

---

# 000 001 002 003 004 005 ECHOES OF BERT: DO MODERN LANGUAGE MODELS 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053

# 000 001 002 003 004 005 ECHOES OF BERT: DO MODERN LANGUAGE MODELS 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053

Anonymous authors

Paper under double-blind review

## ABSTRACT

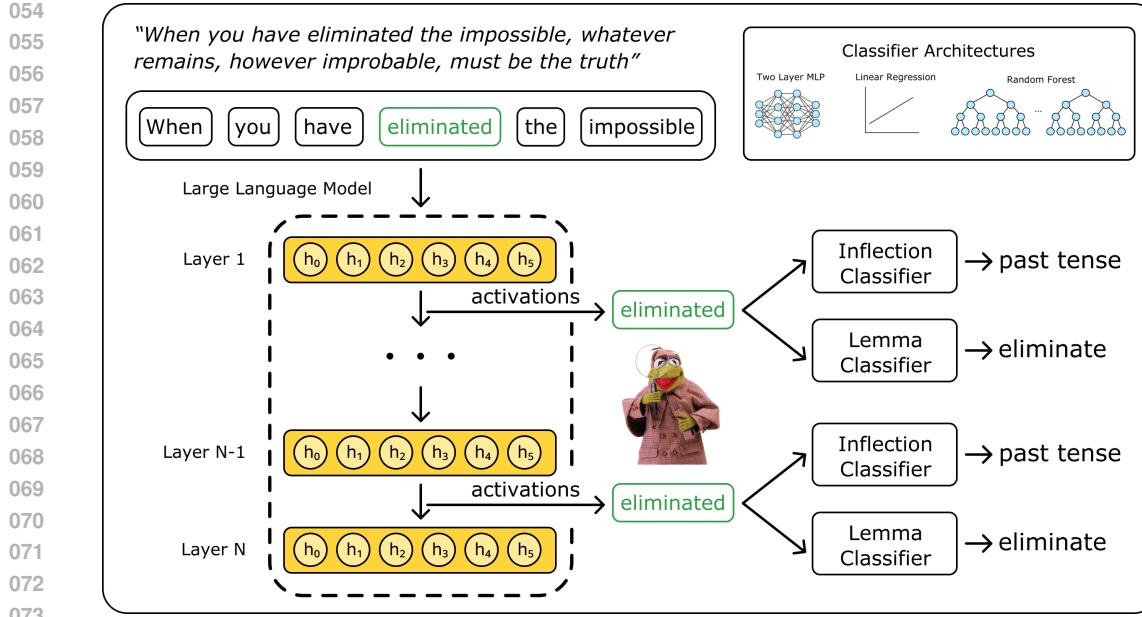
Large transformer-based language models dominate modern NLP, yet our understanding of how they encode linguistic information relies primarily on studies of early models like BERT and GPT-2. Building on prior BERTology work, we analyze 25 models spanning classical architectures (BERT, DeBERTa, GPT-2) to modern large language models (Pythia, OLMo-2, Gemma-2, Qwen2.5, Llama-3.1), probing layer-by-layer representations across eight linguistic tasks in English. Consistent with earlier findings, we find that hierarchical organization persists in modern models: early layers capture syntax, middle layers handle semantics and entity-level information, and later layers encode discourse phenomena. However, larger models compress this entire hierarchy toward earlier layer positions, suggesting they build richer representations more quickly. We dive deeper, conducting an in-depth multilingual analysis of two linguistic properties - lemma identity and inflectional features - that help disentangle form from meaning. We find that lemma information concentrates linearly in early layers but becomes increasingly nonlinear deeper in the network, while inflectional information remains linearly accessible throughout all layers. Additional analyses of attention mechanisms, steering vectors, and pretraining checkpoints reveal where this information resides within layers, how it can be functionally manipulated, and how representations evolve during pretraining. Taken together, our findings suggest that, even with substantial advances in LLM technologies, transformer models learn to organize linguistic information in similar ways, regardless of model architecture, size, or training regime, indicating that these properties are important for next token prediction.

## 1 INTRODUCTION

Large transformer-based language models (LMs) are widely used for tasks such as text generation, question answering, and code completion (Workshop, 2023; Groeneveld et al., 2024; Llama, 2024; Hui et al., 2024) However, how these models internally represent linguistic information remains an active research area. Prior work suggests a hierarchical organization where different layers specialize in capturing distinct levels of linguistic structure, from surface features to syntax and semantics (Jawahar et al., 2019; Tenney et al., 2019a; Rogers et al., 2020).

But these studies focus only on first-generation LMs such as BERT and GPT-2 (Devlin et al., 2019; Radford et al., 2019). Since then, language technology has transformed dramatically - today's models differ in architecture (encoder-only, decoder-only, encoder-decoder), pretraining objectives (masked vs. causal language modeling), training data volume (billions vs. trillions of tokens), and post-training adaptation. (Brown et al., 2020; Groeneveld et al., 2024; Lambert et al., 2025). We ask: do modern LMs *rediscover the classical NLP pipeline* observed in early models, and how does model scale and architecture influence where and how linguistic structure is encoded?

To answer these questions we systematically probe 25 pretrained models ranging from BERT Base to Llama-3.1 8B, spanning multiple architectures, sizes, and training regimes. We train simple classifiers at each layer to predict eight linguistic tasks in English and evaluate where information emerges.



074  
075  
076  
077  
078  
079  
080  
081  
082  
083  
084  
085  
086  
087  
088  
089  
090  
091  
092  
093  
094  
095  
096  
097  
098  
099  
100  
101  
102  
103  
104  
105  
106  
107

Figure 1: Overview of our probing methodology. We extract hidden state activations from each model layer for target words and train simple linear and shallow non-linear classifiers for token, span and pairwise edge predictions (POS, dependencies, constituents, NER, SRL, SPR, coreference, and relations), as well as word-level lemma and inflection prediction. We compute selectivity using control labels and summarize where performance emerges with expected layer and center of gravity.

Beyond this pipeline analysis, we perform a targeted case study on two linguistic properties: *lemma identity* and *inflectional features*. These properties help disentangle meaning from surface form - consider the words *walk*, *walked*, *jump*, and *jumped*. Do language models group words by shared meaning (*walk*, *walked*) or by shared grammar (*walked*, *jumped*)? More broadly, where and how do LMs encode a word's lemma and its inflectional features?

We examine six typologically diverse languages - English, Chinese, German, French, Russian, and Turkish - to test whether observed patterns generalize beyond English. We also test where lemma and inflectional information resides (attention heads vs. residual streams), track when these representations emerge during pretraining, and evaluate the impact of editing activations via steering vectors. We find that:

1. Modern LMs rediscover the classical NLP pipeline. Syntactic tasks peak earliest, semantic tasks peak in the middle, and discourse tasks peak latest. Larger models compress this pipeline towards shallower layers, suggesting they learn richer representations more quickly.
2. Lemma information is encoded prominently in early layers and becomes increasingly non-linear deeper in the network, whereas inflectional information remains linearly accessible across all layers and languages.
3. Lemma and inflectional information emerge early in pretraining and reside primarily in the residual stream; inflectional features occupy compact, steerable subspaces that enable effective interventions.

## 2 PROBE DESIGN AND METRICS

We investigate how language models encode linguistic information using simple classifiers (*probes*) trained on activations from individual layers. Following Tenney et al. (2019b), we consider three types of predictions: token-level tasks (e.g., POS), span-level tasks (constituency, named entity recognition, semantic role labeling, semantic proto-roles), and edge or pairwise tasks (dependency arcs and coreference links). For our case study we additionally train probes to predict each word's lemma and its inflectional features.

---

108  
109

## 2.1 PROBE ARCHITECTURES

110 For each layer of a model we extract residual-stream representations for a target word, span or pair  
111 and train two simple classifiers: a linear regression probe and non-linear multi-layer perceptron  
112 (MLP) probe. The linear probe measures how well information is linearly separable in the represen-  
113 tation space, while the non-linear probe tests whether a non-linear decision boundary yields better  
114 performance. Comparing these probes allows us to infer whether a property is encoded *linearly* or  
115 *non-linearly*. Architecture details and hyperparameters are provided in Appendix C.

116

## 117 2.2 REPRESENTATIONS AND TASKS

118

119 For token-level tasks we use the representation of the last subword token for the target word; for  
120 span-level tasks we mean-pool representations across subwords; for pairwise tasks we concatenate  
121 and element-wise combine representations following Tenney et al. (2019b).

122

123 We evaluate eight linguistic tasks introduced by Tenney et al. (2019a), covering the classical NLP  
124 pipeline from syntax to discourse. At the syntactic level, we consider part-of-speech tagging,  
125 constituency parsing (phrase structure), and dependency parsing (head-dependent relations); at the  
126 semantic level, named entity recognition (persons, organizations, locations), semantic role labeling  
127 (agent and patient roles), and semantic proto-role labeling (e.g., , volition, sentience); and at the  
128 discourse level, coreference resolution and relation extraction (relations between entities). Formal  
129 task definitions are provided in Appendix D.

130

## 131 2.3 METRICS

132

133 We define several metrics for localizing where information emerges with depth and for quantifying  
134 nonlinearity: selectivity, the linear separability gap, and two depth statistics inspired by Tenney et al.  
135 (2019a), expected layer and center of gravity.

136

137 **Selectivity.** Probes may simply memorize training data rather than extracting true linguistic in-  
138 formation from the representations. To account for this, we train identical probes on randomly  
139 permuted labels (control tasks) following Hewitt & Liang (2019). We define selectivity at layer  $\ell$  as  
140 the difference between real and control accuracies:

141

$$Sel_\ell = Acc_\ell^{\text{real}} - Acc_\ell^{\text{control}} \quad (1)$$

142

143 Higher values mean the classifier is extracting true linguistic information rather than memorizing.

144

145 **Linear separability gap.** We quantify nonlinearity at a layer as the difference in accuracy between  
146 a non-linear and linear probe:

147

$$Gap_\ell = Acc_\ell^{\text{nonlin}} - Acc_\ell^{\text{linear}}, \quad (2)$$

148

149 where positive values indicate useful information is present but not linearly separable.

150

151 **Center of gravity and expected layer.** Let  $a_\ell$  be the test accuracy using layer  $\ell$  for  $\ell = 0, \dots, L$ ,  
152 and let  $b_\ell = \max_{j \leq \ell} a_j$  be the cumulative (best-so-far) curve. We weight layers by their consolidation  
153 relative to the baseline and take an index-weighted average:

154

$$w_\ell = \frac{b_\ell - b_0}{\sum_{k=0}^L (b_k - b_0)}, \quad \text{CenterOfGravity} = \sum_{\ell=0}^L \ell w_\ell. \quad (3)$$

155

156 Then, to localize where marginal gains first occur, we use the nonnegative increments of the cumula-  
157 tive curve and take their weighted average:

158

$$\Delta_\ell = \max(b_\ell - b_{\ell-1}, 0), \quad p_\ell = \frac{\Delta_\ell}{\sum_{j=1}^L \Delta_j}, \quad \text{ExpectedLayer} = \sum_{\ell=1}^L \ell p_\ell. \quad (4)$$

159

160

161 Unlike center of gravity (which weights consolidated performance), this emphasizes where useful  
162 information first becomes available, highlighting the specific layers at which the model begins to  
163 encode properties relevant to the task.

---

162           3 EXPERIMENTS  
163

164  
165     Using the methodology introduced in Section §2, we describe the components of our experimental  
166     setup: the datasets, model suite, and procedure for extracting token-level representations.  
167

168           3.1 DATASETS  
169

170     We use several annotated datasets for our eight classical NLP pipeline tasks: UD English-GUM (POS,  
171     dependencies, named entities, coreference, constituents) (Nivre et al., 2016; Zeldes, 2017), Universal  
172     Propositions English-EWT (SRL) (Jindal et al., 2022), SPR1 datasets (PropBank and UD-EWT  
173     sources; SPR), and SemEval-2010 Task 8 (relations). We use the same token/span/edge labeling  
174     schemes.

175     For our in-depth analysis of lemma identity and inflectional features, we use Universal Dependencies  
176     corpora across six languages - English, Chinese, German, French, Russian, Turkish (Nivre et al.,  
177     2016). We select GUM for English (Zeldes, 2017), GSD for Chinese/German/French (McDonald  
178     et al., 2013; Guillaume et al., 2019), SynTagRus for Russian (Droganova et al., 2018), and IMST for  
179     Turkish (Sulubacak et al., 2016).<sup>1</sup>  
180

181           3.2 MODELS  
182

183  
184     We study a diverse set of pretrained  
185     transformer language models span-  
186     ning different architectures, sizes, and  
187     training regimes. Table 1 lists all mod-  
188     els used in this study (see Table 16 for  
189     the HuggingFace identifiers).

190     For English, we evaluate all models  
191     listed in Table 1 (excluding the non-  
192     English Goldfish models). For the  
193     five non-English languages (Chinese,  
194     German, French, Russian, Turkish),  
195     we focus on models that have explicit  
196     multilingual training: the Goldfish  
197     monolingual models trained specifi-  
198     cally for each target language (Chang  
199     et al., 2024), multilingual Qwen2.5  
200     variants that include these languages  
201     in their training data, and the multi-  
202     lingual mT5-base model (Xue et al.,  
203     2021). This ensures that we eval-  
204     uate models on languages they were  
205     trained on while maintaining suffi-  
206     cient coverage.

207           3.3 REPRESENTATION EXTRACTION  
208

209     We tokenize inputs with model-specific tokenizers and run a forward pass to collect residual-stream  
210     activations from every layer. Token, span, and pair encodings follow Section §2. For words split into  
211     multiple subwords, we use the last subword’s representation (Devlin et al., 2019). Models are used  
212     as-is (no fine-tuning), and we report results by layer using these activations.  
213

Table 1: Overview of models used in this study.

| Model                   | Parameters | Pretraining Data          | Layers |
|-------------------------|------------|---------------------------|--------|
| <b>Encoder-only</b>     |            |                           |        |
| BERT Base               | 110M       | 12.6B tokens <sup>1</sup> | 12     |
| BERT Large              | 340M       | 12.6B tokens <sup>1</sup> | 24     |
| DeBERTa V3 Large        | 418M       | 32B tokens <sup>1</sup>   | 24     |
| <b>Decoder-only</b>     |            |                           |        |
| GPT-2-Small             | 124M       | 8B tokens <sup>1</sup>    | 12     |
| GPT-2-Large             | 708M       | 8B tokens <sup>1</sup>    | 36     |
| GPT-2-XL                | 1.5B       | 8B tokens <sup>1</sup>    | 48     |
| Goldfish English 1000mb | 124M       | 200M tokens               | 12     |
| Goldfish Chinese 1000mb | 124M       | 200M tokens               | 12     |
| Goldfish German 1000mb  | 124M       | 200M tokens               | 12     |
| Goldfish French 1000mb  | 124M       | 200M tokens               | 12     |
| Goldfish Russian 1000mb | 124M       | 200M tokens               | 12     |
| Goldfish Turkish 1000mb | 124M       | 200M tokens               | 12     |
| Pythia-6.9B             | 6900M      | 300B tokens               | 32     |
| Pythia-6.9B Tulu        | 6900M      | 300B tokens               | 32     |
| OLMo-2-7B               | 7300M      | 4T tokens                 | 32     |
| OLMo-2-7B-Instruct      | 7300M      | 4T tokens                 | 32     |
| Gemma-2-2B              | 2610M      | 2T tokens                 | 26     |
| Gemma-2-2B-Instruct     | 2610M      | 2T tokens                 | 26     |
| Qwen2.5-1.5B            | 1540M      | 18T tokens                | 28     |
| Qwen2.5-1.5B-Instruct   | 1540M      | 18T tokens                | 28     |
| Qwen2.5-7B              | 7620M      | 18T tokens                | 28     |
| Qwen2.5-7B-Instruct     | 7620M      | 18T tokens                | 28     |
| Llama-3.1-8B            | 8000M      | 15T tokens                | 32     |
| Llama-3.1-8B-Instruct   | 8000M      | 15T tokens                | 32     |
| <b>Encoder-Decoder</b>  |            |                           |        |
| mT5-base                | 580M       | 1T tokens                 | 12     |

<sup>1</sup> Converted from GB to tokens using the approximation that 1GB of data  
is approximately 200M tokens in English (Chang et al., 2024).

