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ABSTRACT

Large transformer-based language models dominate modern NLP, yet our under-
standing of how they encode linguistic information relies primarily on studies of
early models like BERT and GPT-2. Building on prior BERTology work, we analyze
25 models spanning classical architectures (BERT, DeBERTa, GPT-2) to modern
large language models (Pythia, OLMo-2, Gemma-2, Qwen2.5, Llama-3.1), prob-
ing layer-by-layer representations across eight linguistic tasks in English. Consis-
tent with earlier findings, we find that hierarchical organization persists in modern
models: early layers capture syntax, middle layers handle semantics and entity-
level information, and later layers encode discourse phenomena. However, larger
models compress this entire hierarchy toward earlier layer positions, suggesting
they build richer representations more quickly. We dive deeper, conducting an
in-depth multilingual analysis of two linguistic properties - lemma identity and
inflectional features - that help disentangle form from meaning. We find that lemma
information concentrates linearly in early layers but becomes increasingly nonlinear
deeper in the network, while inflectional information remains linearly accessible
throughout all layers. Additional analyses of attention mechanisms, steering vec-
tors, and pretraining checkpoints reveal where this information resides within
layers, how it can be functionally manipulated, and how representations evolve
during pretraining. Taken together, our findings suggest that, even with substantial
advances in LLM technologies, transformer models learn to organize linguistic
information in similar ways, regardless of model architecture, size, or training
regime, indicating that these properties are important for next token prediction.

1 INTRODUCTION

Large transformer-based language models (LMs) are widely used for tasks such as text generation,
question answering, and code completion (Workshop, 2023; Groeneveld et al., 2024; Llama, 2024;
Hui et al., 2024) However, how these models internally represent linguistic information remains
an active research area. Prior work suggests a hierarchical organization where different layers
specialize in capturing distinct levels of linguistic structure, from surface features to syntax and
semantics (Jawahar et al., 2019; Tenney et al., 2019a; Rogers et al., 2020).

But these studies focus only on first-generation LMs such as BERT and GPT-2 (Devlin et al., 2019;
Radford et al., 2019). Since then, language technology has transformed dramatically - today’s models
differ in architecture (encoder-only, decoder-only, encoder–decoder), pretraining objectives (masked
vs. causal language modeling), training data volume (billions vs. trillions of tokens), and post-training
adaptation. (Brown et al., 2020; Groeneveld et al., 2024; Lambert et al., 2025). We ask: do modern
LMS rediscover the classical NLP pipeline observed in early models, and how does model scale and
architecture influence where and how linguistic structure is encoded?

To answer these questions we systematically probe 25 pretrained models ranging from BERT Base
to Llama-3.1 8B, spanning multiple architectures, sizes, and training regimes. We train simple
classifiers at each layer to predict eight linguistic tasks in English and evaluate where information
emerges.
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Figure 1: Overview of our probing methodology. We extract hidden state activations from each
model layer for target words and train simple linear and shallow non-linear classifiers for token,
span and pairwise edge predictions (POS, dependencies, constituents, NER, SRL, SPR, coreference,
and relations), as well as word-level lemma and inflection prediction. We compute selectivity using
control labels and summarize where performance emerges with expected layer and center of gravity.

Beyond this pipeline analysis, we perform a targeted case study on two linguistic properties: lemma
identity and inflectional features. These properties help disentangle meaning from surface form -
consider the words walk, walked, jump, and jumped. Do language models group words by shared
meaning (walk, walked) or by shared grammar (walked, jumped)? More broadly, where and how do
LMs encode a word’s lemma and its inflectional features?

We examine six typologically diverse languages - English, Chinese, German, French, Russian,
and Turkish - to test whether observed patterns generalize beyond English. We also test where
lemma and inflectional information resides (attention heads vs. residual streams), track when these
representations emerge during pretraining, and evaluate the impact of editing activations via steering
vectors. We find that:

1. Modern LMs rediscover the classical NLP pipeline. Syntactic tasks peak earliest, semantic
tasks peak in the middle, and discourse tasks peak latest. Larger models compress this pipeline
towards shallower layers, suggesting they learn richer representations more quickly.

2. Lemma information is encoded prominently in early layers and becomes increasingly non-
linear deeper in the network, whereas inflectional information remains linearly accessible
across all layers and languages.

3. Lemma and inflectional information emerge early in pretraining and reside primarily in the
residual stream; inflectional features occupy compact, steerable subspaces that enable effective
interventions.

2 PROBE DESIGN AND METRICS

We investigate how language models encode linguistic information using simple classifiers (probes)
trained on activations from individual layers. Following Tenney et al. (2019b), we consider three
types of predictions: token-level tasks (e.g., , POS), span-level tasks (constituency, named entity
recognition, semantic role labeling, semantic proto-roles), and edge or pairwise tasks (dependency
arcs and coreference links). For our case study we additionally train probes to predict each word’s
lemma and its inflectional features.
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2.1 PROBE ARCHITECTURES

For each layer of a model we extract residual-stream representations for a target word, span or pair
and train two simple classifiers: a linear regression probe and non-linear multi-layer perceptron
(MLP) probe. The linear probe measures how well information is linearly separable in the represen-
tation space, while the non-linear probe tests whether a non-linear decision boundary yields better
performance. Comparing these probes allows us to infer whether a property is encoded linearly or
non-linearly. Architecture details and hyperparameters are provided in Appendix C.

2.2 REPRESENTATIONS AND TASKS

For token-level tasks we use the representation of the last subword token for the target word; for
span-level tasks we mean-pool representations across subwords; for pairwise tasks we concatenate
and element-wise combine representations following Tenney et al. (2019b).

We evaluate eight linguistic tasks introduced by Tenney et al. (2019a), covering the classical NLP
pipeline from syntax to discourse. At the syntactic level, we consider part-of-speech tagging,
constituency parsing (phrase structure), and dependency parsing (head–dependent relations); at the
semantic level, named entity recognition (persons, organizations, locations), semantic role labeling
(agent and patient roles), and semantic proto-role labeling (e.g., , volition, sentience); and at the
discourse level, coreference resolution and relation extraction (relations between entities). Formal
task definitions are provided in Appendix D.

2.3 METRICS

We define several metrics for localizing where information emerges with depth and for quantifying
nonlinearity: selectivity, the linear separability gap, and two depth statistics inspired by Tenney et al.
(2019a), expected layer and center of gravity.

Selectivity. Probes may simply memorize training data rather than extracting true linguistic in-
formation from the representations. To account for this, we train identical probes on randomly
permuted labels (control tasks) following Hewitt & Liang (2019). We define selectivity at layer ℓ as
the difference between real and control accuracies:

Selℓ = Accreal
ℓ − Acccontrol

ℓ (1)

Higher values mean the classifier is extracting true linguistic information rather than memorizing.

Linear separability gap. We quantify nonlinearity at a layer as the difference in accuracy between
a non-linear and linear probe:

Gapℓ = Accnonlin
ℓ − Acclinear

ℓ , (2)

where positive values indicate useful information is present but not linearly separable.

Center of gravity and expected layer. Let aℓ be the test accuracy using layer ℓ for ℓ = 0, . . . , L,
and let bℓ = maxj≤ℓ aj be the cumulative (best-so-far) curve. We weight layers by their consolidation
relative to the baseline and take an index-weighted average:

wℓ =
bℓ − b0∑L

k=0(bk − b0)
, CenterOfGravity =

L∑
ℓ=0

ℓwℓ. (3)

Then, to localize where marginal gains first occur, we use the nonnegative increments of the cumula-
tive curve and take their weighted average:

∆ℓ = max(bℓ − bℓ−1, 0) , pℓ =
∆ℓ∑L
j=1 ∆j

, ExpectedLayer =
L∑

ℓ=1

ℓ pℓ. (4)

Unlike center of gravity (which weights consolidated performance), this emphasizes where useful
information first becomes available, highlighting the specific layers at which the model begins to
encode properties relevant to the task.
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3 EXPERIMENTS

Using the methodology introduced in Section §2, we describe the components of our experimental
setup: the datasets, model suite, and procedure for extracting token-level representations.

3.1 DATASETS

We use several annotated datasets for our eight classical NLP pipeline tasks: UD English-GUM (POS,
dependencies, named entities, coreference, constituents) (Nivre et al., 2016; Zeldes, 2017), Universal
Propositions English-EWT (SRL) (Jindal et al., 2022), SPR1 datasets (PropBank and UD-EWT
sources; SPR), and SemEval-2010 Task 8 (relations). We use the same token/span/edge labeling
schemes.

For our in-depth analysis of lemma identity and inflectional features, we use Universal Dependencies
corpora across six languages - English, Chinese, German, French, Russian, Turkish (Nivre et al.,
2016). We select GUM for English (Zeldes, 2017), GSD for Chinese/German/French (McDonald
et al., 2013; Guillaume et al., 2019), SynTagRus for Russian (Droganova et al., 2018), and IMST for
Turkish (Sulubacak et al., 2016). 1

3.2 MODELS Table 1: Overview of models used in this study.
Model Parameters Pretraining Data Layers

Encoder-only

BERT Base 110M 12.6B tokens1 12
BERT Large 340M 12.6B tokens1 24
DeBERTa V3 Large 418M 32B tokens1 24

Decoder-only

GPT-2-Small 124M 8B tokens1 12
GPT-2-Large 708M 8B tokens1 36
GPT-2-XL 1.5B 8B tokens1 48
Goldfish English 1000mb 124M 200M tokens 12
Goldfish Chinese 1000mb 124M 200M tokens 12
Goldfish German 1000mb 124M 200M tokens 12
Goldfish French 1000mb 124M 200M tokens 12
Goldfish Russian 1000mb 124M 200M tokens 12
Goldfish Turkish 1000mb 124M 200M tokens 12
Pythia-6.9B 6900M 300B tokens 32
Pythia-6.9B Tulu 6900M 300B tokens 32
OLMo-2-7B 7300M 4T tokens 32
OLMo-2-7B-Instruct 7300M 4T tokens 32
Gemma-2-2B 2610M 2T tokens 26
Gemma-2-2B-Instruct 2610M 2T tokens 26
Qwen2.5-1.5B 1540M 18T tokens 28
Qwen2.5-1.5B-Instruct 1540M 18T tokens 28
Qwen2.5-7B 7620M 18T tokens 28
Qwen2.5-7B-Instruct 7620M 18T tokens 28
Llama-3.1-8B 8000M 15T tokens 32
Llama-3.1-8B-Instruct 8000M 15T tokens 32

Encoder-Decoder

mT5-base 580M 1T tokens 12
1 Converted from GB to tokens using the approximation that 1GB of data

is approximately 200M tokens in English (Chang et al., 2024).

We study a diverse set of pretrained
transformer language models span-
ning different architectures, sizes, and
training regimes. Table 1 lists all mod-
els used in this study (see Table 16 for
the HuggingFace identifiers).

For English, we evaluate all models
listed in Table 1 (excluding the non-
English Goldfish models). For the
five non-English languages (Chinese,
German, French, Russian, Turkish),
we focus on models that have explicit
multilingual training: the Goldfish
monolingual models trained specifi-
cally for each target language (Chang
et al., 2024), multilingual Qwen2.5
variants that include these languages
in their training data, and the multi-
lingual mT5-base model (Xue et al.,
2021). This ensures that we evalu-
ate models on languages they were
trained on while maintaining suffi-
cient coverage.

3.3 REPRESENTATION EXTRACTION

We tokenize inputs with model-specific tokenizers and run a forward pass to collect residual-stream
activations from every layer. Token, span, and pair encodings follow Section §2. For words split into
multiple subwords, we use the last subword’s representation (Devlin et al., 2019). Models are used
as-is (no fine-tuning), and we report results by layer using these activations.

1See Appendix §H for complete details including dataset statistics, tokenization information, and visualiza-
tions for all languages
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4 THE CLASSICAL NLP PIPELINE

We probe 18 models across eight linguistic tasks to test whether modern language models rediscover
the classical NLP pipeline. In this section, we present three representative models - encoder-only,
decoder-only and instruction-tuned architectures - with full results for all models in Appendix §E.

4.1 LAYERWISE PATTERNS CLEANLY SEPARATE MODEL FAMILIES

Figure 2: Left: Probe accuracy across layers for BERT Base, Qwen2.5-1.5B, and
OLMo-2-1124-7B-Instruct. Top panels show MLP probes and bottom panel show linear probes.
Right: Pearson correlations between all models, computed from flattening each model’s task-by-layer
accuracy grid and correlating across all pairs of models. Lower triangle: MLP correlations; upper
triangle: linear correlations

Probe performance. Our results in Figure 2 (left) show that MLP probes consistently match or
exceed linear probe accuracy across all tasks (see Figures 7 and 8 for complete results). The linear
separability gap - the difference between MLP and linear performance - peaks for late-pipeline tasks,
specifically SPR and Relations. This pattern holds across all 18 models (see Appendix §E).

Model correlations. The correlation matrix, Figure 2 (right), provides a global summary between
all 18 models. A high correlation indicates that two models’ layerwise accuracies across tasks are
similar; low correlations indicate divergent accuracy patterns. We observe three distinct trends:

1. Models cluster by architecture. Encoder-only models (e.g., BERT and DeBERTa) correlate
strongly with each other while having low correlations with decoder models. The same is
true for decoder-only architectures, such as GPT-2, Pythia, Qwen2.5 and Llama 3.1, which
form their own cluster with high internal similarity.

2. Instruction tuning preserves base model latent structure. Fine-tuned variants maintain high
correlations with their base counterparts, indicating that post-training does not fundamentally
reorganize linguistic representations.

3. Model size forms a secondary clustering, but only for linear probes. Models around one
billion parameters group together separately from 7B+ models for linear probe accuracy. MLP
probes don’t show this size-based clustering, likely because their additional capacity masks
any scale-dependent representation differences.

4.2 LARGER MODEL COMPRESS THE HIERARCHY

To pinpoint where linguistic properties emerge and consolidate, we compute compute expected
layer and center of gravity as defined in Section 2. Intuitively, the expected layer captures marginal
accuracy gains and highlights the depth at which information first emerges, while center of gravity
weights each layer by cumulative best accuracy to locate performance ultimately consolidates most
strongly.

