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ABSTRACT

Large transformer-based language models dominate modern NLP, yet our under-
standing of how they encode linguistic information relies primarily on studies of
early models like BERT and GPT-2. Building on prior BERTology work, we analyze
25 models spanning classical architectures (BERT, DeBERTa, GPT-2) to modern
large language models (Pythia, OLMo-2, Gemma-2, Qwen2.5, Llama-3. 1), prob-
ing layer-by-layer representations across eight linguistic tasks in English. Consis-
tent with earlier findings, we find that hierarchical organization persists in modern
models: early layers capture syntax, middle layers handle semantics and entity-
level information, and later layers encode discourse phenomena. However, larger
models compress this entire hierarchy toward earlier layer positions, suggesting
they build richer representations more quickly. We dive deeper, conducting an
in-depth multilingual analysis of two linguistic properties - lemma identity and
inflectional features - that help disentangle form from meaning. We find that lemma
information concentrates linearly in early layers but becomes increasingly nonlinear
deeper in the network, while inflectional information remains linearly accessible
throughout all layers. Additional analyses of attention mechanisms, steering vec-
tors, and pretraining checkpoints reveal where this information resides within
layers, how it can be functionally manipulated, and how representations evolve
during pretraining. Taken together, our findings suggest that, even with substantial
advances in LLM technologies, transformer models learn to organize linguistic
information in similar ways, regardless of model architecture, size, or training
regime, indicating that these properties are important for next token prediction.

1 INTRODUCTION

Large transformer-based language models (LMs) are widely used for tasks such as text generation,
question answering, and code completion (Workshop), |2023} |Groeneveld et al., 2024} [Llama} [2024;
Hui et al., [2024) However, how these models internally represent linguistic information remains
an active research area. Prior work suggests a hierarchical organization where different layers
specialize in capturing distinct levels of linguistic structure, from surface features to syntax and
semantics (Jawahar et al.l 2019; [Tenney et al., 2019a; Rogers et al., 2020).

But these studies focus only on first-generation LMs such as BERT and GPT-2 (Devlin et al.| 2019
Radford et al., 2019). Since then, language technology has transformed dramatically - today’s models
differ in architecture (encoder-only, decoder-only, encoder—decoder), pretraining objectives (masked
vs. causal language modeling), training data volume (billions vs. trillions of tokens), and post-training
adaptation. (Brown et al., 2020; Groeneveld et al., 2024; Lambert et al., 2025). We ask: do modern
LMS rediscover the classical NLP pipeline observed in early models, and how does model scale and
architecture influence where and how linguistic structure is encoded?

To answer these questions we systematically probe 25 pretrained models ranging from BERT Base
to Llama-3.1 8B, spanning multiple architectures, sizes, and training regimes. We train simple
classifiers at each layer to predict eight linguistic tasks in English and evaluate where information
emerges.



"When you have eliminated the impossible, whatever
remains, however improbable, must be the truth”
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Figure 1: Overview of our probing methodology. We extract hidden state activations from each
model layer for target words and train simple linear and shallow non-linear classifiers for token,
span and pairwise edge predictions (POS, dependencies, constituents, NER, SRL, SPR, coreference,
and relations), as well as word-level lemma and inflection prediction. We compute selectivity using
control labels and summarize where performance emerges with expected layer and center of gravity.

Beyond this pipeline analysis, we perform a targeted case study on two linguistic properties: lemma
identity and inflectional features. These properties help disentangle meaning from surface form -
consider the words walk, walked, jump, and jumped. Do language models group words by shared
meaning (walk, walked) or by shared grammar (walked, jumped)? More broadly, where and how do
LMs encode a word’s lemma and its inflectional features?

We examine six typologically diverse languages - English, Chinese, German, French, Russian,
and Turkish - to test whether observed patterns generalize beyond English. We also test where
lemma and inflectional information resides (attention heads vs. residual streams), track when these
representations emerge during pretraining, and evaluate the impact of editing activations via steering
vectors. We find that:

1. Modern LMs rediscover the classical NLP pipeline. Syntactic tasks peak earliest, semantic
tasks peak in the middle, and discourse tasks peak latest. Larger models compress this pipeline
towards shallower layers, suggesting they learn richer representations more quickly.

2. Lemma information is encoded prominently in early layers and becomes increasingly non-
linear deeper in the network, whereas inflectional information remains linearly accessible
across all layers and languages.

3. Lemma and inflectional information emerge early in pretraining and reside primarily in the
residual stream; inflectional features occupy compact, steerable subspaces that enable effective
interventions.

2 PROBE DESIGN AND METRICS

We investigate how language models encode linguistic information using simple classifiers (probes)
trained on activations from individual layers. Following |Tenney et al.|(2019b), we consider three
types of predictions: token-level tasks (e.g., , POS), span-level tasks (constituency, named entity
recognition, semantic role labeling, semantic proto-roles), and edge or pairwise tasks (dependency
arcs and coreference links). For our case study we additionally train probes to predict each word’s
lemma and its inflectional features.



2.1 PROBE ARCHITECTURES

For each layer of a model we extract residual-stream representations for a target word, span or pair
and train two simple classifiers: a linear regression probe and non-linear multi-layer perceptron
(MLP) probe. The linear probe measures how well information is linearly separable in the represen-
tation space, while the non-linear probe tests whether a non-linear decision boundary yields better
performance. Comparing these probes allows us to infer whether a property is encoded linearly or
non-linearly. Architecture details and hyperparameters are provided in Appendix

2.2 REPRESENTATIONS AND TASKS

For token-level tasks we use the representation of the last subword token for the target word; for
span-level tasks we mean-pool representations across subwords; for pairwise tasks we concatenate
and element-wise combine representations following [Tenney et al.| (2019b).

We evaluate eight linguistic tasks introduced by [Tenney et al.|(2019a)), covering the classical NLP
pipeline from syntax to discourse. At the syntactic level, we consider part-of-speech tagging,
constituency parsing (phrase structure), and dependency parsing (head—dependent relations); at the
semantic level, named entity recognition (persons, organizations, locations), semantic role labeling
(agent and patient roles), and semantic proto-role labeling (e.g., , volition, sentience); and at the
discourse level, coreference resolution and relation extraction (relations between entities). Formal
task definitions are provided in Appendix

2.3 METRICS

We define several metrics for localizing where information emerges with depth and for quantifying
nonlinearity: selectivity, the linear separability gap, and two depth statistics inspired by [Tenney et al.
(2019a), expected layer and center of gravity.

Selectivity. Probes may simply memorize training data rather than extracting true linguistic in-
formation from the representations. To account for this, we train identical probes on randomly
permuted labels (control tasks) following Hewitt & Liang (2019). We define selectivity at layer ¢ as
the difference between real and control accuracies:

Sely = Accf™ — Acci™! (1)
Higher values mean the classifier is extracting true linguistic information rather than memorizing.

Linear separability gap. We quantify nonlinearity at a layer as the difference in accuracy between
a non-linear and linear probe:

Gap, = A(:c'go“lirl — Acc?"ear, 2)
where positive values indicate useful information is present but not linearly separable.
Center of gravity and expected layer. Let a, be the test accuracy using layer £ for ¢ =0, ..., L,

and let by = max;<¢ a; be the cumulative (best-so-far) curve. We weight layers by their consolidation
relative to the baseline and take an index-weighted average:
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Then, to localize where marginal gains first occur, we use the nonnegative increments of the cumula-
tive curve and take their weighted average:
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Unlike center of gravity (which weights consolidated performance), this emphasizes where useful
information first becomes available, highlighting the specific layers at which the model begins to
encode properties relevant to the task.

Ay =max(by —by—1,0), pe=



3 EXPERIMENTS

Using the methodology introduced in Section[§2] we describe the components of our experimental
setup: the datasets, model suite, and procedure for extracting token-level representations.

3.1 DATASETS

We use several annotated datasets for our eight classical NLP pipeline tasks: UD English-GUM (POS,
dependencies, named entities, coreference, constituents) (Nivre et al.l 2016; |Zeldes, [2017), Universal
Propositions English-EWT (SRL) (Jindal et al.l 2022), SPR1 datasets (PropBank and UD-EWT
sources; SPR), and SemEval-2010 Task 8 (relations). We use the same token/span/edge labeling
schemes.

For our in-depth analysis of lemma identity and inflectional features, we use Universal Dependencies
corpora across six languages - English, Chinese, German, French, Russian, Turkish (Nivre et al.|
2016). We select GUM for English (Zeldes}, [2017), GSD for Chinese/German/French (McDonald
et al., 2013 (Guillaume et al.,|2019), SynTagRus for Russian (Droganova et al., 2018)), and IMST for
Turkish (Sulubacak et al.; [2016).

3.2 MODELS Table 1: Overview of models used in this study.

Model Parameters Pretraining Data Layers

We study a diverse set of pretrained

Encoder-only
transformer language models span-

1
ning different architectures, sizes, and ~ EBEir Base 110M 12.6B tokens 12
2. . . BERT Large 340M 12.6B tokens 24
training regimes. Tableﬂ]hsts all mod-  p.gppTa V3 Large 218M 39B tokens! o

els used in this study (see Table [I6] for
the HuggingFace identifiers).

Decoder-only

GPT-2-Small 124M 8B tokens' 12
For English, we evaluate all models GPT-2-Large 708M 8B tokens' 36
listed in Table [T] (excluding the non- ~ GPT-2-XL _ 1.5B 8B tokens' 48
Enelish Goldfish dels). For th Goldfish English 1000mb 124M 200M tokens 12
nglish Goldiish models). For the  gordfish Chinese 1000mb 124M 200M tokens 12
five non-English languages (Chinese, = Goldfish German 1000mb 124M 200M toiens 12
: : Goldfish French 1000mb 124M 200M tokens 12
German, French, Russian, Turkish), o7 ti20 piotes * 00omb 124M 200M tokens 12
we focus on models that have explicit  Goldfish Turkish 1000mb 124M 200M tokens 12
multilingual training: the Goldfish  Pythia-6.9B 6900M 300B tokens 32
. g g . . Pythia-6.9B Tulu 6900M 300B tokens 32
monolingual models trained specifi-  gimo-2-78 7300M 4T tokens 32
cally for each target language (Chang gLM0—2§7g—Instruct Zg(l)gm ég tollzens 32
1z emma-2-2B tokens
et al,, 2024), multilingual Qwen2.5 ¢ /275750 1hgtruct 2610M 2Ttokens 26
variants that include these languages  Qwen2.5-1.5B 1540M 18T tokens 28
in their training data, and the multi- Qwen2.5-1.5B-Instruct 1540M 18T tokens 28
. Qwen2.5-7B 7620M 18T tokens 28
lingual mT5-base model (Xue et al.,  guen2.5-7B-Instruct 7620M 18T tokens 28
2021). This ensures that we evalu-  Llama-3.1-8B 8000M 15T tokens 32
Llama-3.1-8B-Instruct 8000M 15T tokens 32

ate models on languages they were
trained on while maintaining suffi- _Encoder-Decoder
cient coverage. mT5-base 580M 1T tokens 12

! Converted from GB to tokens using the approximation that 1GB of data
is approximately 200M tokens in English (Chang et al.|[2024).

3.3 REPRESENTATION EXTRACTION

We tokenize inputs with model-specific tokenizers and run a forward pass to collect residual-stream
activations from every layer. Token, span, and pair encodings follow Section[§2] For words split into
multiple subwords, we use the last subword’s representation (Devlin et al., 2019). Models are used
as-is (no fine-tuning), and we report results by layer using these activations.

!'See Appendix [$H|for complete details including dataset statistics, tokenization information, and visualiza-
tions for all languages



4 THE CLASSICAL NLP PIPELINE
We probe 18 models across eight linguistic tasks to test whether modern language models rediscover

the classical NLP pipeline. In this section, we present three representative models - encoder-only,
decoder-only and instruction-tuned architectures - with full results for all models in Appendix §E]

4.1 LAYERWISE PATTERNS CLEANLY SEPARATE MODEL FAMILIES

BERT-Base Qwen2.5-1.5B OLMo-2-1124-7B-Instruct
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Figure 2: Left: Probe accuracy across layers for BERT Base, Qwen2.5-1.5B, and
OLMo-2-1124-7B-Instruct. Top panels show MLP probes and bottom panel show linear probes.
Right: Pearson correlations between all models, computed from flattening each model’s task-by-layer
accuracy grid and correlating across all pairs of models. Lower triangle: MLP correlations; upper
triangle: linear correlations

Probe performance. Our results in Figure [2 (left) show that MLP probes consistently match or
exceed linear probe accuracy across all tasks (see Figures[7]and [§] for complete results). The linear
separability gap - the difference between MLP and linear performance - peaks for late-pipeline tasks,
specifically SPR and Relations. This pattern holds across all 18 models (see Appendix [SE).

Model correlations. The correlation matrix, Figure [2](right), provides a global summary between
all 18 models. A high correlation indicates that two models’ layerwise accuracies across tasks are
similar; low correlations indicate divergent accuracy patterns. We observe three distinct trends:

1. Models cluster by architecture. Encoder-only models (e.g., BERT and DeBERTa) correlate
strongly with each other while having low correlations with decoder models. The same is
true for decoder-only architectures, such as GPT-2, Pythia, Qwen2.5 and Llama 3.1, which
form their own cluster with high internal similarity.

2. Instruction tuning preserves base model latent structure. Fine-tuned variants maintain high
correlations with their base counterparts, indicating that post-training does not fundamentally
reorganize linguistic representations.

3. Model size forms a secondary clustering, but only for linear probes. Models around one
billion parameters group together separately from 7B+ models for linear probe accuracy. MLP
probes don’t show this size-based clustering, likely because their additional capacity masks
any scale-dependent representation differences.

4.2 LARGER MODEL COMPRESS THE HIERARCHY

To pinpoint where linguistic properties emerge and consolidate, we compute compute expected
layer and center of gravity as defined in Section 2] Intuitively, the expected layer captures marginal
accuracy gains and highlights the depth at which information first emerges, while center of gravity
weights each layer by cumulative best accuracy to locate performance ultimately consolidates most
strongly.