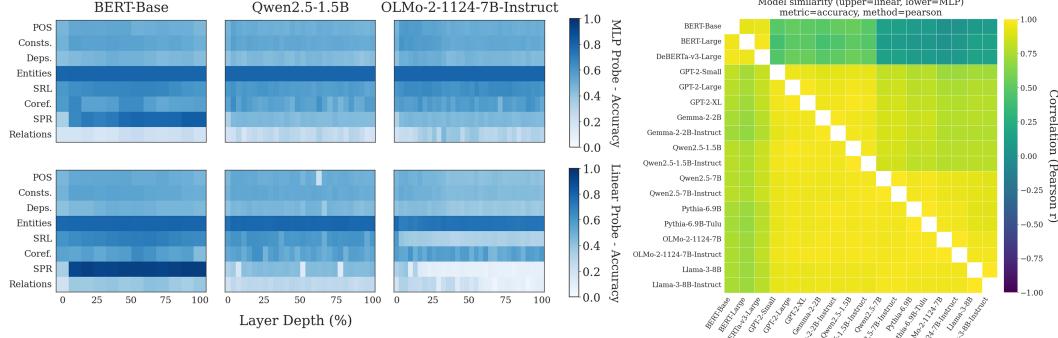
215     <sup>1</sup>See Appendix §H for complete details including dataset statistics, tokenization information, and visualiza-  
216     tions for all languages

---

## 216 4 THE CLASSICAL NLP PIPELINE

218 We probe 18 models across eight linguistic tasks to test whether modern language models rediscover  
 219 the classical NLP pipeline. In this section, we present three representative models - encoder-only,  
 220 decoder-only and instruction-tuned architectures - with full results for all models in Appendix §E.  
 221

### 222 4.1 LAYERWISE PATTERNS CLEANLY SEPARATE MODEL FAMILIES



237 **Left:** Probe accuracy across layers for BERT Base, Qwen2.5-1.5B, and  
 238 OLMo-2-1124-7B-Instruct. Top panels show MLP probes and bottom panel show linear probes.  
 239 **Right:** Pearson correlations between all models, computed from flattening each model’s task-by-layer  
 240 accuracy grid and correlating across all pairs of models. Lower triangle: MLP correlations; upper  
 241 triangle: linear correlations

242 **Probe performance.** Our results in Figure 2 (left) show that MLP probes consistently match or  
 243 exceed linear probe accuracy across all tasks (see Figures 7 and 8 for complete results). The linear  
 244 separability gap - the difference between MLP and linear performance - peaks for late-pipeline tasks,  
 245 specifically SPR and Relations. This pattern holds across all 18 models (see Appendix §E).

246 **Model correlations.** The correlation matrix, Figure 2 (right), provides a global summary between  
 247 all 18 models. A high correlation indicates that two models’ layerwise accuracies across tasks are  
 248 similar; low correlations indicate divergent accuracy patterns. We observe three distinct trends:

- 250 *1. Models cluster by architecture.* Encoder-only models (e.g., BERT and DeBERTa) correlate  
 251 strongly with each other while having low correlations with decoder models. The same is  
 252 true for decoder-only architectures, such as GPT-2, Pythia, Qwen2.5 and Llama 3.1, which  
 253 form their own cluster with high internal similarity.
- 254 *2. Instruction tuning preserves base model latent structure.* Fine-tuned variants maintain high  
 255 correlations with their base counterparts, indicating that post-training does not fundamentally  
 256 reorganize linguistic representations.
- 257 *3. Model size forms a secondary clustering, but only for linear probes.* Models around one  
 258 billion parameters group together separately from 7B+ models for linear probe accuracy. MLP  
 259 probes don’t show this size-based clustering, likely because their additional capacity masks  
 260 any scale-dependent representation differences.

### 262 4.2 LARGER MODEL COMPRESS THE HIERARCHY

264 To pinpoint where linguistic properties emerge and consolidate, we compute compute expected  
 265 layer and center of gravity as defined in Section 2. Intuitively, the *expected layer* captures marginal  
 266 accuracy gains and highlights the depth at which information first emerges, while *center of gravity*  
 267 weights each layer by cumulative best accuracy to locate performance ultimately consolidates most  
 268 strongly.

269 **The hierarchy persists.** Figure 3 shows a shared relative ordering partially emerges across all  
 270 models. Syntactic tasks (POS, Constituency, Dependencies) tend to emerge before semantic tasks

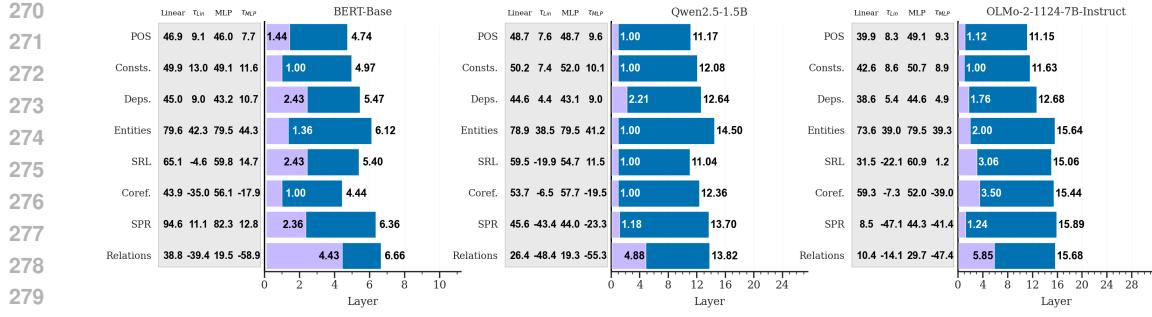


Figure 3: Expected layer (blue) and center of gravity (purple) for the same three models. The left four columns show accuracy and selectivity ( $\tau$ ) for linear and MLP probes, averaged across layers. Selectivity measures how much of the accuracy is due to genuine signal rather than memorization by the probe.

(Entities, SRL, SPR), which emerge before discourse phenomena (Coreference, Relations). However, this hierarchical progression is less distinct in modern models than in early ones, suggesting that the hierarchy exists but is compressed.

**Scale compresses depth.** Model capacity determines *where* and *whether* this hierarchy forms. For example, BERT Base (12 layers) places relation extraction around layer 8, while both Qwen2.5-1.5B (28 layers) and OLMo-2-7B-Instruct (32 layers) compress it to approximately one-fifth depth. Larger models seem to encode the complete linguistic hierarchy using fewer layers, suggesting that they build useful representations earlier.

**Selectivity reveals probe limitations.** MLP probes appear to achieve high accuracy, but have strong negative selectivity, meaning they memorize the task rather than extract meaningful information from the representations. Linear probes are better, showing positive selectivity for syntactic tasks. However, they drop to near zero selectivity for discourse tasks (Coreference, Relations), suggesting that while discourse information exists in representations, linear decoding struggles to extract it cleanly.

### 4.3 DISCUSSION

Our analysis establishes two key findings:

1. The hierarchical organization observed in early transformers survives in modern models but with less separation between levels. But this relative ordering is detectable across architectures (encoder, decoder, encoder-decoder), training regimes (causal and masked language modeling, instruction tuning), and scale (100M to 8B parameters), but boundaries blur as models compress the pipeline.
2. Modern models encode all linguistic levels at shallower depths. Where BERT Base clearly separated syntactic, semantic, and discourse processing across its layers, a 7B model (OLMo-2-7B-Instruct) compresses this entire hierarchy into its early layers. This compression is evidence that as models become more powerful, they need fewer layers to learn this hierarchical linguistic structure, perhaps because they have higher representational capacity per layer and benefit from more extensive training.

These results suggest that while the classical NLP pipeline represented how early transformers organized knowledge, modern models develop a more compressed, interleaved representation of linguistic structure.

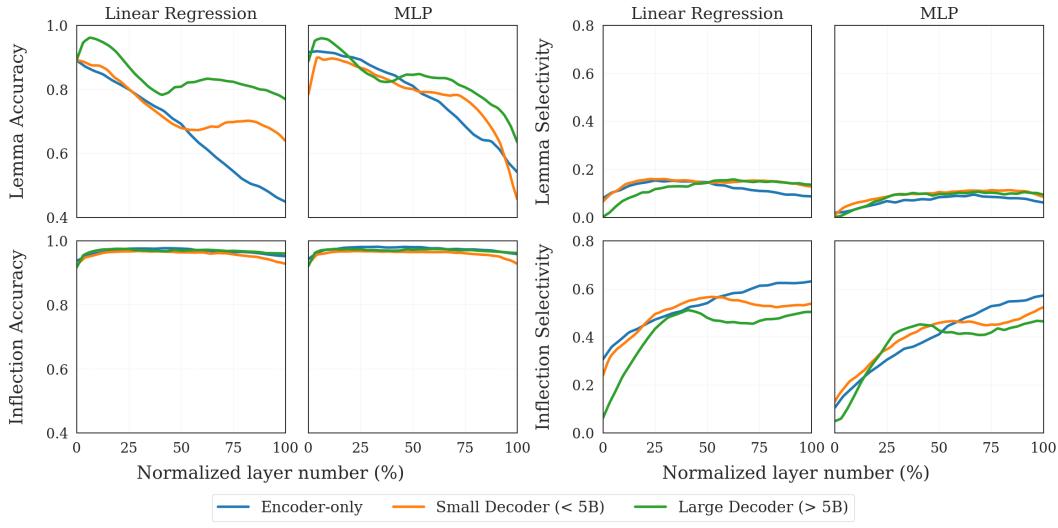
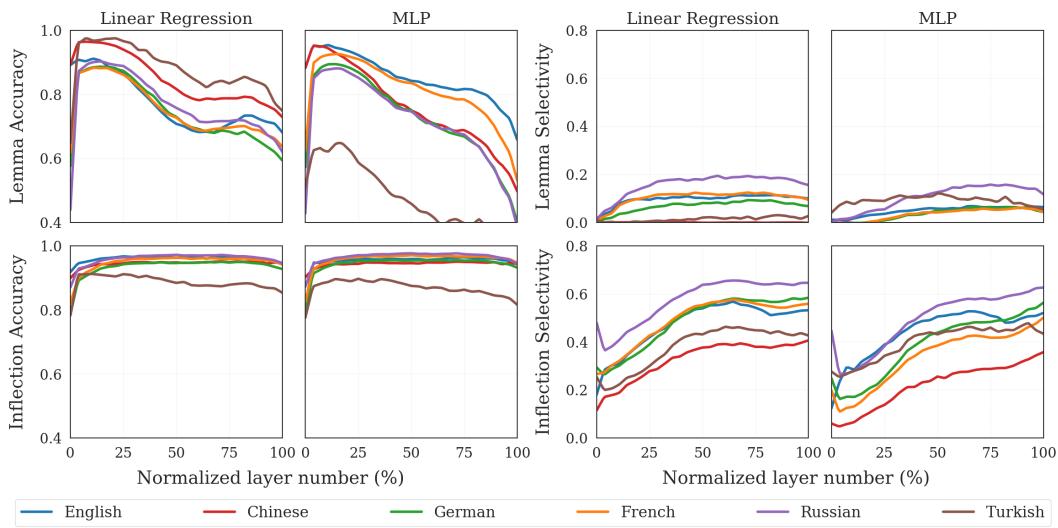
## 5 LEMMA IDENTITY AND INFLECTIONAL FEATURES

We now examine two important token-level properties: lemma identity and inflectional features. Using the same probing framework from Section 4, we expand to six typologically diverse languages: English, Chinese, German, French, Russian, and Turkish. We investigate where these properties emerge in model representations and how they become linearly accessible across layers.

---

324 5.1 RESULTS
325

326 We report layer-wise accuracies for lemma and inflection prediction across classifier types and
327 languages. We evaluate 19 English models and six multi/monolingual models across lemma and
328 inflection prediction tasks. Detailed layer-wise accuracy and selectivity tables are provided in
329 Appendix §G.
330


349 Figure 4: Lemma and inflection probing results for English, *averaged by model category*: encoder-
350 only (BERT, DeBERTa), small decoder <5B (GPT-2, Gemma-2-2B (and instruct), Qwen2.5-1.5B (and
351 instruct)), and large decoder >5B (Pythia-6.9B, OLMo-2-7B, Llama-3.1-8B and instruct versions).
352 Columns show prediction accuracy (Linear vs. MLP probes) and selectivity scores (linguistic minus
353 control accuracy). Note that for readability, the y-axis for accuracy starts at 0.4. Full (non-averaged)
354 results for individual models are provided in Appendix §F.
355

374 Figure 5: Cross-linguistic probing results *averaged across all models within each language*. Each
375 language averages over multilingual models mT5-base, Qwen2.5-1.5B (and instruct), Qwen2.5-7B
376 (and instruct) and its corresponding monolingual Goldfish <Language> 1000mb model (e.g.,
377 Goldfish English 1000mb). Columns show lemma and inflection accuracy (Linear vs. MLP)
378 followed by selectivity scores. Note that for readability, the y-axis for accuracy starts at 0.4. Full
379 (non-averaged) results for individual models are provided in Appendix §F.

378  
379  
380  
381  
382  
383  
384  
385

**Lemma.** Lemma accuracy under linear regression starts high (0.8–1.0) and decreases with depth in all English model families (Figure 4, top left). Encoder-only models show the strongest decrease, while small decoders decline more gradually and large decoders maintain higher accuracy in deeper layers. Across languages (Figure 5, top left), Turkish shows the largest drop (0.95 to 0.25), while Russian and Chinese retain 0.6–0.8 accuracy in later layers. MLP accuracy is similar but slightly higher than linear at most depths (middle column). Selectivity for lemma remains close to zero across depths and languages (right column), indicating that high lemma accuracy early in the network is mostly driven by surface correlations rather than strongly selective lexical structure.

386  
387  
388  
389  
390  
391  
392

**Inflection.** Inflectional features remain readable across all layers and architectures. For English, linear regression accuracy stays near 0.9–1.0 throughout the layers (Figure 4, bottom left). This pattern holds cross-linguistically (Figure 5, bottom left): English, German, French, and Russian exceed 0.9 accuracy at most depths, while Turkish is slightly lower, hovering around 0.8–0.9. MLP probes follow the same pattern (middle column). Selectivity scores for inflection remain positive (0.4–0.6) across models and languages (right column), with Russian and German at the upper end, supporting the view that inflectional features are encoded in stable, linearly accessible subspaces.

393  
394  
395  
396  
397  
398

**Probe error analysis.** Frequency strongly correlates with probe accuracy for both tasks. Frequent lemmas and inflectional categories achieve higher accuracy, while rare words and rare inflections account for most errors. For inflection, comparative and superlative degrees and low-frequency verb forms are the most error-prone categories. Turkish shows the strongest sensitivity to frequency, likely due to its morphological complexity creating a long tail of rare forms. A detailed breakdown by part of speech and inflectional category is given in Appendix §L.

399  
400

## 5.2 ANALYSIS

401  
402  
403  
404

Our results show that lemma identity is encoded strongly in early layers but becomes less accessible in deeper layers, whereas inflectional features remain robustly decodable throughout the model. We analyze this further along several axes.

405  
406  
407  
408  
409  
410  
411  
412  
413

**Inflection is linearly separable; lemma shows limited nonlinearity.** We report the linear separability gap, defined in equation (2), which measures the accuracy difference between MLP and linear probes. Detailed plots for lemma and inflection appear in Appendix §I.3. For inflection, the gap stays close to zero across layers, architectures, and languages, typically within  $\pm 0.02$  accuracy, consistent with the near-overlap of linear and MLP curves in Figures 4 and 5. This is evidence that inflectional features are encoded linearly in the representations. For lemma, gaps are modest but positive, especially in early and middle layers of encoder-only models and smaller decoders, where MLPs achieve slightly higher accuracy than linear probes before both degrade in deeper layers. This suggests that lemma information is present but less linearly separable than inflection.

414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424

**Some models show extreme mid-layer dimensionality compression; others gradually compress representations.** To characterize the representation geometry of these models, we estimate intrinsic dimensionality by counting the fraction of principal components required to reach fixed variance thresholds over our entire dataset of collected activations (full results appear in Appendix §I.1). Encoder-only models (BERT, DeBERTa) and several decoders (Gemma, Llama, OLMo-2) exhibit gradual compression: even at 90–99% variance, the relative number of components decreases only slowly as depth increases. In contrast, GPT-2, Qwen2.5, and Pythia enter a regime in their middle layers where very few components – often just a single dimension – account for most of the variance at these thresholds. Analysis of activation statistics (Appendix §I.2) reveals that this low intrinsic dimensionality is driven by outlier dimensions with large activation values: models like Qwen2.5-1.5B reach maximum absolute activations of 8000 in middle layers, while models like Llama-3-8B reach values of only 30–40 (Sun et al., 2024; Rudman et al., 2023).