The hierarchy persists. Figure 3 shows a shared relative ordering partially emerges across all
models. Syntactic tasks (POS, Constituency, Dependencies) tend to emerge before semantic tasks
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Figure 3: Expected layer (blue) and center of gravity (purple) for the same three models. The left
four columns show accuracy and selectivity (τ ) for linear and MLP probes, averaged across layers.
Selectivity measures how much of the accuracy is due to genuine signal rather than memorization by
the probe.

(Entities, SRL, SPR), which emerge before discourse phenomena (Corefernce, Relations). However,
this hierarchical progression is less distinct in modern models than in early ones, suggesting that the
hierarchy exists but is compressed.

Scale compresses depth. Model capacity determines where and whether this hierarchy forms. For
example, BERT Base (12 layers) places relation extraction around layer 8, while both Qwen2.5-1.5B
(28 layers) and OLMo-2-7B-Instruct (32 layers) compress it to approximately one-fifth depth.
Larger models seem to encode the complete linguistic hierarchy using fewer layers, suggesting that
they build useful representations earlier.

Selectivity reveals probe limitations. MLP probes appear to achieve high accuracy, but have strong
negative selectivity, meaning they memorize the task rather than extract meaningful information
from the representations. Linear probes are better, showing positive selectivity for syntactic tasks.
However, they drop to near zero selectivity for discourse tasks (Coreference, Relations), suggesting
that while discourse information exists in representations, linear decoding struggles to extract it
cleanly.

4.3 DISCUSSION

Our analysis establishes two key findings:

1. The hierarchical organization observed in early transformers survives in modern models but
with less separation between levels. But this relative ordering is detectable across architectures
(encoder, decoder, encoder–decoder), training regimes (causal and masked language modeling,
instruction tuning), and scale (100M to 8B parameters), but boundaries blur as models
compress the pipeline.

2. Modern models encode all linguistic levels at shallower depths. Where BERT Base clearly
separated syntactic, semantic, and discourse processing across its layers, a 7B model
(OLMo-2-7B-Instruct) compresses this entire hierarchy into its early layers. This compres-
sion is evidence that as models become more powerful, they need fewer layers to learn this
hierarchical linguistic structure, perhaps because they have higher representational capacity
per layer and benefit from more extensive training.

These results suggest that while the classical NLP pipeline represented how early transformers
organized knowledge, modern models develop a more compressed, interleaved representation of
linguistic structure.

5 LEMMA IDENTITY AND INFLECTIONAL FEATURES

We now examine two important token-level properties: lemma identity and inflectional features.
Using the same probing framework from Section §4, we expand to six typologically diverse languages:
English, Chinese, German, French, Russian, and Turkish. We investigate where these properties
emerge in model representations and how they become linearly accessible across layers.
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5.1 RESULTS

We report layer-wise accuracies for lemma and inflection prediction across classifier types and
languages. We evaluate 19 English models and six multi/monolingual models across lemma and
inflection prediction tasks. Detailed layer-wise accuracy and selectivity tables are provided in
Appendix §G.

Figure 4: Lemma and inflection probing results for English, averaged by model category: encoder-
only (BERT, DeBERTa), small decoder <5B (GPT-2, Gemma-2-2B (and instruct), Qwen2.5-1.5B (and
instruct)), and large decoder >5B (Pythia-6.9B, OLMo-2-7B, Llama-3.1-8B and instruct versions).
Columns show prediction accuracy (Linear vs. MLP probes) and selectivity scores (linguistic minus
control accuracy). Note that for readability, the y-axis for accuracy starts at 0.4. Full (non-averaged)
results for individual models are provided in Appendix §F.

Figure 5: Cross-linguistic probing results averaged across all models within each language. Each
language averages over multilingual models mT5-base, Qwen2.5-1.5B (and instruct), Qwen2.5-7B
(and instruct) and its corresponding monolingual Goldfish <Language> 1000mb model (e.g.,
Goldfish English 1000mb). Columns show lemma and inflection accuracy (Linear vs. MLP)
followed by selectivity scores. Note that for readability, the y-axis for accuracy starts at 0.4. Full
(non-averaged) results for individual models are provided in Appendix §F.
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Lemma. Lemma accuracy under linear regression starts high (0.8–1.0) and decreases with depth in
all English model families (Figure 4, top left). Encoder-only models show the strongest decrease,
while small decoders decline more gradually and large decoders maintain higher accuracy in deeper
layers. Across languages (Figure 5, top left), Turkish shows the largest drop (0.95 to 0.25), while
Russian and Chinese retain 0.6–0.8 accuracy in later layers. MLP accuracy is similar but slightly
higher than linear at most depths (middle column). Selectivity for lemma remains close to zero across
depths and languages (right column), indicating that high lemma accuracy early in the network is
mostly driven by surface correlations rather than strongly selective lexical structure.

Inflection. Inflectional features remain readable across all layers and architectures. For English,
linear regression accuracy stays near 0.9–1.0 throughout the layers (Figure 4, bottom left). This
pattern holds cross-linguistically (Figure 5, bottom left): English, German, French, and Russian
exceed 0.9 accuracy at most depths, while Turkish is slightly lower, hovering around 0.8–0.9. MLP
probes follow the same pattern (middle column). Selectivity scores for inflection remain positive
(0.4–0.6) across models and languages (right column), with Russian and German at the upper end,
supporting the view that inflectional features are encoded in stable, linearly accessible subspaces.

Probe error analysis. Frequency strongly correlates with probe accuracy for both tasks. Frequent
lemmas and inflectional categories achieve higher accuracy, while rare words and rare inflections
account for most errors. For inflection, comparative and superlative degrees and low-frequency verb
forms are the most error-prone categories. Turkish shows the strongest sensitivity to frequency, likely
due to its morphological complexity creating a long tail of rare forms. A detailed breakdown by part
of speech and inflectional category is given in Appendix §L.

5.2 ANALYSIS

Our results show that lemma identity is encoded strongly in early layers but becomes less accessible
in deeper layers, whereas inflectional features remain robustly decodable throughout the model. We
analyze this further along several axes.

Inflection is linearly separable; lemma shows limited nonlinearity. We report the linear separability
gap, defined in equation (2), which measures the accuracy difference between MLP and linear probes.
Detailed plots for lemma and inflection appear in Appendix §I.3. For inflection, the gap stays close to
zero across layers, architectures, and languages, typically within ±0.02 accuracy, consistent with the
near-overlap of linear and MLP curves in Figures 4 and 5. This is evidence that inflectional features
are encoded linearly in the representations. For lemma, gaps are modest but positive, especially in
early and middle layers of encoder-only models and smaller decoders, where MLPs achieve slightly
higher accuracy than linear probes before both degrade in deeper layers. This suggests that lemma
information is present but less linearly separable than inflection.

Some models show extreme mid-layer dimensionality compression; others gradually compress
representations. To characterize the representation geometry of these models, we estimate intrinsic di-
mensionality by counting the fraction of principal components required to reach fixed variance thresh-
olds over our entire dataset of collected activations (full results appear in Appendix §I.1).Encoder-only
models (BERT, DeBERTa) and several decoders (Gemma, Llama, OLMo-2) exhibit gradual compres-
sion: even at 90–99% variance, the relative number of components decreases only slowly as depth
increases. In contrast, GPT-2, Qwen2.5, and Pythia enter a regime in their middle layers where very
few components - often just a single dimension - account for most of the variance at these thresholds.
Analysis of activation statistics (Appendix §I.2) reveals that this low intrinsic dimensionality is driven
by outlier dimensions with large activation values: models like Qwen2.5-1.5B reach maximum
absolute activations of 8000 in middle layers, while models like Llama-3-8B reach values of only
30-40 (Sun et al., 2024; Rudman et al., 2023).

Residual streams retain more linguistic information than attention outputs. Probing attention-
head outputs and residual-stream activations for BERT and contemporary decoders (Figures 27 and 28)
highlights different roles for these components. For both lemma and inflection, probes on attention
outputs yield lower accuracy than probes on the residual stream at almost all depths. For lemma,
attention-based accuracy falls to around 0.2–0.4 in middle layers, while residual streams remain
closer to 0.6–0.9. For inflection, both components maintain high accuracy (0.7–1.0), but residual
streams consistently outperform attention outputs, particularly in middle layers. Selectivity follows
the same pattern: lemma selectivity is near zero for attention outputs and higher for residuals, while
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Figure 6: Intrinsic dimensionality across layers. Lines show fraction of PCA components needed to
reach variance thresholds (50–100%). Models with strong mid-layer compression (few components
for high variance) align with the inflection-is-linear, lemma-is-nonlinear split. Full curves per model
appear in Figure 15.

inflection selectivity reaches 0.4–0.5 in both streams with residuals slightly higher. These results
support a view in which attention primarily aggregates contextual relationships, whereas the residual
stream/MLP layers preserve token-level lexical and morphological information that supports both
lemma and inflection prediction.

Inflection steering effectiveness tracks intrinsic dimensionality. Steering experiments with inflec-
tion features (e.g., , singular vs. plural) connect these representational properties to causal control.
For each pair of categories, we compute a difference vector between mean hidden states and apply
scaled interventions at each layer. Figures 29 and 30 show that, for most architectures and layers,
even moderate steering scales (e.g., , λ = 5) yield large changes in predicted inflection and high
flip rates, indicating that a single direction in activation space can reliably control morphological
representations. Qwen2.5 variants demonstrate an interesting property: in their early–middle layers,
steering is much less effective, with both probability change and flip rate reaching their minima. This
region aligns with the layers where intrinsic dimensionality is lowest in Figures 6 and 15. Combined
with the accuracy curves in Figure 4, this suggests that strongly compressed representations are
more resistant to causal manipulation, even when inflection remains linearly decodable, whereas
higher-dimensional layers permit more effective steering of inflectional morphology.

Inflection stabilizes early in training; lemma continues to change. Pretraining checkpoint analysis
for OLMo-2-7B and Pythia-6.9B (Figures 25 and 26) shows that morphological analysis emerges
very early, whereas lemma information continues to evolve with training. For both model families,
inflection accuracy is already high at the earliest checkpoints and increases only slightly with
additional updates; inflection selectivity grows quickly in the first few checkpoints and then remains
near its final value. Lemma behaves differently. In OLMo-2-7B, lemma accuracy and selectivity
increase gradually across checkpoints, with the largest gains in middle layers. In Pythia-6.9B, early
checkpoints exhibit much lower lemma accuracy and near-zero lemma selectivity in deeper layers,
and both quantities rise steadily as training progresses. These trends indicate that models identify
and stabilize inflectional categories early in pretraining, while lemma representations remain more
plastic and continue to be reshaped throughout training, especially in the later layers of decoder-only
models.

5.3 DISCUSSION

The previous analyses present a comprehensive picture of how lemma identity and inflectional
features are organized inside transformer language models. Lemma information is strongly encoded
in early layers but becomes less accessible as depth increases, particularly in models that undergo
strong mid-layer compression. Inflectional features, in contrast, remain decodable across virtually all
layers and models, with small linear separability gaps and high selectivity.
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The linear separability results suggest that grammatical features are encoded in low-dimensional,
approximately linear subspaces, while lemma identity relies more on higher-variance directions
that are later deemphasized. Intrinsic dimensionality measurements, together with the steering
experiments, tell us that aggressive compression in some decoder-only models limits the space in
which such directions can be causally manipulated. Specifically, steering remains effective in higher-
dimensional regions but degrades in layers whose variance is captured by very few components. The
comparison between attention outputs and residual streams further implies that lexical information is
preserved in the residual stream.

Taken together, these findings point to an organization in which inflection is a stable and linearly
accessible component of the internal state, supporting both probing and controlled interventions,
while lemma identity is encoded in a way that is useful for early processing but increasingly traded
off against compact, context-oriented representations as models optimize for next-token prediction.

6 RELATED WORK

Probing for linguistic information. Probing studies typically use supervised classifiers to predict
linguistic properties from model representations (Alain & Bengio, 2017; Adi et al., 2017). Extensive
work has established that early transformer models (BERT, GPT-2) learn hierarchical linguistic
structures, with different layers specializing in different information types: lower layers capture
surface features and morphology, middle layers encode syntax, and upper layers represent semantics
and context (Jawahar et al., 2019; Tenney et al., 2019a; Rogers et al., 2020). More relevant to our
work, Vulić et al. (2020) found that lexical information concentrates in lower layers, while Ethayarajh
(2019) showed that representations become increasingly context-specific in higher layers.

Representation dynamics in modern LLMs. Recent research has extended these analyses to
modern, larger-scale generative models, examining how representational geometry evolves with
scale. Cheng et al. (2025) identify a distinct high-dimensional abstraction phase in the early-to-
middle layers of models like Llama and OLMo, suggesting that the transition from surface-level
to abstract linguistic features occurs earlier than in previous architectures. Similarly, Skean et al.
(2025) demonstrate that intermediate layers in modern LLMs often encode richer task-transferable
representations than final layers, challenging the assumption that semantic capability monotonically
increases with depth. These findings align with the pipeline compression we observe in Section §3.

Activation steering. Beyond probing, recent work has explored manipulating model behavior by
intervening on internal representations. This includes steering vectors (Subramani et al., 2022),
inference-time interventions (Li et al., 2023), representation editing (Meng et al., 2022), sparse
autoencoders for feature discovery (Bricken et al., 2023), and causal mediation analysis (Vig et al.,
2020). While these methods typically evaluate changes in model outputs, our steering experiments
focus on measuring representational changes. See Appendix §B for more detailed discussion.

Mechanistic interpretability and feature discovery. Mechanistic interpretability approaches
aim to reverse-engineer the algorithms learned by neural networks (Elhage et al., 2021), offering
a more causal view of internal structure. Recent work uses sparse autoencoders to decompose
dense representations into interpretable latent features (Cunningham et al., 2023; Bricken et al.,
2023), providing clearer targets for interpretation than raw activations. While probing detects
correlations between representations and linguistic concepts, these methods seek to identify the
specific components and causal circuits that implement these behaviors.

