decade. We have clearly barely scratched the surface of what is possible, as more
propagator procedures follow directly from the formulation in this paper, seeking powerful
synergistic relations between “planning-specific” ones and general propagation algorithms.
The clear limit to this approach lies in the number of variables that need to be created. We
also have not really looked into the possibility of integrating or reformulating existing work
that is known to enhance notably the scalability of planning as satisfiability [42].

4Personal communication with Hector Geffner.
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Alternatively, and perhaps ultimately too, we need to consider PDR-like formulations [50,
8], where we only need to construct a CP model covering two plan steps. We observe that
Suda’s expedient of reimplementing the obligation propagation mechanism as a “Graphplan-
like” algorithm strongly suggests that a CP formulation with suitably defined propagators
could be very performant across PPIs with very diverse structure. Also, PDR formulations
seem to be key for certifying unsolvability [8].
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A hm heuristic over first-order logic existential formulae

In this section, we present an account of hm admissible heuristic [17] and its extension to the
first-order logic existential formulas which we then use to test the reachability of a first-order
logic formula. The heuristic function hm is an admissible approximation of the optimal
heuristic function h˚ : A ÞÑ N, defined over a conjunction of positive and negative ground
atoms A :“ P ˆ t1 ˆ . . .ˆ tKP ˆ tJ,Ku. h˚ is defined using the regression model of the
planning problem, in which we regress backwards from a goal formula using a regression
function rga : A ÞÑ A with respect to a ground action a P Actˆ UKα [39]. We extend the
regression function rga to the first-order logic existential formulas and use it to define hm for
the first-order logic formulas.

Let ψ be a first-order logic existential formula, ψ :“ Dx̄, ψL ^ ψEQ, where x̄ :“
px1, x2, . . . , xnq is a vector of parameters, ψL is a conjunction of literals whose interpretation
is set by the states s P SRP , and ψEQ is an equality-logic formula. We denote the set of
literals in a formula ϕ by litsϕ, the predicate and the argument variables of a literal l P litsϕ
by predicatel and argl, respectively, and the polarity of l by polarityl.

The regression of the formula ψ with respect to an action schema α :“ ⟨Preα,Effα⟩
involves identifying the supporter-supportee pairs and the inconsistent literal pairs between
Effα and ψL. A supporter-supportee relationship holds between l P litsEffα and l1 P litsψL iff
the predicate and the arguments of l match that of l1 and they have the same polarity. On
the other hand, a literal l P litsEffα is inconsistent with l1 P litsψL iff the predicate and the
arguments of l match that of l1 but they have the opposite polarity.

While regressing with respect to action schema α, we need to consider every possible
combination of supporter-supportee pairs, i.e. all subsets of the set of potential supporter-
supportee pairs SP :“ tpl, l1q | polarityl “ polarityl1 , predicatel “ predicatel1 , l P litsEffα , l

1 P
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A. Singh, N. Lipovetzky, M. Ramirez and P. Stuckey 19

litsψLu, then for each literal pair pl, l1q in the subset we add the constraint
ŹKP
i“1 argli “ argl1i

to the formula obtained through regression. Thus, the regression of ψ with respect to α

produces a set of formulas, one for each subset in SP. Similarly, for each pair in the set of
potential inconsistent pairs IP :“ tpl, l1q | polarityl ‰ polarityl1 , predicatel “ predicatel1 , l P
litsEffα , l

1 P litsψLu, we add the constraint
ŽKP
i“1 argli ‰ argl1i to the regression formula of ψ.

We now present the definition of the regression function over first-order logic formulas.

rgαpψq :“ tDx̄, prgαpψ
L, ĂSPq ^ qrgαpψ

EQ, ĂSPq | ĂSP Ď SPu (21a)

prgαpψ
L, ĂSPq :“ Preα ^

ľ

lPtlitsψL ztl1|pl,l1qPĄSPuu

l (21b)

qrgαpψ
EQ, ĂSPq :“ ψ1EQ ^

ľ

pl,l1qPĄSP

^
KP
i“1argli “ argl1i ^

ľ

pl,l1qPIP
_
KP
i“1argli ‰ argl1i (21c)

where we obtain the regression of ψL by removing the supportees in the set ĂSP from ψL and
adding the precondition of α. The regression of ψEQ involves a reduction into a canonical
form ψ1EQ by setting the equality atoms whose arguments do not appear in the arguments of
the regression prgαpψ

L, ĂSPq to true. Then, we add two equality logic formulas, first of which
binds the arguments of supporter-supportee pairs in ĂSP and the second disallows inconsistent
assignments to the arguments of literals pairs in IP.