425  
426  
427  
428  
429  
430  
431

**Residual streams retain more linguistic information than attention outputs.** Probing attention-head outputs and residual-stream activations for BERT and contemporary decoders (Figures 27 and 28) highlights different roles for these components. For both lemma and inflection, probes on attention outputs yield lower accuracy than probes on the residual stream at almost all depths. For lemma, attention-based accuracy falls to around 0.2–0.4 in middle layers, while residual streams remain closer to 0.6–0.9. For inflection, both components maintain high accuracy (0.7–1.0), but residual streams consistently outperform attention outputs, particularly in middle layers. Selectivity follows the same pattern: lemma selectivity is near zero for attention outputs and higher for residuals, while

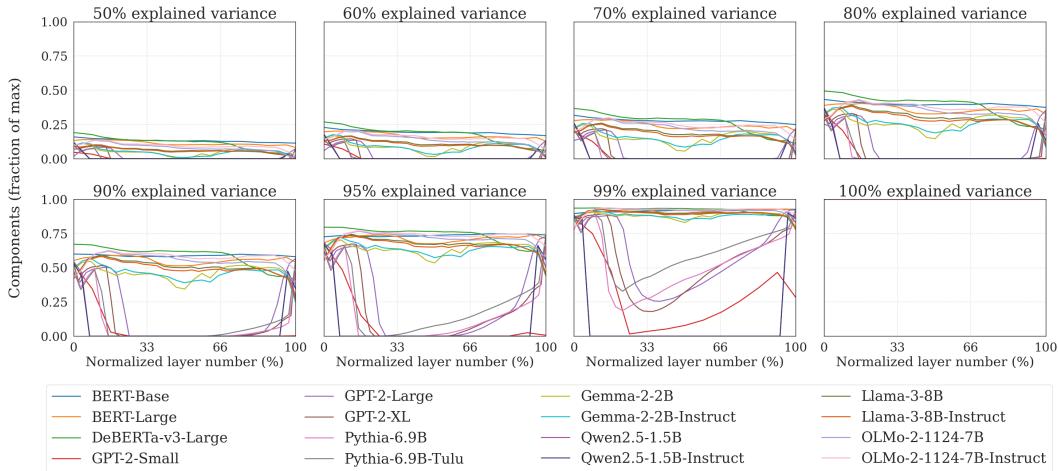


Figure 6: Intrinsic dimensionality across layers. Lines show fraction of PCA components needed to reach variance thresholds (50–100%). Models with strong mid-layer compression (few components for high variance) align with the inflection-is-linear, lemma-is-nonlinear split. Full curves per model appear in Figure 15.

inflection selectivity reaches 0.4–0.5 in both streams with residuals slightly higher. These results support a view in which attention primarily aggregates contextual relationships, whereas the residual stream/MLP layers preserve token-level lexical and morphological information that supports both lemma and inflection prediction.

**Inflection steering effectiveness tracks intrinsic dimensionality.** Steering experiments with inflection features (e.g., , singular vs. plural) connect these representational properties to causal control. For each pair of categories, we compute a difference vector between mean hidden states and apply scaled interventions at each layer. Figures 29 and 30 show that, for most architectures and layers, even moderate steering scales (e.g., ,  $\lambda = 5$ ) yield large changes in predicted inflection and high flip rates, indicating that a single direction in activation space can reliably control morphological representations. Qwen2.5 variants demonstrate an interesting property: in their early–middle layers, steering is much less effective, with both probability change and flip rate reaching their minima. This region aligns with the layers where intrinsic dimensionality is lowest in Figures 6 and 15. Combined with the accuracy curves in Figure 4, this suggests that strongly compressed representations are more resistant to causal manipulation, even when inflection remains linearly decodable, whereas higher-dimensional layers permit more effective steering of inflectional morphology.

**Inflection stabilizes early in training; lemma continues to change.** Pretraining checkpoint analysis for OLMo-2-7B and Pythia-6.9B (Figures 25 and 26) shows that morphological analysis emerges very early, whereas lemma information continues to evolve with training. For both model families, inflection accuracy is already high at the earliest checkpoints and increases only slightly with additional updates; inflection selectivity grows quickly in the first few checkpoints and then remains near its final value. Lemma behaves differently. In OLMo-2-7B, lemma accuracy and selectivity increase gradually across checkpoints, with the largest gains in middle layers. In Pythia-6.9B, early checkpoints exhibit much lower lemma accuracy and near-zero lemma selectivity in deeper layers, and both quantities rise steadily as training progresses. These trends indicate that models identify and stabilize inflectional categories early in pretraining, while lemma representations remain more plastic and continue to be reshaped throughout training, especially in the later layers of decoder-only models.

### 5.3 DISCUSSION

The previous analyses present a comprehensive picture of how lemma identity and inflectional features are organized inside transformer language models. Lemma information is strongly encoded in early layers but becomes less accessible as depth increases, particularly in models that undergo strong mid-layer compression. Inflectional features, in contrast, remain decodable across virtually all layers and models, with small linear separability gaps and high selectivity.

---

486 The linear separability results suggest that grammatical features are encoded in low-dimensional,  
487 approximately linear subspaces, while lemma identity relies more on higher-variance directions  
488 that are later deemphasized. Intrinsic dimensionality measurements, together with the steering  
489 experiments, tell us that aggressive compression in some decoder-only models limits the space in  
490 which such directions can be causally manipulated. Specifically, steering remains effective in higher-  
491 dimensional regions but degrades in layers whose variance is captured by very few components. The  
492 comparison between attention outputs and residual streams further implies that lexical information is  
493 preserved in the residual stream.

494 Taken together, these findings point to an organization in which inflection is a stable and linearly  
495 accessible component of the internal state, supporting both probing and controlled interventions,  
496 while lemma identity is encoded in a way that is useful for early processing but increasingly traded  
497 off against compact, context-oriented representations as models optimize for next-token prediction.

## 499 6 RELATED WORK

501 **Probing for linguistic information.** Probing studies typically use supervised classifiers to predict  
502 linguistic properties from model representations (Alain & Bengio, 2017; Adi et al., 2017). Extensive  
503 work has established that early transformer models (BERT, GPT-2) learn hierarchical linguistic  
504 structures, with different layers specializing in different information types: lower layers capture  
505 surface features and morphology, middle layers encode syntax, and upper layers represent semantics  
506 and context (Jawahar et al., 2019; Tenney et al., 2019a; Rogers et al., 2020). More relevant to our  
507 work, Vulic et al. (2020) found that lexical information concentrates in lower layers, while Ethayarajh  
508 (2019) showed that representations become increasingly context-specific in higher layers.

509 **Representation dynamics in modern LLMs.** Recent research has extended these analyses to  
510 modern, larger-scale generative models, examining how representational geometry evolves with  
511 scale. Cheng et al. (2025) identify a distinct high-dimensional abstraction phase in the early-to-  
512 middle layers of models like Llama and OLMo, suggesting that the transition from surface-level  
513 to abstract linguistic features occurs earlier than in previous architectures. Similarly, Skean et al.  
514 (2025) demonstrate that intermediate layers in modern LLMs often encode richer task-transferable  
515 representations than final layers, challenging the assumption that semantic capability monotonically  
516 increases with depth. These findings align with the pipeline compression we observe in Section §3.

517 **Activation steering.** Beyond probing, recent work has explored manipulating model behavior by  
518 intervening on internal representations. This includes steering vectors (Subramani et al., 2022),  
519 inference-time interventions (Li et al., 2023), representation editing (Meng et al., 2022), sparse  
520 autoencoders for feature discovery (Bricken et al., 2023), and causal mediation analysis (Vig et al.,  
521 2020). While these methods typically evaluate changes in model outputs, our steering experiments  
522 focus on measuring representational changes. See Appendix §B for more detailed discussion.

523 **Mechanistic interpretability and feature discovery.** Mechanistic interpretability approaches  
524 aim to reverse-engineer the algorithms learned by neural networks (Elhage et al., 2021), offering  
525 a more causal view of internal structure. Recent work uses sparse autoencoders to decompose  
526 dense representations into interpretable latent features (Cunningham et al., 2023; Bricken et al.,  
527 2023), providing clearer targets for interpretation than raw activations. While probing detects  
528 correlations between representations and linguistic concepts, these methods seek to identify the  
529 specific components and causal circuits that implement these behaviors.

## 531 7 CONCLUSION

533 In this work, we analyzed 25 transformer models and found that modern LMs show signs of  
534 rediscovering the classical NLP pipeline, progressing from syntax to semantics and discourse.  
535 However, we observe that larger models compress this hierarchy into earlier layers, suggesting that  
536 increased capacity allows useful representations to emerge sooner. Our case study further reveals  
537 that while lemma identity becomes increasingly non-linear with depth, inflectional features remain  
538 linearly accessible and steerable within the residual stream across languages. Collectively, these  
539 findings indicate that despite rapid advances in scale and training, transformers converge on robust,  
shared mechanisms for organizing linguistic information.

---

## 540 8 REPRODUCIBILITY STATEMENT 541

542 We will release a GitHub repository containing code to reproduce dataset construction, probing  
543 experiments, and all plots and analyses. The main paper specifies the probe design and metrics  
544 (Section §2), datasets and model suite (Sections §3 and Table 1), and evaluation summaries for the  
545 classical pipeline and for lemma identity and inflectional features (Sections §4 and §5). The appendix  
546 provides complete classifier and training details, dataset statistics, and full-resolution figure grids  
547 referenced in the text. Together, these materials are intended to enable end-to-end reproduction of our  
548 results.

## 550 REFERENCES 551

552 Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg. Fine-grained analysis of  
553 sentence embeddings using auxiliary prediction tasks. In *5th International Conference on Learning  
554 Representations (Conference Track)*, 2017. URL <https://openreview.net/forum?id=Bjh6Ztux1>.

555 Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes.  
556 In *5th International Conference on Learning Representations (Workshop Track)*, 2017. URL  
557 <https://openreview.net/forum?id=ryF7rTqgl>.

559 Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick  
560 Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,  
561 Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina  
562 Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and  
563 Christopher Olah. Towards monosematicity: Decomposing language models with dictionary  
564 learning. *Transformer Circuits Thread*, 2023. <https://transformer-circuits.pub/2023/monosemantic-features/index.html>.

566 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,  
567 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel  
568 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,  
569 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott  
570 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya  
571 Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL <https://arxiv.org/abs/2005.14165>.

573 Tyler A. Chang, Catherine Arnett, Zhuowen Tu, and Benjamin K. Bergen. Goldfish: Monolingual  
574 language models for 350 languages, 2024. URL <https://arxiv.org/abs/2408.10441>.

576 Emily Cheng, Diego Doimo, Corentin Kervadec, Iuri Macocco, Lei Yu, Alessandro Laio, and  
577 Marco Baroni. Emergence of a high-dimensional abstraction phase in language transformers.  
578 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=0fD3iIBh1V>.

581 Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-  
582 coders find highly interpretable features in language models, 2023. URL <https://arxiv.org/abs/2309.08600>.

584 Thao Anh Dang, Limor Raviv, and Lukas Galke. Tokenization and morphology in multilingual  
585 language models: A comparative analysis of mt5 and byt5, 2024. URL <https://arxiv.org/abs/2410.11627>.

588 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of  
589 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and  
590 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the  
591 Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and  
592 Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational  
593 Linguistics. doi: 10.18653/v1/N19-1423. URL <https://aclanthology.org/N19-1423/>.

---

594 Kira Droganova, Olga Lyshevskaya, and Daniel Zeman. Data conversion and consistency of  
595 monolingual corpora: Russian ud treebanks. In *Proceedings of the 17th international workshop*  
596 *on treebanks and linguistic theories (tlt 2018)*, volume 155, pp. 53–66. Linköping University  
597 Electronic Press Linköping, Sweden, 2018.

598 Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav Goldberg. Amnesic probing: Behavioral  
599 explanation with amnesic counterfactuals. *Transactions of the Association for Computational*  
600 *Linguistics*, 9:160–175, 2021. doi: 10.1162/tacl\_a\_00359. URL <https://aclanthology.org/2021.tacl-1.10/>.

603 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda  
604 Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,  
605 Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal  
606 Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris  
607 Olah. A mathematical framework for transformer circuits. *Transformer Circuits Thread*, 2021.  
608 <https://transformer-circuits.pub/2021/framework/index.html>.

609 Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the ge-  
610 ometry of BERT, ELMo, and GPT-2 embeddings. In Kentaro Inui, Jing Jiang, Vincent Ng,  
611 and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural*  
612 *Language Processing and the 9th International Joint Conference on Natural Language Processing*  
613 *(EMNLP-IJCNLP)*, pp. 55–65, Hong Kong, China, November 2019. Association for Computational  
614 Linguistics. doi: 10.18653/v1/D19-1006. URL <https://aclanthology.org/D19-1006/>.

615 Atticus Geiger, Hanson Lu, Thomas F Icard, and Christopher Potts. Causal abstractions of neural  
616 networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances*  
617 *in Neural Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=RmuXDtjDhG>.

620 Daniel Gildea and Daniel Jurafsky. Automatic labeling of semantic roles. *Computational Linguistics*,  
621 28(3):245–288, 2002. doi: 10.1162/089120102760275983. URL <https://aclanthology.org/J02-3001/>.

623 Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya  
624 Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell  
625 Author, Khyathi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel,  
626 Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal  
627 Nam, Matthew Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh  
628 Shah, William Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi,  
629 Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini,  
630 Noah Smith, and Hannaneh Hajishirzi. OLMo: Accelerating the science of language models. In  
631 Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting*  
632 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15789–15809,  
633 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/  
634 2024.acl-long.841. URL <https://aclanthology.org/2024.acl-long.841/>.

635 Bruno Guillaume, Marie-Catherine de Marneffe, and Guy Perrier. Conversion et améliorations de  
636 corpus du français annotés en Universal Dependencies [conversion and improvement of Universal  
637 Dependencies French corpora]. *Traitements Automatiques des Langues*, 60(2):71–95, 2019. URL  
638 <https://aclanthology.org/2019.tal-2.4/>.

639 Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian  
640 Padó, Marco Pennacchiotti, Lorenza Romano, and Stan Szpakowicz. SemEval-2010 task 8:  
641 Multi-way classification of semantic relations between pairs of nominals. In Katrin Erk and Carlo  
642 Strapparava (eds.), *Proceedings of the 5th International Workshop on Semantic Evaluation*, pp.  
643 33–38, Uppsala, Sweden, July 2010. Association for Computational Linguistics. URL <https://aclanthology.org/S10-1006/>.

646 John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. In Kentaro  
647 Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on*  
*Empirical Methods in Natural Language Processing and the 9th International Joint Conference on*

---

648        *Natural Language Processing (EMNLP-IJCNLP)*, pp. 2733–2743, Hong Kong, China, November  
649        2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1275. URL <https://aclanthology.org/D19-1275/>.  
650  
651

652        Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are  
653        universal approximators. *Neural Networks*, 2(5):359–366, 1989. ISSN 0893-6080. doi: [https://doi.org/10.1016/0893-6080\(89\)90020-8](https://doi.org/10.1016/0893-6080(89)90020-8). URL <https://www.sciencedirect.com/science/article/pii/0893608089900208>.  
654  
655

656        Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,  
657        Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*,  
658        2024.  
659

660        Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,  
661        and Ali Farhadi. Editing models with task arithmetic. In *The Eleventh International Conference  
662        on Learning Representations*, 2023. URL <https://openreview.net/forum?id=6t0Kwf8-jrj>.  
663

664        Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. What does BERT learn about the structure  
665        of language? In Anna Korhonen, David Traum, and Lluís Màrquez (eds.), *Proceedings of the  
666        57th Annual Meeting of the Association for Computational Linguistics*, pp. 3651–3657, Florence,  
667        Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1356. URL  
668        <https://aclanthology.org/P19-1356/>.  
669

670        Ishan Jindal, Alexandre Rademaker, Michał Ulewicz, Ha Linh, Huyen Nguyen, Khoi-Nguyen  
671        Tran, Huaiyu Zhu, and Yunyao Li. Universal Proposition Bank 2.0. In Nicoletta Calzolari,  
672        Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara  
673        Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Jan Odijk, and Stelios  
674        Piperidis (eds.), *Proceedings of the Thirteenth Language Resources and Evaluation Conference*,  
675        pp. 1700–1711, Marseille, France, June 2022. European Language Resources Association. URL  
676        <https://aclanthology.org/2022.lrec-1.181/>.  
677

678        Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,  
679        Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria  
680        Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca  
681        Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:  
682        Pushing frontiers in open language model post-training, 2025. URL <https://arxiv.org/abs/2411.15124>.  
683

684        Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time  
685        intervention: Eliciting truthful answers from a language model. In *Thirty-seventh Conference  
686        on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=aLuYpn83y>.  
687

688        Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, and Noah A. Smith. Linguistic  
689        knowledge and transferability of contextual representations. In Jill Burstein, Christy Doran, and  
690        Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the  
691        Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and  
692        Short Papers)*, pp. 1073–1094, Minneapolis, Minnesota, June 2019. Association for Computational  
693        Linguistics. doi: 10.18653/v1/N19-1112. URL <https://aclanthology.org/N19-1112/>.  
694