7 CONCLUSION

In this work, we analyzed 25 transformer models and found that modern LMs show signs of
rediscovering the classical NLP pipeline, progressing from syntax to semantics and discourse.
However, we observe that larger models compress this hierarchy into earlier layers, suggesting that
increased capacity allows useful representations to emerge sooner. Our case study further reveals
that while lemma identity becomes increasingly non-linear with depth, inflectional features remain
linearly accessible and steerable within the residual stream across languages. Collectively, these
findings indicate that despite rapid advances in scale and training, transformers converge on robust,
shared mechanisms for organizing linguistic information.
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8 REPRODUCIBILITY STATEMENT

We will release a GitHub repository containing code to reproduce dataset construction, probing
experiments, and all plots and analyses. The main paper specifies the probe design and metrics
(Section §2), datasets and model suite (Sections §3 and Table 1), and evaluation summaries for the
classical pipeline and for lemma identity and inflectional features (Sections §4 and §5). The appendix
provides complete classifier and training details, dataset statistics, and full-resolution figure grids
referenced in the text. Together, these materials are intended to enable end-to-end reproduction of our
results.
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A LIMITATIONS

Representation Extraction for Decoder Models Our current approach for extracting word repre-
sentations from decoder-only models uses the final subword token. This assumption is an intuitive
and natural choice, but may not be optimal for all architectures and models. Future work could
develop better extraction methods that account for subword tokenization effects and leverage attention
patterns to create more accurate word-level representations.

Form and Function in Inflection Some languages contain cases where different grammatical
functions share the same surface form (e.g., , infinitive and non-past verb forms in English). We
do not explicitly examine these cases in our classification experiments, but these ambiguities create
opportunities to better examine how models separate form from function across languages.

Indirect Nature of Classifiers While our classifier methodology follows established best prac-
tices (Hewitt & Liang, 2019; Liu et al., 2019), we only detect correlations in hidden activations, not
causal mechanisms.

Scope of Steering Experiments Our steering vector experiments measure changes in classifier
performance rather than downstream model outputs. Evaluating effects on actual model generation
would require more complex experimental designs to control for confounding factors and ensure that
observed changes result from the intended representational modifications rather than other influences.

B ADDITIONAL RELATED WORK

B.1 ADVANCED PROBING METHODOLOGIES

Beyond standard linear probes, there are many sophisticated approaches to understand model repre-
sentations. Amnesic probing (Elazar et al., 2021) removes specific information from representations
to test whether it’s necessary for downstream tasks. Minimum description length probes (Voita &
Titov, 2020) balance probe complexity with performance to avoid overfitting. Causal abstraction
(Geiger et al., 2021) aims to establish causal rather than merely correlational relationships between
representations and linguistic properties. Recently, Subramani et al. (2025) find that decoding from
activations directly using the Logit Lens can be used to learn confidence estimators for tool-calling
agents (nostalgebraist, 2020).

B.2 MODEL MANIPULATION AND STEERING

Steering vectors demonstrate that specific directions in activation space correspond to high-level
behavioral changes (Subramani et al., 2022). Building on this, Panickssery et al. (2024) achieves
behavioral control by adding activation differences between contrasting examples. Li et al. (2023)
introduce inference-time intervention, a method that shifts model activations during inference across
limited attention heads to control model behavior. While these methods operate in activation space,
task vectors enable arithmetic operations on model capabilities by manipulating weight space (Ilharco
et al., 2023).

Recent work has also examined how multilingual models like mT5 and ByT5 encode morphological
information differently across languages (Dang et al., 2024), finding that tokenization strategies
significantly impact morphological representation quality, particularly for morphologically rich
languages.

C PROBE DETAILS

In this appendix we provide implementation details for the linear regression and two-layer multi-layer
perceptron (MLP) probes used throughout our experiments. These classifiers are trained on frozen
residual-stream activations from each layer to predict the labels of our linguistic tasks, lemma identity
and inflectional features.
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Training details. We stratify each dataset into train, validation, and test splits. Probes are trained on
the training split, hyperparameters are selected using the validation split, and we report accuracy and
macro F1 on the held-out test split. For the linear regression probe we apply ridge regularization with
λ = 0.01 and solve equation (5) in closed form. For the MLP probe we use a hidden dimension of
64, a learning rate of 0.001, weight decay of 0.01, and train for up to 100 epochs with early stopping
based on validation loss, optimizing cross-entropy with AdamW. Both probes share the same data
splits to enable fair comparison.

C.1 LINEAR REGRESSION CLASSIFIER

Consistent with best practices for probing (Hewitt & Liang, 2019; Liu et al., 2019), we use a ridge-
regularized linear regression classifier. Given training representations Xtrain ∈ Rm×d and one-hot
encoded labels Ytrain ∈ Rm×c, the optimal weight matrix W ∈ Rd×c is obtained in closed form as

W =
(
X⊤

trainXtrain + λI
)−1

X⊤
trainYtrain, (5)

where λ controls the strength of ℓ2 regularization and I is the identity matrix. Predictions on test
representations Xtest are then given by Ŷtest = XtestW .

C.2 MLP CLASSIFIER

To test for non-linear separability, we train a simple two-layer MLP with ReLU activation. The
classifier computes

Ŷ = softmax
(
ReLU(XW1)W2

)
, (6)

where W1 ∈ Rd×h and W2 ∈ Rh×c are learned weight matrices, h is the hidden dimension (we use
h = 64), and biases are omitted for brevity. Two-layer MLPs with ReLU activation are universal
function approximators capable of representing any continuous function to arbitrary precision given
sufficient width (Hornik et al., 1989). We train the MLP with cross-entropy loss using the same splits
and optimization hyperparameters described above.

D LINGUISTIC TASK DEFINITIONS

We probe eight linguistic tasks originally introduced by Tenney et al. (2019a) that span the classical
NLP pipeline. Here we provide formal definitions for each task:

Part-of-Speech tagging (POS). This task assigns each word a grammatical category such as noun,
verb, adjective, or adverb, following the Universal Dependencies tagset (Petrov et al., 2012). POS
tagging is fundamental to syntactic analysis and serves as input to many downstream NLP tasks.

Constituency parsing. This task identifies the hierarchical phrase structure of sentences by group-
ing words into nested constituents such as noun phrases, verb phrases, and sentences (Marcus et al.,
1993). The output is typically represented as a parse tree showing how smaller units combine to form
larger syntactic structures.

Dependency parsing. This task predicts syntactic head-dependent relations between words, such
as subject-verb and modifier-head relationships, following Universal Dependencies guidelines (Nivre
et al., 2016). Each word is linked to exactly one head (except the root), forming a directed tree
structure that captures grammatical relations.

Named Entity Recognition (NER). This task identifies and classifies named entities such as per-
sons, organizations, locations, and dates into predefined categories (Tjong Kim Sang & De Meulder,
2003). NER bridges syntactic and semantic analysis by identifying referential expressions that denote
real-world entities.

Semantic Role Labeling (SRL). This task assigns semantic roles such as agent, patient, instrument,
or location to arguments of predicates in a sentence (Gildea & Jurafsky, 2002). SRL captures the
underlying semantic relationships between predicates and their arguments, abstracting away from
surface syntactic variations.
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Semantic Proto-Roles (SPR). This task predicts fine-grained semantic properties of predicate argu-
ments, such as whether an argument is sentient, undergoes a change of state, or is volitional (Reisinger
et al., 2015). SPR provides a more nuanced characterization of semantic roles through scalar proper-
ties rather than categorical labels.

Coreference resolution. This task determines which expressions in a text refer to the same real-
world entity, linking pronouns and noun phrases to their antecedents (Pradhan et al., 2012). Coref-
erence resolution is essential for understanding discourse coherence and tracking entities across
sentences.

Relation extraction. This task identifies semantic relationships between entity mentions, such as
organization-location or person-affiliation relations, typically across sentence boundaries (Hendrickx
et al., 2010). Relation extraction connects named entities through typed semantic links, enabling
structured knowledge representation.

These tasks form the classical NLP pipeline described by (Tenney et al., 2019a), progressing from
syntactic analysis (POS, constituency, dependencies) through semantic interpretation (NER, SRL,
SPR) to discourse-level understanding (coreference, relations).

E FULL RESULTS FOR THE CLASSICAL NLP PIPELINE

The full heatmaps and summary statistics for pipeline analyses across all models are shown in
Figures 7–11. These figures show model-by-layer accuracy/selectivity patterns and the expected
layer/center-of-gravity summaries reported in the main text.
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Figure 7: Full heatmaps for MLP probe accuracy across all tasks, models, and layers. Rows show
tasks; columns show models; each plot shows accuracy by layer depth.
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Figure 8: Full heatmaps for linear probe accuracy across all tasks, models, and layers. Trends mirror
the MLP version but with stronger model-size effects in deeper layers.
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Figure 9: Full heatmaps for MLP probe selectivity (real vs. control task accuracy).
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Figure 10: Full heatmaps for linear probe selectivity (real vs. control task accuracy).
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Figure 11: Expected Layer and Center of Gravity plots with τlin and τMLP selectivity scores for all
models.
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F FULL LEMMA AND INFLECTION PROBE RESULTS

We provide the full, non-averaged results for the linguistic probing tasks (lemma identity and
inflectional features) for every individual model. Figure 12 shows the detailed breakdown for English
models, and Figure 13 presents the results for all six languages.

Figure 12: Full lemma and inflection probing results for English, showing individual curves for every
model. Columns show prediction accuracy (Linear vs. MLP probes) and selectivity scores (linguistic
minus control accuracy).

Figure 13: Full cross-linguistic probing results showing individual curves for every model within each
language. Columns show lemma and inflection accuracy (Linear vs. MLP) followed by selectivity
scores.

G DETAILED LAYER-WISE TABLES FOR LEMMA AND INFLECTION RESULTS

This section contains detailed tables for layer-wise accuracy and selectivity across all models and
languages.
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Table 2: English Accuracy (Linear Probes) Across Layer Depths

Model Task 0% 25% 50% 75% 100%

BERT-Base Inflection 0.934 0.971 0.977 0.966 0.951
Lexeme 0.858 0.773 0.665 0.564 0.507

BERT-Large Inflection 0.938 0.972 0.978 0.966 0.949
Lexeme 0.896 0.820 0.737 0.585 0.531

DeBERTa-v3-Large Inflection 0.939 0.982 0.972 0.960 0.955
Lexeme 0.914 0.805 0.673 0.482 0.309

GPT-2-Large Inflection 0.927 0.970 0.971 0.946 0.912
Lexeme 0.874 0.818 0.711 0.665 0.577

GPT-2-Small Inflection 0.939 0.948 0.971 0.956 0.909
Lexeme 0.840 0.737 0.671 0.618 0.530

GPT-2-XL Inflection 0.929 0.974 0.973 0.946 0.915
Lexeme 0.906 0.827 0.737 0.690 0.609

Gemma-2-2B Inflection 0.936 0.974 0.963 0.972 0.948
Lexeme 0.944 0.817 0.694 0.792 0.728

Gemma-2-2B-Instruct Inflection 0.917 0.971 0.960 0.972 0.960
Lexeme 0.904 0.802 0.667 0.791 0.752

Llama-3-8B Inflection 0.912 0.971 0.974 0.976 0.962
Lexeme 0.864 0.794 0.796 0.816 0.749

Llama-3-8B-Instruct Inflection 0.913 0.972 0.974 0.977 0.967
Lexeme 0.864 0.803 0.812 0.839 0.783

OLMo-2-1124-7B Inflection 0.897 0.970 0.959 0.961 0.965
Lexeme 0.832 0.883 0.755 0.808 0.763

OLMo-2-1124-7B-Instruct Inflection 0.897 0.970 0.958 0.962 0.961
Lexeme 0.832 0.881 0.749 0.806 0.757

Pythia-6.9B Inflection 0.942 0.982 0.974 0.966 0.953
Lexeme 0.980 0.928 0.865 0.829 0.772

Pythia-6.9B-Tulu Inflection 0.941 0.980 0.975 0.968 0.954
Lexeme 0.980 0.928 0.872 0.841 0.789

Qwen2.5-1.5B Inflection 0.913 0.969 0.959 0.961 0.930
Lexeme 0.845 0.799 0.610 0.654 0.599

Qwen2.5-1.5B-Instruct Inflection 0.910 0.957 0.944 0.949 0.914
Lexeme 0.876 0.768 0.590 0.647 0.654
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Table 3: English Selectivity (Linear Probes) Across Layer Depths

Model Task 0% 25% 50% 75% 100%

BERT-Base Inflection 0.348 0.486 0.556 0.596 0.609
Lexeme 0.094 0.132 0.134 0.114 0.101

BERT-Large Inflection 0.292 0.459 0.520 0.598 0.603
Lexeme 0.083 0.145 0.148 0.119 0.107

DeBERTa-v3-Large Inflection 0.279 0.471 0.545 0.644 0.681
Lexeme 0.062 0.183 0.158 0.097 0.054

GPT-2-Large Inflection 0.324 0.489 0.563 0.550 0.562
Lexeme 0.099 0.183 0.162 0.161 0.121

GPT-2-Small Inflection 0.347 0.576 0.541 0.558 0.547
Lexeme 0.100 0.171 0.152 0.134 0.121

GPT-2-XL Inflection 0.289 0.488 0.549 0.547 0.553
Lexeme 0.092 0.172 0.172 0.162 0.135

Gemma-2-2B Inflection 0.131 0.466 0.565 0.464 0.512
Lexeme 0.036 0.132 0.136 0.161 0.128

Gemma-2-2B-Instruct Inflection 0.210 0.517 0.594 0.487 0.522
Lexeme 0.052 0.157 0.144 0.184 0.154

Llama-3-8B Inflection 0.041 0.516 0.482 0.474 0.497
Lexeme -0.003 0.132 0.146 0.140 0.117

Llama-3-8B-Instruct Inflection 0.042 0.508 0.473 0.453 0.478
Lexeme -0.003 0.131 0.146 0.144 0.119

OLMo-2-1124-7B Inflection 0.128 0.440 0.538 0.476 0.528
Lexeme 0.011 0.104 0.152 0.170 0.144

OLMo-2-1124-7B-Instruct Inflection 0.127 0.443 0.545 0.483 0.543
Lexeme 0.011 0.104 0.149 0.164 0.144

Pythia-6.9B Inflection 0.017 0.347 0.416 0.457 0.484
Lexeme -0.002 0.117 0.134 0.140 0.141

Pythia-6.9B-Tulu Inflection 0.016 0.348 0.419 0.454 0.492
Lexeme -0.002 0.118 0.137 0.143 0.150