The hierarchy persists. Figure [3] shows a shared relative ordering partially emerges across all
models. Syntactic tasks (POS, Constituency, Dependencies) tend to emerge before semantic tasks



Tinear Tun MIP  Twp BERT-Base Tinear Tin MLP  Twr Qwen2.5-1.5B Tinear Tun MIP  Tup OLMo-2-1124-7B-Instruct
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Figure 3: Expected layer (blue) and center of gravity (purple) for the same three models. The left
four columns show accuracy and selectivity (7) for linear and MLP probes, averaged across layers.
Selectivity measures how much of the accuracy is due to genuine signal rather than memorization by
the probe.

(Entities, SRL, SPR), which emerge before discourse phenomena (Corefernce, Relations). However,
this hierarchical progression is less distinct in modern models than in early ones, suggesting that the
hierarchy exists but is compressed.

Scale compresses depth. Model capacity determines where and whether this hierarchy forms. For
example, BERT Base (12 layers) places relation extraction around layer 8, while both Qwen2.5-1.5B
(28 layers) and OLMo-2-7B-Instruct (32 layers) compress it to approximately one-fifth depth.
Larger models seem to encode the complete linguistic hierarchy using fewer layers, suggesting that
they build useful representations earlier.

Selectivity reveals probe limitations. MLP probes appear to achieve high accuracy, but have strong
negative selectivity, meaning they memorize the task rather than extract meaningful information
from the representations. Linear probes are better, showing positive selectivity for syntactic tasks.
However, they drop to near zero selectivity for discourse tasks (Coreference, Relations), suggesting
that while discourse information exists in representations, linear decoding struggles to extract it
cleanly.

4.3 DISCUSSION

Our analysis establishes two key findings:

1. The hierarchical organization observed in early transformers survives in modern models but
with less separation between levels. But this relative ordering is detectable across architectures
(encoder, decoder, encoder—decoder), training regimes (causal and masked language modeling,
instruction tuning), and scale (100M to 8B parameters), but boundaries blur as models
compress the pipeline.

2. Modern models encode all linguistic levels at shallower depths. Where BERT Base clearly
separated syntactic, semantic, and discourse processing across its layers, a 7B model
(OLMo-2-7B-Instruct) compresses this entire hierarchy into its early layers. This compres-
sion is evidence that as models become more powerful, they need fewer layers to learn this
hierarchical linguistic structure, perhaps because they have higher representational capacity
per layer and benefit from more extensive training.

These results suggest that while the classical NLP pipeline represented how early transformers
organized knowledge, modern models develop a more compressed, interleaved representation of
linguistic structure.

5 LEMMA IDENTITY AND INFLECTIONAL FEATURES

We now examine two important token-level properties: lemma identity and inflectional features.
Using the same probing framework from Section[§4] we expand to six typologically diverse languages:
English, Chinese, German, French, Russian, and Turkish. We investigate where these properties
emerge in model representations and how they become linearly accessible across layers.



5.1 RESULTS

We report layer-wise accuracies for lemma and inflection prediction across classifier types and
languages. We evaluate 19 English models and six multi/monolingual models across lemma and
inflection prediction tasks. Detailed layer-wise accuracy and selectivity tables are provided in

Appendix
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Figure 4: Lemma and inflection probing results for English, averaged by model category: encoder-
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Lemma. Lemma accuracy under linear regression starts high (0.8—1.0) and decreases with depth in
all English model families (Figure[d] top left). Encoder-only models show the strongest decrease,
while small decoders decline more gradually and large decoders maintain higher accuracy in deeper
layers. Across languages (Figure[5] top left), Turkish shows the largest drop (0.95 to 0.25), while
Russian and Chinese retain 0.6-0.8 accuracy in later layers. MLP accuracy is similar but slightly
higher than linear at most depths (middle column). Selectivity for lemma remains close to zero across
depths and languages (right column), indicating that high lemma accuracy early in the network is
mostly driven by surface correlations rather than strongly selective lexical structure.

Inflection. Inflectional features remain readable across all layers and architectures. For English,
linear regression accuracy stays near 0.9—1.0 throughout the layers (Figure ] bottom left). This
pattern holds cross-linguistically (Figure [5} bottom left): English, German, French, and Russian
exceed 0.9 accuracy at most depths, while Turkish is slightly lower, hovering around 0.8-0.9. MLP
probes follow the same pattern (middle column). Selectivity scores for inflection remain positive
(0.4-0.6) across models and languages (right column), with Russian and German at the upper end,
supporting the view that inflectional features are encoded in stable, linearly accessible subspaces.

Probe error analysis. Frequency strongly correlates with probe accuracy for both tasks. Frequent
lemmas and inflectional categories achieve higher accuracy, while rare words and rare inflections
account for most errors. For inflection, comparative and superlative degrees and low-frequency verb
forms are the most error-prone categories. Turkish shows the strongest sensitivity to frequency, likely
due to its morphological complexity creating a long tail of rare forms. A detailed breakdown by part
of speech and inflectional category is given in Appendix

5.2 ANALYSIS

Our results show that lemma identity is encoded strongly in early layers but becomes less accessible
in deeper layers, whereas inflectional features remain robustly decodable throughout the model. We
analyze this further along several axes.

Inflection is linearly separable; lemma shows limited nonlinearity. We report the linear separability
gap, defined in equation (2), which measures the accuracy difference between MLP and linear probes.
Detailed plots for lemma and inflection appear in Appendix [§.3] For inflection, the gap stays close to
zero across layers, architectures, and languages, typically within £0.02 accuracy, consistent with the
near-overlap of linear and MLP curves in Figures[d and[5] This is evidence that inflectional features
are encoded linearly in the representations. For lemma, gaps are modest but positive, especially in
early and middle layers of encoder-only models and smaller decoders, where MLPs achieve slightly
higher accuracy than linear probes before both degrade in deeper layers. This suggests that lemma
information is present but less linearly separable than inflection.

Some models show extreme mid-layer dimensionality compression; others gradually compress
representations. To characterize the representation geometry of these models, we estimate intrinsic di-
mensionality by counting the fraction of principal components required to reach fixed variance thresh-
olds over our entire dataset of collected activations (full results appear in Appendix [§I.1).Encoder-only
models (BERT, DeBERTa) and several decoders (Gemma, L1ama, OLMo-2) exhibit gradual compres-
sion: even at 90-99% variance, the relative number of components decreases only slowly as depth
increases. In contrast, GPT-2, Qwen2.5, and Pythia enter a regime in their middle layers where very
few components - often just a single dimension - account for most of the variance at these thresholds.
Analysis of activation statistics (Appendix [§I.2) reveals that this low intrinsic dimensionality is driven
by outlier dimensions with large activation values: models like Qwen2.5-1.5B reach maximum
absolute activations of 8000 in middle layers, while models like L1ama-3-8B reach values of only
30-40 (Sun et al., 2024; Rudman et al., |2023).

Residual streams retain more linguistic information than attention outputs. Probing attention-
head outputs and residual-stream activations for BERT and contemporary decoders (Figures[27]and 28)
highlights different roles for these components. For both lemma and inflection, probes on attention
outputs yield lower accuracy than probes on the residual stream at almost all depths. For lemma,
attention-based accuracy falls to around 0.2-0.4 in middle layers, while residual streams remain
closer to 0.6—0.9. For inflection, both components maintain high accuracy (0.7-1.0), but residual
streams consistently outperform attention outputs, particularly in middle layers. Selectivity follows
the same pattern: lemma selectivity is near zero for attention outputs and higher for residuals, while
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inflection selectivity reaches 0.4—0.5 in both streams with residuals slightly higher. These results
support a view in which attention primarily aggregates contextual relationships, whereas the residual
stream/MLP layers preserve token-level lexical and morphological information that supports both
lemma and inflection prediction.

Inflection steering effectiveness tracks intrinsic dimensionality. Steering experiments with inflec-
tion features (e.g., , singular vs. plural) connect these representational properties to causal control.
For each pair of categories, we compute a difference vector between mean hidden states and apply
scaled interventions at each layer. Figures 29| and 30| show that, for most architectures and layers,
even moderate steering scales (e.g., , A = b) yield large changes in predicted inflection and high
flip rates, indicating that a single direction in activation space can reliably control morphological
representations. Qwen2.5 variants demonstrate an interesting property: in their early—-middle layers,
steering is much less effective, with both probability change and flip rate reaching their minima. This
region aligns with the layers where intrinsic dimensionality is lowest in Figures []and [T5] Combined
with the accuracy curves in Figure ] this suggests that strongly compressed representations are
more resistant to causal manipulation, even when inflection remains linearly decodable, whereas
higher-dimensional layers permit more effective steering of inflectional morphology.

Inflection stabilizes early in training; lemma continues to change. Pretraining checkpoint analysis
for OLMo-2-7B and Pythia-6.9B (Figures 25|and 26) shows that morphological analysis emerges
very early, whereas lemma information continues to evolve with training. For both model families,
inflection accuracy is already high at the earliest checkpoints and increases only slightly with
additional updates; inflection selectivity grows quickly in the first few checkpoints and then remains
near its final value. Lemma behaves differently. In OLMo-2-7B, lemma accuracy and selectivity
increase gradually across checkpoints, with the largest gains in middle layers. In Pythia-6.9B, early
checkpoints exhibit much lower lemma accuracy and near-zero lemma selectivity in deeper layers,
and both quantities rise steadily as training progresses. These trends indicate that models identify
and stabilize inflectional categories early in pretraining, while lemma representations remain more
plastic and continue to be reshaped throughout training, especially in the later layers of decoder-only
models.

5.3 DISCUSSION

The previous analyses present a comprehensive picture of how lemma identity and inflectional
features are organized inside transformer language models. Lemma information is strongly encoded
in early layers but becomes less accessible as depth increases, particularly in models that undergo
strong mid-layer compression. Inflectional features, in contrast, remain decodable across virtually all
layers and models, with small linear separability gaps and high selectivity.



The linear separability results suggest that grammatical features are encoded in low-dimensional,
approximately linear subspaces, while lemma identity relies more on higher-variance directions
that are later deemphasized. Intrinsic dimensionality measurements, together with the steering
experiments, tell us that aggressive compression in some decoder-only models limits the space in
which such directions can be causally manipulated. Specifically, steering remains effective in higher-
dimensional regions but degrades in layers whose variance is captured by very few components. The
comparison between attention outputs and residual streams further implies that lexical information is
preserved in the residual stream.

Taken together, these findings point to an organization in which inflection is a stable and linearly
accessible component of the internal state, supporting both probing and controlled interventions,
while lemma identity is encoded in a way that is useful for early processing but increasingly traded
off against compact, context-oriented representations as models optimize for next-token prediction.

6 RELATED WORK

Probing for linguistic information. Probing studies typically use supervised classifiers to predict
linguistic properties from model representations (Alain & Bengiol 2017; Adi et al., 2017). Extensive
work has established that early transformer models (BERT, GPT-2) learn hierarchical linguistic
structures, with different layers specializing in different information types: lower layers capture
surface features and morphology, middle layers encode syntax, and upper layers represent semantics
and context (Jawahar et al., [2019; [Tenney et al.,[2019a; Rogers et al.,|2020). More relevant to our
work, Vuli¢ et al.| (2020) found that lexical information concentrates in lower layers, while Ethayarajh
(2019) showed that representations become increasingly context-specific in higher layers.

Representation dynamics in modern LLMs. Recent research has extended these analyses to
modern, larger-scale generative models, examining how representational geometry evolves with
scale. [Cheng et al.| (2025) identify a distinct high-dimensional abstraction phase in the early-to-
middle layers of models like Llama and OLMo, suggesting that the transition from surface-level
to abstract linguistic features occurs earlier than in previous architectures. Similarly, Skean et al.
(2025) demonstrate that intermediate layers in modern LLMs often encode richer task-transferable
representations than final layers, challenging the assumption that semantic capability monotonically
increases with depth. These findings align with the pipeline compression we observe in Section [§3}

Activation steering. Beyond probing, recent work has explored manipulating model behavior by
intervening on internal representations. This includes steering vectors (Subramani et al., [2022),
inference-time interventions (Li et al.| [2023)), representation editing (Meng et al.| [2022)), sparse
autoencoders for feature discovery (Bricken et al.,|2023)), and causal mediation analysis (Vig et al.,
2020). While these methods typically evaluate changes in model outputs, our steering experiments
focus on measuring representational changes. See Appendix [§B|for more detailed discussion.

Mechanistic interpretability and feature discovery. Mechanistic interpretability approaches
aim to reverse-engineer the algorithms learned by neural networks (Elhage et al. [2021)), offering
a more causal view of internal structure. Recent work uses sparse autoencoders to decompose
dense representations into interpretable latent features (Cunningham et al., 2023} Bricken et al.,
2023), providing clearer targets for interpretation than raw activations. While probing detects
correlations between representations and linguistic concepts, these methods seek to identify the
specific components and causal circuits that implement these behaviors.

7 CONCLUSION

In this work, we analyzed 25 transformer models and found that modern LMs show signs of
rediscovering the classical NLP pipeline, progressing from syntax to semantics and discourse.
However, we observe that larger models compress this hierarchy into earlier layers, suggesting that
increased capacity allows useful representations to emerge sooner. Our case study further reveals
that while lemma identity becomes increasingly non-linear with depth, inflectional features remain
linearly accessible and steerable within the residual stream across languages. Collectively, these
findings indicate that despite rapid advances in scale and training, transformers converge on robust,
shared mechanisms for organizing linguistic information.
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8 REPRODUCIBILITY STATEMENT

We will release a GitHub repository containing code to reproduce dataset construction, probing
experiments, and all plots and analyses. The main paper specifies the probe design and metrics
(Section[§2)), datasets and model suite (Sections[§3]and Table[T)), and evaluation summaries for the
classical pipeline and for lemma identity and inflectional features (Sections §4]and §5). The appendix
provides complete classifier and training details, dataset statistics, and full-resolution figure grids
referenced in the text. Together, these materials are intended to enable end-to-end reproduction of our
results.
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A LIMITATIONS

Representation Extraction for Decoder Models Our current approach for extracting word repre-
sentations from decoder-only models uses the final subword token. This assumption is an intuitive
and natural choice, but may not be optimal for all architectures and models. Future work could
develop better extraction methods that account for subword tokenization effects and leverage attention
patterns to create more accurate word-level representations.