695        Team Llama. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.  
696

697        Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated  
698        corpus of English: The Penn Treebank. *Computational Linguistics*, 19(2):313–330, 1993. URL  
699        <https://aclanthology.org/J93-2004/>.  
700

701        Ryan McDonald, Joakim Nivre, Yvonne Quirkbach-Brundage, Yoav Goldberg, Dipanjan Das,  
702        Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström, Claudia Bedini, Núria  
703        Bertomeu Castelló, and Jungmee Lee. Universal Dependency annotation for multilingual parsing.  
704        In Hinrich Schütze, Pascale Fung, and Massimo Poesio (eds.), *Proceedings of the 51st Annual*

---

702        *Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pp. 92–  
703        97, Sofia, Bulgaria, August 2013. Association for Computational Linguistics. URL <https://aclanthology.org/P13-2017/>.  
704  
705

706        Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. Locating and editing factual  
707        associations in GPT. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho  
708        (eds.), *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=-h6WAS6eE4>.  
709  
710

711        Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajič, Christopher D.  
712        Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel  
713        Zeman. Universal Dependencies v1: A multilingual treebank collection. In Nicoletta Calzolari,  
714        Khalid Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente Maegaard, Joseph  
715        Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, and Stelios Piperidis (eds.), *Proceedings  
716        of the Tenth International Conference on Language Resources and Evaluation (LREC'16)*, pp.  
717        1659–1666, Portorož, Slovenia, May 2016. European Language Resources Association (ELRA).  
718        URL <https://aclanthology.org/L16-1262/>.  
719  
720        *nostalgebraist*. Interpreting GPT: The logit lens. <https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens>, 2020. LessWrong blog post.  
721  
722        Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt  
723        Turner. Steering llama 2 via contrastive activation addition, 2024. URL <https://arxiv.org/abs/2312.06681>.  
724  
725        Slav Petrov, Dipanjan Das, and Ryan McDonald. A universal part-of-speech tagset. In Nicoletta  
726        Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph  
727        Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis (eds.), *Proceedings of the Eighth  
728        International Conference on Language Resources and Evaluation (LREC'12)*, pp. 2089–2096,  
729        Istanbul, Turkey, May 2012. European Language Resources Association (ELRA). URL <https://aclanthology.org/L12-1115/>.  
730  
731        Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Olga Uryupina, and Yuchen Zhang. CoNLL-  
732        2012 shared task: Modeling multilingual unrestricted coreference in OntoNotes. In Sameer  
733        Pradhan, Alessandro Moschitti, and Nianwen Xue (eds.), *Joint Conference on EMNLP and CoNLL  
734        - Shared Task*, pp. 1–40, Jeju Island, Korea, July 2012. Association for Computational Linguistics.  
735        URL <https://aclanthology.org/W12-4501/>.  
736  
737        Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language  
738        models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.  
739  
740        Drew Reisinger, Rachel Rudinger, Francis Ferraro, Craig Harman, Kyle Rawlins, and Benjamin  
741        Van Durme. Semantic proto-roles. *Transactions of the Association for Computational Linguistics*,  
742        3:475–488, 2015. doi: 10.1162/tacl\_a\_00152. URL <https://aclanthology.org/Q15-1034/>.  
743  
744        Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in BERTology: What we know about  
745        how BERT works. *Transactions of the Association for Computational Linguistics*, 8:842–866,  
746        2020. doi: 10.1162/tacl\_a\_00349. URL <https://aclanthology.org/2020.tacl-1.54/>.  
747  
748        William Rudman, Catherine Chen, and Carsten Eickhoff. Outlier dimensions encode task specific  
749        knowledge. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023  
750        Conference on Empirical Methods in Natural Language Processing*, pp. 14596–14605, Singapore,  
751        December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.  
752        901. URL <https://aclanthology.org/2023.emnlp-main.901/>.  
753  
754        Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Nikul Patel, Jalal Naghiyev, Yann LeCun, and  
755        Ravid Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models. In  
756        *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=WGXB7UdvTX>.

---

756 Nishant Subramani, Nivedita Suresh, and Matthew Peters. Extracting latent steering vectors from  
757 pretrained language models. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio  
758 (eds.), *Findings of the Association for Computational Linguistics: ACL 2022*, pp. 566–581, Dublin,  
759 Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.  
760 48. URL <https://aclanthology.org/2022.findings-acl.48/>.

761 Nishant Subramani, Jason Eisner, Justin Svegliato, Benjamin Van Durme, Yu Su, and Sam Thomson.  
762 MICE for CATs: Model-internal confidence estimation for calibrating agents with tools. In  
763 Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the  
764 Nations of the Americas Chapter of the Association for Computational Linguistics: Human  
765 Language Technologies (Volume 1: Long Papers)*, pp. 12362–12375, Albuquerque, New Mexico,  
766 April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. URL <https://aclanthology.org/2025.naacl-long.615/>.

767 Umut Sulubacak, Memduh Gokirmak, Francis Tyers, Çağrı Çöltekin, Joakim Nivre, and Gülsen  
768 Eryiğit. Universal Dependencies for Turkish. In Yuji Matsumoto and Rashmi Prasad (eds.),  
769 *Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics:  
770 Technical Papers*, pp. 3444–3454, Osaka, Japan, December 2016. The COLING 2016 Organizing  
771 Committee. URL <https://aclanthology.org/C16-1325/>.

772 Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language  
773 models. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=F7aAhfitX6>.

774 Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. In Anna  
775 Korhonen, David Traum, and Lluís Màrquez (eds.), *Proceedings of the 57th Annual Meeting of the  
776 Association for Computational Linguistics*, pp. 4593–4601, Florence, Italy, July 2019a. Association  
777 for Computational Linguistics. doi: 10.18653/v1/P19-1452. URL <https://aclanthology.org/P19-1452/>.

778 Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas McCoy, Najoung Kim,  
779 Benjamin Van Durme, Sam Bowman, Dipanjan Das, and Ellie Pavlick. What do you learn from  
780 context? probing for sentence structure in contextualized word representations. In *International  
781 Conference on Learning Representations*, 2019b. URL <https://openreview.net/forum?id=SJzSgnRcKX>.

782 Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003 shared task:  
783 Language-independent named entity recognition. In *Proceedings of the Seventh Conference  
784 on Natural Language Learning at HLT-NAACL 2003*, pp. 142–147, 2003. URL <https://aclanthology.org/W03-0419/>.

785 Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer,  
786 and Stuart Shieber. Investigating gender bias in language models using causal mediation  
787 analysis. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in  
788 Neural Information Processing Systems*, volume 33, pp. 12388–12401. Curran Associates, Inc., 2020. URL [https://proceedings.neurips.cc/paper\\_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf).

789 Elena Voita and Ivan Titov. Information-theoretic probing with minimum description length. In  
790 Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference  
791 on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 183–196, Online, November  
792 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.14. URL  
793 <https://aclanthology.org/2020.emnlp-main.14/>.

794 Ivan Vulić, Edoardo Maria Ponti, Robert Litschko, Goran Glavaš, and Anna Korhonen. Probing  
795 pretrained language models for lexical semantics. In Bonnie Webber, Trevor Cohn, Yulan He, and  
796 Yang Liu (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language  
797 Processing (EMNLP)*, pp. 7222–7240, Online, November 2020. Association for Computational  
798 Linguistics. doi: 10.18653/v1/2020.emnlp-main.586. URL <https://aclanthology.org/2020.emnlp-main.586/>.

---

810 BigScience Workshop. Bloom: A 176b-parameter open-access multilingual language model, 2023.  
811 URL <https://arxiv.org/abs/2211.05100>.  
812

813 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya  
814 Barua, and Colin Raffel. mT5: A massively multilingual pre-trained text-to-text transformer. In  
815 Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven  
816 Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), *Proceedings of the 2021*  
817 *Conference of the North American Chapter of the Association for Computational Linguistics: Human*  
818 *Language Technologies*, pp. 483–498, Online, June 2021. Association for Computational  
819 Linguistics. doi: 10.18653/v1/2021.naacl-main.41. URL <https://aclanthology.org/2021.naacl-main.41/>.  
820

821 Amir Zeldes. The GUM corpus: Creating multilayer resources in the classroom. *Language Resources*  
822 and *Evaluation*, 51(3):581–612, 2017. doi: <http://dx.doi.org/10.1007/s10579-016-9343-x>.  
823  
824  
825  
826  
827  
828  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863

---

864    **A LIMITATIONS**  
865

866    **Representation Extraction for Decoder Models** Our current approach for extracting word representations from decoder-only models uses the final subword token. This assumption is an intuitive  
867    and natural choice, but may not be optimal for all architectures and models. Future work could  
868    develop better extraction methods that account for subword tokenization effects and leverage attention  
869    patterns to create more accurate word-level representations.  
870

872    **Form and Function in Inflection** Some languages contain cases where different grammatical  
873    functions share the same surface form (*e.g.*, , infinitive and non-past verb forms in English). We  
874    do not explicitly examine these cases in our classification experiments, but these ambiguities create  
875    opportunities to better examine how models separate form from function across languages.  
876

877    **Indirect Nature of Classifiers** While our classifier methodology follows established best practices  
878    (Hewitt & Liang, 2019; Liu et al., 2019), we only detect correlations in hidden activations, not  
879    causal mechanisms.  
880

881    **Scope of Steering Experiments** Our steering vector experiments measure changes in classifier  
882    performance rather than downstream model outputs. Evaluating effects on actual model generation  
883    would require more complex experimental designs to control for confounding factors and ensure that  
884    observed changes result from the intended representational modifications rather than other influences.  
885

886    **B ADDITIONAL RELATED WORK**  
887

888    **B.1 ADVANCED PROBING METHODOLOGIES**  
889

890    Beyond standard linear probes, there are many sophisticated approaches to understand model representations. Amnesic probing (Elazar et al., 2021) removes specific information from representations  
891    to test whether it's necessary for downstream tasks. Minimum description length probes (Voita &  
892    Titov, 2020) balance probe complexity with performance to avoid overfitting. Causal abstraction  
893    (Geiger et al., 2021) aims to establish causal rather than merely correlational relationships between  
894    representations and linguistic properties. Recently, Subramani et al. (2025) find that decoding from  
895    activations directly using the Logit Lens can be used to learn confidence estimators for tool-calling  
896    agents (nostalgebraist, 2020).  
897

898    **B.2 MODEL MANIPULATION AND STEERING**  
899

900    Steering vectors demonstrate that specific directions in activation space correspond to high-level  
901    behavioral changes (Subramani et al., 2022). Building on this, Panickssery et al. (2024) achieves  
902    behavioral control by adding activation differences between contrasting examples. Li et al. (2023)  
903    introduce inference-time intervention, a method that shifts model activations during inference across  
904    limited attention heads to control model behavior. While these methods operate in activation space,  
905    task vectors enable arithmetic operations on model capabilities by manipulating weight space (Ilharco  
906    et al., 2023).  
907

908    Recent work has also examined how multilingual models like mT5 and ByT5 encode morphological  
909    information differently across languages (Dang et al., 2024), finding that tokenization strategies  
910    significantly impact morphological representation quality, particularly for morphologically rich  
911    languages.  
912

913    **C PROBE DETAILS**  
914

915    In this appendix we provide implementation details for the linear regression and two-layer multi-layer  
916    perceptron (MLP) probes used throughout our experiments. These classifiers are trained on frozen  
917    residual-stream activations from each layer to predict the labels of our linguistic tasks, lemma identity  
and inflectional features.  
918

---

918 **Training details.** We stratify each dataset into train, validation, and test splits. Probes are trained on  
919 the training split, hyperparameters are selected using the validation split, and we report accuracy and  
920 macro F1 on the held-out test split. For the linear regression probe we apply ridge regularization with  
921  $\lambda = 0.01$  and solve equation (5) in closed form. For the MLP probe we use a hidden dimension of  
922 64, a learning rate of 0.001, weight decay of 0.01, and train for up to 100 epochs with early stopping  
923 based on validation loss, optimizing cross-entropy with AdamW. Both probes share the same data  
924 splits to enable fair comparison.

925 **C.1 LINEAR REGRESSION CLASSIFIER**

926 Consistent with best practices for probing (Hewitt & Liang, 2019; Liu et al., 2019), we use a ridge-  
927 regularized linear regression classifier. Given training representations  $X_{\text{train}} \in \mathbb{R}^{m \times d}$  and one-hot  
928 encoded labels  $Y_{\text{train}} \in \mathbb{R}^{m \times c}$ , the optimal weight matrix  $W \in \mathbb{R}^{d \times c}$  is obtained in closed form as

929 
$$W = (X_{\text{train}}^\top X_{\text{train}} + \lambda I)^{-1} X_{\text{train}}^\top Y_{\text{train}}, \quad (5)$$

930 where  $\lambda$  controls the strength of  $\ell_2$  regularization and  $I$  is the identity matrix. Predictions on test  
931 representations  $X_{\text{test}}$  are then given by  $\hat{Y}_{\text{test}} = X_{\text{test}} W$ .

932 **C.2 MLP CLASSIFIER**

933 To test for non-linear separability, we train a simple two-layer MLP with ReLU activation. The  
934 classifier computes

935 
$$\hat{Y} = \text{softmax}(\text{ReLU}(XW_1)W_2), \quad (6)$$

936 where  $W_1 \in \mathbb{R}^{d \times h}$  and  $W_2 \in \mathbb{R}^{h \times c}$  are learned weight matrices,  $h$  is the hidden dimension (we use  
937  $h = 64$ ), and biases are omitted for brevity. Two-layer MLPs with ReLU activation are universal  
938 function approximators capable of representing any continuous function to arbitrary precision given  
939 sufficient width (Hornik et al., 1989). We train the MLP with cross-entropy loss using the same splits  
940 and optimization hyperparameters described above.

941 **D LINGUISTIC TASK DEFINITIONS**

942 We probe eight linguistic tasks originally introduced by Tenney et al. (2019a) that span the classical  
943 NLP pipeline. Here we provide formal definitions for each task:

944 **Part-of-Speech tagging (POS).** This task assigns each word a grammatical category such as noun,  
945 verb, adjective, or adverb, following the Universal Dependencies tagset (Petrov et al., 2012). POS  
946 tagging is fundamental to syntactic analysis and serves as input to many downstream NLP tasks.

947 **Constituency parsing.** This task identifies the hierarchical phrase structure of sentences by grouping  
948 words into nested constituents such as noun phrases, verb phrases, and sentences (Marcus et al.,  
949 1993). The output is typically represented as a parse tree showing how smaller units combine to form  
950 larger syntactic structures.

951 **Dependency parsing.** This task predicts syntactic head-dependent relations between words, such  
952 as subject-verb and modifier-head relationships, following Universal Dependencies guidelines (Nivre  
953 et al., 2016). Each word is linked to exactly one head (except the root), forming a directed tree  
954 structure that captures grammatical relations.

955 **Named Entity Recognition (NER).** This task identifies and classifies named entities such as per-  
956 sons, organizations, locations, and dates into predefined categories (Tjong Kim Sang & De Meulder,  
957 2003). NER bridges syntactic and semantic analysis by identifying referential expressions that denote  
958 real-world entities.

959 **Semantic Role Labeling (SRL).** This task assigns semantic roles such as agent, patient, instrument,  
960 or location to arguments of predicates in a sentence (Gildea & Jurafsky, 2002). SRL captures the  
961 underlying semantic relationships between predicates and their arguments, abstracting away from  
962 surface syntactic variations.

---

972     **Semantic Proto-Roles (SPR).** This task predicts fine-grained semantic properties of predicate arguments, such as whether an argument is sentient, undergoes a change of state, or is volitional (Reisinger et al., 2015). SPR provides a more nuanced characterization of semantic roles through scalar properties rather than categorical labels.

973  
974  
975  
976  
977     **Coreference resolution.** This task determines which expressions in a text refer to the same real-world entity, linking pronouns and noun phrases to their antecedents (Pradhan et al., 2012). Coreference resolution is essential for understanding discourse coherence and tracking entities across sentences.

978  
979  
980  
981     **Relation extraction.** This task identifies semantic relationships between entity mentions, such as organization-location or person-affiliation relations, typically across sentence boundaries (Hendrickx et al., 2010). Relation extraction connects named entities through typed semantic links, enabling structured knowledge representation.

982     These tasks form the classical NLP pipeline described by (Tenney et al., 2019a), progressing from  
983     syntactic analysis (POS, constituency, dependencies) through semantic interpretation (NER, SRL,  
984     SPR) to discourse-level understanding (coreference, relations).

985

986     990     E     FULL RESULTS FOR THE CLASSICAL NLP PIPELINE  
991

992     The full heatmaps and summary statistics for pipeline analyses across all models are shown in  
993     Figures 7–11. These figures show model-by-layer accuracy/selectivity patterns and the expected  
994     layer/center-of-gravity summaries reported in the main text.