Qwen2.5-1.5B Inflection 0.199 0.483 0.589 0.566 0.548
Lexeme 0.034 0.146 0.117 0.129 0.108

Qwen2.5-1.5B-Instruct Inflection 0.189 0.474 0.581 0.541 0.503
Lexeme 0.061 0.143 0.113 0.129 0.112
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Table 4: English Accuracy (MLP Probes) Across Layer Depths

Model Task 0% 25% 50% 75% 100%

BERT-Base Inflection 0.941 0.978 0.983 0.975 0.960
Lexeme 0.906 0.888 0.808 0.719 0.629

BERT-Large Inflection 0.943 0.977 0.981 0.973 0.958
Lexeme 0.920 0.904 0.843 0.762 0.677

DeBERTa-v3-Large Inflection 0.944 0.986 0.976 0.971 0.957
Lexeme 0.920 0.885 0.781 0.574 0.318

GPT-2-Large Inflection 0.930 0.964 0.964 0.952 0.937
Lexeme 0.892 0.878 0.825 0.719 0.552

GPT-2-Small Inflection 0.943 0.963 0.965 0.957 0.837
Lexeme 0.830 0.843 0.817 0.705 0.075

GPT-2-XL Inflection 0.929 0.965 0.963 0.948 0.937
Lexeme 0.906 0.884 0.844 0.734 0.571

Gemma-2-2B Inflection 0.940 0.977 0.970 0.975 0.946
Lexeme 0.939 0.868 0.732 0.812 0.506

Gemma-2-2B-Instruct Inflection 0.919 0.973 0.965 0.973 0.960
Lexeme 0.890 0.874 0.731 0.831 0.508

Llama-3-8B Inflection 0.920 0.972 0.977 0.976 0.958
Lexeme 0.863 0.808 0.857 0.840 0.568

Llama-3-8B-Instruct Inflection 0.920 0.972 0.977 0.977 0.964
Lexeme 0.863 0.821 0.873 0.870 0.605

OLMo-2-1124-7B Inflection 0.903 0.974 0.970 0.975 0.964
Lexeme 0.825 0.877 0.833 0.845 0.621

OLMo-2-1124-7B-Instruct Inflection 0.903 0.975 0.968 0.973 0.964
Lexeme 0.825 0.880 0.825 0.847 0.650

Pythia-6.9B Inflection 0.940 0.973 0.971 0.959 0.959
Lexeme 0.976 0.891 0.823 0.683 0.655

Pythia-6.9B-Tulu Inflection 0.944 0.973 0.970 0.963 0.961
Lexeme 0.976 0.904 0.858 0.752 0.709

Qwen2.5-1.5B Inflection 0.919 0.967 0.963 0.962 0.929
Lexeme 0.829 0.864 0.800 0.777 0.356

Qwen2.5-1.5B-Instruct Inflection 0.935 0.957 0.952 0.952 0.923
Lexeme 0.916 0.841 0.779 0.789 0.423
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Table 5: English Selectivity (MLP Probes) Across Layer Depths

Model Task 0% 25% 50% 75% 100%

BERT-Base Inflection 0.139 0.307 0.416 0.505 0.536
Lexeme 0.025 0.057 0.069 0.084 0.068

BERT-Large Inflection 0.104 0.294 0.386 0.496 0.514
Lexeme 0.028 0.084 0.088 0.106 0.074

DeBERTa-v3-Large Inflection 0.071 0.313 0.428 0.582 0.666
Lexeme 0.005 0.061 0.096 0.065 0.043

GPT-2-Large Inflection 0.157 0.323 0.446 0.487 0.521
Lexeme 0.040 0.093 0.123 0.138 0.115

GPT-2-Small Inflection 0.210 0.342 0.410 0.470 0.581
Lexeme 0.012 0.077 0.094 0.107 0.061

GPT-2-XL Inflection 0.118 0.334 0.433 0.491 0.527
Lexeme 0.027 0.110 0.145 0.163 0.142

Gemma-2-2B Inflection 0.002 0.360 0.499 0.395 0.483
Lexeme -0.007 0.067 0.090 0.088 0.054

Gemma-2-2B-Instruct Inflection 0.089 0.393 0.523 0.404 0.509
Lexeme 0.026 0.102 0.111 0.100 0.058

Llama-3-8B Inflection 0.050 0.454 0.414 0.402 0.463
Lexeme -0.001 0.098 0.079 0.084 0.060

Llama-3-8B-Instruct Inflection 0.050 0.442 0.400 0.364 0.451
Lexeme -0.002 0.098 0.074 0.084 0.069

OLMo-2-1124-7B Inflection 0.118 0.363 0.470 0.426 0.483
Lexeme 0.007 0.088 0.121 0.109 0.095

OLMo-2-1124-7B-Instruct Inflection 0.118 0.371 0.476 0.434 0.493
Lexeme 0.007 0.094 0.122 0.119 0.103

Pythia-6.9B Inflection -0.025 0.301 0.404 0.444 0.451
Lexeme -0.005 0.064 0.096 0.110 0.113

Pythia-6.9B-Tulu Inflection -0.021 0.294 0.394 0.438 0.445
Lexeme -0.005 0.057 0.092 0.112 0.126

Qwen2.5-1.5B Inflection 0.085 0.325 0.456 0.455 0.549
Lexeme -0.007 0.053 0.072 0.082 0.062

Qwen2.5-1.5B-Instruct Inflection 0.046 0.337 0.460 0.440 0.502
Lexeme -0.012 0.064 0.082 0.082 0.058
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Table 6: Probing Results for Chinese

(a) Accuracy (Linear Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish Chinese (Chinese) Inflection 0.911 0.928 0.944 0.942 0.941
Lexeme 0.972 0.941 0.887 0.824 0.751

Qwen2.5-1.5B (Chinese) Inflection 0.898 0.948 0.949 0.950 0.946
Lexeme 0.883 0.905 0.735 0.743 0.667

Qwen2.5-1.5B-Instruct (Chinese) Inflection 0.897 0.948 0.949 0.950 0.948
Lexeme 0.883 0.907 0.729 0.748 0.678

Qwen2.5-7B (Chinese) Inflection 0.893 0.957 0.951 0.956 0.950
Lexeme 0.883 0.983 0.844 0.828 0.776

Qwen2.5-7B-Instruct (Chinese) Inflection 0.893 0.957 0.950 0.956 0.949
Lexeme 0.883 0.981 0.839 0.823 0.773

mT5-Base (Chinese) Inflection 0.901 0.933 0.945 0.941 0.943
Lexeme 0.846 0.919 0.863 0.757 0.727

(b) Selectivity (Linear Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish Chinese (Chinese) Inflection 0.223 0.292 0.346 0.356 0.391
Lexeme -0.000 -0.001 -0.002 -0.001 -0.003

Qwen2.5-1.5B (Chinese) Inflection 0.122 0.345 0.429 0.412 0.441
Lexeme -0.000 -0.000 -0.002 -0.002 -0.003

Qwen2.5-1.5B-Instruct (Chinese) Inflection 0.122 0.345 0.430 0.412 0.437
Lexeme -0.000 -0.001 -0.003 -0.001 -0.002

Qwen2.5-7B (Chinese) Inflection 0.047 0.250 0.387 0.386 0.408
Lexeme -0.000 0.000 -0.001 0.000 -0.000

Qwen2.5-7B-Instruct (Chinese) Inflection 0.048 0.250 0.392 0.387 0.411
Lexeme -0.000 -0.000 -0.001 0.000 -0.001

mT5-Base (Chinese) Inflection 0.123 0.186 0.274 0.321 0.348
Lexeme 0.001 0.000 -0.001 0.000 -0.003

(c) Accuracy (MLP Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish Chinese (Chinese) Inflection 0.913 0.930 0.946 0.944 0.939
Lexeme 0.922 0.874 0.797 0.652 0.543

Qwen2.5-1.5B (Chinese) Inflection 0.896 0.947 0.943 0.950 0.942
Lexeme 0.882 0.869 0.738 0.695 0.449

Qwen2.5-1.5B-Instruct (Chinese) Inflection 0.896 0.941 0.942 0.950 0.943
Lexeme 0.883 0.864 0.719 0.691 0.383

Qwen2.5-7B (Chinese) Inflection 0.899 0.952 0.947 0.955 0.946
Lexeme 0.881 0.951 0.795 0.749 0.471

Qwen2.5-7B-Instruct (Chinese) Inflection 0.900 0.952 0.948 0.955 0.943
Lexeme 0.881 0.950 0.791 0.750 0.475

mT5-Base (Chinese) Inflection 0.907 0.938 0.947 0.942 0.948
Lexeme 0.841 0.796 0.658 0.587 0.661

(d) Selectivity (MLP Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish Chinese (Chinese) Inflection 0.072 0.153 0.198 0.252 0.315
Lexeme -0.001 -0.039 -0.049 -0.064 -0.047

Qwen2.5-1.5B (Chinese) Inflection 0.058 0.168 0.280 0.305 0.411
Lexeme 0.000 -0.001 -0.006 -0.001 0.002

Qwen2.5-1.5B-Instruct (Chinese) Inflection 0.059 0.164 0.290 0.301 0.411
Lexeme 0.000 0.002 -0.012 -0.000 -0.002

Qwen2.5-7B (Chinese) Inflection 0.061 0.136 0.287 0.312 0.388
Lexeme -0.001 -0.001 -0.007 -0.008 0.000

Qwen2.5-7B-Instruct (Chinese) Inflection 0.055 0.135 0.298 0.314 0.379
Lexeme -0.001 -0.003 -0.006 -0.004 -0.000

mT5-Base (Chinese) Inflection 0.055 0.070 0.179 0.238 0.238
Lexeme 0.003 -0.008 -0.013 -0.006 -0.011

Table 7: Probing Results for English

(a) Accuracy (Linear Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish English (English) Inflection 0.934 0.956 0.972 0.964 0.949
Lexeme 0.926 0.859 0.755 0.690 0.652

Qwen2.5-1.5B (English) Inflection 0.913 0.969 0.959 0.961 0.930
Lexeme 0.845 0.799 0.610 0.654 0.599

Qwen2.5-1.5B-Instruct (English) Inflection 0.910 0.957 0.944 0.949 0.914
Lexeme 0.876 0.768 0.590 0.647 0.654

Qwen2.5-7B (English) Inflection 0.915 0.977 0.966 0.973 0.958
Lexeme 0.916 0.952 0.769 0.808 0.781

Qwen2.5-7B-Instruct (English) Inflection 0.915 0.977 0.964 0.973 0.957
Lexeme 0.916 0.950 0.791 0.810 0.781

mT5-Base (English) Inflection 0.920 0.966 0.969 0.966 0.958
Lexeme 0.868 0.862 0.731 0.634 0.619

(b) Selectivity (Linear Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish English (English) Inflection 0.341 0.437 0.522 0.549 0.556
Lexeme 0.017 0.073 0.096 0.100 0.110

Qwen2.5-1.5B (English) Inflection 0.199 0.483 0.589 0.566 0.548
Lexeme 0.034 0.146 0.117 0.129 0.108

Qwen2.5-1.5B-Instruct (English) Inflection 0.189 0.474 0.581 0.541 0.503
Lexeme 0.061 0.143 0.113 0.129 0.112

Qwen2.5-7B (English) Inflection 0.059 0.383 0.538 0.533 0.523
Lexeme -0.006 0.098 0.121 0.131 0.099

Qwen2.5-7B-Instruct (English) Inflection 0.059 0.392 0.542 0.531 0.528
Lexeme -0.006 0.098 0.116 0.129 0.100

mT5-Base (English) Inflection 0.229 0.348 0.462 0.533 0.530
Lexeme 0.003 0.005 0.047 0.053 0.063

(c) Accuracy (MLP Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish English (English) Inflection 0.937 0.962 0.976 0.971 0.964
Lexeme 0.952 0.922 0.871 0.790 0.656

Qwen2.5-1.5B (English) Inflection 0.666 0.956 0.956 0.961 0.929
Lexeme 0.792 0.959 0.901 0.886 0.731

Qwen2.5-1.5B-Instruct (English) Inflection 0.598 0.922 0.928 0.942 0.913
Lexeme 0.852 0.939 0.880 0.900 0.812

Qwen2.5-7B (English) Inflection 0.919 0.970 0.963 0.970 0.953
Lexeme 0.913 0.935 0.831 0.818 0.506

Qwen2.5-7B-Instruct (English) Inflection 0.930 0.976 0.970 0.976 0.951
Lexeme 0.913 0.933 0.824 0.818 0.521

mT5-Base (English) Inflection NaN NaN NaN NaN NaN
Lexeme 0.871 0.845 0.744 0.686 0.722

(d) Selectivity (MLP Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish English (English) Inflection 0.131 0.272 0.371 0.438 0.493
Lexeme 0.006 -0.021 0.005 0.031 0.050

Qwen2.5-1.5B (English) Inflection 0.248 0.588 0.647 0.625 0.595
Lexeme 0.019 0.085 0.096 0.101 0.090

Qwen2.5-1.5B-Instruct (English) Inflection 0.187 0.571 0.629 0.608 0.549
Lexeme 0.069 0.090 0.097 0.100 0.087

Qwen2.5-7B (English) Inflection 0.051 0.282 0.456 0.457 0.507
Lexeme -0.008 0.039 0.070 0.073 0.061

Qwen2.5-7B-Instruct (English) Inflection 0.001 0.229 0.424 0.416 0.457
Lexeme -0.008 0.042 0.072 0.067 0.068

mT5-Base (English) Inflection NaN NaN NaN NaN NaN
Lexeme -0.012 -0.023 0.003 0.011 0.026
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Table 8: Probing Results for French

(a) Accuracy (Linear Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish French (French) Inflection 0.924 0.959 0.976 0.970 0.963
Lexeme 0.888 0.813 0.714 0.665 0.619

Qwen2.5-1.5B (French) Inflection 0.792 0.947 0.954 0.952 0.928
Lexeme 0.541 0.850 0.696 0.696 0.602

Qwen2.5-1.5B-Instruct (French) Inflection 0.792 0.945 0.951 0.949 0.925
Lexeme 0.541 0.845 0.687 0.690 0.611