Form and Function in Inflection Some languages contain cases where different grammatical
functions share the same surface form (e.g., , infinitive and non-past verb forms in English). We
do not explicitly examine these cases in our classification experiments, but these ambiguities create
opportunities to better examine how models separate form from function across languages.

Indirect Nature of Classifiers While our classifier methodology follows established best prac-
tices (Hewitt & Liang, |2019; |Liu et al.,[2019), we only detect correlations in hidden activations, not
causal mechanisms.

Scope of Steering Experiments Our steering vector experiments measure changes in classifier
performance rather than downstream model outputs. Evaluating effects on actual model generation
would require more complex experimental designs to control for confounding factors and ensure that
observed changes result from the intended representational modifications rather than other influences.

B ADDITIONAL RELATED WORK

B.1 ADVANCED PROBING METHODOLOGIES

Beyond standard linear probes, there are many sophisticated approaches to understand model repre-
sentations. Amnesic probing (Elazar et al.,[2021)) removes specific information from representations
to test whether it’s necessary for downstream tasks. Minimum description length probes (Voita &
Titov, |2020) balance probe complexity with performance to avoid overfitting. Causal abstraction
(Geiger et al.,[2021) aims to establish causal rather than merely correlational relationships between
representations and linguistic properties. Recently, Subramani et al.| (2025) find that decoding from
activations directly using the Logit Lens can be used to learn confidence estimators for tool-calling
agents (nostalgebraist, [2020).

B.2 MODEL MANIPULATION AND STEERING

Steering vectors demonstrate that specific directions in activation space correspond to high-level
behavioral changes (Subramani et al., |2022). Building on this, Panickssery et al.| (2024)) achieves
behavioral control by adding activation differences between contrasting examples. [Li et al.| (2023)
introduce inference-time intervention, a method that shifts model activations during inference across
limited attention heads to control model behavior. While these methods operate in activation space,
task vectors enable arithmetic operations on model capabilities by manipulating weight space (Ilharco
et al.l [2023)).

Recent work has also examined how multilingual models like mT5 and ByT5 encode morphological
information differently across languages (Dang et al., [2024), finding that tokenization strategies
significantly impact morphological representation quality, particularly for morphologically rich
languages.

C PROBE DETAILS

In this appendix we provide implementation details for the linear regression and two-layer multi-layer
perceptron (MLP) probes used throughout our experiments. These classifiers are trained on frozen
residual-stream activations from each layer to predict the labels of our linguistic tasks, lemma identity
and inflectional features.
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Training details. We stratify each dataset into train, validation, and test splits. Probes are trained on
the training split, hyperparameters are selected using the validation split, and we report accuracy and
macro F1 on the held-out test split. For the linear regression probe we apply ridge regularization with
A = 0.01 and solve equation () in closed form. For the MLP probe we use a hidden dimension of
64, a learning rate of 0.001, weight decay of 0.01, and train for up to 100 epochs with early stopping
based on validation loss, optimizing cross-entropy with AdamW. Both probes share the same data
splits to enable fair comparison.

C.1 LINEAR REGRESSION CLASSIFIER

Consistent with best practices for probing (Hewitt & Liang} 2019} |Liu et al.| [2019), we use a ridge-
regularized linear regression classifier. Given training representations X, € R™*% and one-hot
encoded labels Y, € R™*¢, the optimal weight matrix W € R4%¢ is obtained in closed form as

T 1T
W= (XlrainXtrain + )\I) XtrainKraim )
where \ controls the strength of ¢5 regularization and [ is the identity matrix. Predictions on test

representations X are then given by Yieg = Xiest W

C.2 MLP CLASSIFIER

To test for non-linear separability, we train a simple two-layer MLP with ReL.U activation. The
classifier computes

¥ = softmax (ReLU(XWl)Wg), 6)

where W, € R¥>" and W, € R"*¢ are learned weight matrices, h is the hidden dimension (we use
h = 64), and biases are omitted for brevity. Two-layer MLPs with ReLU activation are universal
function approximators capable of representing any continuous function to arbitrary precision given
sufficient width (Hornik et al., [1989). We train the MLP with cross-entropy loss using the same splits
and optimization hyperparameters described above.

D LINGUISTIC TASK DEFINITIONS

We probe eight linguistic tasks originally introduced by [Tenney et al.|(2019a) that span the classical
NLP pipeline. Here we provide formal definitions for each task:

Part-of-Speech tagging (POS). This task assigns each word a grammatical category such as noun,
verb, adjective, or adverb, following the Universal Dependencies tagset (Petrov et al.| 2012). POS
tagging is fundamental to syntactic analysis and serves as input to many downstream NLP tasks.

Constituency parsing. This task identifies the hierarchical phrase structure of sentences by group-
ing words into nested constituents such as noun phrases, verb phrases, and sentences (Marcus et al.,
1993)). The output is typically represented as a parse tree showing how smaller units combine to form
larger syntactic structures.

Dependency parsing. This task predicts syntactic head-dependent relations between words, such
as subject-verb and modifier-head relationships, following Universal Dependencies guidelines (Nivre
et al.l [2016). Each word is linked to exactly one head (except the root), forming a directed tree
structure that captures grammatical relations.

Named Entity Recognition (NER). This task identifies and classifies named entities such as per-
sons, organizations, locations, and dates into predefined categories (Tjong Kim Sang & De Meulder],
2003). NER bridges syntactic and semantic analysis by identifying referential expressions that denote
real-world entities.

Semantic Role Labeling (SRL). This task assigns semantic roles such as agent, patient, instrument,
or location to arguments of predicates in a sentence (Gildea & Jurafsky, 2002). SRL captures the
underlying semantic relationships between predicates and their arguments, abstracting away from
surface syntactic variations.
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Semantic Proto-Roles (SPR). This task predicts fine-grained semantic properties of predicate argu-
ments, such as whether an argument is sentient, undergoes a change of state, or is volitional (Reisinger
et al.|[2015). SPR provides a more nuanced characterization of semantic roles through scalar proper-
ties rather than categorical labels.

Coreference resolution. This task determines which expressions in a text refer to the same real-
world entity, linking pronouns and noun phrases to their antecedents (Pradhan et al., [2012)). Coref-
erence resolution is essential for understanding discourse coherence and tracking entities across
sentences.

Relation extraction. This task identifies semantic relationships between entity mentions, such as
organization-location or person-affiliation relations, typically across sentence boundaries (Hendrickx
et al., 2010). Relation extraction connects named entities through typed semantic links, enabling
structured knowledge representation.

These tasks form the classical NLP pipeline described by (Tenney et al.l 2019a)), progressing from
syntactic analysis (POS, constituency, dependencies) through semantic interpretation (NER, SRL,
SPR) to discourse-level understanding (coreference, relations).

E FULL RESULTS FOR THE CLASSICAL NLP PIPELINE

The full heatmaps and summary statistics for pipeline analyses across all models are shown in
Figures [JHIT] These figures show model-by-layer accuracy/selectivity patterns and the expected
layer/center-of-gravity summaries reported in the main text.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR

Relations

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR

Relations

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR

Relations

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR

Relations

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR

Relations

OLMo-2-1124-7B-Instruct

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR

Relations

BERT-Base

BERTLarIe

DeBERTa-v3-Large

GPT-2-Small

GPT-2-Large
| I |

GPT-2-XL

Gemma-2-2B

Qwen2.5-1.5B-Instruct

Gemma-2-2B-Instruct

Qwen2.5-7B

Qwen2.5-1.5B

Qwen2.5-7B-Instruct

Pythia-6.9B

OLMo-2-1124-7B

Llama-3-8B

0 25 50 75

100 0

Layer Depth (%)

Llama-3-8B-Instruct

1.0

0.4

0.2

0.0

Aoeanooy - aqoid dTIN

Figure 7: Full heatmaps for MLP probe accuracy across all tasks, models, and layers. Rows show

1079 tasks; columns show models; each plot shows accuracy by layer depth.

20



1080
DeBERTa-v3-Large

BERT-Base BERT-Larg

1081 POS
1082 Consts.
1083 Deps.
1084 Entities
1085 SKE
1086 Coref.
SPR Il | 1.0
e - .
1088 — o
om0 GPT-2-Small GPT-2-Large GPT-2-XL
POS
1090 Consts.
1091 Deps.
1092 Entities
1093 SRL
1094 coret 08
1 SPR
095 Relations I
1096
1097 Gemma-2-2B Gemma-2-2B-Instruct Qwen2.5-1.5B
POS
1098 Consts.
1099 Deps.
1100 Entities
1101 SRL
1102 Coref. 0.6 =
1103 SR g
1104 Relations %
o
1105 Qwen2.5-1.5B-Instruct Qwen2.5-7B Qwen2.5-7B-Instruct CSD-
POS '
1106 Consts. 5
1107 Deps. 5
1108 Entities Q
1109 SRL 0.4
1110 Coref.
1111 SPR
1112 Relations
1113 Pythia-6.9B hia-6.9B-Tulu OLMo-2-1124-7B
1114 Fos
Consts.
1115 Deps
1116 Entities 0.2
1117 SRL
1118 Coref.
1119 SPR
1120 Relations
1121 OLMo-2-1124-7B-Instruct Llama-3-8B Llama-3-8B-Instruct
1122 FOS
1123 C(]))nsts,
eps. LI
1124 Entitir;s o0
1125 SRL
1126 Coref.
1127 SPR
1128 Relations
1129 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
1130
Layer Depth (%
1131 yer Depth (%)
1132

Figure 8: Full heatmaps for linear probe accuracy across all tasks, models, and layers. Trends mirror
1133 the MLP version but with stronger model-size effects in deeper layers.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

BERT-Base BERT-Large DeBERTa-v3-Large
POS
Consts.
Deps.
Entities
SRL
oot W00 mEm
SPR
Relations

GPT-2-Small GPT-2-Large GPT-2-XL.
POS

Consts.
Deps.
Entities
SRL
Coref.
SPR
Relations

i
18
1

Gemma-2-2B

Gemma-2-2B-Instruct

Qwen2.5-1.5B

POS

Consts.

Deps.
Entities
SRL
Coref.
SPR
Relations

A
|
il

Qwen2.5-1.5B-Instruct

Qwen2.5-7B

Qwen2.5-7B-Instruct

POS

Consts.

Deps.
Entities
SRL
Coref.
SPR
Relations

a8
1
1l

Pythia-6.9B

Pythia-6.9B-Tulu

OLMo-2-1124-7B

POS

Consts.

Deps.
Entities
SRL

Coref.
SPR
Relations

E|
18
1l

OLMo-2-1124-7B-Instruct

Llama-3-8B

Llama-3-8B-Instruct

POS

Consts.

Deps.

Entities
SRL
Coref.
SPR

18
18
1

Relations

o
N
ol
o
=}

75 100

0 25 50 75

Layer Depth (%)

100 0 25 50 75 10

1.00

0.75

0.50

0.25

0.00

—0.25

—0.50

—0.75

-1.00

Figure 9: Full heatmaps for MLP probe selectivity (real vs. control task accuracy).

22

A1ane1es - 0qoid dTIN



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

BERT-Base BERT-Large DeBERTa-v3-Large

POS
Consts.
Deps.
Entities
SRL

Coref. l
SPR
Relations

GPT-2-Small GPT-2-Large GPT-2-XL

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR
Relations

Gemma-2-2B Gemma-2-2B-Instruct

Qwen2.5-1.5B

POS
Consts.
Deps.
Entities i
SRL
Coref.
SPR
Relations

Qwen2.5-1.5B-Instruct Qwen2.5-7B

1l

Qwen2.5-7B-Instruct

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR
Relations ‘ ‘

Pythia-6.9B Pythia-6.9B-Tulu

=

OLMo-2-1124-7B

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR
Relations

OLMo-2-1124-7B-Instruct Llama-3-8B

Llama-3-8B-Instruct

POS

Consts.
Deps.
Entities
SRL
Coref.
SPR
Relations

0 25 50 75 100 0

25 50 75

Layer Depth (%)

Figure 10: Full heatmaps for linear probe selectivity (real vs. control task accuracy).

23

100 0 25 50 75 100

1.00

0.75

0.50

0.25

0.00

—0.25

—0.50

—0.75

-1.00

£K11AT10070S - 801 IROUTT



POS
Consts.
Deps.
Entities
SRL
Coref.
SPR
Relations

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR
Relations

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR
Relations

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR
Relations

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR
Relations

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR
Relations

Linear Tin MLP
469 91 460
49.9 13.0 49.1
450 9.0 432
79.6 42.3 795
65.1 4.6 59.8
43.9 -35.0 56.1 17.9
94.6 11.1 823 12.8
38.8 -39.4 19.5 58.9

Tep
77
16
10.7
43
147

Linear Tun
485 7.7
293 96
450 6.0 39.8
79.4 39.7 79.5 46.4
62.8 1.8 53.2 17.2
520 0.8 60.2-18.7
45.8 44.7 443 203
42.6 -39.5 30.6 46.3

MLP
455
485

e

10.0

129
93

MLP
49.9
523

Linear Tun
470 6.7
50.7 9.7
436 25 445
77.2 37.1 795 39.2
57.4 255592 7.2
561 0.8 56.9 -30.1
38.0 47.6 44.4 255
19.0 -55.4 28.1 43.0

Tee
87
10.4
64

Linear Ttn
487 76
50.0 7.0
440 43 422 97
79.0 38.7 79.5 41.7
59.8 -20.0 54.6 12.7
569 0.0 56.9 -22.8
45.4 435443 227
18.7 -50.5 19.3 -55.3

MLP
482 87
51.7 10.0

e

Linear Tun MLP Tip
413 7.3 47.6 109
439 7.3 496 94
39.7 25 443 79
74.6 37.4 795 41.0
33.427.6 60.7 109
56.1 3.3 56.9 -26.8
8.1 445 43.9 34.0
72 20 27.7 474

Linear Tin
399 83
426 86
386 5.4
73.6 39.0
315221
59.3 7.3
85 47.1
10.4 141

MLP T
491 93
50.7 89
446 49
79.5 39.3
60.9 1.2
52.0 -39.0
443 414
20.7 47.4

BERT-Base

Qwen2.5-1.5B-Instruct
I 0.2
A 1225

AEET—— .71
I 13.52
I 0.75
I 12 50
iz )