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

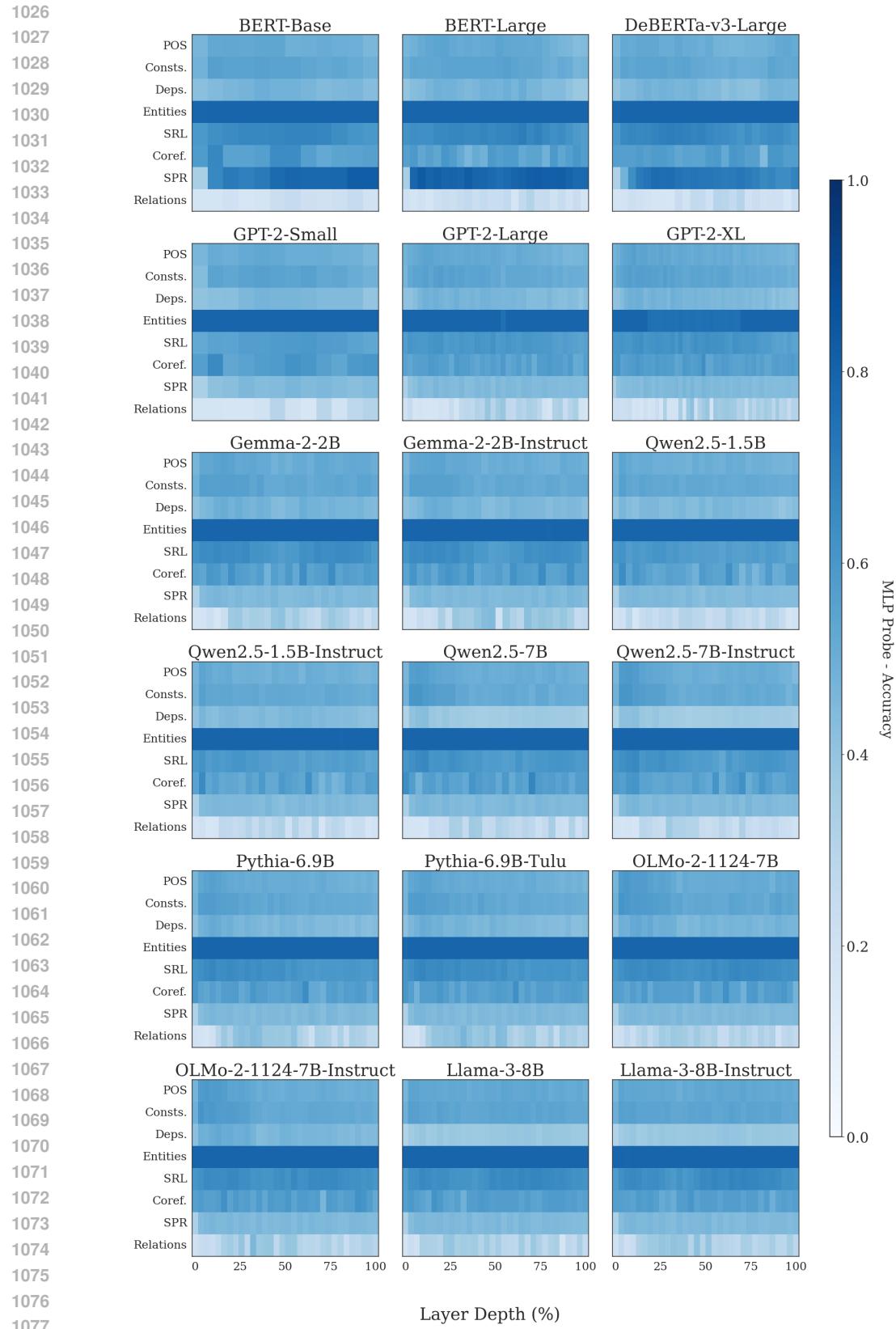
1021

1022

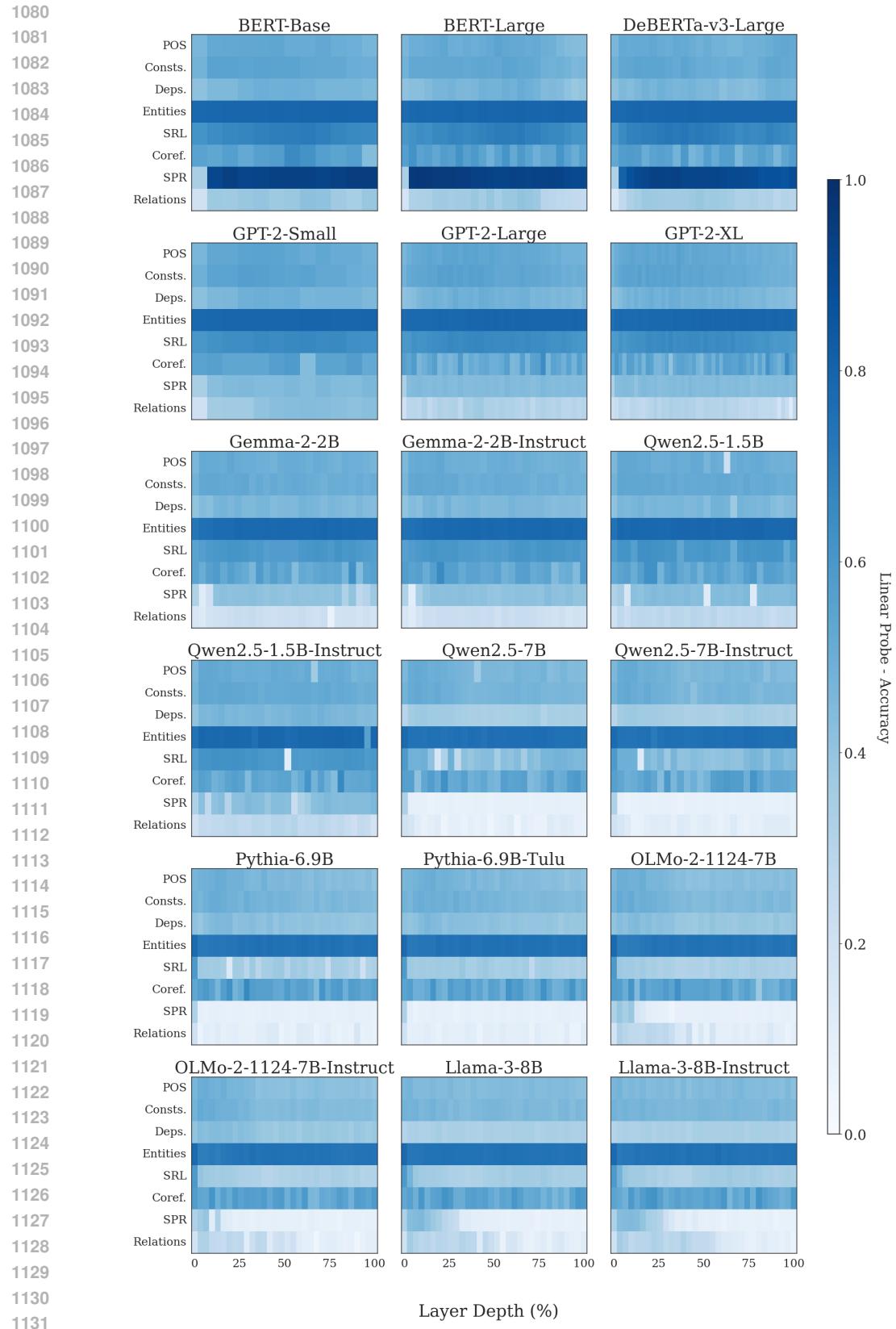
1023

1024

1025



1078 Figure 7: Full heatmaps for MLP probe accuracy across all tasks, models, and layers. Rows show  
 1079 tasks; columns show models; each plot shows accuracy by layer depth.



1132 Figure 8: Full heatmaps for linear probe accuracy across all tasks, models, and layers. Trends mirror  
1133 the MLP version but with stronger model-size effects in deeper layers.

1134  
1135  
1136  
1137  
1138  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187

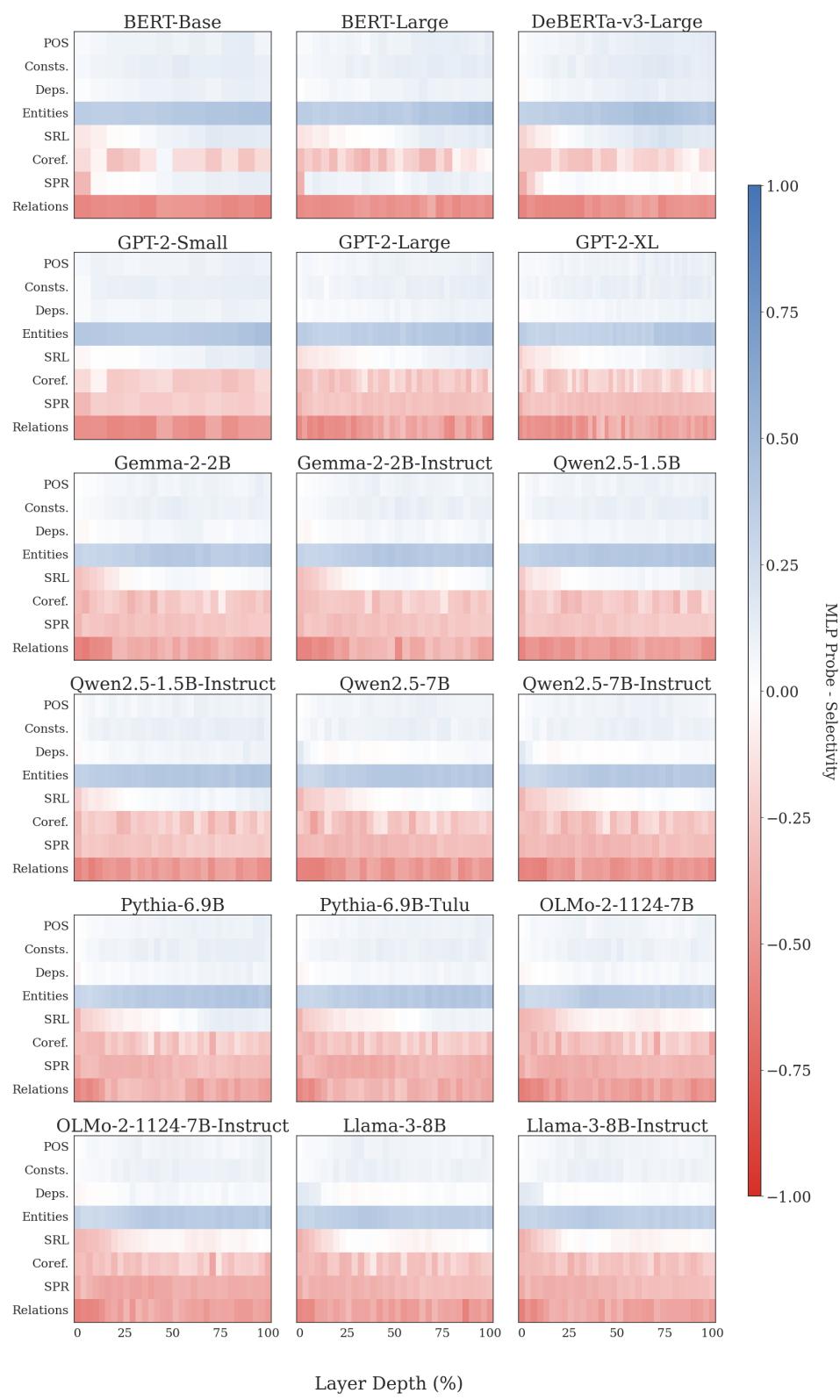


Figure 9: Full heatmaps for MLP probe selectivity (real vs. control task accuracy).

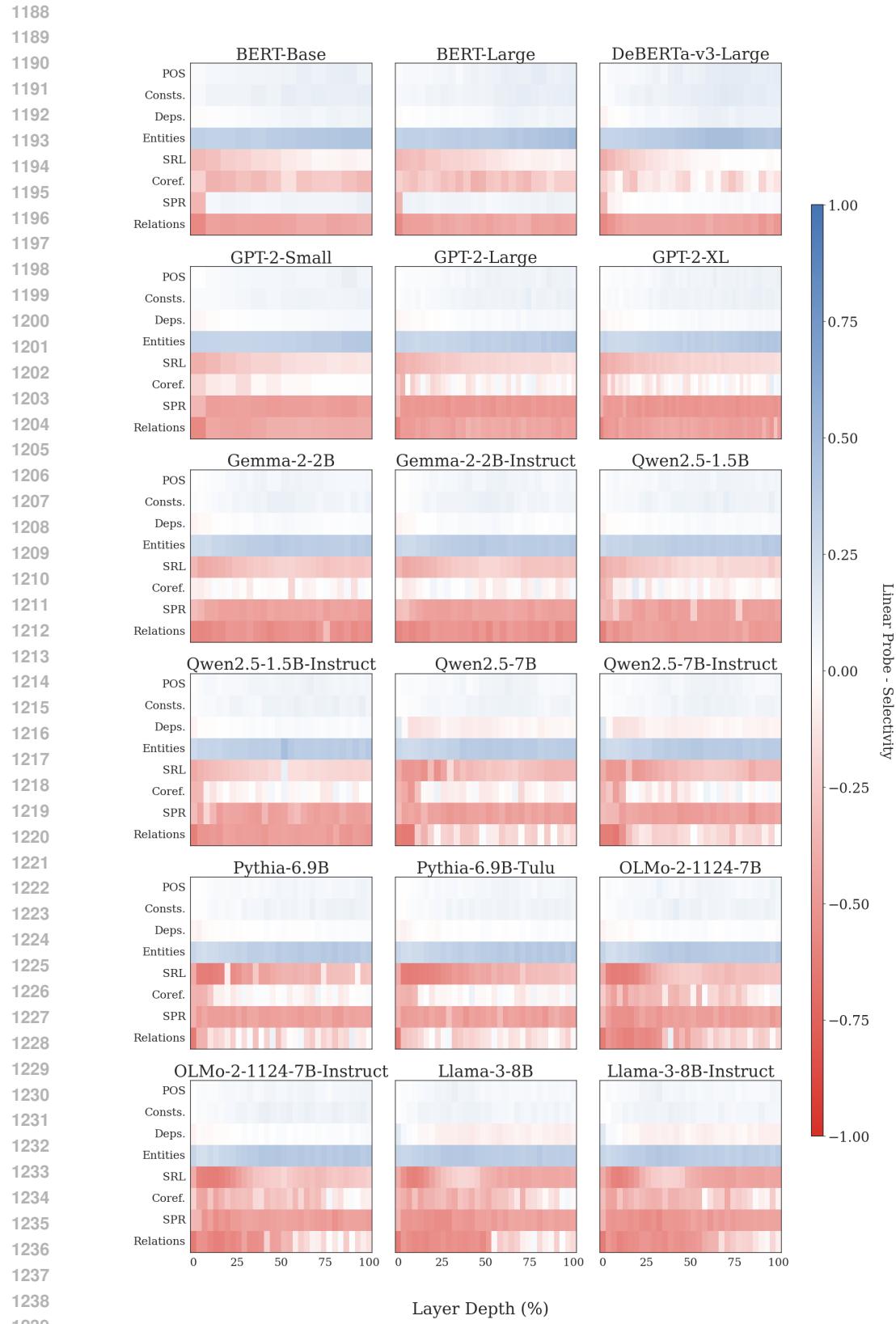


Figure 10: Full heatmaps for linear probe selectivity (real vs. control task accuracy).