Qwen2.5-7B (French) Inflection 0.793 0.966 0.965 0.964 0.945
Lexeme 0.541 0.943 0.801 0.769 0.714

Qwen2.5-7B-Instruct (French) Inflection 0.793 0.963 0.962 0.961 0.941
Lexeme 0.541 0.942 0.790 0.760 0.706

mT5-Base (French) Inflection 0.840 0.943 0.967 0.961 0.944
Lexeme 0.656 0.773 0.674 0.596 0.567

(b) Selectivity (Linear Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish French (French) Inflection 0.403 0.497 0.581 0.585 0.613
Lexeme 0.039 0.109 0.132 0.131 0.122

Qwen2.5-1.5B (French) Inflection 0.244 0.463 0.576 0.559 0.561
Lexeme 0.002 0.137 0.126 0.132 0.088

Qwen2.5-1.5B-Instruct (French) Inflection 0.244 0.467 0.582 0.565 0.562
Lexeme 0.002 0.137 0.126 0.132 0.092

Qwen2.5-7B (French) Inflection 0.228 0.370 0.538 0.545 0.540
Lexeme 0.003 0.116 0.145 0.139 0.112

Qwen2.5-7B-Instruct (French) Inflection 0.228 0.375 0.545 0.552 0.544
Lexeme 0.002 0.118 0.143 0.138 0.112

mT5-Base (French) Inflection 0.248 0.386 0.495 0.548 0.530
Lexeme -0.006 0.027 0.045 0.046 0.037

(c) Accuracy (MLP Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish French (French) Inflection 0.932 0.972 0.980 0.979 0.971
Lexeme 0.947 0.949 0.916 0.829 0.696

Qwen2.5-1.5B (French) Inflection 0.789 0.956 0.965 0.960 0.929
Lexeme 0.536 0.910 0.845 0.788 0.360

Qwen2.5-1.5B-Instruct (French) Inflection 0.791 0.954 0.962 0.959 0.929
Lexeme 0.537 0.911 0.835 0.798 0.535

Qwen2.5-7B (French) Inflection 0.791 0.971 0.971 0.968 0.943
Lexeme 0.533 0.953 0.862 0.830 0.461

Qwen2.5-7B-Instruct (French) Inflection 0.791 0.968 0.969 0.965 0.939
Lexeme 0.534 0.949 0.851 0.823 0.467

mT5-Base (French) Inflection 0.851 0.962 0.975 0.967 0.969
Lexeme 0.654 0.785 0.698 0.633 0.665

(d) Selectivity (MLP Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish French (French) Inflection 0.131 0.289 0.372 0.443 0.486
Lexeme -0.016 0.006 0.032 0.072 0.084

Qwen2.5-1.5B (French) Inflection 0.236 0.260 0.402 0.405 0.548
Lexeme 0.006 0.025 0.046 0.056 0.043

Qwen2.5-1.5B-Instruct (French) Inflection 0.235 0.263 0.411 0.410 0.552
Lexeme 0.002 0.030 0.048 0.055 0.064

Qwen2.5-7B (French) Inflection 0.227 0.198 0.394 0.415 0.516
Lexeme -0.001 0.025 0.065 0.070 0.027

Qwen2.5-7B-Instruct (French) Inflection 0.229 0.205 0.407 0.426 0.514
Lexeme 0.000 0.028 0.072 0.070 0.037

mT5-Base (French) Inflection 0.127 0.190 0.321 0.404 0.388
Lexeme -0.020 -0.036 -0.015 -0.000 -0.000

Table 9: Probing Results for German

(a) Accuracy (Linear Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish German (German) Inflection 0.911 0.946 0.961 0.961 0.952
Lexeme 0.886 0.831 0.707 0.627 0.569

Qwen2.5-1.5B (German) Inflection 0.744 0.929 0.931 0.930 0.911
Lexeme 0.479 0.865 0.707 0.690 0.569

Qwen2.5-1.5B-Instruct (German) Inflection 0.745 0.928 0.929 0.929 0.912
Lexeme 0.479 0.862 0.694 0.686 0.582

Qwen2.5-7B (German) Inflection 0.744 0.949 0.946 0.950 0.935
Lexeme 0.480 0.942 0.811 0.764 0.651

Qwen2.5-7B-Instruct (German) Inflection 0.760 0.958 0.954 0.958 0.938
Lexeme 0.480 0.943 0.801 0.757 0.646

mT5-Base (German) Inflection 0.811 0.942 0.954 0.956 0.916
Lexeme 0.650 0.796 0.656 0.574 0.543

(b) Selectivity (Linear Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish German (German) Inflection 0.418 0.503 0.593 0.622 0.645
Lexeme -0.001 0.057 0.088 0.088 0.069

Qwen2.5-1.5B (German) Inflection 0.289 0.446 0.577 0.582 0.599
Lexeme 0.009 0.084 0.082 0.096 0.065

Qwen2.5-1.5B-Instruct (German) Inflection 0.289 0.450 0.577 0.583 0.602
Lexeme 0.009 0.082 0.082 0.098 0.069

Qwen2.5-7B (German) Inflection 0.286 0.357 0.546 0.574 0.597
Lexeme 0.009 0.065 0.104 0.113 0.085

Qwen2.5-7B-Instruct (German) Inflection 0.228 0.210 0.468 0.509 0.530
Lexeme 0.009 0.067 0.105 0.111 0.084

mT5-Base (German) Inflection 0.251 0.371 0.494 0.560 0.529
Lexeme 0.000 0.012 0.023 0.043 0.033

(c) Accuracy (MLP Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish German (German) Inflection 0.923 0.955 0.969 0.969 0.960
Lexeme 0.902 0.876 0.794 0.657 0.511

Qwen2.5-1.5B (German) Inflection 0.741 0.943 0.944 0.942 0.910
Lexeme 0.473 0.869 0.763 0.682 0.292

Qwen2.5-1.5B-Instruct (German) Inflection 0.741 0.943 0.943 0.941 0.910
Lexeme 0.474 0.870 0.753 0.688 0.300

Qwen2.5-7B (German) Inflection 0.740 0.956 0.954 0.956 0.935
Lexeme 0.471 0.943 0.820 0.746 0.383

Qwen2.5-7B-Instruct (German) Inflection 0.758 0.962 0.959 0.961 0.935
Lexeme 0.471 0.943 0.810 0.749 0.397

mT5-Base (German) Inflection 0.820 0.956 0.954 0.952 0.939
Lexeme 0.641 0.710 0.563 0.486 0.530

(d) Selectivity (MLP Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish German (German) Inflection 0.229 0.350 0.457 0.523 0.585
Lexeme -0.021 0.017 0.051 0.084 0.082

Qwen2.5-1.5B (German) Inflection 0.292 0.292 0.457 0.492 0.604
Lexeme 0.008 0.022 0.054 0.060 0.035

Qwen2.5-1.5B-Instruct (German) Inflection 0.291 0.295 0.472 0.488 0.600
Lexeme 0.009 0.023 0.056 0.063 0.032

Qwen2.5-7B (German) Inflection 0.288 0.214 0.455 0.493 0.596
Lexeme 0.007 0.011 0.066 0.070 0.046

Qwen2.5-7B-Instruct (German) Inflection 0.227 0.111 0.382 0.424 0.532
Lexeme 0.008 0.015 0.073 0.077 0.049

mT5-Base (German) Inflection 0.160 0.253 0.405 0.475 0.462
Lexeme -0.012 -0.037 0.000 0.023 0.012
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Table 10: Probing Results for Russian

(a) Accuracy (Linear Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish Russian (Russian) Inflection 0.932 0.952 0.975 0.968 0.950
Lexeme 0.896 0.854 0.758 0.710 0.631

Qwen2.5-1.5B (Russian) Inflection 0.850 0.966 0.966 0.962 0.933
Lexeme 0.315 0.896 0.739 0.720 0.598

Qwen2.5-1.5B-Instruct (Russian) Inflection 0.850 0.965 0.964 0.960 0.932
Lexeme 0.315 0.893 0.725 0.714 0.600

Qwen2.5-7B (Russian) Inflection 0.850 0.977 0.976 0.974 0.954
Lexeme 0.315 0.960 0.834 0.798 0.696

Qwen2.5-7B-Instruct (Russian) Inflection 0.858 0.977 0.974 0.980 0.953
Lexeme 0.315 0.959 0.821 0.785 0.680

mT5-Base (Russian) Inflection 0.882 0.944 0.974 0.971 0.952
Lexeme 0.480 0.766 0.666 0.570 0.515

(b) Selectivity (Linear Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish Russian (Russian) Inflection 0.505 0.568 0.663 0.675 0.688
Lexeme 0.024 0.115 0.157 0.175 0.170

Qwen2.5-1.5B (Russian) Inflection 0.518 0.576 0.679 0.661 0.665
Lexeme 0.012 0.190 0.187 0.202 0.153

Qwen2.5-1.5B-Instruct (Russian) Inflection 0.518 0.582 0.685 0.664 0.666
Lexeme 0.012 0.191 0.190 0.205 0.152

Qwen2.5-7B (Russian) Inflection 0.517 0.504 0.670 0.671 0.658
Lexeme 0.011 0.165 0.218 0.222 0.183

Qwen2.5-7B-Instruct (Russian) Inflection 0.431 0.332 0.581 0.594 0.593
Lexeme 0.011 0.167 0.221 0.222 0.181

mT5-Base (Russian) Inflection 0.388 0.418 0.548 0.595 0.605
Lexeme 0.004 0.088 0.092 0.099 0.092

(c) Accuracy (MLP Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish Russian (Russian) Inflection 0.944 0.966 0.982 0.977 0.959
Lexeme 0.896 0.878 0.814 0.732 0.582

Qwen2.5-1.5B (Russian) Inflection 0.848 0.972 0.971 0.969 0.924
Lexeme 0.302 0.874 0.768 0.690 0.281

Qwen2.5-1.5B-Instruct (Russian) Inflection 0.848 0.971 0.970 0.967 0.927
Lexeme 0.302 0.870 0.760 0.692 0.282

Qwen2.5-7B (Russian) Inflection 0.850 0.981 0.981 0.977 0.940
Lexeme 0.312 0.960 0.838 0.770 0.361

Qwen2.5-7B-Instruct (Russian) Inflection 0.857 0.976 0.976 0.978 0.935
Lexeme 0.308 0.958 0.828 0.765 0.371

mT5-Base (Russian) Inflection 0.883 0.956 0.978 0.974 0.971
Lexeme 0.448 0.571 0.470 0.397 0.437

(d) Selectivity (MLP Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish Russian (Russian) Inflection 0.322 0.466 0.557 0.604 0.642
Lexeme -0.007 0.049 0.120 0.203 0.201

Qwen2.5-1.5B (Russian) Inflection 0.524 0.451 0.575 0.594 0.662
Lexeme 0.004 0.080 0.122 0.162 0.108

Qwen2.5-1.5B-Instruct (Russian) Inflection 0.523 0.457 0.589 0.594 0.660
Lexeme 0.004 0.085 0.133 0.166 0.101

Qwen2.5-7B (Russian) Inflection 0.526 0.376 0.591 0.604 0.652
Lexeme 0.011 0.062 0.175 0.183 0.123

Qwen2.5-7B-Instruct (Russian) Inflection 0.432 0.211 0.493 0.512 0.583
Lexeme 0.008 0.065 0.184 0.193 0.125

mT5-Base (Russian) Inflection 0.351 0.335 0.497 0.547 0.557
Lexeme -0.016 -0.016 0.023 0.035 0.042

Table 11: Probing Results for Turkish

(a) Accuracy (Linear Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish Turkish (Turkish) Inflection 0.907 0.930 0.925 0.913 0.903
Lexeme 0.978 0.973 0.968 0.921 0.614

Qwen2.5-1.5B (Turkish) Inflection 0.719 0.869 0.847 0.849 0.831
Lexeme 0.530 0.959 0.868 0.815 0.796

Qwen2.5-1.5B-Instruct (Turkish) Inflection 0.719 0.869 0.838 0.846 0.827
Lexeme 0.530 0.961 0.852 0.804 0.786

Qwen2.5-7B (Turkish) Inflection 0.718 0.917 0.889 0.879 0.839
Lexeme 0.531 0.974 0.878 0.839 0.777

Qwen2.5-7B-Instruct (Turkish) Inflection 0.718 0.911 0.875 0.874 0.836
Lexeme 0.531 0.975 0.854 0.803 0.731

mT5-Base (Turkish) Inflection 0.913 0.972 0.931 0.908 0.884
Lexeme 0.792 0.952 0.922 0.819 0.785

(b) Selectivity (Linear Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish Turkish (Turkish) Inflection 0.345 0.407 0.491 0.492 0.500
Lexeme -0.002 0.008 0.074 0.089 0.144

Qwen2.5-1.5B (Turkish) Inflection 0.277 0.323 0.452 0.455 0.411
Lexeme 0.013 0.001 0.000 -0.014 0.008

Qwen2.5-1.5B-Instruct (Turkish) Inflection 0.277 0.319 0.447 0.452 0.416
Lexeme 0.013 0.003 0.004 -0.009 0.009

Qwen2.5-7B (Turkish) Inflection 0.275 0.293 0.472 0.462 0.417
Lexeme 0.014 -0.002 0.003 -0.010 -0.021

Qwen2.5-7B-Instruct (Turkish) Inflection 0.276 0.291 0.463 0.497 0.445
Lexeme 0.014 0.003 -0.003 -0.017 -0.037

mT5-Base (Turkish) Inflection 0.071 0.165 0.261 0.331 0.366
Lexeme 0.008 0.013 0.042 0.035 0.057

(c) Accuracy (MLP Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish Turkish (Turkish) Inflection 0.911 0.918 0.916 0.899 0.887
Lexeme 0.601 0.536 0.459 0.418 0.360

Qwen2.5-1.5B (Turkish) Inflection 0.713 0.854 0.823 0.829 0.760
Lexeme 0.459 0.500 0.369 0.325 0.232

Qwen2.5-1.5B-Instruct (Turkish) Inflection 0.712 0.857 0.831 0.817 0.760
Lexeme 0.462 0.491 0.367 0.333 0.233

Qwen2.5-7B (Turkish) Inflection 0.713 0.923 0.902 0.900 0.828
Lexeme 0.519 0.805 0.639 0.525 0.441

Qwen2.5-7B-Instruct (Turkish) Inflection 0.717 0.914 0.900 0.895 0.820
Lexeme 0.521 0.797 0.615 0.523 0.383

mT5-Base (Turkish) Inflection 0.884 0.915 0.875 0.836 0.839
Lexeme 0.503 0.395 0.300 0.257 0.312

(d) Selectivity (MLP Probes)

Model Task 0% 25% 50% 75% 100%

Goldfish Turkish (Turkish) Inflection 0.333 0.449 0.499 0.488 0.496
Lexeme 0.175 0.185 0.142 0.138 0.125

Qwen2.5-1.5B (Turkish) Inflection 0.299 0.355 0.438 0.500 0.432
Lexeme -0.001 0.045 0.093 0.049 0.045

Qwen2.5-1.5B-Instruct (Turkish) Inflection 0.303 0.350 0.447 0.447 0.432
Lexeme 0.001 0.042 0.104 0.065 -0.078

Qwen2.5-7B (Turkish) Inflection 0.297 0.299 0.422 0.473 0.442
Lexeme 0.007 0.084 0.128 0.105 0.065

Qwen2.5-7B-Instruct (Turkish) Inflection 0.303 0.297 0.437 0.492 0.432
Lexeme 0.012 0.087 0.147 0.103 0.061

mT5-Base (Turkish) Inflection 0.120 0.301 0.343 0.355 0.368
Lexeme 0.047 0.094 0.109 0.097 0.106
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H DATASET STATISTICS

This section provides statistics and visualizations for the datasets and models used in our experi-
ments across all six languages. Only words containing alphabetic characters and apostrophes were
considered.