1.44 I .74 POS
[1.00  EXy Consts.
243 I 547 Deps.
EE .12 Entities
2.43 [ 5.40 SRL
I 444 Coref.
236 I 6.36 SPR
4.43 I 6.56 Relations
T T T T T
1 6 H 10
Layer
GPT-2-Small
1.89 [ 5.00 POS
(134 EX] Consts.
2.73 I 566 Deps.
2.00 [ 4.94 Entities
3.02 [ 5.90 SRL
X 554 Coref.
EE .12 SPR
5.25 I 7.65 Relations
T T T T T
2 H 6 H 10
Layer
Gemma-2-2B
I 175 Pos
I 1136 Consts.
12.32 Deps.
| 13.01 Entities
I 159 SRL
5.25 [ 12.69 Coref.
12.91 SPR
5.35 I 13.46 Relations
1 8 21 20 2
Layer

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR
Relations

593 I 13.53
2
T

Laver

Pythia-6.9B
I 11 52
I 1279

OLMo-2-1124-7B-Instruct
(TR 1.15
O 11.53
e [
I 1554
X 15,05

I 544
EZE 15 59
5.85 I 15.58

18 12 18 2 2

Layer

8 o6 20 2

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR
Relations

POS
Consts.
Deps.
Entities
SRL
Coref.
SPR
Relations

Linear Tin MLP
432 125 447
468 13.8 47.7
402 85 385
79.5 48.6 79.4
614 6.3 57.4
56.1-22.8 57.7
907 9.2 784

Tep.
144
149
9.5
484
162
24
9.8

256 44.0 19.1 54.4

Linear Tn MLP
475 8.4 478
49.7 10.6 496
460 7.7 439
79.1 40.8 795
59.9 -15.2 56.0
50.4 8.9 56.9

e
129
132
97
430
15.4

106

44.6 50.0 44.8 26.5
30.2 45.5 18.0 58.3

Linoar T MLP
469 7.0 491
490 83 525
422 18 429
77.9 38.3 795
57.9 -28.8 57.9
58.5 57 56.9

Tie
88
15
6.0

07
89

220

409 46.5 44.9 254
19.2 54.3 27.0 44.2

Linear Tn MLP
438 73 480
458 7.0 51.0
337 44 347
74.6 375 795
45.6 34.4 50.2

e
83
94
43

400
75

53.7 4.1 57.7 26.0
8.9 47.1 451 30.0
7.8 17.5 28.3 50.3

Linear Tn MLP
a1 75 470
436 72 504
392 21 439
754 39.7 79.4
33.6 25.7 61.1

Tee
107
89
77
0.2
83

545 7.3 54.5 341
8.4 46.0 45.3 40.6
121 45 31.6 434

Linear Tin MLP
422 65 504
453 6.0 53.0
338 67 37.9
739 355 795
34.9 -39.4 62.0

T
72
84
50

36.0
55

59.3 2.4 56.1 -22.8
7.3 44.0 44.0 29.6
1.9 17.6 25.8 51.2

BERT-Large
AN 10.08 POS
417 I 10.02 Consts.
4.28 N 10.51 Deps.
1.79 Entities
8.05 [ 11.02 SRL
E—— 11.77 Coref.
X 11-98 SPR
1125 12.32 Relations
T TR
Layer
GPT-2-Large
PPN 13.52 POS
PO 15.25 Consts.
XA 15.44 Deps.
| 1747 Entities
ST 15.31 SRL
T 1710 Coref.
(EET 15.14 SPR
10.78 [ 2028 Relations
T T T T T T
510 15 20 om0 % &
Layer
Gemma-2-2B-Instruct
S 10.53 POS
I 10.57 Consts.
X 10.94 Deps.
| 12.04 Entities
I 1141 SRL
6.67 [ 12.57 Coref.
13.05 SPR
6.02 I 14.29 Relations
AR AR AR AR A
Layer
Qwen2.5-7B
A 10.74 POS
I o.54 Consts.
X 12.32 Deps.
T, 14.70 Entities
167 KKH SRL
| 1375 19.00 Coref.
13.89 SPR
6.40 I 14.58 Relations
T T T T T
a8 1 16w om
Layer

Pythia-6.9B-Tulu

ET 11.50 POS
I 12.77 Consts.
I 12.12 Deps.
A 16.01 Entities
T 134 SRL
19.00 Coref.
I 15 55 SPR
5,32 I 15.53 Relations
18 12 o1 2w w
Layer
Llama-3-8B
15.36 POS
Consts.
Deps.
Entities
SRL
Coref.
SPR
Relations

Linear Tin MLP Tuip
521 13.4 51.3 149
51.8 119 53.2 145
476 9.9 466 13.0
79.5 40.7 79.4 42.4
638 -1.0 60.4 15.8
57.7 13.8 57.7 115.4.
892 46 683 1.0
30.0 -50.0 22.5 50.8

Linear Tn MLP Tup
485 10.8 49.4 1.8
482 97 495 10.0
428 50 419 87
78.7 39.7 79.5 40.7
58.3 14.7 54.4 14.6
53.7 6.5 56.9 -10.6
44.0 49.9 443 29.3
27.5 46.8 31.2 447

Linear Tn MLP Tup
487 7.6 487 96
50.2 7.4 520 10.1
446 44 431 90
78.9 38.5 79.5 412
59.5-19.9 54.7 115
53.7 6.5 57.7 195
45.6 434 44.0 233
26.4 48.4 19.3 55.3

Linear Tn MLP Tuip
438 6.4 446 5.1
462 75 503 8.8
327 56 353 38
752 37.3 79.5 402
44.7 346 581 6.7
512 3.3 57.7 285
8.6 42.6 446 31.3
86 -1.4 206 57.8

Linear Tn MLP Tup
426 69 520 92
427 56 531 8.1
400 38 472 59
75.1 38.4 79.5 355
328 275 623 26
59.3 6.5 48.0 43.1
8.2 445450 345
95 20.2262 51.1

Linear Tin MLP Twip
424 66 510 7.7
450 58 532 7.7
326 7.7 380 53
74.4 36.3 79.5 349
343 43.0 61.7 32
59.3 6.5 56.9 -22.0
8.1 439450 27.8
6.8 8.1 282 47.9
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Figure 11: Expected Layer and Center of Gravity plots with 7, and TyvLp selectivity scores for all
models.
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F FULL LEMMA AND INFLECTION PROBE RESULTS

We provide the full, non-averaged results for the linguistic probing tasks (lemma identity and
inflectional features) for every individual model. Figure[T2]shows the detailed breakdown for English
models, and Figure [[3]presents the results for all six languages.

10 Linear Regression 08 Linear Regression MLP
© H A — 2 0.6
= —— = Y
E 0.8 = E
< & 04
g o
E 06 g
=] g 0.2
3] -
— 3 ?/ % -
0.4 0.0 =
B 1.0 —_— ————— = 0.8
9 =
g 2
g 08 2 0.6 -
Q - —_— 2
< B 04 7
S o6 g
5 0 3
2 £
5 = 4
0.4 = 0.0
0 25 50 75 1000 25 50 75 100 0 25 50 75 1000 25 50 75 100
Normalized layer number (%) Normalized layer number (%)
—— BERT-Base —— GPT-2-Large —— OLMo-2-1124-7B — Qwen2.5-1.5B
—— BERT-Large — GPT-2-XL —— OLMo-2-1124-7B-Instruct ~ —— Qwen2.5-1.5B-Instruct
—— DeBERTa-v3-Large Pythia-6.9B —— Gemma-2-2B ~— Llama-3-8B
—— GPT-2-Small —— Pythia-6.9B-Tulu —— Gemma-2-2B-Instruct Llama-3-8B-Instruct

Figure 12: Full lemma and inflection probing results for English, showing individual curves for every
model. Columns show prediction accuracy (Linear vs. MLP probes) and selectivity scores (linguistic
minus control accuracy).
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Figure 13: Full cross-linguistic probing results showing individual curves for every model within each
language. Columns show lemma and inflection accuracy (Linear vs. MLP) followed by selectivity
scores.

G DETAILED LAYER-WISE TABLES FOR LEMMA AND INFLECTION RESULTS

This section contains detailed tables for layer-wise accuracy and selectivity across all models and
languages.
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Table 2: English Accuracy (Linear Probes) Across Layer Depths

Model Task 0% 25% 50% 75% 100%

Inflection 0.934 0971 0977 0966 0.951
Lexeme  0.858 0.773 0.665 0.564 0.507

Inflection 0.938 0.972 0.978 0.966 0.949
Lexeme  0.896 0.820 0.737 0.585 0.531

Inflection 0.939 0982 0972 0.960 0.955
Lexeme 0914 0.805 0.673 0.482 0.309

Inflection 0.927 0.970 0.971 0.946 0912

BERT-Base
BERT-Large

DeBERTa-v3-Large

GPT-2-Large Lexeme  0.874 0818 0.711 0.665 0.577
Inflection  0.939 0.948 0.971 0956 0.909
GPIE2-Small Lexeme  0.840 0.737 0.671 0.618 0.530
Inflection  0.929 0974 0973 0946 0915
GPT-2-XL Lexeme 0906 0.827 0.737 0.690 0.609
Gemma2.9B Inflection  0.936 0974 0963 0972 0.948

Lexeme 0.944 0.817 0.694 0.792 0.728

Inflection 0917 0971 0.960 0.972 0.960
Lexeme 0.904 0.802 0.667 0.791 0.752

Inflection 0912 0971 0.974 0.976 0.962
Lexeme 0.864 0.794 0.796 0.816 0.749

Inflection 0913 0972 0974 0977 0.967
Lexeme 0.864 0.803 0.812 0.839 0.783

Inflection 0.897 0970 0.959 0.961 0.965
Lexeme  0.832 0.883 0.755 0.808 0.763

Inflection 0.897 0.970 0.958 0.962 0.961
Lexeme  0.832 0.881 0.749 0.806 0.757

Inflection 0942 0982 0974 0966 0.953
Lexeme 0.980 0.928 0.865 0.829 0.772

Inflection 0.941 0.980 0.975 0.968 0.954
Lexeme 0.980 0.928 0.872 0.841 0.789

Inflection 0.913 0.969 0.959 0.961 0.930
Lexeme 0.845 0.799 0.610 0.654 0.599

Inflection 0910 0.957 0944 0.949 0914
Lexeme 0.876 0.768 0.590 0.647 0.654

Gemma-2-2B-Instruct
Llama-3-8B
Llama-3-8B-Instruct
OLMo-2-1124-7B
OLMo-2-1124-7B-Instruct
Pythia-6.9B
Pythia-6.9B-Tulu
Qwen2.5-1.5B

Qwen2.5-1.5B-Instruct
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Table 3: English Selectivity (Linear Probes) Across Layer Depths

Model Task 0% 25% 50% 75% 100%

Inflection  0.348 0.486 0.556 0.596 0.609
BERT-Base Lexeme  0.094 0.132 0.134 0.114 0.101
BERT-Large Inflection 0292 0459 0520 0598 0.603

Lexeme 0.083 0.145 0.148 0.119 0.107

Inflection 0.279 0471 0.545 0.644 0.681
Lexeme 0.062 0.183 0.158 0.097 0.054

Inflection 0.324 0.489 0.563 0.550 0.562

DeBERTa-v3-Large

GPT-2-Large Lexeme 0099 0.83 0.162 0.161 0.121
Inflection 0347 0576 0541 0558 0.547
GPT-2-Small Lexeme 0100 0.171 0.152 0.134 0.121
Inflection 0289 0488 0549 0547 0553
GPT-2-XL Lexeme 0092 0.172 0172 0162 0.135
Comman. 28 Inflecion  0.131 0466 0565 0464 0512

Lexeme 0.036 0.132 0.136 0.161 0.128

Inflection 0.210 0.517 0.594 0.487 0.522
Lexeme 0.052 0.157 0.144 0.184 0.154

Inflection 0.041 0.516 0.482 0474 0.497
Lexeme -0.003 0.132 0.146 0.140 0.117

Inflection 0.042 0.508 0.473 0.453 0.478
Lexeme -0.003 0.131 0.146 0.144 0.119

Inflection 0.128 0.440 0.538 0.476 0.528
Lexeme 0.011 0.104 0.152 0.170 0.144

Inflection 0.127 0.443 0.545 0.483 0.543
Lexeme 0.011 0.104 0.149 0.164 0.144

Inflection 0.017 0.347 0416 0.457 0.484
Lexeme -0.002 0.117 0.134 0.140 0.141

Inflection 0.016 0.348 0.419 0.454 0.492
Lexeme -0.002 0.118 0.137 0.143  0.150

Inflection 0.199 0.483 0.589 0.566 0.548
Lexeme 0.034 0.146 0.117 0.129 0.108

Inflection 0.189 0.474 0.581 0.541 0.503
Lexeme 0.061 0.143 0.113 0.129 0.112

Gemma-2-2B-Instruct

Llama-3-8B

Llama-3-8B-Instruct

OLMo-2-1124-7B

OLMo-2-1124-7B-Instruct

Pythia-6.9B

Pythia-6.9B-Tulu

Qwen2.5-1.5B

Qwen2.5-1.5B-Instruct
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Table 4: English Accuracy (MLP Probes) Across Layer Depths

Model Task 0% 25% 50% 75% 100%

Inflection 0.941 0.978 0.983 0.975 0.960
Lexeme  0.906 0.888 0.808 0.719 0.629

Inflection 0943 0977 0981 0973 0.958
Lexeme 0920 0904 0.843 0.762 0.677

Inflection 0944 0986 0976 0971 0.957
Lexeme 0920 0.885 0.781 0.574 0.318

Inflection 0930 0964 0964 0952 0.937

BERT-Base
BERT-Large

DeBERTa-v3-Large

GPT-2-Large Lexeme  0.892 0.878 0.825 0719 0.552
Inflection 0943 0963 0965 0957 0.837
GPT-2-Small Lexeme  0.830 0.843 0817 0.705 0.075
Inflection 0929 0.965 0963 0948 0.937
GPT-2-XL Lexeme 0906 0.884 0844 0734 0571
Comman. 28 Inflection 0.940 0977 0970 0975 0.946