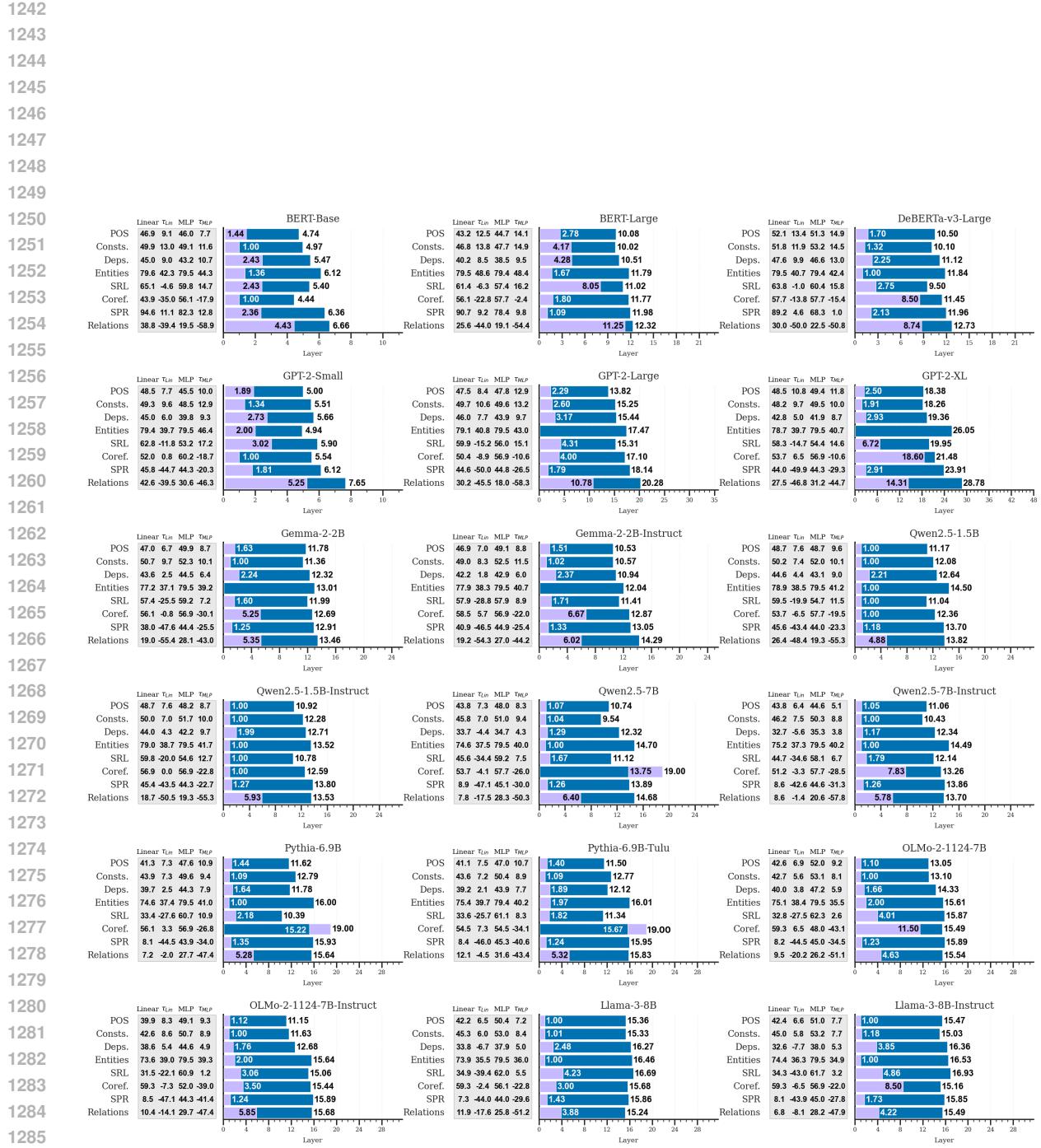
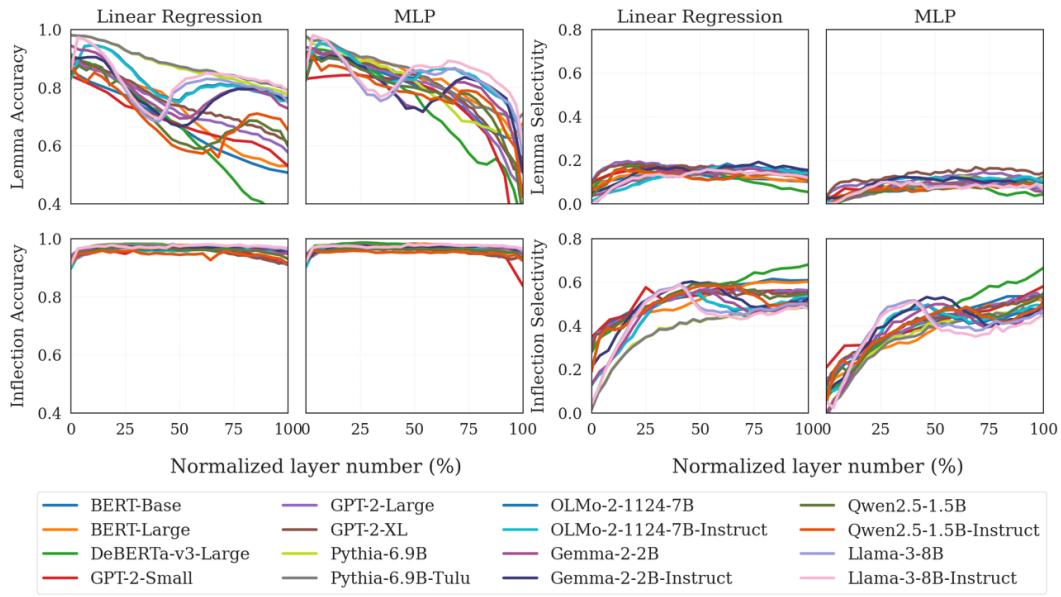


Figure 11: Expected Layer and Center of Gravity plots with  $\tau_{lin}$  and  $\tau_{MLP}$  selectivity scores for all models.

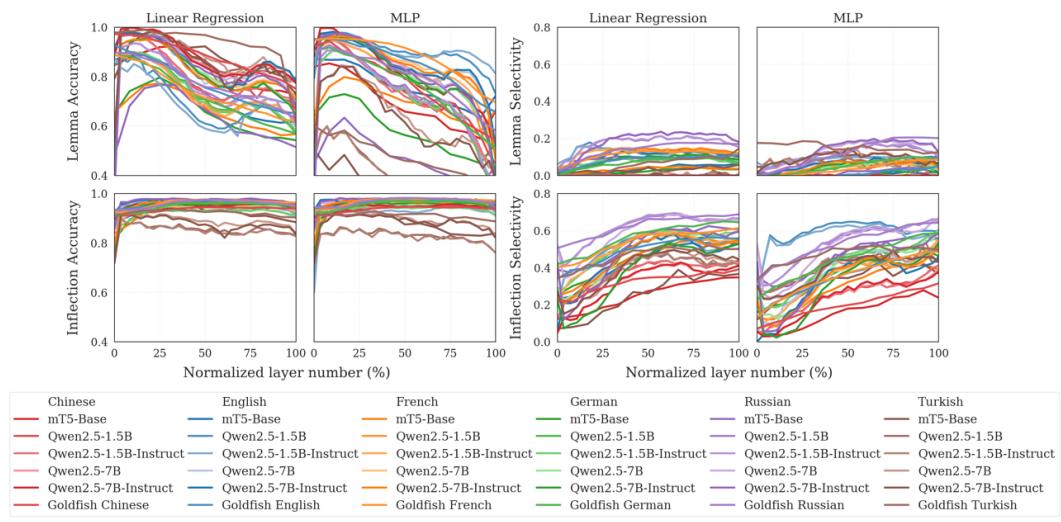
---

## 1296 F FULL LEMMA AND INFLECTION PROBE RESULTS

1298 We provide the full, non-averaged results for the linguistic probing tasks (lemma identity and  
 1299 inflectional features) for every individual model. Figure 12 shows the detailed breakdown for English  
 1300 models, and Figure 13 presents the results for all six languages.



1321 Figure 12: Full lemma and inflection probing results for English, showing individual curves for every  
 1322 model. Columns show prediction accuracy (Linear vs. MLP probes) and selectivity scores (linguistic  
 1323 minus control accuracy).



1342 Figure 13: Full cross-linguistic probing results showing individual curves for every model within each  
 1343 language. Columns show lemma and inflection accuracy (Linear vs. MLP) followed by selectivity  
 1344 scores.

## 1346 G DETAILED LAYER-WISE TABLES FOR LEMMA AND INFLECTION RESULTS

1347 This section contains detailed tables for layer-wise accuracy and selectivity across all models and  
 1348 languages.

Table 2: English Accuracy (Linear Probes) Across Layer Depths

| Model                   | Task       | 0%    | 25%   | 50%   | 75%   | 100%  |
|-------------------------|------------|-------|-------|-------|-------|-------|
| BERT-Base               | Inflection | 0.934 | 0.971 | 0.977 | 0.966 | 0.951 |
|                         | Lexeme     | 0.858 | 0.773 | 0.665 | 0.564 | 0.507 |
| BERT-Large              | Inflection | 0.938 | 0.972 | 0.978 | 0.966 | 0.949 |
|                         | Lexeme     | 0.896 | 0.820 | 0.737 | 0.585 | 0.531 |
| DeBERTa-v3-Large        | Inflection | 0.939 | 0.982 | 0.972 | 0.960 | 0.955 |
|                         | Lexeme     | 0.914 | 0.805 | 0.673 | 0.482 | 0.309 |
| GPT-2-Large             | Inflection | 0.927 | 0.970 | 0.971 | 0.946 | 0.912 |
|                         | Lexeme     | 0.874 | 0.818 | 0.711 | 0.665 | 0.577 |
| GPT-2-Small             | Inflection | 0.939 | 0.948 | 0.971 | 0.956 | 0.909 |
|                         | Lexeme     | 0.840 | 0.737 | 0.671 | 0.618 | 0.530 |
| GPT-2-XL                | Inflection | 0.929 | 0.974 | 0.973 | 0.946 | 0.915 |
|                         | Lexeme     | 0.906 | 0.827 | 0.737 | 0.690 | 0.609 |
| Gemma-2-2B              | Inflection | 0.936 | 0.974 | 0.963 | 0.972 | 0.948 |
|                         | Lexeme     | 0.944 | 0.817 | 0.694 | 0.792 | 0.728 |
| Gemma-2-2B-Instruct     | Inflection | 0.917 | 0.971 | 0.960 | 0.972 | 0.960 |
|                         | Lexeme     | 0.904 | 0.802 | 0.667 | 0.791 | 0.752 |
| Llama-3-8B              | Inflection | 0.912 | 0.971 | 0.974 | 0.976 | 0.962 |
|                         | Lexeme     | 0.864 | 0.794 | 0.796 | 0.816 | 0.749 |
| Llama-3-8B-Instruct     | Inflection | 0.913 | 0.972 | 0.974 | 0.977 | 0.967 |
|                         | Lexeme     | 0.864 | 0.803 | 0.812 | 0.839 | 0.783 |
| OLMo-2-1124-7B          | Inflection | 0.897 | 0.970 | 0.959 | 0.961 | 0.965 |
|                         | Lexeme     | 0.832 | 0.883 | 0.755 | 0.808 | 0.763 |
| OLMo-2-1124-7B-Instruct | Inflection | 0.897 | 0.970 | 0.958 | 0.962 | 0.961 |
|                         | Lexeme     | 0.832 | 0.881 | 0.749 | 0.806 | 0.757 |
| Pythia-6.9B             | Inflection | 0.942 | 0.982 | 0.974 | 0.966 | 0.953 |
|                         | Lexeme     | 0.980 | 0.928 | 0.865 | 0.829 | 0.772 |
| Pythia-6.9B-Tulu        | Inflection | 0.941 | 0.980 | 0.975 | 0.968 | 0.954 |
|                         | Lexeme     | 0.980 | 0.928 | 0.872 | 0.841 | 0.789 |
| Qwen2.5-1.5B            | Inflection | 0.913 | 0.969 | 0.959 | 0.961 | 0.930 |
|                         | Lexeme     | 0.845 | 0.799 | 0.610 | 0.654 | 0.599 |
| Qwen2.5-1.5B-Instruct   | Inflection | 0.910 | 0.957 | 0.944 | 0.949 | 0.914 |
|                         | Lexeme     | 0.876 | 0.768 | 0.590 | 0.647 | 0.654 |

Table 3: English Selectivity (Linear Probes) Across Layer Depths

| Model                   | Task       | 0%     | 25%   | 50%   | 75%   | 100%  |
|-------------------------|------------|--------|-------|-------|-------|-------|
| BERT-Base               | Inflection | 0.348  | 0.486 | 0.556 | 0.596 | 0.609 |
|                         | Lexeme     | 0.094  | 0.132 | 0.134 | 0.114 | 0.101 |
| BERT-Large              | Inflection | 0.292  | 0.459 | 0.520 | 0.598 | 0.603 |
|                         | Lexeme     | 0.083  | 0.145 | 0.148 | 0.119 | 0.107 |
| DeBERTa-v3-Large        | Inflection | 0.279  | 0.471 | 0.545 | 0.644 | 0.681 |
|                         | Lexeme     | 0.062  | 0.183 | 0.158 | 0.097 | 0.054 |
| GPT-2-Large             | Inflection | 0.324  | 0.489 | 0.563 | 0.550 | 0.562 |
|                         | Lexeme     | 0.099  | 0.183 | 0.162 | 0.161 | 0.121 |
| GPT-2-Small             | Inflection | 0.347  | 0.576 | 0.541 | 0.558 | 0.547 |
|                         | Lexeme     | 0.100  | 0.171 | 0.152 | 0.134 | 0.121 |
| GPT-2-XL                | Inflection | 0.289  | 0.488 | 0.549 | 0.547 | 0.553 |
|                         | Lexeme     | 0.092  | 0.172 | 0.172 | 0.162 | 0.135 |
| Gemma-2-2B              | Inflection | 0.131  | 0.466 | 0.565 | 0.464 | 0.512 |
|                         | Lexeme     | 0.036  | 0.132 | 0.136 | 0.161 | 0.128 |
| Gemma-2-2B-Instruct     | Inflection | 0.210  | 0.517 | 0.594 | 0.487 | 0.522 |
|                         | Lexeme     | 0.052  | 0.157 | 0.144 | 0.184 | 0.154 |
| Llama-3-8B              | Inflection | 0.041  | 0.516 | 0.482 | 0.474 | 0.497 |
|                         | Lexeme     | -0.003 | 0.132 | 0.146 | 0.140 | 0.117 |
| Llama-3-8B-Instruct     | Inflection | 0.042  | 0.508 | 0.473 | 0.453 | 0.478 |
|                         | Lexeme     | -0.003 | 0.131 | 0.146 | 0.144 | 0.119 |
| OLMo-2-1124-7B          | Inflection | 0.128  | 0.440 | 0.538 | 0.476 | 0.528 |
|                         | Lexeme     | 0.011  | 0.104 | 0.152 | 0.170 | 0.144 |
| OLMo-2-1124-7B-Instruct | Inflection | 0.127  | 0.443 | 0.545 | 0.483 | 0.543 |
|                         | Lexeme     | 0.011  | 0.104 | 0.149 | 0.164 | 0.144 |
| Pythia-6.9B             | Inflection | 0.017  | 0.347 | 0.416 | 0.457 | 0.484 |
|                         | Lexeme     | -0.002 | 0.117 | 0.134 | 0.140 | 0.141 |
| Pythia-6.9B-Tulu        | Inflection | 0.016  | 0.348 | 0.419 | 0.454 | 0.492 |
|                         | Lexeme     | -0.002 | 0.118 | 0.137 | 0.143 | 0.150 |
| Qwen2.5-1.5B            | Inflection | 0.199  | 0.483 | 0.589 | 0.566 | 0.548 |
|                         | Lexeme     | 0.034  | 0.146 | 0.117 | 0.129 | 0.108 |
| Qwen2.5-1.5B-Instruct   | Inflection | 0.189  | 0.474 | 0.581 | 0.541 | 0.503 |
|                         | Lexeme     | 0.061  | 0.143 | 0.113 | 0.129 | 0.112 |