Language Total Words Unique Lemmas Unique Forms Inflection Types Sentences Avg. Length
English 54,816 7,848 11,720 8 8,415 6.5
Chinese 44,166 11,184 11,237 4 7,892 5.8
German 84,710 24,140 31,890 9 9,234 7.3
French 115,847 13,804 24,485 6 8,765 6.6
Russian 193,320 20,943 59,830 8 10,234 7.1
Turkish 20,881 3,776 11,680 7 6,789 6.4

Table 12: Dataset statistics across all six languages. Russian has the largest dataset and the highest
number of unique forms, reflecting its rich inflectional morphology. Turkish has the fewest total
words and lemmas, while Chinese has the fewest inflection types.

H.1 ENGLISH DATASET DETAILS

For the English GUM corpus specifically, the data covers three main syntactic categories: nouns
(49.5%), verbs (31.2%), and adjectives (19.4%).

Table 13a shows the distribution of word categories in the English dataset, and Table 13b presents the
distribution of inflection categories.

Category Count %

Noun 27111 49.5
Verb 17093 31.2
Adjective 10612 19.4

(a) Word categories

Inflection Count %

Singular 19830 36.2
Base 10076 18.4
Positive 9926 18.1
Plural 7281 13.3
Past 5604 10.2
3rd Person 1413 2.6
Comparative 403 0.7
Superlative 283 0.5

(b) Inflection categories

Metric Value

Avg. Words 6.5
Median Words 5
Min. Words 1
Max. Words 40

(c) Sentence length stats

Table 13: Distribution statistics for the English dataset. Table (a) shows syntactic categories, (b)
details inflection types, and (c) provides sentence length heuristics.

H.2 TOKENIZATION STATISTICS

Model Tokenizer Type

BERT Base/Large WordPiece
DeBERTa V3 Large SentencePiece
GPT-2 variants BPE
Pythia variants BPE
OLMo 2 variants BPE (tiktoken)
Gemma 2 variants SentencePiece
Qwen 2.5 variants Byte-level BPE
Llama 3.1 variants BPE (tiktoken)

Table 14: Tokenization strategies used by different model families. BPE means byte-pair encoding.

An important consideration for our analysis is how different models tokenize the words in our
dataset. Table 15 shows tokenization statistics across the models we analyze. Encoder-only models
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like BERT and DeBERTa tend to split words into more tokens than decoder-only models like GPT-2
and Qwen2, which may affect how information is encoded across layers.

Model Avg. tokens Med. tokens Max tokens Percent multitoken
per word per word per word

BERT variants 1.11 1.0 6.0 6.95
DeBERTa-v3-large 1.03 1.0 4.0 2.2
GPT-2 variants 1.52 1.0 5.0 42.25
Pythia-6.9B variants 1.48 1.0 5.0 39.1
OLMo2-7B variants 1.43 1.0 4.0 35.9
Gemma2-2B variants 1.19 1.0 4.0 16.55
Qwen2.5-1.5B variants 1.43 1.0 4.0 35.9
Llama-3.1-8B variants 1.43 1.0 4.0 35.85

Table 15: Tokenization statistics across different models (English only). Most models have an average
of 1.0-1.5 tokens per word and a median of 1, indicating that most words are tokenized as a single
unit. However, there is variation in the proportion of words split into multiple tokens. Decoder-only
models (e.g., , GPT-2, Pythia, Qwen2, LLaMA) split 35-42% of words, while BERT and DeBERTa
variants split fewer words (2-7%). Maximum tokens per word range from 4 to 6 across all models.

H.3 EFFECTS OF TOKENIZATION

Figure 14: Effect of tokenization strategy on analogy completion rank. Each point corresponds to a
model (color) and analogy (shape). The x-axis is the rank using whole-word representations. The
y-axis is the rank using tokenized representations. Here, rank means the position of the expected
word when all vocabulary words are sorted by similarity to the resulting embedding from vector
arithmetic; lower is better. Points above the gray y=x line mean tokenization hurts performance.

Tokenization is an essential component of language modeling. To test how tokenization influences our
findings, we use analogy completion tasks in English (e.g., man:king::woman:?) and compare two
approaches: averaging subtoken embeddings after standard tokenization and summing embeddings
from whole-word tokens.

For each approach, we perform vector arithmetic on word representations (e.g., king - man + woman).
We measure performance by ranking all vocabulary words by cosine similarity to the resulting
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representation, and observe how highly the expected word (e.g., queen) ranks, with a lower rank
indicating better performance.

Whole-word representations markedly outperform averaged subtokens across all models (Figure 14),
implying that linguistic regularities are primarily stored in whole-word embeddings rather than
compositionally across subtokens. Despite tokenization effects, our classifier results show consistent
patterns across models using different tokenizers (see Table 14), indicating robust encoding of lexical
and morphological information.

Model HuggingFace ID
BERT-Base bert-base-uncased
BERT-Large bert-large-uncased
DeBERTa-v3-Large microsoft/deberta-v3-large
mT5-base google/mt5-base
GPT-2-Small openai-community/gpt2
GPT-2-Large openai-community/gpt2-large
GPT-2-XL openai-community/gpt2-xl
Pythia-6.9B EleutherAI/pythia-6.9b
Pythia-6.9B-Tulu allenai/open-instruct-pythia-6.9b-tulu
OLMo-2-1124-7B allenai/OLMo-2-1124-7B
OLMo-2-1124-7B-Instruct allenai/OLMo-2-1124-7B-Instruct
Gemma-2-2B google/gemma-2-2b
Gemma-2-2B-Instruct google/gemma-2-2b-it
Qwen2.5-1.5B Qwen/Qwen2.5-1.5B
Qwen2.5-1.5B-Instruct Qwen/Qwen2.5-1.5B-Instruct
Qwen2.5-7B Qwen/Qwen2.5-7B
Qwen2.5-7B-Instruct Qwen/Qwen2.5-7B-Instruct
Llama-3.1-8B meta-llama/Llama-3.1-8B
Llama-3.1-8B-Instruct meta-llama/Llama-3.1-8B-Instruct
Goldfish English goldfish-models/goldfish_eng_latn_1000mb
Goldfish Chinese goldfish-models/goldfish_zho_hans_1000mb
Goldfish German goldfish-models/goldfish_deu_latn_1000mb
Goldfish French goldfish-models/goldfish_fra_latn_1000mb
Goldfish Russian goldfish-models/goldfish_rus_cyrl_1000mb
Goldfish Turkish goldfish-models/goldfish_tur_latn_1000mb

Table 16: Canonical HuggingFace model IDs used to load models in our study.

I ADDITIONAL ANALYSIS

I.1 INTRINSIC DIMENSIONALITY RESULTS

Intrinsic dimensionality analyses are shown in Figure 15 and Table 17. These illustrate how compres-
sion varies across layers and between models.

Model dmodel
ID50 ID70 ID90

First Mid Final First Mid Final First Mid Final

BERT-Base 768 123 100 88 244 212 192 461 451 446
BERT-Large 1024 138 105 85 286 226 208 567 527 554
DeBERTa-v3-Large 1024 196 133 29 377 299 113 688 635 423
GPT-2-Small 768 37 1 1 152 1 1 402 1 3
GPT-2-Large 1280 24 1 95 172 1 284 583 1 726
GPT-2-XL 1600 113 1 118 340 1 356 838 1 914
Pythia-6.9B 4096 391 1 96 865 1 517 1952 1 1925
Pythia-6.9B-Tulu 4096 390 1 244 862 1 832 1949 1 2292
OLMo-2-7B 4096 404 310 41 833 896 299 1772 2279 1550
OLMo-2-7B-Instruct 4096 404 358 111 833 974 567 1772 2361 1964
Gemma-2-2B 2304 216 8 11 505 130 70 1129 794 611
Gemma-2-2B-Instruct 2304 222 22 8 520 198 57 1153 899 572
Qwen-2.5-1.5B 1536 184 1 9 399 1 50 835 1 452
Qwen-2.5-1.5B-Instruct 1536 184 1 11 394 1 70 820 1 533
Llama-3.1-8B 4096 373 240 35 789 727 187 1722 2051 1119
Llama-3.1-8B-Instruct 4096 372 215 31 788 664 181 1722 1957 1093

Table 17: Number of principal-component axes required to reach 50% (ID50), 70% (ID70) and 90%
(ID90) explained variance in the first, middle and last layers of each model.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Figure 15: Intrinsic dimensionality curves for all models for English. Each subplot shows the
relationship between the percentage of maximum PCA components (x-axis) and the percentage of
explained variance (y-axis) across different layers. The color gradient from purple (early layers,
0%) to yellow (late layers, 100%) indicates the relative layer depth within each model. Models
like BERT, Gemma, and Llama show similar compression patterns, while GPT-2 variants, Qwen and
Pythia exhibit opposite trends in their middle layers.
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I.2 MASSIVE ACTIVATIONS AND OUTLIER DIMENSIONS

We computed the maximum absolute activation, maximum mean (absolute value) per dimension, and
maximum standard deviation per dimension across all layers for representative models to understand
the low intrinsic dimensionality observed in Table Table 17.

Figures Figures 16–22 show the results. Models like Qwen2.5-1.5B and GPT-2 variants show large
maximum activation values. For example, Qwen2.5-1.5B reaches maximum absolute activations
around 8000, while models like Llama-3-8B and OLMo-1124-7B show gradual increases across
layers, with maximum values only reaching 30-40 in final layers.

This corresponds with the intrinsic dimensionality measurements in Table Table 17. Models with
large activations in middle layers correspond to those requiring only 1-2 components to reach 50-90%
explained variance at those depths. Models with gradual activation increases correspond to those
requiring hundreds of components at all depths. The presence of outlier dimensions with large
activations makes the representation anisotropic, with variance concentrated along a small number of
directions.

Figure 16: Activation statistics across layers for GPT-2-Small.

Figure 17: Activation statistics across layers for Qwen2.5-1.5B.

Figure 18: Activation statistics across layers for Pythia-6.9B.
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Figure 19: Activation statistics across layers for Llama-3-8B.

Figure 20: Activation statistics across layers for Llama-3-8B-Instruct.

Figure 21: Activation statistics across layers for OLMo-2-1124-7B.

Figure 22: Activation statistics across layers for OLMo-2-1124-7B-Instruct.
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I.3 LINEAR SEPARABILITY GAP

Figures 23 and 24 show the linear separability gap for lemma and inflection prediction across models
and layers.

Linear Separability Gap

(a) Linear separability gap for inflection prediction

(b) Linear separability gap for lemma prediction

Figure 23: Performance advantage of MLP classifiers over linear classifiers (in percentage points)
across model layers for English. The linear separability gap measures how much a non-linear
transformation improves classifier performance compared to a simple linear mapping. For inflection
prediction, the gap is consistently minimal (mostly within ±0.02 percentage points) and sometimes
negative, indicating that inflectional features are primarily encoded in a linear fashion throughout the
network. By contrast, the linear separability gap for lemma prediction is relatively large (0.1–0.3
percentage points) and positive across most models
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Cross-Linguistic Linear Separability Gap

(a) Chinese - Inflection (b) Chinese - Lemma

(c) German - Inflection (d) German - Lemma

(e) French - Inflection (f) French - Lemma

(g) Russian - Inflection (h) Russian - Lemma

(i) Turkish - Inflection (j) Turkish - Lemma

Figure 24: Cross-linguistic linear separability gap showing performance advantage of MLP classifiers
over linear classifiers across model layers for five additional languages. For inflectional features,
mT5 and Goldfish models show slight positive gaps (indicating modest benefits from non-linear
classification), while Qwen2.5 variants show slight negative gaps (indicating linear classifiers are
sufficient or superior). For lexical features, all models show negative gaps that are most pronounced
in early layers, suggesting that linear regression with regularization consistently outperforms MLPs
for lexical classification across all model families and languages.
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I.4 TRAINING DYNAMICS

See Figures 25 and 26 for probing accuracy and selectivity across pretraining checkpoints for
OLMo-2-7B and Pythia-6.9B.

Figure 25: OLMo-2-7B Training Dynamics. Performance across pretraining checkpoints (5k–734k
steps) for English. The full model is 928k steps. Checkpoints are colored from brightest (earliest)
to darkest (latest). Left: Prediction accuracy for Lemma (top) and Inflection (bottom). Early
checkpoints exhibit higher lemma accuracy than later ones, while inflectional accuracy remains flat.
Right: Selectivity scores for the same tasks. Selectivity generally increases with model depth and
training steps, particularly for inflection.