Lexeme 0.939 0.868 0.732 0.812 0.506

Inflection 0919 0973 0.965 0.973 0.960
Lexeme 0.890 0.874 0.731 0.831 0.508

Inflection 0.920 0972 0977 0976 0.958
Lexeme  0.863 0.808 0.857 0.840 0.568

Inflection 0.920 0.972 0.977 0.977 0.964
Lexeme 0.863 0.821 0.873 0.870 0.605

Inflection 0.903 0.974 0.970 0.975 0.964
Lexeme  0.825 0.877 0.833 0.845 0.621

Inflection 0.903 0.975 0.968 0.973 0.964
Lexeme  0.825 0.880 0.825 0.847 0.650

Inflection 0.940 0.973 0.971 0.959 0.959
Lexeme 0976 0.891 0.823 0.683 0.655

Inflection 0.944 0973 0970 0.963 0.961
Lexeme 0.976  0.904 0.858 0.752 0.709

Inflection 0.919 0.967 0.963 0.962 0.929
Lexeme 0.829 0.864 0.800 0.777 0.356

Inflection 0.935 0.957 0952 0.952 0923
Lexeme 0916 0.841 0.779 0.789 0.423

Gemma-2-2B-Instruct
Llama-3-8B
Llama-3-8B-Instruct
OLMo-2-1124-7B
OLMo-2-1124-7B-Instruct
Pythia-6.9B
Pythia-6.9B-Tulu
Qwen2.5-1.5B

Qwen2.5-1.5B-Instruct
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Table 5: English Selectivity (MLP Probes) Across Layer Depths

Model Task 0% 25% 50% 75% 100%

Inflection  0.139 0307 0416 0505 0.536
BERT-Base Lexeme  0.025 0057 0069 0084 0068
BERT-Large Inflection  0.104 0294 0386 0496 0514

Lexeme 0.028 0.084 0.088 0.106 0.074

Inflection 0.071 0.313 0428 0.582 0.666
Lexeme 0.005 0.061 0.096 0.065 0.043

Inflection 0.157 0323 0446 0.487 0.521

DeBERTa-v3-Large

GPT-2-Large Lexeme  0.040 0093 0.123 0138 0.115
Inflection 0210 0342 0410 0470 0.581
GPT-2-Small Lexeme 0012 0077 0.09% 0.107 006l
Inflection  0.118 0334 0433 0491 0527
GPT-2-XL Lexeme 0027 0.110 0.145 0.163 0.142
Comman. 28 Inflection  0.002 0360 0499 0395 0483

Lexeme -0.007 0.067 0.090 0.088 0.054

Inflection 0.089 0.393 0.523 0.404 0.509
Lexeme 0.026 0.102 0.111 0.100 0.058

Inflection 0.050 0.454 0.414 0.402 0.463
Lexeme -0.001  0.098 0.079 0.084 0.060

Inflection 0.050 0.442 0.400 0.364 0.451
Lexeme -0.002 0.098 0.074 0.084 0.069

Inflection 0.118 0.363 0470 0.426 0.483
Lexeme 0.007 0.088 0.121 0.109 0.095

Inflection 0.118 0.371 0476 0.434 0.493
Lexeme 0.007 0.094 0.122 0.119 0.103

Inflection -0.025 0.301 0.404 0.444 0451
Lexeme -0.005 0.064 0.096 0.110 0.113

Inflection -0.021 0.294 0.394 0.438 0.445
Lexeme -0.005 0.057 0.092 0.112 0.126

Inflection 0.085 0.325 0.456 0.455 0.549
Lexeme -0.007 0.053 0.072 0.082 0.062

Inflection 0.046 0.337 0.460 0.440 0.502
Lexeme -0.012  0.064 0.082 0.082 0.058

Gemma-2-2B-Instruct

Llama-3-8B

Llama-3-8B-Instruct

OLMo-2-1124-7B

OLMo-2-1124-7B-Instruct

Pythia-6.9B

Pythia-6.9B-Tulu

Qwen2.5-1.5B

Qwen2.5-1.5B-Instruct
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Table 6: Probing Results for Chinese

(a) Accuracy (Linear Probes)

(b) Selectivity (Linear Probes)

Model Task 0% 25% 50% 75% 100% Model Task 0% 25% 50% 75% 100%
L I Ty e A
Quension e i D 0N 00 0o 00 quasimens G OB N 4
Quern 1 s sy Pion D17 03680003 0% 008 quansrspamnsicmen) 0 G G35 45 G0 4
Quen2 578 (Chinese) Inflecion. 08930957 0951095 0950 Quen2.57B (Chinese) Leveme 0000 0000 0001 0000 0000
Quen2 5 7B Insuct (Chinesey  IMEEtion 0893 09570950 09% 049 Quen2 STttt Chiness) LG G560 G000 Goo 0000 0001
TS Base (Chines) Inflocion 0901 0933 0945 0941 0943 TS Base Chinso) Loeme 00010000 0001 0000 0003

(c) Accuracy (MLP Probes) (d) Selectivity (MLP Probes)
Model Task 0% 25% 50% 75% 100% Model Task 0% 25% 50% 75% 100%
ot o oy i 0918 00 0060 09 Guaconon conon TS G Gh 0 b bR
Quentsish Qe W 0BG 007 008 D950 090 quusimies DR OGS 01 om0 o o
Qe o ey e D 0301 008 0350 0907 queastspmcicmn P 0 O3 O G0
Quen2 578 (Chinese) Inflecion. 08990952 09470955 0946 Quen2.57B (Chines) Leveme 0001 0001 0007 005 0000
Quen2 5B Insuct (Chinese) ISt 0900 09520548 0955 0943 Quen2sTBdmstnuer Chinese)  [UE" 00 G0y o0s 0004 0000
TS Base (Chinese lnflection 0907 0938 0947 0942 048 mT-Base (Chinese Leveme. 0003 0008 003 0006 0011

Table 7: Probing Results for English

(a) Accuracy (Linear Probes) (b) Selectivity (Linear Probes)
Model Task 0% 25% 50% 75% 100% Model Task 0% 25% 50% 75% 100%
el e e e e O P S
st M D100 0 0000 el 0 G 1 b os
o515 gy SR 0510 0997 098 039 094 s s gy IS 8 2470 osu s
Quen2.5.78B (English) o e Do oo by o Quen2.5-7B (English) Teome. 0006 098 0121 0131 00%
2 i Gty VI 0915 097 0364 U031 G ey LSS G 032 052 0 0o
mTS-Base (English) oo Dats ooy 0o oo Oen mTS-Base (English) Toeme. 0003 0003 0047 0053 0063

(c) Accuracy (MLP Probes) (d) Selectivity (MLP Probes)
Model Task 0% 25% 50% 75% 100% Model Task 0% 25% 50% 75% 100%
Goldfish English (English) ~ hecuon 0337 0985 0800 0000 oese Goldiish English (Bnglish) o0 00 GO0 0os oom 0050
Quen2.5-1.5B (English) o B LA Quen2.5-1.5B (English) Loeme. 0015 0085 00% 0101 009
Quen2.5-1.5B-Instruct (Englisn) {700 0938 005 058 0988 Do Quen2 5+ sBtmsnuct (nglish) - [ OO0 0500 057 0o 0087
Quen2. 578 (English) o ols o1e oea1 ooy oo Quen2.5-7B (English) Toeme. 0008 003 0070 0073 0061
Quen25-7B-Instruct (Englishy  [hcetion 0930 0976 0970 0076 0901 Quen2 378 tnsrue Bnglish) et GO0 0T 007 Oosr 0068
TS Base (English) flocon NaN - Na\ - NaN - NaN NaN T Base (English) Lowme 0012 003 0003 00110026
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Table 8: Probing Results for French

(a) Accuracy (Linear Probes)

(b) Selectivity (Linear Probes)

Model Task 0% 25% S50% 5% 100% Model Task 0% 25% 50% 75% 100%
Gotdish French Fene) [ GRS O3 0718 ooes oero  CoMmwehGean N GRS CI0 0T O o
QuenzsLBFrnct U OTE O30 006 oo oan  QuedslsBEmay RN 005 0I5 006 o1 oo
Quen.5-1 5B Instmet Frenc) 0" (R OS5 00 0e0 oenr  QuenSLsBdmwetdenen) [N GO0 090 G0 015 o0
Qwen2.5-7B (French) B 241 0oty oso1 0o6s oam3 Quen2.5-7B (French) Loeme. 0003 0116 013 1% 0112
Qe 575 s ey I 7990969 0962 0961 094 s o ey [ 0220 0373 0313 032 03
TS Base French) O 0% S 0%a mTsBaedrench) Lowme. D006 0037 0033 ook 003

(c) Accuracy (MLP Probes) (d) Selectivity (MLP Probes)
Model Task 0% 25% 50% 75% 100% Model Task 0% 25% 50% 75%  100%
Goldi Fanh Frencty 1Esion 0932 092080 09 0T Gk ) e G0 020 0372 04 ik
Quemsioh oy i 079 0%% 0X5 00 0 quesimewy B 0300 0N O
Q51 S ey i 0T D954 0962 0950 093 e sy 1SS 02 026 011 0410 053
Quen25.7B (French) Inflction. 0791 0571 0571 0968 0943 Quen2 578 (French) Lome 0001 0023 0065 0070 0027
Quen2.5 7B nstruc (Frency  11Sction. 07910968 0969 0965 0939 QuendSTB-Insmet Frenc) [y S G000 008 00 oom 00w
wispecrn) M O 4 on e g ommedsd G G S S i i

Table 9: Probing Results for German

(a) Accuracy (Linear Probes) (b) Selectivity (Linear Probes)
Model Task 0% 25% 50% 75% 100% Model Task 0% 25% 50% 75% 100%
Goldish German (German) [ ORG GRD 007 a7 s o GemnGeman RSN GO0 000 G0 oo 000
Quen2s1B Geman) (S G0 05 077 oev o QuelSIBGeman I GO0 (RS G0 oo oo
Quen2.5-1.5B-Instruct (German) - ["heeion 0745 058 098 09 0o Quen.5-1.5BInstret German) [N 0900 0980 005 0008 0,065
Quen257B (German) Loeme’ 048 052 0811 0761 Oesy  QUen2S7B(Geman Toeme’ 0005 0065 0104 0113 0oRs
Quen2.5-7B-Tnstruct (German) — ecion 0760 000 OO O o Quen T dnstmet German) et G800 030 0105 0T oow
eion 08110962 0958 095 0916 s e G e S o oo 239 0

(c) Accuracy (MLP Probes) (d) Selectivity (MLP Probes)
Model Task 0% 25% 50% 5% 100% Model Task 0% 25% 50% 75% 100%
Goldish German (German) [ 056 GL00 G708 Oesy osi  Goh Gemman German)  PIC GO OO 0081 Ooss 008
Quens-is Geman  plenen O 030 00 035 00 Quemsism@eman [T OUE 005 G0 oo oo
Quen2.5-1.5B-Tnstruct (German) - {mecio 0731 O o300 Quen2 51 5B et (German) 00 (T (R G058 0063 0032
Qwen2.5-7B (German) fi:::" 8:47(7‘(1) 8:323 8:2% 8;322 8j§§§ Qwen2.5-7B (German) }f‘eieecr::g“ 8:535 85:? 813(532 8333 8:332
Quen 5. 7B Insruct Gorman)  lection. 07380962 0.9% 0961 0995 Quend s B nstmer Geman) 0" OOE OO 05 0077 oo
Wleion 0520 0930 0950 09% 09y e o) mesion 0160 035 i3 ps i
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Table 10: Probing Results for Russian

(a) Accuracy (Linear Probes)

(b) Selectivity (Linear Probes)

Model Task 0% 25% 50% 75% 100% Model Task 0% 25% 50% 75% 100%
oo oy W 05 051 O O 0 om0 028 00 00 08
Quen25-1.5B (Rusian) Loeme 0315 089 07% 07 0.398 Quend 5-1.5B (Russian) Loene 0012 019 0187 0302 0193
Quen2.5-15B-nsimct Russian) [ O3 08T 075 07is ogp  Qeen2SsBmwe s (UG (05 G0 0N0 0305 01
Quen2 578 (Russian) Leme 0315 0960 0834 0708 Oeos  Quen2STB (Rusian Lowme 0011 0165 0313 032 013
Quen2 S TB-Instuct Russian) - (L O30 0050 G0 078 oeso  QuendSTBImtmer®usian  [ul G0N G0 G0 032 ot
TS Base (Russian) Leeme 0480 0766 0666 0510 0315 MTSBase (Rusian Leeme 0004 008 0092 009 0092

(c) Accuracy (MLP Probes) (d) Selectivity (MLP Probes)
Model Task 0% 25% 50% 75% 100% Model Task 0% 25% 50% 75% 100%
Goldih Russian (Rusian) (RN (00 (S50 OF% 072 osm  CowmRwimusin PR GO GRS G0 0308 0s0r
st S O O 0T 00 00 g W D Dl 0o 0w gu
Quen2.5-1.5B-Instruct (Russian) [ecuon 088 070 0000 000 e Quen2 3-1.5B-tnstuet (Russian) (L0 50 G0 0T Ol onor
Qs W 0D 0N 0N O 00 ousmuin WSS 0RO 070 g v b2
Quen2.5-7B-Instruct (Russian)  iection 08570576076 0978 093 Quen2 5 TB-tnsmet Russian) ¢TI0 OO0 0 08 0193 0125
TS Base (Russian) Inflcion. 0883 0936 0780974 0971 mT5-Base (Rusian) Loveme. 0016 0016 003 0038 00u2

Table 11: Probing Results for Turkish

(a) Accuracy (Linear Probes) (b) Selectivity (Linear Probes)
Model Task 0% 25% 50% 75% 100% Model Task 0% 25% 50% 75%  100%
Goldfish Turkish (Turkish) ~ (rection 0507 0550 0995 090 oo Goldfish Turkish (Turkish) 0" G0 0008 007 000 014
cemsiman M 00 000N 0 08 uosimaes SN0 0E0 0a)
Quen?.5-1.5B-Instruct (Turkish)  hection 0719 0869 0838 0840 0827 Quen2 5. 5B-Insruct (Turkis) e 05 058 00 G5 Oo0o
Qwen2.5-7B (Turkish) };‘3;‘{;‘;" ggéf g:g% g:ig: g:g;g 8:333 Qwen2.5-7B (Turkish) {ne‘leei\":n 8:(215 %%)%32 8:3(7)5 —00'1)(120 —00"4:)1271
Quen2 578 It Ty Iction. 07180511 0875 0574 083 Quen2.STB-tmswct (Rakis) [y 00" 0018 0300 o0 G017 o0m
TS Base (Turkish) Inflocton 0913 0972 0931 0908 0884 mT-Base (Turkis) Loeme. 0008 0013 0082 0035 0057
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H DATASET STATISTICS

This section provides statistics and visualizations for the datasets and models used in our experi-
ments across all six languages. Only words containing alphabetic characters and apostrophes were
considered.