Table 4: English Accuracy (MLP Probes) Across Layer Depths

| Model                   | Task       | 0%    | 25%   | 50%   | 75%   | 100%  |
|-------------------------|------------|-------|-------|-------|-------|-------|
| BERT-Base               | Inflection | 0.941 | 0.978 | 0.983 | 0.975 | 0.960 |
|                         | Lexeme     | 0.906 | 0.888 | 0.808 | 0.719 | 0.629 |
| BERT-Large              | Inflection | 0.943 | 0.977 | 0.981 | 0.973 | 0.958 |
|                         | Lexeme     | 0.920 | 0.904 | 0.843 | 0.762 | 0.677 |
| DeBERTa-v3-Large        | Inflection | 0.944 | 0.986 | 0.976 | 0.971 | 0.957 |
|                         | Lexeme     | 0.920 | 0.885 | 0.781 | 0.574 | 0.318 |
| GPT-2-Large             | Inflection | 0.930 | 0.964 | 0.964 | 0.952 | 0.937 |
|                         | Lexeme     | 0.892 | 0.878 | 0.825 | 0.719 | 0.552 |
| GPT-2-Small             | Inflection | 0.943 | 0.963 | 0.965 | 0.957 | 0.837 |
|                         | Lexeme     | 0.830 | 0.843 | 0.817 | 0.705 | 0.075 |
| GPT-2-XL                | Inflection | 0.929 | 0.965 | 0.963 | 0.948 | 0.937 |
|                         | Lexeme     | 0.906 | 0.884 | 0.844 | 0.734 | 0.571 |
| Gemma-2-2B              | Inflection | 0.940 | 0.977 | 0.970 | 0.975 | 0.946 |
|                         | Lexeme     | 0.939 | 0.868 | 0.732 | 0.812 | 0.506 |
| Gemma-2-2B-Instruct     | Inflection | 0.919 | 0.973 | 0.965 | 0.973 | 0.960 |
|                         | Lexeme     | 0.890 | 0.874 | 0.731 | 0.831 | 0.508 |
| Llama-3-8B              | Inflection | 0.920 | 0.972 | 0.977 | 0.976 | 0.958 |
|                         | Lexeme     | 0.863 | 0.808 | 0.857 | 0.840 | 0.568 |
| Llama-3-8B-Instruct     | Inflection | 0.920 | 0.972 | 0.977 | 0.977 | 0.964 |
|                         | Lexeme     | 0.863 | 0.821 | 0.873 | 0.870 | 0.605 |
| OLMo-2-1124-7B          | Inflection | 0.903 | 0.974 | 0.970 | 0.975 | 0.964 |
|                         | Lexeme     | 0.825 | 0.877 | 0.833 | 0.845 | 0.621 |
| OLMo-2-1124-7B-Instruct | Inflection | 0.903 | 0.975 | 0.968 | 0.973 | 0.964 |
|                         | Lexeme     | 0.825 | 0.880 | 0.825 | 0.847 | 0.650 |
| Pythia-6.9B             | Inflection | 0.940 | 0.973 | 0.971 | 0.959 | 0.959 |
|                         | Lexeme     | 0.976 | 0.891 | 0.823 | 0.683 | 0.655 |
| Pythia-6.9B-Tulu        | Inflection | 0.944 | 0.973 | 0.970 | 0.963 | 0.961 |
|                         | Lexeme     | 0.976 | 0.904 | 0.858 | 0.752 | 0.709 |
| Qwen2.5-1.5B            | Inflection | 0.919 | 0.967 | 0.963 | 0.962 | 0.929 |
|                         | Lexeme     | 0.829 | 0.864 | 0.800 | 0.777 | 0.356 |
| Qwen2.5-1.5B-Instruct   | Inflection | 0.935 | 0.957 | 0.952 | 0.952 | 0.923 |
|                         | Lexeme     | 0.916 | 0.841 | 0.779 | 0.789 | 0.423 |

Table 5: English Selectivity (MLP Probes) Across Layer Depths

| Model                   | Task       | 0%     | 25%   | 50%   | 75%   | 100%  |
|-------------------------|------------|--------|-------|-------|-------|-------|
| BERT-Base               | Inflection | 0.139  | 0.307 | 0.416 | 0.505 | 0.536 |
|                         | Lexeme     | 0.025  | 0.057 | 0.069 | 0.084 | 0.068 |
| BERT-Large              | Inflection | 0.104  | 0.294 | 0.386 | 0.496 | 0.514 |
|                         | Lexeme     | 0.028  | 0.084 | 0.088 | 0.106 | 0.074 |
| DeBERTa-v3-Large        | Inflection | 0.071  | 0.313 | 0.428 | 0.582 | 0.666 |
|                         | Lexeme     | 0.005  | 0.061 | 0.096 | 0.065 | 0.043 |
| GPT-2-Large             | Inflection | 0.157  | 0.323 | 0.446 | 0.487 | 0.521 |
|                         | Lexeme     | 0.040  | 0.093 | 0.123 | 0.138 | 0.115 |
| GPT-2-Small             | Inflection | 0.210  | 0.342 | 0.410 | 0.470 | 0.581 |
|                         | Lexeme     | 0.012  | 0.077 | 0.094 | 0.107 | 0.061 |
| GPT-2-XL                | Inflection | 0.118  | 0.334 | 0.433 | 0.491 | 0.527 |
|                         | Lexeme     | 0.027  | 0.110 | 0.145 | 0.163 | 0.142 |
| Gemma-2-2B              | Inflection | 0.002  | 0.360 | 0.499 | 0.395 | 0.483 |
|                         | Lexeme     | -0.007 | 0.067 | 0.090 | 0.088 | 0.054 |
| Gemma-2-2B-Instruct     | Inflection | 0.089  | 0.393 | 0.523 | 0.404 | 0.509 |
|                         | Lexeme     | 0.026  | 0.102 | 0.111 | 0.100 | 0.058 |
| Llama-3-8B              | Inflection | 0.050  | 0.454 | 0.414 | 0.402 | 0.463 |
|                         | Lexeme     | -0.001 | 0.098 | 0.079 | 0.084 | 0.060 |
| Llama-3-8B-Instruct     | Inflection | 0.050  | 0.442 | 0.400 | 0.364 | 0.451 |
|                         | Lexeme     | -0.002 | 0.098 | 0.074 | 0.084 | 0.069 |
| OLMo-2-1124-7B          | Inflection | 0.118  | 0.363 | 0.470 | 0.426 | 0.483 |
|                         | Lexeme     | 0.007  | 0.088 | 0.121 | 0.109 | 0.095 |
| OLMo-2-1124-7B-Instruct | Inflection | 0.118  | 0.371 | 0.476 | 0.434 | 0.493 |
|                         | Lexeme     | 0.007  | 0.094 | 0.122 | 0.119 | 0.103 |
| Pythia-6.9B             | Inflection | -0.025 | 0.301 | 0.404 | 0.444 | 0.451 |
|                         | Lexeme     | -0.005 | 0.064 | 0.096 | 0.110 | 0.113 |
| Pythia-6.9B-Tulu        | Inflection | -0.021 | 0.294 | 0.394 | 0.438 | 0.445 |
|                         | Lexeme     | -0.005 | 0.057 | 0.092 | 0.112 | 0.126 |
| Qwen2.5-1.5B            | Inflection | 0.085  | 0.325 | 0.456 | 0.455 | 0.549 |
|                         | Lexeme     | -0.007 | 0.053 | 0.072 | 0.082 | 0.062 |
| Qwen2.5-1.5B-Instruct   | Inflection | 0.046  | 0.337 | 0.460 | 0.440 | 0.502 |
|                         | Lexeme     | -0.012 | 0.064 | 0.082 | 0.082 | 0.058 |

1566

1567

1568

1569

1570

1571

(a) Accuracy (Linear Probes)

| Model                           | Task       | 0%    | 25%   | 50%   | 75%   | 100%  |
|---------------------------------|------------|-------|-------|-------|-------|-------|
| Goldfish Chinese (Chinese)      | Inflection | 0.911 | 0.928 | 0.944 | 0.942 | 0.941 |
|                                 | Lexeme     | 0.972 | 0.941 | 0.887 | 0.824 | 0.751 |
| Qwen2.5-1.5B (Chinese)          | Inflection | 0.898 | 0.948 | 0.949 | 0.950 | 0.946 |
|                                 | Lexeme     | 0.883 | 0.905 | 0.735 | 0.743 | 0.667 |
| Qwen2.5-1.5B-Instruct (Chinese) | Inflection | 0.897 | 0.948 | 0.949 | 0.950 | 0.948 |
|                                 | Lexeme     | 0.883 | 0.907 | 0.729 | 0.748 | 0.678 |
| Qwen2.5-7B (Chinese)            | Inflection | 0.893 | 0.957 | 0.951 | 0.956 | 0.950 |
|                                 | Lexeme     | 0.883 | 0.983 | 0.844 | 0.828 | 0.776 |
| Qwen2.5-7B-Instruct (Chinese)   | Inflection | 0.893 | 0.957 | 0.950 | 0.956 | 0.949 |
|                                 | Lexeme     | 0.883 | 0.981 | 0.839 | 0.823 | 0.773 |
| mT5-Base (Chinese)              | Inflection | 0.901 | 0.933 | 0.945 | 0.941 | 0.943 |
|                                 | Lexeme     | 0.846 | 0.919 | 0.863 | 0.757 | 0.727 |

(c) Accuracy (MLP Probes)

| Model                           | Task       | 0%    | 25%   | 50%   | 75%   | 100%  |
|---------------------------------|------------|-------|-------|-------|-------|-------|
| Goldfish Chinese (Chinese)      | Inflection | 0.913 | 0.930 | 0.946 | 0.944 | 0.939 |
|                                 | Lexeme     | 0.922 | 0.874 | 0.797 | 0.652 | 0.543 |
| Qwen2.5-1.5B (Chinese)          | Inflection | 0.896 | 0.947 | 0.943 | 0.950 | 0.942 |
|                                 | Lexeme     | 0.882 | 0.869 | 0.738 | 0.695 | 0.449 |
| Qwen2.5-1.5B-Instruct (Chinese) | Inflection | 0.896 | 0.941 | 0.942 | 0.950 | 0.943 |
|                                 | Lexeme     | 0.883 | 0.864 | 0.719 | 0.691 | 0.383 |
| Qwen2.5-7B (Chinese)            | Inflection | 0.899 | 0.952 | 0.947 | 0.955 | 0.946 |
|                                 | Lexeme     | 0.881 | 0.951 | 0.795 | 0.749 | 0.471 |
| Qwen2.5-7B-Instruct (Chinese)   | Inflection | 0.900 | 0.952 | 0.948 | 0.955 | 0.943 |
|                                 | Lexeme     | 0.881 | 0.950 | 0.791 | 0.750 | 0.475 |
| mT5-Base (Chinese)              | Inflection | 0.907 | 0.938 | 0.947 | 0.942 | 0.948 |
|                                 | Lexeme     | 0.841 | 0.796 | 0.658 | 0.587 | 0.661 |

Table 7: Probing Results for English

(a) Accuracy (Linear Probes)

| Model                           | Task       | 0%    | 25%   | 50%   | 75%   | 100%  |
|---------------------------------|------------|-------|-------|-------|-------|-------|
| Goldfish English (English)      | Inflection | 0.934 | 0.956 | 0.972 | 0.964 | 0.949 |
|                                 | Lexeme     | 0.926 | 0.859 | 0.755 | 0.690 | 0.652 |
| Qwen2.5-1.5B (English)          | Inflection | 0.913 | 0.969 | 0.959 | 0.961 | 0.930 |
|                                 | Lexeme     | 0.845 | 0.799 | 0.610 | 0.654 | 0.599 |
| Qwen2.5-1.5B-Instruct (English) | Inflection | 0.910 | 0.957 | 0.944 | 0.949 | 0.914 |
|                                 | Lexeme     | 0.876 | 0.768 | 0.590 | 0.647 | 0.654 |
| Qwen2.5-7B (English)            | Inflection | 0.915 | 0.977 | 0.966 | 0.973 | 0.958 |
|                                 | Lexeme     | 0.916 | 0.952 | 0.769 | 0.808 | 0.781 |
| Qwen2.5-7B-Instruct (English)   | Inflection | 0.915 | 0.977 | 0.964 | 0.973 | 0.957 |
|                                 | Lexeme     | 0.916 | 0.950 | 0.791 | 0.810 | 0.781 |
| mT5-Base (English)              | Inflection | 0.920 | 0.966 | 0.969 | 0.966 | 0.958 |
|                                 | Lexeme     | 0.868 | 0.862 | 0.731 | 0.634 | 0.619 |

(c) Accuracy (MLP Probes)

| Model                           | Task       | 0%    | 25%   | 50%   | 75%   | 100%  |
|---------------------------------|------------|-------|-------|-------|-------|-------|
| Goldfish English (English)      | Inflection | 0.937 | 0.962 | 0.976 | 0.971 | 0.964 |
|                                 | Lexeme     | 0.952 | 0.922 | 0.871 | 0.790 | 0.656 |
| Qwen2.5-1.5B (English)          | Inflection | 0.666 | 0.956 | 0.956 | 0.961 | 0.929 |
|                                 | Lexeme     | 0.792 | 0.959 | 0.901 | 0.886 | 0.731 |
| Qwen2.5-1.5B-Instruct (English) | Inflection | 0.598 | 0.922 | 0.928 | 0.942 | 0.913 |
|                                 | Lexeme     | 0.852 | 0.939 | 0.880 | 0.900 | 0.812 |
| Qwen2.5-7B (English)            | Inflection | 0.919 | 0.970 | 0.963 | 0.970 | 0.953 |
|                                 | Lexeme     | 0.913 | 0.935 | 0.831 | 0.818 | 0.506 |
| Qwen2.5-7B-Instruct (English)   | Inflection | 0.930 | 0.976 | 0.970 | 0.976 | 0.951 |
|                                 | Lexeme     | 0.913 | 0.933 | 0.824 | 0.818 | 0.521 |
| mT5-Base (English)              | Inflection | NaN   | NaN   | NaN   | NaN   | NaN   |
|                                 | Lexeme     | 0.871 | 0.845 | 0.744 | 0.686 | 0.722 |

(b) Selectivity (Linear Probes)

| Model                           | Task       | 0%     | 25%   | 50%   | 75%   | 100%  |
|---------------------------------|------------|--------|-------|-------|-------|-------|
| Goldfish English (English)      | Inflection | 0.341  | 0.437 | 0.522 | 0.549 | 0.556 |
|                                 | Lexeme     | 0.017  | 0.073 | 0.096 | 0.100 | 0.110 |
| Qwen2.5-1.5B (English)          | Inflection | 0.199  | 0.483 | 0.589 | 0.566 | 0.548 |
|                                 | Lexeme     | 0.034  | 0.146 | 0.117 | 0.129 | 0.108 |
| Qwen2.5-1.5B-Instruct (English) | Inflection | 0.189  | 0.474 | 0.581 | 0.541 | 0.503 |
|                                 | Lexeme     | 0.061  | 0.143 | 0.113 | 0.129 | 0.112 |
| Qwen2.5-7B (English)            | Inflection | 0.059  | 0.383 | 0.538 | 0.533 | 0.523 |
|                                 | Lexeme     | -0.006 | 0.098 | 0.121 | 0.131 | 0.099 |
| Qwen2.5-7B-Instruct (English)   | Inflection | 0.059  | 0.392 | 0.542 | 0.531 | 0.528 |
|                                 | Lexeme     | -0.006 | 0.098 | 0.116 | 0.129 | 0.100 |
| mT5-Base (English)              | Inflection | 0.229  | 0.348 | 0.462 | 0.533 | 0.530 |
|                                 | Lexeme     | 0.003  | 0.005 | 0.047 | 0.053 | 0.063 |

(d) Selectivity (MLP Probes)

| Model                           | Task       | 0%     | 25%    | 50%   | 75%   | 100%  |
|---------------------------------|------------|--------|--------|-------|-------|-------|
| Goldfish English (English)      | Inflection | 0.131  | 0.272  | 0.371 | 0.438 | 0.493 |
|                                 | Lexeme     | 0.006  | -0.021 | 0.005 | 0.031 | 0.050 |
| Qwen2.5-1.5B (English)          | Inflection | 0.248  | 0.588  | 0.647 | 0.625 | 0.595 |
|                                 | Lexeme     | 0.019  | 0.085  | 0.096 | 0.101 | 0.090 |
| Qwen2.5-1.5B-Instruct (English) | Inflection | 0.187  | 0.571  | 0.629 | 0.606 | 0.549 |
|                                 | Lexeme     | 0.069  | 0.090  | 0.097 | 0.100 | 0.087 |
| Qwen2.5-7B (English)            | Inflection | 0.051  | 0.282  | 0.456 | 0.457 | 0.507 |
|                                 | Lexeme     | -0.008 | 0.039  | 0.070 | 0.073 | 0.061 |
| Qwen2.5-7B-Instruct (English)   | Inflection | 0.001  | 0.229  | 0.424 | 0.416 | 0.457 |
|                                 | Lexeme     | -0.008 | 0.042  | 0.072 | 0.067 | 0.068 |
| mT5-Base (English)              | Inflection | NaN    | NaN    | NaN   | NaN   | NaN   |
|                                 | Lexeme     | -0.012 | -0.023 | 0.003 | 0.011 | 0.026 |

Table 8: Probing Results for French

(a) Accuracy (Linear Probes)

| Model                          | Task       | 0%    | 25%   | 50%   | 75%   | 100%  |
|--------------------------------|------------|-------|-------|-------|-------|-------|
| Goldfish French (French)       | Inflection | 0.924 | 0.959 | 0.976 | 0.970 | 0.963 |
|                                | Lexeme     | 0.888 | 0.813 | 0.714 | 0.665 | 0.619 |
| Qwen2.5-1.5B (French)          | Inflection | 0.792 | 0.947 | 0.954 | 0.952 | 0.928 |
|                                | Lexeme     | 0.541 | 0.850 | 0.696 | 0.690 | 0.602 |
| Qwen2.5-1.5B-Instruct (French) | Inflection | 0.792 | 0.945 | 0.951 | 0.949 | 0.925 |
|                                | Lexeme     | 0.541 | 0.845 | 0.687 | 0.690 | 0.611 |
| Qwen2.5-7B (French)            | Inflection | 0.793 | 0.966 | 0.965 | 0.964 | 0.945 |
|                                | Lexeme     | 0.541 | 0.943 | 0.801 | 0.769 | 0.714 |
| Qwen2.5-7B-Instruct (French)   | Inflection | 0.793 | 0.963 | 0.962 | 0.961 | 0.941 |
|                                | Lexeme     | 0.541 | 0.942 | 0.790 | 0.760 | 0.706 |
| mT5-Base (French)              | Inflection | 0.840 | 0.943 | 0.967 | 0.961 | 0.944 |
|                                | Lexeme     | 0.656 | 0.773 | 0.674 | 0.596 | 0.567 |