Figure 26: Pythia-6.9B Training Dynamics. Performance across pretraining checkpoints (step
1–111k) for English. The full model is 143k steps. Checkpoints are colored from brightest (earliest)
to darkest (latest). Left: Prediction accuracy for Lemma (top) and Inflection (bottom). Lemma
accuracy declines both with deeper layers and with more training, whereas inflectional accuracy stays
uniformly high. Right: Selectivity scores for the same tasks, showing distinct separation between
early and late checkpoints in the inflection task.
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J ATTENTION HEAD ANALYSIS

We conducted additional experiments analyzing attention head outputs alongside residual stream
representations to understand how different components of transformer models contribute to linguistic
encoding.

J.1 METHODOLOGY

We averaged activations across all attention heads at each layer for Qwen2.5-1.5B and
Qwen2.5-1.5B-Instruct models using the English dataset. We then trained linear regression
and MLP classifiers on both attention head outputs and residual stream representations to compare
their encoding patterns.

J.2 RESULTS

Figure 27: Combined analysis of linguistic task accuracy (left two columns) and classifier selectivity
(right two columns) for attention head outputs (solid lines) versus residual stream representations
(dashed lines) across BERT and GPT-2 model families. The top row corresponds to Lemma tasks,
and the bottom row to Inflection tasks.

Figure 28: Combined analysis of linguistic task accuracy (left two columns) and classifier selectivity
(right two columns) for attention head outputs (solid lines) versus residual stream representations
(dashed lines) across contemporary model families. The top row corresponds to Lemma tasks, and
the bottom row to Inflection tasks.
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K STEERING VECTOR ANALYSIS

We conducted steering vector experiments to test whether inflectional representations can be func-
tionally manipulated and to understand model sensitivity to activation interventions.

K.1 METHODOLOGY

For each inflectional category, we computed steering vectors as:

si = µi − λ · 1

|C| − 1

∑
j∈C,j ̸=i

µj (7)

We tested multiple values of λ (1, 5, 10, 20, 100) and measured the impact on MLP classifier
performance when adding these steering vectors to existing activations for 1000 test words. We
evaluated both mean probability change and prediction flip rate across all models.

K.2 RESULTS

Figure 29: Mean probability change for inflection prediction when applying steering vectors across
different λ values. Five panels show results for λ ∈ {1, 5, 10, 20, 100}. All models start with high
effectiveness (≈0.9-1.0) at layer 0. Most models maintain stable performance, but Qwen2.5 variants
show pronounced sensitivity dips around 10% layer depth before recovering. Higher λ values increase
steering effectiveness while preserving the overall pattern.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Figure 30: Prediction flip rate when applying steering vectors across different λ values. The flip rate
patterns mirror the probability change results, with most models maintaining high rates (0.98-1.00)
throughout all layers. Qwen2.5 variants show characteristic V-shaped dips to ≈0.60-0.70 around 10%
layer depth. The consistency across λ values suggests that steering effectiveness depends more on
model architecture than intervention strength.
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L CLASSIFIER ERROR ANALYSIS

We conducted a detailed error analysis of our classifiers to better understand their performance across
different morphological features and languages. See Table 18 through Table 36 for the full results.

Model 3rd person Base Comparative Past Plural Positive Singular Superlative
(n=249) (n=1,833) (n=76) (n=1,003) (n=1,247) (n=1,785) (n=3,587) (n=52)

BERT-Base 0.960 0.965 0.817 0.967 0.983 0.946 0.971 0.759
BERT-Large 0.956 0.964 0.861 0.968 0.982 0.950 0.971 0.768
DeBERTa-v3-Large 0.938 0.974 0.831 0.961 0.986 0.954 0.977 0.706
GPT-2-Small 0.828 0.958 0.840 0.956 0.974 0.941 0.964 0.754
GPT-2-Large 0.812 0.958 0.826 0.951 0.975 0.936 0.967 0.792
GPT-2-XL 0.817 0.959 0.813 0.948 0.977 0.940 0.968 0.788
Pythia-6.9B 0.886 0.972 0.904 0.964 0.989 0.957 0.977 0.907
Pythia-6.9B-Tulu 0.899 0.973 0.909 0.967 0.989 0.956 0.976 0.910
OLMo-2-1124-7B 0.938 0.968 0.902 0.972 0.981 0.923 0.966 0.888
OLMo-2-1124-7B-Instruct 0.927 0.967 0.896 0.971 0.981 0.923 0.965 0.872
Gemma-2-2B 0.901 0.968 0.797 0.969 0.986 0.947 0.974 0.833
Gemma-2-2B-Instruct 0.913 0.966 0.863 0.973 0.988 0.938 0.972 0.872
Qwen2.5-1.5B 0.856 0.950 0.802 0.942 0.972 0.919 0.957 0.688
Qwen2.5-1.5B-Instruct 0.774 0.954 0.647 0.945 0.972 0.921 0.965 0.630

Table 18: Breakdown of inflection classification accuracy by morphological feature for each model
using linear regression classifiers (English). Inflections are grouped by their morphological features
(e.g., Past, Plural, Comparative). For each group, the reported accuracy is the average of accuracies
from classifiers trained at each model layer. All accuracy values are on a 0–1 scale. Comparative and
superlative forms consistently show the lowest accuracy across all models, reflecting the challenges
of these less frequent morphological categories.

Model 3rd person Base Comparative Past Plural Positive Singular Superlative
(n=249) (n=1,833) (n=76) (n=1,003) (n=1,247) (n=1,785) (n=3,587) (n=52)

BERT-Base 0.973 0.969 0.910 0.972 0.989 0.959 0.974 0.939
BERT-Large 0.967 0.970 0.910 0.973 0.988 0.961 0.975 0.931
DeBERTa-v3-Large 0.954 0.976 0.925 0.966 0.989 0.962 0.979 0.867
GPT-2-Small 0.921 0.963 0.928 0.952 0.972 0.930 0.963 0.870
GPT-2-Large 0.857 0.962 0.872 0.955 0.976 0.942 0.967 0.854
GPT-2-XL 0.921 0.963 0.928 0.952 0.972 0.930 0.963 0.870
Pythia-6.9B 0.932 0.972 0.921 0.961 0.982 0.949 0.971 0.886
Pythia-6.9B-Tulu 0.948 0.974 0.932 0.964 0.983 0.949 0.971 0.897
OLMo-2-1124-7B 0.957 0.968 0.926 0.966 0.989 0.949 0.973 0.905
OLMo-2-1124-7B-Instruct 0.939 0.967 0.903 0.967 0.988 0.949 0.973 0.873
Gemma-2-2B 0.913 0.967 0.863 0.968 0.990 0.950 0.976 0.907
Gemma-2-2B-Instruct 0.930 0.970 0.878 0.975 0.989 0.946 0.974 0.906
Qwen2.5-1.5B 0.882 0.948 0.822 0.943 0.974 0.927 0.957 0.736
Qwen2.5-1.5B-Instruct 0.808 0.953 0.697 0.947 0.974 0.930 0.965 0.682

Table 19: Breakdown of inflection classification accuracy by morphological feature for each model
using Multi-Layer Perceptron (MLP) classifiers (English). Inflections are grouped by their morpho-
logical features (e.g., Past, Plural, Comparative). For each group, the reported accuracy is the average
of accuracies from classifiers trained at each model layer. All accuracy values are on a 0–1 scale.
MLP classifiers provide modest improvements over linear regression, particularly for comparative
and superlative forms, though the relative ordering across morphological features remains consistent.
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Model Noun Verb Adjective Adverb Pronoun Preposition Conjunction Interjection Other
(n=1,739) (n=641) (n=641) (n=23) (n=1) (n=1) (n=1) (n=1) (n=9)

BERT-Base 0.636 0.737 0.609 0.805 0.292 0.000 0.585 0.000 0.902
BERT-Large 0.684 0.777 0.653 0.826 0.580 0.154 0.662 0.065 0.897
DeBERTa-v3-Large 0.592 0.737 0.585 0.723 0.440 0.077 0.438 0.081 0.866
GPT-2-Small 0.631 0.789 0.612 0.813 0.542 0.000 0.415 0.033 0.896
GPT-2-Large 0.691 0.810 0.688 0.847 0.853 0.174 0.267 0.115 0.912
GPT-2-XL 0.713 0.827 0.708 0.847 0.724 0.222 0.311 0.241 0.899
Pythia-6.9B 0.856 0.926 0.836 0.926 0.938 0.443 0.566 0.488 0.934
Pythia-6.9B-Tulu 0.864 0.930 0.843 0.930 0.923 0.514 0.651 0.476 0.936
OLMo-2-1124-7B 0.798 0.875 0.794 0.913 0.697 0.339 0.363 0.495 0.913
OLMo-2-1124-7B-Instruct 0.798 0.868 0.792 0.902 0.606 0.339 0.331 0.495 0.910
Gemma-2-2B 0.757 0.869 0.736 0.876 0.667 0.179 0.205 0.288 0.891
Gemma-2-2B-Instruct 0.749 0.844 0.742 0.872 0.620 0.137 0.152 0.247 0.912
Qwen2.5-1.5B 0.652 0.801 0.650 0.828 0.526 0.082 0.223 0.068 0.867
Qwen2.5-1.5B-Instruct 0.642 0.800 0.632 0.831 0.544 0.082 0.245 0.068 0.877
Llama-3.1-8B 0.776 0.882 0.771 0.887 0.831 0.286 0.396 0.321 0.911
Llama-3.1-8B-Instruct 0.796 0.892 0.788 0.896 0.908 0.300 0.443 0.357 0.917

Table 20: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model
using linear regression classifiers (English). Lemmas are grouped by their POS tags (e.g., Noun,
Verb, Adjective). For each group, the reported accuracy is the average of accuracies from classifiers
trained at each model layer. All accuracy values are on a 0–1 scale. Performance varies significantly
with frequency: frequent categories like nouns and verbs achieve higher accuracy, while infrequent
categories like pronouns and prepositions show lower performance due to limited training examples.

Model Noun Verb Adjective Adverb Pronoun Preposition Conjunction Interjection Other
(n=1,739) (n=641) (n=641) (n=23) (n=1) (n=1) (n=1) (n=1) (n=9)

BERT-Base 0.775 0.831 0.748 0.873 0.458 0.125 0.756 0.267 0.898
BERT-Large 0.813 0.863 0.785 0.884 0.540 0.231 0.725 0.323 0.897
DeBERTa-v3-Large 0.689 0.803 0.682 0.802 0.700 0.115 0.662 0.242 0.861
GPT-2-Small 0.678 0.792 0.665 0.765 0.042 0.000 0.610 0.000 0.830
GPT-2-Large 0.754 0.837 0.755 0.827 0.347 0.188 0.596 0.385 0.871
GPT-2-XL 0.774 0.844 0.771 0.827 0.561 0.232 0.561 0.431 0.860
Pythia-6.9B 0.774 0.856 0.768 0.862 0.554 0.229 0.528 0.310 0.868
Pythia-6.9B-Tulu 0.818 0.880 0.803 0.887 0.554 0.343 0.613 0.381 0.889
OLMo-2-1124-7B 0.818 0.877 0.828 0.896 0.727 0.290 0.734 0.505 0.885
OLMo-2-1124-7B-Instruct 0.822 0.874 0.829 0.897 0.667 0.306 0.750 0.473 0.886
Gemma-2-2B 0.763 0.860 0.763 0.881 0.574 0.125 0.443 0.182 0.880
Gemma-2-2B-Instruct 0.777 0.846 0.785 0.882 0.580 0.137 0.400 0.299 0.875
Qwen2.5-1.5B 0.747 0.838 0.742 0.811 0.228 0.131 0.628 0.164 0.857
Qwen2.5-1.5B-Instruct 0.749 0.840 0.738 0.818 0.211 0.098 0.564 0.123 0.860
Llama-3.1-8B 0.798 0.879 0.807 0.886 0.800 0.214 0.679 0.393 0.882
Llama-3.1-8B-Instruct 0.824 0.893 0.826 0.895 0.831 0.257 0.689 0.429 0.887

Table 21: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model using
Multi-Layer Perceptron (MLP) classifiers (English). Lemmas are grouped by their POS tags (e.g.,
Noun, Verb, Adjective). For each group, the reported accuracy is the average of accuracies from
classifiers trained at each model layer. All accuracy values are on a 0–1 scale. MLP classifiers provide
consistent improvements over linear regression across all POS categories, though the frequency-
dependent performance patterns persist.
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Model
Linear Regression MLP

Positive Base Plural Singular Positive Base Plural Singular
(n=300) (n=2,074) (n=3) (n=3,947) (n=300) (n=2,074) (n=3) (n=3,947)

mT5-Base 0.739 0.913 0.436 0.962 0.783 0.919 0.231 0.961
Qwen2.5-1.5B 0.785 0.929 0.034 0.969 0.801 0.924 0.092 0.967
Qwen2.5-1.5B-Instruct 0.779 0.925 0.034 0.964 0.803 0.923 0.057 0.967
Qwen2.5-7B 0.824 0.937 0.310 0.970 0.828 0.929 0.310 0.969
Qwen2.5-7B-Instruct 0.819 0.936 0.299 0.970 0.823 0.928 0.276 0.969
Goldfish Chinese 0.793 0.912 0.000 0.958 0.816 0.915 0.000 0.957

Table 22: Breakdown of inflection classification accuracy for each model by inflection type using
Linear Regression and Multi-Layer Perceptron (MLP) classifiers (Chinese). Accuracies are calcu-
lated over all examples for a given group across all layers. Counts (n) are derived from a single
representative layer for each group. All accuracy values are on a 0–1 scale.

Model Noun Verb Adjective Adverb Preposition Other
(n=1,179) (n=564) (n=108) (n=22) (n=20) (n=50)

mT5-Base 0.838 0.828 0.786 0.762 0.920 0.726
Qwen2.5-1.5B 0.810 0.797 0.746 0.715 0.872 0.699
Qwen2.5-1.5B-Instruct 0.813 0.799 0.748 0.713 0.873 0.700
Qwen2.5-7B 0.887 0.882 0.846 0.847 0.915 0.817
Qwen2.5-7B-Instruct 0.886 0.877 0.843 0.835 0.913 0.811
Goldfish Chinese 0.883 0.878 0.845 0.875 0.954 0.858

Table 23: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model,
using Linear Regression classifiers (Chinese). Lemmas are grouped by their POS tags (e.g., , Noun,
Verb, Adjective). Accuracies are calculated over all examples for a given group across all layers.
Counts (n) are derived from a single representative layer for each group. All accuracy values are on a
0–1 scale.