Language Total Words Unique Lemmas Unique Forms Inflection Types Sentences Avg. Length
English 54,816 7,848 11,720 8 8,415 6.5
Chinese 44,166 11,184 11,237 4 7,892 5.8
German 84,710 24,140 31,890 9 9,234 7.3
French 115,847 13,804 24,485 6 8,765 6.6
Russian 193,320 20,943 59,830 8 10,234 7.1
Turkish 20,881 3,776 11,680 7 6,789 6.4

Table 12: Dataset statistics across all six languages. Russian has the largest dataset and the highest
number of unique forms, reflecting its rich inflectional morphology. Turkish has the fewest total
words and lemmas, while Chinese has the fewest inflection types.

H.1 ENGLISH DATASET DETAILS

For the English GUM corpus specifically, the data covers three main syntactic categories: nouns
(49.5%), verbs (31.2%), and adjectives (19.4%).

Table [T3a]shows the distribution of word categories in the English dataset, and Table [I3b|presents the
distribution of inflection categories.

Inflection Count %
Singular 19830 36.2 .
Category Count % Base 10076  18.4 Metric Value
Positive 9926 18.1 Avg. Words 6.5
Noun 27111 49.5 Plural 7281 133 Median Words 5
Verb 17093 31.2 )
Adicctive 10612 19.4 Past 5604 10.2 Min. Words 1
Jecty : 3rd Person 1413 26 Max. Words 40
: Comparative 403 0.7
(a) Word categories Superlative 283 05 (c) Sentence length stats

(b) Inflection categories

Table 13: Distribution statistics for the English dataset. Table (a) shows syntactic categories, (b)
details inflection types, and (c) provides sentence length heuristics.

H.2 TOKENIZATION STATISTICS

Model Tokenizer Type
BERT Base/Large WordPiece
DeBERTa V3 Large SentencePiece
GPT-2 variants BPE

Pythia variants BPE

OLMo 2 variants BPE (tiktoken)
Gemma 2 variants SentencePiece
Qwen 2.5 variants Byte-level BPE
Llama 3.1 variants BPE (tiktoken)

Table 14: Tokenization strategies used by different model families. BPE means byte-pair encoding.

An important consideration for our analysis is how different models tokenize the words in our
dataset. Table [I5]shows tokenization statistics across the models we analyze. Encoder-only models
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like BERT and DeBERTa tend to split words into more tokens than decoder-only models like GPT-2
and Qwen2, which may affect how information is encoded across layers.

M Avg. tokens  Med. tokens Max tokens  Percent multitoken
odel
per word per word per word

BERT variants 1.11 1.0 6.0 6.95
DeBERTa-v3-large 1.03 1.0 4.0 2.2
GPT-2 variants 1.52 1.0 5.0 42.25
Pythia-6.9B variants 1.48 1.0 5.0 39.1
OLMo2-7B variants 1.43 1.0 4.0 359
Gemma2-2B variants 1.19 1.0 4.0 16.55
Qwen2.5-1.5B variants 1.43 1.0 4.0 35.9
Llama-3.1-8B variants 1.43 1.0 4.0 35.85

Table 15: Tokenization statistics across different models (English only). Most models have an average
of 1.0-1.5 tokens per word and a median of 1, indicating that most words are tokenized as a single
unit. However, there is variation in the proportion of words split into multiple tokens. Decoder-only
models (e.g., , GPT-2, Pythia, Qwen2, LLaMA) split 35-42% of words, while BERT and DeBERTa
variants split fewer words (2-7%). Maximum tokens per word range from 4 to 6 across all models.

H.3 EFFECTS OF TOKENIZATION
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N
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S 103 <><> O BERT-Base
% O BERT-Large
c 0ORF 0 DeBERTa-v3-Large
) g L] O GPT-2-Small
S ** & O GPT-2-Large
2 102 & 0 GPT:2XL
X2 g O Pythia-6.9B
= Ol %o © Pythia-6.9B-Tulu
5 O o O OLMo-2-1124-7B-Instruct
: <> O OLMo-2-1124-7B
o 10! o é 8 O Gemma-2-2B
o
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= O Qwen2.5-1.5B
D/" O Qwen2.5-1.5B-Instruct
O Llama-3-8B
100 O Llama-3-8B-Instruct
100 10! 10? 103 104
Target rank (subtoken sum, no tokenization)
@® king-man+woman->queen B walked-walk+jump->jumped 4@ sang-sing+ring->rang
# man-king+queen->woman % go-went+run->ran * sing-sang+rang->ring

Figure 14: Effect of tokenization strategy on analogy completion rank. Each point corresponds to a
model (color) and analogy (shape). The x-axis is the rank using whole-word representations. The
y-axis is the rank using tokenized representations. Here, rank means the position of the expected
word when all vocabulary words are sorted by similarity to the resulting embedding from vector
arithmetic; lower is better. Points above the gray y=x line mean tokenization hurts performance.

Tokenization is an essential component of language modeling. To test how tokenization influences our
findings, we use analogy completion tasks in English (e.g., man:king::woman:?) and compare two
approaches: averaging subtoken embeddings after standard tokenization and summing embeddings
from whole-word tokens.

For each approach, we perform vector arithmetic on word representations (e.g., king - man + woman).
We measure performance by ranking all vocabulary words by cosine similarity to the resulting
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representation, and observe how highly the expected word (e.g., queen) ranks, with a lower rank
indicating better performance.

Whole-word representations markedly outperform averaged subtokens across all models (Figure [T4)),
implying that linguistic regularities are primarily stored in whole-word embeddings rather than
compositionally across subtokens. Despite tokenization effects, our classifier results show consistent
patterns across models using different tokenizers (see Table [T4), indicating robust encoding of lexical
and morphological information.

Model HuggingFace ID

BERT-Base bert-base-uncased

BERT-Large bert-large-uncased

DeBERTa-v3-Large microsoft/deberta-v3-large

mT5-base google/mt5-base

GPT-2-Small openai-community/gpt2

GPT-2-Large openai-community/gpt2-large

GPT-2-XL openai-community/gpt2-x1

Pythia-6.9B EleutherAI/pythia-6.9b

Pythia-6.9B-Tulu allenai/open-instruct-pythia-6.9b-tulu
OLMo-2-1124-7B allenai/OLMo-2-1124-7B
OLMo-2-1124-7B-Instruct allenai/OLMo-2-1124-7B-Instruct
Gemma-2-2B google/gemma-2-2b

Gemma-2-2B-Instruct google/gemma-2-2b-it

Qwen2.5-1.5B Qwen/Qwen2.5-1.5B

Qwen2.5-1.5B-Instruct Qwen/Qwen2.5-1.5B-Instruct

Qwen2.5-7B Qwen/Qwen2.5-7B

Qwen2.5-7B-Instruct Qwen/Qwen2.5-7B-Instruct

Llama-3.1-8B meta-llama/Llama-3.1-8B
Llama-3.1-8B-Instruct meta-llama/Llama-3.1-8B-Instruct
Goldfish English goldfish-models/goldfish_eng_latn_1000mb
Goldfish Chinese goldfish-models/goldfish_zho_hans_1000mb
Goldfish German goldfish-models/goldfish_deu_latn_1000mb
Goldfish French goldfish-models/goldfish_fra_latn_1000mb
Goldfish Russian goldfish-models/goldfish_rus_cyrl_1000mb
Goldfish Turkish goldfish-models/goldfish_tur_latn_1000mb

Table 16: Canonical HuggingFace model IDs used to load models in our study.

I ADDITIONAL ANALYSIS

I.1 INTRINSIC DIMENSIONALITY RESULTS

Intrinsic dimensionality analyses are shown in Figure[I5]and Table[I7] These illustrate how compres-
sion varies across layers and between models.

Model Ainodel Dso ID7o IDgo

First Mid Final First Mid Final First Mid Final
BERT-Base 768 123 100 88 244 212 192 461 451 446
BERT-Large 1024 138 105 85 286 226 208 567 527 554
DeBERTa-v3-Large 1024 196 133 29 377 299 113 688 635 423
GPT-2-Small 768 37 1 1 152 1 1 402 1 3
GPT-2-Large 1280 24 1 95 172 1 284 583 1 726
GPT-2-XL 1600 113 1 118 340 1 356 838 1 914
Pythia-6.9B 4096 391 1 96 865 1 517 1952 1 1925
Pythia-6.9B-Tulu 4096 390 1 244 862 1 832 1949 1 2292
OLMo-2-7B 4096 404 310 41 833 896 299 1772 2279 1550
OLMo-2-7B-Instruct 4096 404 358 111 833 974 567 1772 2361 1964
Gemma-2-2B 2304 216 8 11 505 130 70 1129 794 611
Gemma-2-2B-Instruct 2304 222 22 8 520 198 57 1153 899 572
Qwen-2.5-1.5B 1536 184 1 9 399 1 50 835 1 452
Qwen-2.5-1.5B-Instruct 1536 184 1 11 394 1 70 820 1 533
Llama-3.1-8B 4096 373 240 35 789 727 187 1722 2051 1119
Llama-3.1-8B-Instruct 4096 372 215 31 788 664 181 1722 1957 1093

Table 17: Number of principal-component axes required to reach 50% (ID5g), 70% (ID7() and 90%
(IDgp) explained variance in the first, middle and last layers of each model.
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Figure 15: Intrinsic dimensionality curves for all models for English. Each subplot shows the
relationship between the percentage of maximum PCA components (x-axis) and the percentage of
explained variance (y-axis) across different layers. The color gradient from purple (early layers,
0%) to yellow (late layers, 100%) indicates the relative layer depth within each model. Models
like BERT, Gemma, and L1ama show similar compression patterns, while GPT-2 variants, Qwen and
Pythia exhibit opposite trends in their middle layers.

36



1.2 MASSIVE ACTIVATIONS AND OUTLIER DIMENSIONS

We computed the maximum absolute activation, maximum mean (absolute value) per dimension, and
maximum standard deviation per dimension across all layers for representative models to understand
the low intrinsic dimensionality observed in Table Table[I7]

Figures Figures [I6H22] show the results. Models like Qwen2.5-1.5B and GPT-2 variants show large
maximum activation values. For example, Qwen2.5-1.5B reaches maximum absolute activations
around 8000, while models like L1ama-3-8B and OLMo-1124-7B show gradual increases across
layers, with maximum values only reaching 30-40 in final layers.

This corresponds with the intrinsic dimensionality measurements in Table Table[I7] Models with
large activations in middle layers correspond to those requiring only 1-2 components to reach 50-90%
explained variance at those depths. Models with gradual activation increases correspond to those
requiring hundreds of components at all depths. The presence of outlier dimensions with large
activations makes the representation anisotropic, with variance concentrated along a small number of
directions.

GPT-2-Small GPT-2-Small GPT-2-Small
Max Absolute Activation Max Mean (Abs) per Dim Max Std per Dim
3000 600
o 200
=}
5 2000 400
>
<>é 1000 100 200
=
0 0 0
0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
Layer Layer Layer

Figure 16: Activation statistics across layers for GPT-2-Small.
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Figure 17: Activation statistics across layers for Qwen2.5-1.5B.
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Figure 18: Activation statistics across layers for Pythia-6.9B.
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Figure 19: Activation statistics across layers for Llama-3-8B.
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Figure 20: Activation statistics across layers for Llama-3-8B-Instruct.
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Figure 21: Activation statistics across layers for 0OLMo-2-1124-7B.
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Figure 22: Activation statistics across layers for 0OLMo-2-1124-7B-Instruct.
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1.3 LINEAR SEPARABILITY GAP

Figures [23]and [24] show the linear separability gap for lemma and inflection prediction across models
and layers.

Linear Separability Gap
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Figure 23: Performance advantage of MLP classifiers over linear classifiers (in percentage points)
across model layers for English. The linear separability gap measures how much a non-linear
transformation improves classifier performance compared to a simple linear mapping. For inflection
prediction, the gap is consistently minimal (mostly within +0.02 percentage points) and sometimes
negative, indicating that inflectional features are primarily encoded in a linear fashion throughout the
network. By contrast, the linear separability gap for lemma prediction is relatively large (0.1-0.3
percentage points) and positive across most models
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Cross-Linguistic Linear Separability Gap
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Figure 24: Cross-linguistic linear separability gap showing performance advantage of MLP classifiers
over linear classifiers across model layers for five additional languages. For inflectional features,
mT5 and Goldfish models show slight positive gaps (indicating modest benefits from non-linear
classification), while Qwen2.5 variants show slight negative gaps (indicating linear classifiers are
sufficient or superior). For lexical features, all models show negative gaps that are most pronounced
in early layers, suggesting that linear regression with regularization consistently outperforms MLPs
for lexical classification across all model families and languages.



1.4 TRAINING DYNAMICS

See Figures 23] and [26] for probing accuracy and selectivity across pretraining checkpoints for
OLMo-2-7B and Pythia-6.9B.
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Figure 25: OLMo-2-7B Training Dynamics. Performance across pretraining checkpoints (5k—734k
steps) for English. The full model is 928k steps. Checkpoints are colored from brightest (earliest)
to darkest (latest). Left: Prediction accuracy for Lemma (top) and Inflection (bottom). Early
checkpoints exhibit higher lemma accuracy than later ones, while inflectional accuracy remains flat.
Right: Selectivity scores for the same tasks. Selectivity generally increases with model depth and
training steps, particularly for inflection.
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Figure 26: Pythia-6.9B Training Dynamics. Performance across pretraining checkpoints (step
1-111k) for English. The full model is 143k steps. Checkpoints are colored from brightest (earliest)
to darkest (latest). Left: Prediction accuracy for Lemma (top) and Inflection (bottom). Lemma
accuracy declines both with deeper layers and with more training, whereas inflectional accuracy stays
uniformly high. Right: Selectivity scores for the same tasks, showing distinct separation between
early and late checkpoints in the inflection task.