The hm heuristics for ψ :“ Dx̄, ψL ^ ψEQ is defined using regression as follows

hmpψq :“

$

’

’

&

’

’

%

0, s0 |ù ψ

minψ1Prgαpψq,αPActh
mpψ1q ` costpαq, |litspψLq| ď m

maxψ$ψ1,|litspψ1Lq|ďmh
mpψ1q, otherwise

(22)

hmpψPq can be efficiently computed using dynamic programming with memoization, and
s0 |ù ψ can be encoded as a CP program with equality and table constraints. For a fixed
value of m, the complexity of the above procedure is low polynomial in the number of nodes,
i.e. the number of first-order logic formulas Op|P|m ¨ 2KP q. An important property of the
above procedure is that it is entirely lifted, i.e. no ground atom would occur in the formulas
obtained through regression if no action schema has ground atoms. This is specially useful
in hard-to-ground(HTG) domains where the size of ground theory renders the translation
methods [21] used by most planners intractable.

B Proofs

§ Theorem 4 (Systematicity [31]). Let TP,Nπ “ pX , Cq be the CSP given by the decision
variables X in Table 1 and set of constraints C p4q–p12q, for some suitable choice of Nπ.
There exists an assignment ξ onto variables X that satisfies every constraint in C if an only
if there exists a feasible solution σ to the PPI P , whose actions are given by slots, argument,
input and output pin variables values.

Proof. It follows trivially from the definitions given in the previous sections that assignments
ξ encode finite trajectories σ “ s0a1s1 . . . sNπ . To prove the forward direction, it suffices
to observe that (1) constraints p5q on input and output pins for a slot i define implicitly
sets of pairs of states psi´1, siq PÑacti , the set of transitions corresponding to the schema
acti “ α assigned to the slot, (2) constraints p11q ensure that for i “ 1 the predecessor of
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s1 corresponds with the initial state s0 given in the definition of the PPI P , and (3) the
last state in the trajectory given by ξ the equality atoms in Goal. To prove the reverse
direction, we note that each pair of consecutive states si´1 and si must belong to exactly
one of the transition sets Ñα. From the definition of this set the schema, argument and pins
assignments follow directly.˝ đ

§ Theorem 5. If RP is a mapping in all possible interpretations s P SRΠ , then Π1, the
transformation of the problem Π which encodes the predicate P as a function fP : Domx ÞÑ

Domy, has the same set of reachable states as Π, i.e. SRΠ “ SRΠ1

Proof. If the right-unique and left-total properties hold for RP in all s P SRΠ , then applying
the functional transformation would not alter the reachable state space since the func-
tional transformation implicitly enforces the same conditions, i.e. @ x1, x2 P Domx, y1, y2 P

Domy, pfP px1q “ y1q ^ pfP px2q “ y2q ^ px1 “ x2q Ñ py1 “ y2q and @ x P Domx, D y P

Domy, pfP pxq “ yq.˝ đ

C Additional Results: Figures and Tables

Figure 3 depicts the performance profiles of CPfn
0 p1q, CPfn

PPp2q, cpddlp3q and lmcutp4q, and
Table 3 shows of coverage of baseline and CP planners on the IPC benchmarks.

blocks-3 blocks-4 childsnk ged ged-split logistics org-MIT org-alk org-orig pipes rovers visitall3D visitall4D visitall5D
sm% 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0

lm% 0 0 80 90 0 0 90 5 0 0 6 15 0 0 0 0 0 0 0 0 0 0 15 0 0 0 17 89 0 0 0 0 0 0 75 90 0 0 16 44 0 0 0 38 0 0 45 0 0 0 7 30 0 0 90 50

t% 0 0 20 10 0 0 8 20 67 67 38 81 81 80 90 88 85 85 81 88 12 10 85 82 0 0 11 0 0 0 0 0 30 20 15 10 70 66 58 40 82 78 100 45 58 43 35 45 62 42 83 43 57 43 10 32
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Figure 3 Plot depicting performance profiles of CPfn
0 p1q, CPfn

PPp2q, cpddlp3q, and lmcutp4q on the
HTG benchmark set. The percentage of instances which solved ps%q (optimally), reported memout
during loading step plm%q, reported memout during the search psm%q, and timed-out pt%q are
shown.
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IPCs(opt) Optimal Solution