Model Noun Verb Adjective Adverb Preposition Other
(n=1,179) (n=564) (n=108) (n=22) (n=20) (n=50)

mT5-Base 0.698 0.712 0.564 0.571 0.884 0.569
Qwen2.5-1.5B 0.748 0.761 0.658 0.668 0.826 0.669
Qwen2.5-1.5B-Instruct 0.735 0.745 0.643 0.643 0.814 0.655
Qwen2.5-7B 0.815 0.826 0.749 0.745 0.848 0.750
Qwen2.5-7B-Instruct 0.815 0.822 0.747 0.734 0.845 0.744
Goldfish Chinese 0.766 0.771 0.647 0.621 0.912 0.682

Table 24: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model,
using Multi-Layer Perceptron (MLP) classifiers (Chinese). Lemmas are grouped by their POS tags
(e.g., , Noun, Verb, Adjective). Accuracies are calculated over all examples for a given group across
all layers. Counts (n) are derived from a single representative layer for each group. All accuracy
values are on a 0–1 scale.
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Model Base 3rd person Positive Past Plural Superlative Singular Comparative
(n=417) (n=517) (n=1,720) (n=839) (n=1,076) (n=52) (n=3,197) (n=141)

mT5-Base 0.908 0.941 0.940 0.960 0.882 0.572 0.962 0.636
Qwen2.5-1.5B 0.849 0.889 0.922 0.914 0.888 0.657 0.953 0.796
Qwen2.5-1.5B-Instruct 0.844 0.887 0.922 0.910 0.889 0.659 0.952 0.795
Qwen2.5-7B 0.892 0.922 0.939 0.947 0.909 0.826 0.962 0.878
Qwen2.5-7B-Instruct 0.915 0.934 0.945 0.962 0.924 0.866 0.968 0.909
Goldfish German 0.938 0.941 0.955 0.979 0.916 0.542 0.968 0.708

Table 25: Breakdown of inflection classification accuracy for each model by inflection type using
Linear Regression classifiers (German). Accuracies are calculated over all examples for a given
group across all layers. Counts (n) are derived from a single representative layer for each group. All
accuracy values are on a 0–1 scale.

Model Base 3rd person Positive Past Plural Superlative Singular Comparative
(n=417) (n=517) (n=1,720) (n=839) (n=1,076) (n=52) (n=3,197) (n=141)

mT5-Base 0.921 0.945 0.948 0.959 0.884 0.723 0.967 0.770
Qwen2.5-1.5B 0.890 0.915 0.930 0.940 0.897 0.831 0.958 0.892
Qwen2.5-1.5B-Instruct 0.888 0.914 0.930 0.938 0.898 0.825 0.957 0.897
Qwen2.5-7B 0.912 0.932 0.944 0.956 0.913 0.868 0.964 0.924
Qwen2.5-7B-Instruct 0.925 0.941 0.950 0.966 0.928 0.901 0.970 0.936
Goldfish German 0.947 0.957 0.964 0.978 0.923 0.817 0.970 0.896

Table 26: Breakdown of inflection classification accuracy for each model by inflection type using
Multi-Layer Perceptron (MLP) classifiers (German). Accuracies are calculated over all examples for
a given group across all layers. Counts (n) are derived from a single representative layer for each
group. All accuracy values are on a 0–1 scale.

Model
Linear Regression MLP

Noun Verb Adjective Other Noun Verb Adjective Other
(n=1,262) (n=395) (n=406) (n=12) (n=1,262) (n=395) (n=406) (n=12)

mT5-Base 0.685 0.662 0.568 0.750 0.611 0.602 0.486 0.723
Qwen2.5-1.5B 0.743 0.725 0.715 0.775 0.721 0.700 0.687 0.711
Qwen2.5-1.5B-Instruct 0.740 0.722 0.715 0.766 0.722 0.698 0.687 0.704
Qwen2.5-7B 0.821 0.809 0.808 0.829 0.795 0.786 0.783 0.814
Qwen2.5-7B-Instruct 0.815 0.803 0.803 0.821 0.795 0.785 0.782 0.813
Goldfish German 0.720 0.747 0.701 0.769 0.758 0.772 0.742 0.769

Table 27: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model, using
Linear Regression and Multi-Layer Perceptron (MLP) classifiers (German). Lemmas are grouped
by their POS tags (e.g., , Noun, Verb, Adjective). Accuracies are calculated over all examples for
a given group across all layers. Counts (n) are derived from a single representative layer for each
group. All accuracy values are on a 0–1 scale.
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Model Base 3rd person Positive Past Plural Singular
(n=688) (n=776) (n=1,833) (n=857) (n=1,457) (n=5,169)

mT5-Base 0.934 0.912 0.879 0.908 0.954 0.970
Qwen2.5-1.5B 0.933 0.858 0.896 0.903 0.958 0.967
Qwen2.5-1.5B-Instruct 0.930 0.852 0.893 0.898 0.958 0.966
Qwen2.5-7B 0.955 0.918 0.918 0.931 0.965 0.975
Qwen2.5-7B-Instruct 0.951 0.913 0.915 0.928 0.964 0.974
Goldfish French 0.942 0.955 0.937 0.930 0.968 0.976

Table 28: Breakdown of inflection classification accuracy for each model by inflection type using
Linear Regression classifiers (French). Accuracies are calculated over all examples for a given group
across all layers. Counts (n) are derived from a single representative layer for each group. All
accuracy values are on a 0–1 scale.

Model Base 3rd person Positive Past Plural Singular
(n=688) (n=776) (n=1,833) (n=857) (n=1,457) (n=5,169)

mT5-Base 0.957 0.937 0.911 0.935 0.957 0.977
Qwen2.5-1.5B 0.954 0.905 0.914 0.925 0.965 0.968
Qwen2.5-1.5B-Instruct 0.954 0.902 0.911 0.924 0.965 0.968
Qwen2.5-7B 0.966 0.936 0.930 0.937 0.970 0.976
Qwen2.5-7B-Instruct 0.962 0.931 0.926 0.934 0.970 0.975
Goldfish French 0.974 0.967 0.945 0.942 0.973 0.979

Table 29: Breakdown of inflection classification accuracy for each model by inflection type using
Multi-Layer Perceptron (MLP) classifiers (French). Accuracies are calculated over all examples for
a given group across all layers. Counts (n) are derived from a single representative layer for each
group. All accuracy values are on a 0–1 scale.

Model
Linear Regression MLP

Noun Verb Adjective Other Noun Verb Adjective Other
(n=1,496) (n=406) (n=358) (n=15) (n=1,496) (n=406) (n=358) (n=15)

mT5-Base 0.708 0.577 0.605 0.799 0.755 0.560 0.636 0.820
Qwen2.5-1.5B 0.754 0.725 0.673 0.824 0.807 0.765 0.751 0.853
Qwen2.5-1.5B-Instruct 0.750 0.718 0.671 0.820 0.824 0.776 0.768 0.869
Qwen2.5-7B 0.840 0.814 0.764 0.869 0.856 0.825 0.794 0.884
Qwen2.5-7B-Instruct 0.833 0.805 0.758 0.860 0.851 0.818 0.792 0.883
Goldfish French 0.749 0.758 0.661 0.811 0.894 0.869 0.813 0.888

Table 30: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model, using
Linear Regression and Multi-Layer Perceptron (MLP) classifiers (French). Lemmas are grouped by
their POS tags (e.g., , Noun, Verb, Adjective). Accuracies are calculated over all examples for a given
group across all layers. Counts (n) are derived from a single representative layer for each group. All
accuracy values are on a 0–1 scale.
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Model Base 3rd person Positive Past Plural Superlative Singular Comparative
(n=690) (n=456) (n=1,192) (n=455) (n=1,333) (n=3) (n=3,316) (n=23)

mT5-Base 0.930 0.978 0.975 0.957 0.877 0.000 0.977 0.799
Qwen2.5-1.5B 0.925 0.946 0.974 0.938 0.923 0.015 0.966 0.835
Qwen2.5-1.5B-Instruct 0.924 0.943 0.974 0.934 0.921 0.015 0.966 0.817
Qwen2.5-7B 0.949 0.966 0.979 0.958 0.948 0.094 0.977 0.872
Qwen2.5-7B-Instruct 0.951 0.974 0.980 0.970 0.948 0.080 0.980 0.918
Goldfish Russian 0.940 0.950 0.976 0.931 0.921 0.000 0.976 0.867

Table 31: Breakdown of inflection classification accuracy for each model by inflection type using
Linear Regression classifiers (Russian). Accuracies are calculated over all examples for a given
group across all layers. Counts (n) are derived from a single representative layer for each group. All
accuracy values are on a 0–1 scale.

Model Base 3rd person Positive Past Plural Superlative Singular Comparative
(n=690) (n=456) (n=1,192) (n=455) (n=1,333) (n=3) (n=3,316) (n=23)

mT5-Base 0.959 0.978 0.969 0.966 0.904 0.000 0.978 0.849
Qwen2.5-1.5B 0.952 0.955 0.972 0.948 0.933 0.089 0.970 0.899
Qwen2.5-1.5B-Instruct 0.950 0.954 0.973 0.947 0.933 0.089 0.969 0.911
Qwen2.5-7B 0.963 0.964 0.978 0.960 0.951 0.246 0.979 0.910
Qwen2.5-7B-Instruct 0.961 0.970 0.978 0.966 0.949 0.126 0.980 0.924
Goldfish Russian 0.965 0.972 0.978 0.948 0.943 0.000 0.977 0.934

Table 32: Breakdown of inflection classification accuracy for each model by inflection type using
Multi-Layer Perceptron (MLP) classifiers (Russian). Accuracies are calculated over all examples for
a given group across all layers. Counts (n) are derived from a single representative layer for each
group. All accuracy values are on a 0–1 scale.

Model
Linear Regression MLP

Noun Verb Adjective Other Noun Verb Adjective Other
(n=982) (n=333) (n=275) (n=4) (n=982) (n=333) (n=275) (n=4)

mT5-Base 0.660 0.614 0.542 0.648 0.492 0.484 0.387 0.426
Qwen2.5-1.5B 0.777 0.712 0.759 0.720 0.712 0.696 0.716 0.647
Qwen2.5-1.5B-Instruct 0.772 0.704 0.756 0.720 0.710 0.689 0.717 0.643
Qwen2.5-7B 0.854 0.790 0.843 0.812 0.798 0.794 0.813 0.749
Qwen2.5-7B-Instruct 0.845 0.778 0.835 0.807 0.794 0.785 0.809 0.744
Goldfish Russian 0.795 0.723 0.764 0.676 0.810 0.776 0.759 0.657

Table 33: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model, using
Linear Regression and Multi-Layer Perceptron (MLP) classifiers (Russian). Lemmas are grouped
by their POS tags (e.g., , Noun, Verb, Adjective). Accuracies are calculated over all examples for
a given group across all layers. Counts (n) are derived from a single representative layer for each
group. All accuracy values are on a 0–1 scale.
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Model Base 3rd person Positive Past Plural Singular
(n=154) (n=51) (n=401) (n=168) (n=33) (n=632)

mT5-Base 0.860 0.911 0.928 0.966 0.837 0.952
Qwen2.5-1.5B 0.808 0.802 0.721 0.928 0.861 0.892
Qwen2.5-1.5B-Instruct 0.809 0.817 0.720 0.941 0.878 0.899
Qwen2.5-7B 0.865 0.879 0.810 0.966 0.903 0.909
Qwen2.5-7B-Instruct 0.850 0.874 0.796 0.960 0.886 0.900
Goldfish Turkish 0.847 0.915 0.880 0.964 0.872 0.963

Table 34: Breakdown of inflection classification accuracy for each model by inflection type using
Linear Regression classifiers (Turkish). Accuracies are calculated over all examples for a given
group across all layers. Counts (n) are derived from a single representative layer for each group. All
accuracy values are on a 0–1 scale.

Model Base 3rd person Positive Past Plural Singular
(n=154) (n=51) (n=401) (n=168) (n=33) (n=632)

mT5-Base 0.755 0.760 0.848 0.922 0.515 0.949
Qwen2.5-1.5B 0.770 0.767 0.667 0.919 0.765 0.914
Qwen2.5-1.5B-Instruct 0.762 0.757 0.662 0.917 0.766 0.913
Qwen2.5-7B 0.853 0.845 0.791 0.956 0.875 0.937
Qwen2.5-7B-Instruct 0.845 0.844 0.786 0.956 0.875 0.932
Goldfish Turkish 0.832 0.879 0.870 0.957 0.834 0.957

Table 35: Breakdown of inflection classification accuracy for each model by inflection type using
Multi-Layer Perceptron (MLP) classifiers (Turkish). Accuracies are calculated over all examples for
a given group across all layers. Counts (n) are derived from a single representative layer for each
group. All accuracy values are on a 0–1 scale.

Model
Linear Regression MLP

Noun Verb Adjective Other Noun Verb Adjective Other
(n=221) (n=53) (n=104) (n=13) (n=221) (n=53) (n=104) (n=13)

mT5-Base 0.866 0.823 0.921 0.955 0.215 0.421 0.374 0.637
Qwen2.5-1.5B 0.834 0.805 0.866 0.877 0.307 0.439 0.449 0.693
Qwen2.5-1.5B-Instruct 0.816 0.791 0.860 0.874 0.305 0.439 0.448 0.691
Qwen2.5-7B 0.871 0.850 0.900 0.904 0.595 0.625 0.695 0.809
Qwen2.5-7B-Instruct 0.850 0.823 0.883 0.885 0.579 0.613 0.678 0.800
Goldfish Turkish 0.929 0.904 0.940 0.969 0.386 0.550 0.477 0.808

Table 36: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model, using
Linear Regression and Multi-Layer Perceptron (MLP) classifiers (Turkish). Lemmas are grouped
by their POS tags (e.g., , Noun, Verb, Adjective). Accuracies are calculated over all examples for
a given group across all layers. Counts (n) are derived from a single representative layer for each
group. All accuracy values are on a 0–1 scale.
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