J ATTENTION HEAD ANALYSIS

We conducted additional experiments analyzing attention head outputs alongside residual stream
representations to understand how different components of transformer models contribute to linguistic
encoding.

J.1 METHODOLOGY
We averaged activations across all attention heads at each layer for Qwen2.5-1.5B and
Qwen2.5-1.5B-Instruct models using the English dataset. We then trained linear regression

and MLP classifiers on both attention head outputs and residual stream representations to compare
their encoding patterns.

J.2  RESULTS
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Figure 27: Combined analysis of linguistic task accuracy (left two columns) and classifier selectivity
(right two columns) for attention head outputs (solid lines) versus residual stream representations
(dashed lines) across BERT and GPT-2 model families. The top row corresponds to Lemma tasks,
and the bottom row to Inflection tasks.
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Figure 28: Combined analysis of linguistic task accuracy (left two columns) and classifier selectivity
(right two columns) for attention head outputs (solid lines) versus residual stream representations
(dashed lines) across contemporary model families. The top row corresponds to Lemma tasks, and
the bottom row to Inflection tasks.
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K STEERING VECTOR ANALYSIS

We conducted steering vector experiments to test whether inflectional representations can be func-
tionally manipulated and to understand model sensitivity to activation interventions.

K.1 METHODOLOGY

For each inflectional category, we computed steering vectors as:

1
Si:,ufi_A'ﬁ Z e N
€1 - JEC j#i

We tested multiple values of A (1, 5, 10, 20, 100) and measured the impact on MLP classifier
performance when adding these steering vectors to existing activations for 1000 test words. We
evaluated both mean probability change and prediction flip rate across all models.

K.2 RESULTS
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Figure 29: Mean probability change for inflection prediction when applying steering vectors across
different \ values. Five panels show results for A € {1,5,10,20,100}. All models start with high
effectiveness (=0.9-1.0) at layer 0. Most models maintain stable performance, but Qwen2.5 variants
show pronounced sensitivity dips around 10% layer depth before recovering. Higher A values increase
steering effectiveness while preserving the overall pattern.
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Figure 30: Prediction flip rate when applying steering vectors across different A values. The flip rate
patterns mirror the probability change results, with most models maintaining high rates (0.98-1.00)
throughout all layers. Qwen2.5 variants show characteristic V-shaped dips to ~0.60-0.70 around 10%
layer depth. The consistency across A values suggests that steering effectiveness depends more on
model architecture than intervention strength.
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L CLASSIFIER ERROR ANALYSIS

We conducted a detailed error analysis of our classifiers to better understand their performance across
different morphological features and languages. See Table [I8]through Table [36|for the full results.

Model 3rd person  Base = Comparative  Past Plural Positive ~ Singular Superlative
(n=249) (n=1,833) (n=76) (n=1,003) (n=1,247) (n=1,785) (n=3,587) (n=52)
BERT-Base 0.960 0.965 0.817 0.967 0.983 0.946 0.971 0.759
BERT-Large 0.956 0.964 0.861 0.968 0.982 0.950 0.971 0.768
DeBERTa-v3-Large 0.938 0.974 0.831 0.961 0.986 0.954 0.977 0.706
GPT-2-Small 0.828 0.958 0.840 0.956 0.974 0.941 0.964 0.754
GPT-2-Large 0.812 0.958 0.826 0.951 0.975 0.936 0.967 0.792
GPT-2-XL 0.817 0.959 0.813 0.948 0.977 0.940 0.968 0.788
Pythia-6.9B 0.886 0.972 0.904 0.964 0.989 0.957 0.977 0.907
Pythia-6.9B-Tulu 0.899 0.973 0.909 0.967 0.989 0.956 0.976 0.910
OLMo-2-1124-7B 0.938 0.968 0.902 0.972 0.981 0.923 0.966 0.888
OLMo-2-1124-7B-Instruct  0.927 0.967 0.896 0.971 0.981 0.923 0.965 0.872
Gemma-2-2B 0.901 0.968 0.797 0.969 0.986 0.947 0.974 0.833
Gemma-2-2B-Instruct 0913 0.966 0.863 0.973 0.988 0.938 0.972 0.872
Qwen2.5-1.5B 0.856 0.950 0.802 0.942 0.972 0.919 0.957 0.688
Qwen2.5-1.5B-Instruct 0.774 0.954 0.647 0.945 0.972 0.921 0.965 0.630

Table 18: Breakdown of inflection classification accuracy by morphological feature for each model
using linear regression classifiers (English). Inflections are grouped by their morphological features
(e.g., Past, Plural, Comparative). For each group, the reported accuracy is the average of accuracies
from classifiers trained at each model layer. All accuracy values are on a 01 scale. Comparative and
superlative forms consistently show the lowest accuracy across all models, reflecting the challenges
of these less frequent morphological categories.

Model 3rd person  Base = Comparative Past Plural Positive ~ Singular  Superlative
(n=249) (n=1,833) (n=76) (n=1,003) (n=1,247) (n=1,785) (n=3,587) (n=52)
BERT-Base 0.973 0.969 0.910 0.972 0.989 0.959 0.974 0.939
BERT-Large 0.967 0.970 0.910 0.973 0.988 0.961 0.975 0.931
DeBERTa-v3-Large 0.954 0.976 0.925 0.966 0.989 0.962 0.979 0.867
GPT-2-Small 0.921 0.963 0.928 0.952 0.972 0.930 0.963 0.870
GPT-2-Large 0.857 0.962 0.872 0.955 0.976 0.942 0.967 0.854
GPT-2-XL 0.921 0.963 0.928 0.952 0.972 0.930 0.963 0.870
Pythia-6.9B 0.932 0.972 0.921 0.961 0.982 0.949 0.971 0.886
Pythia-6.9B-Tulu 0.948 0.974 0.932 0.964 0.983 0.949 0.971 0.897
OLMo-2-1124-7B 0.957 0.968 0.926 0.966 0.989 0.949 0.973 0.905
OLMo-2-1124-7B-Instruct  0.939 0.967 0.903 0.967 0.988 0.949 0.973 0.873
Gemma-2-2B 0.913 0.967 0.863 0.968 0.990 0.950 0.976 0.907
Gemma-2-2B-Instruct 0.930 0.970 0.878 0.975 0.989 0.946 0.974 0.906
Qwen2.5-1.5B 0.882 0.948 0.822 0.943 0.974 0.927 0.957 0.736
Qwen2.5-1.5B-Instruct 0.808 0.953 0.697 0.947 0.974 0.930 0.965 0.682

Table 19: Breakdown of inflection classification accuracy by morphological feature for each model
using Multi-Layer Perceptron (MLP) classifiers (English). Inflections are grouped by their morpho-
logical features (e.g., Past, Plural, Comparative). For each group, the reported accuracy is the average
of accuracies from classifiers trained at each model layer. All accuracy values are on a 01 scale.
MLP classifiers provide modest improvements over linear regression, particularly for comparative
and superlative forms, though the relative ordering across morphological features remains consistent.
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Noun Verb  Adjective Adverb Pronoun Preposition Conjunction Interjection Other

Model

(n=1,739) (n=641) (n=641) (n=23) (n=1) (n=1) (n=1) (n=1) (n=9)
BERT-Base 0.636 0.737 0.609 0.805 0.292 0.000 0.585 0.000 0.902
BERT-Large 0.684 0.777 0.653 0.826  0.580 0.154 0.662 0.065 0.897
DeBERTa-v3-Large 0.592 0.737 0.585 0.723  0.440 0.077 0.438 0.081 0.866
GPT-2-Small 0.631 0.789 0.612 0.813  0.542 0.000 0.415 0.033 0.896
GPT-2-Large 0.691 0.810 0.688 0.847  0.853 0.174 0.267 0.115 0.912
GPT-2-XL 0.713 0.827 0.708 0.847 0.724 0.222 0.311 0.241 0.899
Pythia-6.9B 0.856 0.926 0.836 0926 0.938 0.443 0.566 0.488 0.934
Pythia-6.9B-Tulu 0.864 0.930 0.843 0930 0.923 0.514 0.651 0.476 0.936
OLMo-2-1124-7B 0.798 0.875 0.794 0913  0.697 0.339 0.363 0.495 0.913
OLMo-2-1124-7B-Instruct 0.798 0.868 0.792 0.902  0.606 0.339 0.331 0.495 0.910
Gemma-2-2B 0.757 0.869 0.736 0.876  0.667 0.179 0.205 0.288 0.891
Gemma-2-2B-Instruct 0.749 0.844 0.742 0.872  0.620 0.137 0.152 0.247 0.912
Qwen2.5-1.5B 0.652 0.801 0.650 0.828  0.526 0.082 0.223 0.068 0.867
Qwen2.5-1.5B-Instruct 0.642 0.800 0.632 0.831 0.544 0.082 0.245 0.068 0.877
Llama-3.1-8B 0.776 0.882 0.771 0.887  0.831 0.286 0.396 0.321 0.911
Llama-3.1-8B-Instruct 0.796 0.892 0.788 0.896  0.908 0.300 0.443 0.357 0.917

Table 20: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model
using linear regression classifiers (English). Lemmas are grouped by their POS tags (e.g., Noun,
Verb, Adjective). For each group, the reported accuracy is the average of accuracies from classifiers
trained at each model layer. All accuracy values are on a 0—1 scale. Performance varies significantly
with frequency: frequent categories like nouns and verbs achieve higher accuracy, while infrequent
categories like pronouns and prepositions show lower performance due to limited training examples.

Model Noun Verb  Adjective Adverb Pronoun Preposition Conjunction Interjection Other

(n=1,739) (n=641) (n=641) (n=23) (n=1) (n=1) (n=1) (n=1) (n=9)
BERT-Base 0.775 0.831 0.748 0.873  0.458 0.125 0.756 0.267 0.898
BERT-Large 0.813 0.863 0.785 0.884  0.540 0.231 0.725 0.323 0.897
DeBERTa-v3-Large 0.689 0.803 0.682 0.802  0.700 0.115 0.662 0.242 0.861
GPT-2-Small 0.678 0.792 0.665 0.765  0.042 0.000 0.610 0.000 0.830
GPT-2-Large 0.754 0.837 0.755 0.827 0.347 0.188 0.596 0.385 0.871
GPT-2-XL 0.774 0.844 0.771 0.827  0.561 0.232 0.561 0.431 0.860
Pythia-6.9B 0.774 0.856 0.768 0.862  0.554 0.229 0.528 0.310 0.868
Pythia-6.9B-Tulu 0.818 0.880 0.803 0.887  0.554 0.343 0.613 0.381 0.889
OLMo-2-1124-7B 0.818 0.877 0.828 0.896  0.727 0.290 0.734 0.505 0.885
OLMo-2-1124-7B-Instruct 0.822 0.874 0.829 0.897  0.667 0.306 0.750 0.473 0.886
Gemma-2-2B 0.763 0.860 0.763 0.881 0.574 0.125 0.443 0.182 0.880
Gemma-2-2B-Instruct 0.777 0.846 0.785 0.882  0.580 0.137 0.400 0.299 0.875
Qwen2.5-1.5B 0.747 0.838 0.742 0.811  0.228 0.131 0.628 0.164 0.857
Qwen2.5-1.5B-Instruct 0.749 0.840 0.738 0.818 0.211 0.098 0.564 0.123 0.860
Llama-3.1-8B 0.798 0.879 0.807 0.886  0.800 0.214 0.679 0.393 0.882
Llama-3.1-8B-Instruct 0.824 0.893 0.826 0.895  0.831 0.257 0.689 0.429 0.887

Table 21: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model using
Multi-Layer Perceptron (MLP) classifiers (English). Lemmas are grouped by their POS tags (e.g.,
Noun, Verb, Adjective). For each group, the reported accuracy is the average of accuracies from
classifiers trained at each model layer. All accuracy values are on a 0—1 scale. MLP classifiers provide
consistent improvements over linear regression across all POS categories, though the frequency-
dependent performance patterns persist.
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Linear Regression MLP

Model Positive ~ Base  Plural Singular Positive  Base  Plural Singular
(n=300) (n=2,074) (n=3) (n=3,947) (n=300) (n=2,074) (n=3) (n=3,947)
mT5-Base 0.739 0913 0436  0.962 0.783 0919 0.231 0.961
Qwen2.5-1.5B 0.785 0929  0.034  0.969 0.801 0924  0.092 0.967
Qwen2.5-1.5B-Instruct  0.779 0925 0.034 0.964 0.803 0923  0.057 0.967
Qwen2.5-7B 0.824 0937 0310 0.970 0.828 0929 0310 0.969
Qwen2.5-7B-Instruct 0.819 0936 0299 0.970 0.823 0928 0276  0.969
Goldfish Chinese 0.793 0912  0.000 0.958 0.816 0915 0.000 0.957

Table 22: Breakdown of inflection classification accuracy for each model by inflection type using
Linear Regression and Multi-Layer Perceptron (MLP) classifiers (Chinese). Accuracies are calcu-
lated over all examples for a given group across all layers. Counts (n) are derived from a single
representative layer for each group. All accuracy values are on a 0—1 scale.

Noun Verb  Adjective Adverb Preposition Other

Model

(n=1,179) (n=564) (n=108) (n=22) (n=20) (n=50)
mT5-Base 0.838 0.828 0.786 0.762 0.920 0.726
Qwen2.5-1.5B 0.810 0.797 0.746 0.715 0.872 0.699
Qwen2.5-1.5B-Instruct ~ 0.813 0.799 0.748 0.713 0.873 0.700
Qwen2.5-7B 0.887 0.882 0.846 0.847 0.915 0.817
Qwen2.5-7B-Instruct 0.886 0.877 0.843 0.835 0.913 0.811
Goldfish Chinese 0.883 0.878 0.845 0.875 0.954 0.858

Table 23: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model,
using Linear Regression classifiers (Chinese). Lemmas are grouped by their POS tags (e.g., , Noun,
Verb, Adjective). Accuracies are calculated over all examples for a given group across all layers.
Counts (n) are derived from a single representative layer for each group. All accuracy values are on a
0-1 scale.