Domain #Instances CP0 CPPP CPfn
PP LiSAT lmcut sbd cpddl delfi1

Not-grounded - action schemas do not have ground atoms
barman-opt11 20 0 0 0 0 4 9 12 7
barman-opt14 14 0 0 0 0 0 3 6 2
blocks 35 17 19 28 26 28 30 31 27
blocks-3ops 35 19 23 35 5 26 25 30 20
childsnack-opt14 20 0 0 0 0 0 4 4 6
data-network-opt18 20 14 15 15 0* 20 17 17 17
depot 22 1 1 2 2 7 5 7 12
driverlog 20 4 4 4 5 14 12 12 15
elevators-opt08 30 2 3 5 6 20 22 23 20
elevators-opt11 20 1 1 3 4 17 18 18 16
floortile-opt11 20 0 0 0 0 6 14 14 12
floortile-opt14 20 0 0 0 0 5 20 20 17
freecell 80 6 6 6 12 15 21 22 18
ged-opt14 20 19 19 20 20 20 20 20 20
grid 5 1 1 2 1 2 2 2 3
gripper 20 1 2 2 2 7 20 20 20
hiking-opt14 20 4 4 4 8 9 14 15 19
logistics00 28 2 2 3 6 20 18 19 21
logistics98 35 0 0 1 1 6 5 5 8
miconic 150 22 23 30 32 141 104 104 136
mprime 35 31 32 33 33 22 23 25 25
mystery 30 18 18 18 19 17 13 15 17
nomystery-opt11 20 6 6 6 10 14 13 14 14
organic-synthesis-opt18 20 20 20 20 20 7 7 13 8
organic-synthesis-split-opt18 20 8 12 12 10 16 13 8 12
parking-opt11 20 1 1 1 1 2 1 1 5
parking-opt14 20 0 0 0 0 3 0 1 7
pegsol-08 30 9 8 11 20 27 28 29 28
pegsol-opt11 20 1 1 1 6 17 18 19 18
pipesworld-notankage 50 12 12 12 14 17 15 15 25
pipesworld-tankage 50 9 10 11 11 12 16 17 22
rovers 40 4 4 4 4 8 14 14 12
satellite 36 3 3 4 5 7 10 11 14
scanalyzer-08 30 10 9 13 12 9 13 13 17
scanalyzer-opt11 20 7 6 10 9 6 10 10 13
sokoban-opt08 30 0 0 0 2 24 25 28 28
sokoban-opt11 20 0 0 0 0 19 20 20 20
spider-opt18 20 0 0 0 0 6 6 6 8
storage 30 12 11 13 0* 15 14 15 17
termes-opt18 20 0 0 0 0 5 16 16 12
tetris-opt14 17 2 2 3 3 5 10 12 13
tidybot-opt11 20 1 3 3 0* 14 12 11 17
tidybot-opt14 20 0 0 0 0* 9 5 7 13
tpp 30 4 4 4 5 7 8 8 11
transport-opt08 30 6 6 6 6 12 14 14 13
transport-opt11 20 1 1 1 1 8 10 11 10
transport-opt14 20 1 1 1 2 7 9 10 9
visitall-opt11 20 8 9 11 11 10 12 12 17
visitall-opt14 20 2 3 5 5 5 6 6 13
woodworking-opt08 30 7 7 7 10 17 30 29 28
woodworking-opt11 20 2 2 2 5 12 20 20 20
zenotravel 20 7 7 8 9 13 9 0 12

Partially-grounded - action schemas have a few ground atoms
agricola-opt18 20 0 0 0 3 0 14 12 10
airport 50 6 7 7 7 28 23 24 23
movie 30 30 30 30 0* 30 30 30 30
openstacks-opt08 30 0 1 1 2 8 30 30 30
openstacks-opt11 20 0 0 0 0 3 20 20 20
openstacks-opt14 20 0 0 0 0 0 15 16 12
parcprinter-08 30 6 6 6 0* 22 30 30 30
parcprinter-opt11 20 3 3 3 0* 16 20 20 20
pathways 30 3 4 4 0* 5 5 5 5
snake-opt18 20 3 3 6 0* 7 3 5 11

Fully-grounded - action schemas only have ground atoms
openstacks 30 0 0 0 0 7 18 17 11
petri-net-alignment-opt18 20 0 0 0 0 3 18 20 20
psr-small 50 44 46 46 0* 49 50 50 50
trucks 30 2 2 2 0* 10 11 14 9
Total 1862 402 423 485 375 927 1090 1124 1195

Table 3 Coverage of different planners on IPCs – optimal track benchmark domains. * indicates
the domains in which the preprocessing (parsing and encoding) step of lisat rendered the instances
unsolvable.
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