Noun Verb  Adjective Adverb Preposition Other

Model

(n=1,179) (n=564) (n=108) (n=22) (n=20) (n=50)
mT5-Base 0.698 0.712 0.564 0.571 0.884 0.569
Qwen2.5-1.5B 0.748 0.761 0.658 0.668 0.826 0.669
Qwen2.5-1.5B-Instruct ~ 0.735 0.745 0.643 0.643 0.814 0.655
Qwen2.5-7B 0.815 0.826 0.749 0.745 0.848 0.750
Qwen2.5-7B-Instruct 0.815 0.822 0.747 0.734 0.845 0.744
Goldfish Chinese 0.766 0.771 0.647 0.621 0.912 0.682

Table 24: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model,
using Multi-Layer Perceptron (MLP) classifiers (Chinese). Lemmas are grouped by their POS tags
(e.g., , Noun, Verb, Adjective). Accuracies are calculated over all examples for a given group across
all layers. Counts (n) are derived from a single representative layer for each group. All accuracy
values are on a 0—1 scale.
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Base 3rd person Positive Past Plural  Superlative Singular Comparative

Model

m=417) (m=517) (n=1,720) (n=839) (n=1,076) (n=52) (n=3,197) (n=141)
mT5-Base 0.908 0.941 0.940 0.960 0.882 0.572 0.962 0.636
Qwen2.5-1.5B 0.849 0.889 0.922 0914 0.888 0.657 0.953 0.796
Qwen2.5-1.5B-Instruct  0.844 0.887 0.922 0.910 0.889 0.659 0.952 0.795
Qwen2.5-7B 0.892 0.922 0.939 0.947 0.909 0.826 0.962 0.878
Qwen2.5-7B-Instruct 0.915 0.934 0.945 0.962 0.924 0.866 0.968 0.909
Goldfish German 0.938 0.941 0.955 0.979 0.916 0.542 0.968 0.708

Table 25: Breakdown of inflection classification accuracy for each model by inflection type using
Linear Regression classifiers (German). Accuracies are calculated over all examples for a given
group across all layers. Counts (n) are derived from a single representative layer for each group. All
accuracy values are on a 0—1 scale.

Model Base 3rd person Positive Past Plural ~ Superlative Singular Comparative
m=417) (0=517) (n=1,720) (n=839) (n=1,076) (n=52) (n=3,197) (n=141)
mT5-Base 0.921 0.945 0.948 0.959 0.884 0.723 0.967 0.770
Qwen2.5-1.5B 0.890 0.915 0.930 0.940 0.897 0.831 0.958 0.892
Qwen2.5-1.5B-Instruct  0.888 0914 0.930 0.938 0.898 0.825 0.957 0.897
Qwen2.5-7B 0.912 0.932 0.944 0.956 0.913 0.868 0.964 0.924
Qwen2.5-7B-Instruct 0.925 0.941 0.950 0.966 0.928 0.901 0.970 0.936
Goldfish German 0.947 0.957 0.964 0.978 0.923 0.817 0.970 0.896

Table 26: Breakdown of inflection classification accuracy for each model by inflection type using
Multi-Layer Perceptron (MLP) classifiers (German). Accuracies are calculated over all examples for
a given group across all layers. Counts (n) are derived from a single representative layer for each
group. All accuracy values are on a 0—1 scale.

Linear Regression MLP

Model L L
Noun Verb  Adjective Other  Noun Verb  Adjective Other
(n=1,262) (n=395) (n=406) (n=12) (n=1,262) (n=395) (n=406) (n=12)
mT5-Base 0.685 0.662 0.568  0.750  0.611 0.602 0.486  0.723
Qwen2.5-1.5B 0.743 0.725 0715  0.775  0.721 0.700 0.687  0.711
Qwen2.5-1.5B-Instruct  0.740 0.722 0715 0.766  0.722 0.698 0.687  0.704
Qwen2.5-7B 0.821 0.809 0.808  0.829  0.795 0.786 0.783  0.814
Qwen2.5-7B-Instruct 0.815 0.803 0.803  0.821  0.795 0.785 0.782  0.813
Goldfish German 0.720 0.747 0.701  0.769  0.758 0.772 0.742  0.769

Table 27: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model, using
Linear Regression and Multi-Layer Perceptron (MLP) classifiers (German). Lemmas are grouped
by their POS tags (e.g., , Noun, Verb, Adjective). Accuracies are calculated over all examples for
a given group across all layers. Counts (n) are derived from a single representative layer for each
group. All accuracy values are on a 0-1 scale.
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Base 3rd person Positive Past Plural  Singular

Model
(n=688) (n=776) (n=1,833) (n=857) (n=1,457) (n=5,169)

mT5-Base 0.934 0.912 0.879 0.908 0.954 0.970
Qwen2.5-1.5B 0.933 0.858 0.896 0.903 0.958 0.967
Qwen2.5-1.5B-Instruct  0.930 0.852 0.893 0.898 0.958 0.966
Qwen2.5-7B 0.955 0.918 0918 0.931 0.965 0.975
Qwen2.5-7B-Instruct 0.951 0.913 0.915 0.928 0.964 0.974
Goldfish French 0.942 0.955 0.937 0.930 0.968 0.976

Table 28: Breakdown of inflection classification accuracy for each model by inflection type using
Linear Regression classifiers (French). Accuracies are calculated over all examples for a given group
across all layers. Counts (n) are derived from a single representative layer for each group. All
accuracy values are on a 0—1 scale.

Model Base  3rd person Positive Past Plural Singular
(n=688) (n=776) (n=1,833) (n=857) (n=1,457) (n=5,169)
mT5-Base 0.957 0.937 0911 0.935 0.957 0.977
Qwen2.5-1.5B 0.954 0.905 0914 0.925 0.965 0.968
Qwen2.5-1.5B-Instruct  0.954 0.902 0.911 0.924 0.965 0.968
Qwen2.5-7B 0.966 0.936 0.930 0.937 0.970 0.976
Qwen2.5-7B-Instruct 0.962 0.931 0.926 0.934 0.970 0.975
Goldfish French 0.974 0.967 0.945 0.942 0.973 0.979

Table 29: Breakdown of inflection classification accuracy for each model by inflection type using
Multi-Layer Perceptron (MLP) classifiers (French). Accuracies are calculated over all examples for
a given group across all layers. Counts (n) are derived from a single representative layer for each
group. All accuracy values are on a 0—1 scale.

Linear Regression MLP

Model L L
Noun Verb  Adjective Other  Noun Verb  Adjective Other
(n=1,496) (n=406) (n=358) (n=15) (n=1,496) (n=406) (n=358) (n=15)
mT5-Base 0.708 0.577 0.605 0.799  0.755 0.560 0.636  0.820
Qwen2.5-1.5B 0.754 0.725 0.673  0.824  0.807 0.765 0.751  0.853
Qwen2.5-1.5B-Instruct ~ 0.750 0.718 0.671  0.820 0.824 0.776 0.768  0.869
Qwen2.5-7B 0.840 0.814 0.764  0.869  0.856 0.825 0.794  0.884
Qwen2.5-7B-Instruct 0.833 0.805 0.758  0.860  0.851 0.818 0.792  0.883
Goldfish French 0.749 0.758 0.661  0.811  0.894 0.869 0.813  0.888

Table 30: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model, using
Linear Regression and Multi-Layer Perceptron (MLP) classifiers (French). Lemmas are grouped by
their POS tags (e.g., , Noun, Verb, Adjective). Accuracies are calculated over all examples for a given
group across all layers. Counts (n) are derived from a single representative layer for each group. All
accuracy values are on a 0—1 scale.
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Base 3rd person Positive Past Plural  Superlative Singular Comparative

Model

n=690) (n=456) (n=1,192) (n=455) (n=1,333) (n=3) (n=3,316) (n=23)
mT5-Base 0.930 0.978 0.975 0.957 0.877 0.000 0.977 0.799
Qwen2.5-1.5B 0.925 0.946 0.974 0.938 0.923 0.015 0.966 0.835
Qwen2.5-1.5B-Instruct  0.924 0.943 0.974 0.934 0.921 0.015 0.966 0.817
Qwen2.5-7B 0.949 0.966 0.979 0.958 0.948 0.094 0.977 0.872
Qwen2.5-7B-Instruct 0.951 0.974 0.980 0.970 0.948 0.080 0.980 0.918
Goldfish Russian 0.940 0.950 0.976 0.931 0.921 0.000 0.976 0.867

Table 31: Breakdown of inflection classification accuracy for each model by inflection type using
Linear Regression classifiers (Russian). Accuracies are calculated over all examples for a given
group across all layers. Counts (n) are derived from a single representative layer for each group. All
accuracy values are on a 0—1 scale.

Model Base 3rd person Positive Past Plural ~ Superlative Singular Comparative
(n=690) (n=456) (n=1,192) (n=455) (n=1,333) (n=3) (n=3,316) (n=23)
mT5-Base 0.959 0.978 0.969 0.966 0.904 0.000 0.978 0.849
Qwen2.5-1.5B 0.952 0.955 0.972 0.948 0.933 0.089 0.970 0.899
Qwen2.5-1.5B-Instruct  0.950 0.954 0.973 0.947 0.933 0.089 0.969 0.911
Qwen2.5-7B 0.963 0.964 0.978 0.960 0.951 0.246 0.979 0.910
Qwen2.5-7B-Instruct 0.961 0.970 0.978 0.966 0.949 0.126 0.980 0.924
Goldfish Russian 0.965 0.972 0.978 0.948 0.943 0.000 0.977 0.934

Table 32: Breakdown of inflection classification accuracy for each model by inflection type using
Multi-Layer Perceptron (MLP) classifiers (Russian). Accuracies are calculated over all examples for
a given group across all layers. Counts (n) are derived from a single representative layer for each
group. All accuracy values are on a 0—1 scale.

Linear Regression MLP

Model L L

Noun Verb  Adjective Other Noun Verb  Adjective Other

(n=982) (n=333) (n=275) (n=4) (n=982) (n=333) (n=275) (n=4)
mT5-Base 0.660 0.614 0.542 0.648 0492 0.484 0.387  0.426
Qwen2.5-1.5B 0777  0.712 0.759 0720 0.712  0.696 0.716  0.647
Qwen2.5-1.5B-Instruct  0.772  0.704 0.756  0.720 0.710  0.689 0.717  0.643
Qwen2.5-7B 0.854  0.790 0.843 0.812 0.798 0.794 0.813  0.749
Qwen?2.5-7B-Instruct 0.845  0.778 0.835 0.807 0.794 0.785 0.809 0.744
Goldfish Russian 0.795  0.723 0.764 0.676 0.810 0.776 0.759  0.657

Table 33: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model, using
Linear Regression and Multi-Layer Perceptron (MLP) classifiers (Russian). Lemmas are grouped
by their POS tags (e.g., , Noun, Verb, Adjective). Accuracies are calculated over all examples for
a given group across all layers. Counts (n) are derived from a single representative layer for each
group. All accuracy values are on a 0-1 scale.

50



Model Base 3rd person Positive  Past  Plural Singular
(n=154) (n=51) (n=401) (n=168) (n=33) (n=632)

mT5-Base 0.860 0911 0928 0966 0.837 0.952
Qwen2.5-1.5B 0.808 0.802 0.721 0928 0.861 0.892
Qwen2.5-1.5B-Instruct  0.809 0.817 0.720 0941 0.878 0.899
Qwen2.5-7B 0.865 0.879 0.810 0966 0.903 0.909
Qwen2.5-7B-Instruct 0.850 0.874 0.796 0960 0.886 0.900
Goldfish Turkish 0.847 0.915 0.880 0964 0.872 0.963

Table 34: Breakdown of inflection classification accuracy for each model by inflection type using
Linear Regression classifiers (Turkish). Accuracies are calculated over all examples for a given
group across all layers. Counts (n) are derived from a single representative layer for each group. All
accuracy values are on a 0—1 scale.

Model Base 3rd person Positive  Past  Plural Singular
(n=154) (n=51) (n=401) (n=168) (n=33) (n=632)
mT5-Base 0.755 0.760 0.848 0922 0515 0.949
Qwen2.5-1.5B 0.770 0.767 0.667 0919 0.765 0914
Qwen2.5-1.5B-Instruct  0.762 0.757 0.662 0917 0.766 0913
Qwen2.5-7B 0.853 0.845 0.791 0956 0.875 0.937
Qwen2.5-7B-Instruct 0.845 0.844 0.786 0956 0.875 0.932
Goldfish Turkish 0.832 0.879 0.870 0957 0.834 0.957

Table 35: Breakdown of inflection classification accuracy for each model by inflection type using
Multi-Layer Perceptron (MLP) classifiers (Turkish). Accuracies are calculated over all examples for
a given group across all layers. Counts (n) are derived from a single representative layer for each
group. All accuracy values are on a 0—1 scale.

Linear Regression MLP

Model L L

Noun  Verb Adjective Other Noun  Verb Adjective Other

(n=221) (n=53) (n=104) (n=13) (n=221) (n=53) (n=104) (n=13)
mT5-Base 0.866 0.823 0921 0955 0.215 0421 0374  0.637
Qwen2.5-1.5B 0.834 0.805 0.866 0.877 0307 0.439 0449  0.693
Qwen2.5-1.5B-Instruct  0.816  0.791 0.860 0.874 0305 0439 0448  0.691
Qwen2.5-7B 0.871 0.850 0900 0904 0595 0.625 0.695 0.809
Qwen2.5-7B-Instruct 0.850 0.823 0.883 0.885 0.579 0.613 0.678  0.800
Goldfish Turkish 0929 0904 0940 0969 0386 0550 0477  0.808

Table 36: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model, using
Linear Regression and Multi-Layer Perceptron (MLP) classifiers (Turkish). Lemmas are grouped
by their POS tags (e.g., , Noun, Verb, Adjective). Accuracies are calculated over all examples for
a given group across all layers. Counts (n) are derived from a single representative layer for each
group. All accuracy values are on a 0-1 scale.
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