(b) Selectivity (Linear Probes)

| Model                          | Task       | 0%     | 25%   | 50%   | 75%   | 100%  |
|--------------------------------|------------|--------|-------|-------|-------|-------|
| Goldfish French (French)       | Inflection | 0.403  | 0.497 | 0.581 | 0.585 | 0.613 |
|                                | Lexeme     | 0.039  | 0.109 | 0.132 | 0.131 | 0.122 |
| Qwen2.5-1.5B (French)          | Inflection | 0.244  | 0.463 | 0.576 | 0.559 | 0.561 |
|                                | Lexeme     | 0.002  | 0.137 | 0.126 | 0.132 | 0.088 |
| Qwen2.5-1.5B-Instruct (French) | Inflection | 0.244  | 0.467 | 0.582 | 0.565 | 0.562 |
|                                | Lexeme     | 0.002  | 0.137 | 0.126 | 0.132 | 0.092 |
| Qwen2.5-7B (French)            | Inflection | 0.228  | 0.370 | 0.538 | 0.545 | 0.540 |
|                                | Lexeme     | 0.003  | 0.116 | 0.145 | 0.139 | 0.112 |
| Qwen2.5-7B-Instruct (French)   | Inflection | 0.228  | 0.375 | 0.545 | 0.552 | 0.544 |
|                                | Lexeme     | 0.002  | 0.118 | 0.143 | 0.138 | 0.112 |
| mT5-Base (French)              | Inflection | 0.248  | 0.386 | 0.495 | 0.548 | 0.530 |
|                                | Lexeme     | -0.006 | 0.027 | 0.045 | 0.046 | 0.037 |

(c) Accuracy (MLP Probes)

| Model                          | Task       | 0%    | 25%   | 50%   | 75%   | 100%  |
|--------------------------------|------------|-------|-------|-------|-------|-------|
| Goldfish French (French)       | Inflection | 0.932 | 0.972 | 0.980 | 0.979 | 0.971 |
|                                | Lexeme     | 0.947 | 0.949 | 0.916 | 0.829 | 0.696 |
| Qwen2.5-1.5B (French)          | Inflection | 0.789 | 0.956 | 0.965 | 0.960 | 0.929 |
|                                | Lexeme     | 0.536 | 0.910 | 0.845 | 0.788 | 0.360 |
| Qwen2.5-1.5B-Instruct (French) | Inflection | 0.791 | 0.954 | 0.962 | 0.959 | 0.929 |
|                                | Lexeme     | 0.537 | 0.911 | 0.835 | 0.798 | 0.535 |
| Qwen2.5-7B (French)            | Inflection | 0.791 | 0.971 | 0.971 | 0.968 | 0.943 |
|                                | Lexeme     | 0.533 | 0.953 | 0.862 | 0.830 | 0.461 |
| Qwen2.5-7B-Instruct (French)   | Inflection | 0.791 | 0.968 | 0.969 | 0.965 | 0.939 |
|                                | Lexeme     | 0.534 | 0.949 | 0.851 | 0.823 | 0.467 |
| mT5-Base (French)              | Inflection | 0.851 | 0.962 | 0.975 | 0.967 | 0.969 |
|                                | Lexeme     | 0.654 | 0.785 | 0.698 | 0.633 | 0.665 |

(d) Selectivity (MLP Probes)

| Model                          | Task       | 0%     | 25%    | 50%    | 75%    | 100%   |
|--------------------------------|------------|--------|--------|--------|--------|--------|
| Goldfish French (French)       | Inflection | 0.131  | 0.289  | 0.372  | 0.443  | 0.486  |
|                                | Lexeme     | -0.016 | 0.006  | 0.032  | 0.072  | 0.084  |
| Qwen2.5-1.5B (French)          | Inflection | 0.236  | 0.260  | 0.402  | 0.405  | 0.548  |
|                                | Lexeme     | 0.006  | 0.025  | 0.046  | 0.056  | 0.043  |
| Qwen2.5-1.5B-Instruct (French) | Inflection | 0.235  | 0.263  | 0.411  | 0.410  | 0.552  |
|                                | Lexeme     | 0.002  | 0.030  | 0.048  | 0.055  | 0.064  |
| Qwen2.5-7B (French)            | Inflection | 0.227  | 0.198  | 0.394  | 0.415  | 0.516  |
|                                | Lexeme     | -0.001 | 0.025  | 0.065  | 0.070  | 0.027  |
| Qwen2.5-7B-Instruct (French)   | Inflection | 0.229  | 0.205  | 0.407  | 0.426  | 0.514  |
|                                | Lexeme     | 0.000  | 0.028  | 0.072  | 0.070  | 0.037  |
| mT5-Base (French)              | Inflection | 0.127  | 0.190  | 0.321  | 0.404  | 0.388  |
|                                | Lexeme     | -0.020 | -0.036 | -0.015 | -0.000 | -0.000 |

Table 9: Probing Results for German

(a) Accuracy (Linear Probes)

| Model                          | Task       | 0%    | 25%   | 50%   | 75%   | 100%  |
|--------------------------------|------------|-------|-------|-------|-------|-------|
| Goldfish German (German)       | Inflection | 0.911 | 0.946 | 0.961 | 0.961 | 0.952 |
|                                | Lexeme     | 0.886 | 0.831 | 0.707 | 0.627 | 0.569 |
| Qwen2.5-1.5B (German)          | Inflection | 0.744 | 0.929 | 0.931 | 0.930 | 0.911 |
|                                | Lexeme     | 0.479 | 0.865 | 0.707 | 0.690 | 0.569 |
| Qwen2.5-1.5B-Instruct (German) | Inflection | 0.745 | 0.928 | 0.929 | 0.929 | 0.912 |
|                                | Lexeme     | 0.479 | 0.862 | 0.694 | 0.686 | 0.582 |
| Qwen2.5-7B (German)            | Inflection | 0.744 | 0.949 | 0.946 | 0.950 | 0.935 |
|                                | Lexeme     | 0.480 | 0.942 | 0.811 | 0.764 | 0.651 |
| Qwen2.5-7B-Instruct (German)   | Inflection | 0.760 | 0.958 | 0.954 | 0.958 | 0.938 |
|                                | Lexeme     | 0.480 | 0.943 | 0.801 | 0.757 | 0.646 |
| mT5-Base (German)              | Inflection | 0.811 | 0.942 | 0.954 | 0.956 | 0.916 |
|                                | Lexeme     | 0.650 | 0.796 | 0.656 | 0.574 | 0.543 |

(b) Selectivity (Linear Probes)

| Model                          | Task       | 0%     | 25%   | 50%   | 75%   | 100%  |
|--------------------------------|------------|--------|-------|-------|-------|-------|
| Goldfish German (German)       | Inflection | 0.418  | 0.503 | 0.593 | 0.622 | 0.645 |
|                                | Lexeme     | -0.001 | 0.057 | 0.088 | 0.088 | 0.069 |
| Qwen2.5-1.5B (German)          | Inflection | 0.289  | 0.446 | 0.577 | 0.582 | 0.599 |
|                                | Lexeme     | 0.009  | 0.084 | 0.082 | 0.096 | 0.065 |
| Qwen2.5-1.5B-Instruct (German) | Inflection | 0.289  | 0.450 | 0.577 | 0.583 | 0.602 |
|                                | Lexeme     | 0.009  | 0.082 | 0.082 | 0.094 | 0.069 |
| Qwen2.5-7B (German)            | Inflection | 0.286  | 0.357 | 0.546 | 0.574 | 0.597 |
|                                | Lexeme     | 0.009  | 0.065 | 0.104 | 0.113 | 0.085 |
| Qwen2.5-7B-Instruct (German)   | Inflection | 0.228  | 0.210 | 0.468 | 0.509 | 0.530 |
|                                | Lexeme     | 0.009  | 0.067 | 0.105 | 0.111 | 0.084 |
| mT5-Base (German)              | Inflection | 0.251  | 0.371 | 0.494 | 0.560 | 0.529 |
|                                | Lexeme     | 0.000  | 0.012 | 0.023 | 0.043 | 0.033 |

(c) Accuracy (MLP Probes)

| Model                          | Task       | 0%    | 25%   | 50%   | 75%   | 100%  |
|--------------------------------|------------|-------|-------|-------|-------|-------|
| Goldfish German (German)       | Inflection | 0.923 | 0.955 | 0.969 | 0.969 | 0.960 |
|                                | Lexeme     | 0.902 | 0.768 | 0.794 | 0.657 | 0.511 |
| Qwen2.5-1.5B (German)          | Inflection | 0.741 | 0.943 | 0.944 | 0.942 | 0.910 |
|                                | Lexeme     | 0.473 | 0.869 | 0.763 | 0.682 | 0.592 |
| Qwen2.5-1.5B-Instruct (German) | Inflection | 0.741 | 0.943 | 0.943 | 0.941 | 0.910 |
|                                | Lexeme     | 0.474 | 0.870 | 0.753 | 0.688 | 0.300 |
| Qwen2.5-7B (German)            | Inflection | 0.740 | 0.956 | 0.954 | 0.956 | 0.935 |
|                                | Lexeme     | 0.471 | 0.943 | 0.820 | 0.746 | 0.383 |
| Qwen2.5-7B-Instruct (German)   | Inflection | 0.758 | 0.962 | 0.959 | 0.961 | 0.935 |
|                                | Lexeme     | 0.471 | 0.943 | 0.810 | 0.749 | 0.397 |
| mT5-Base (German)              | Inflection | 0.820 | 0.956 | 0.954 | 0.952 | 0.939 |
|                                | Lexeme     | 0.641 | 0.710 | 0.563 | 0.486 | 0.530 |

(d) Selectivity (MLP Probes)

| Model                          | Task       | 0%     | 25%    | 50%   | 75%   | 100%  |
|--------------------------------|------------|--------|--------|-------|-------|-------|
| Goldfish German (German)       | Inflection | 0.229  | 0.350  | 0.457 | 0.523 | 0.585 |
|                                | Lexeme     | -0.021 | 0.017  | 0.051 | 0.084 | 0.082 |
| Qwen2.5-1.5B (German)          | Inflection | 0.292  | 0.292  | 0.457 | 0.492 | 0.604 |
|                                | Lexeme     | 0.008  | 0.022  | 0.054 | 0.060 | 0.035 |
| Qwen2.5-1.5B-Instruct (German) | Inflection | 0.291  | 0.295  | 0.472 | 0.488 | 0.600 |
|                                | Lexeme     | 0.009  | 0.023  | 0.056 | 0.063 | 0.032 |
| Qwen2.5-7B (German)            | Inflection | 0.288  | 0.214  | 0.455 | 0.493 | 0.596 |
|                                | Lexeme     | 0.007  | 0.011  | 0.066 | 0.070 | 0.046 |
| Qwen2.5-7B-Instruct (German)   | Inflection | 0.227  | 0.111  | 0.382 | 0.424 | 0.532 |
|                                | Lexeme     | 0.008  | 0.015  | 0.073 | 0.077 | 0.049 |
| mT5-Base (German)              | Inflection | 0.160  | 0.253  | 0.405 | 0.475 | 0.462 |
|                                | Lexeme     | -0.012 | -0.037 | 0.000 | 0.023 | 0.012 |

Table 10: Probing Results for Russian

| (a) Accuracy (Linear Probes)    |            |       |       |       |       |       | (b) Selectivity (Linear Probes) |            |        |        |       |       |       |
|---------------------------------|------------|-------|-------|-------|-------|-------|---------------------------------|------------|--------|--------|-------|-------|-------|
| Model                           | Task       | 0%    | 25%   | 50%   | 75%   | 100%  | Model                           | Task       | 0%     | 25%    | 50%   | 75%   | 100%  |
| Goldfish Russian (Russian)      | Inflection | 0.932 | 0.952 | 0.975 | 0.968 | 0.950 | Goldfish Russian (Russian)      | Inflection | 0.505  | 0.568  | 0.663 | 0.675 | 0.688 |
|                                 | Lexeme     | 0.896 | 0.854 | 0.758 | 0.710 | 0.631 |                                 | Lexeme     | 0.024  | 0.115  | 0.157 | 0.175 | 0.170 |
| Qwen2.5-1.5B (Russian)          | Inflection | 0.850 | 0.966 | 0.966 | 0.962 | 0.933 | Qwen2.5-1.5B (Russian)          | Inflection | 0.518  | 0.576  | 0.679 | 0.661 | 0.665 |
|                                 | Lexeme     | 0.315 | 0.893 | 0.739 | 0.720 | 0.598 |                                 | Lexeme     | 0.012  | 0.190  | 0.187 | 0.202 | 0.153 |
| Qwen2.5-1.5B-Instruct (Russian) | Inflection | 0.850 | 0.965 | 0.964 | 0.960 | 0.932 | Qwen2.5-1.5B-Instruct (Russian) | Inflection | 0.518  | 0.582  | 0.685 | 0.664 | 0.666 |
|                                 | Lexeme     | 0.315 | 0.893 | 0.725 | 0.714 | 0.600 |                                 | Lexeme     | 0.012  | 0.191  | 0.190 | 0.205 | 0.152 |
| Qwen2.5-7B (Russian)            | Inflection | 0.850 | 0.977 | 0.976 | 0.974 | 0.954 | Qwen2.5-7B (Russian)            | Inflection | 0.517  | 0.504  | 0.670 | 0.671 | 0.658 |
|                                 | Lexeme     | 0.315 | 0.960 | 0.834 | 0.798 | 0.696 |                                 | Lexeme     | 0.011  | 0.165  | 0.218 | 0.222 | 0.183 |
| Qwen2.5-7B-Instruct (Russian)   | Inflection | 0.858 | 0.977 | 0.974 | 0.980 | 0.953 | Qwen2.5-7B-Instruct (Russian)   | Inflection | 0.431  | 0.332  | 0.581 | 0.594 | 0.593 |
|                                 | Lexeme     | 0.315 | 0.959 | 0.821 | 0.785 | 0.680 |                                 | Lexeme     | 0.011  | 0.167  | 0.221 | 0.222 | 0.181 |
| mT5-Base (Russian)              | Inflection | 0.882 | 0.944 | 0.974 | 0.971 | 0.952 | mT5-Base (Russian)              | Inflection | 0.388  | 0.418  | 0.548 | 0.595 | 0.605 |
|                                 | Lexeme     | 0.480 | 0.766 | 0.666 | 0.570 | 0.515 |                                 | Lexeme     | 0.004  | 0.088  | 0.092 | 0.099 | 0.092 |
| (c) Accuracy (MLP Probes)       |            |       |       |       |       |       | (d) Selectivity (MLP Probes)    |            |        |        |       |       |       |
| Model                           | Task       | 0%    | 25%   | 50%   | 75%   | 100%  | Model                           | Task       | 0%     | 25%    | 50%   | 75%   | 100%  |
| Goldfish Russian (Russian)      | Inflection | 0.944 | 0.966 | 0.982 | 0.977 | 0.959 | Goldfish Russian (Russian)      | Inflection | 0.322  | 0.466  | 0.557 | 0.604 | 0.642 |
|                                 | Lexeme     | 0.896 | 0.878 | 0.814 | 0.732 | 0.582 |                                 | Lexeme     | -0.007 | 0.049  | 0.120 | 0.203 | 0.201 |
| Qwen2.5-1.5B (Russian)          | Inflection | 0.848 | 0.972 | 0.971 | 0.969 | 0.924 | Qwen2.5-1.5B (Russian)          | Inflection | 0.524  | 0.451  | 0.575 | 0.594 | 0.662 |
|                                 | Lexeme     | 0.302 | 0.874 | 0.768 | 0.690 | 0.281 |                                 | Lexeme     | 0.004  | 0.080  | 0.122 | 0.162 | 0.108 |
| Qwen2.5-1.5B-Instruct (Russian) | Inflection | 0.848 | 0.971 | 0.970 | 0.967 | 0.927 | Qwen2.5-1.5B-Instruct (Russian) | Inflection | 0.523  | 0.457  | 0.589 | 0.594 | 0.660 |
|                                 | Lexeme     | 0.302 | 0.870 | 0.760 | 0.692 | 0.282 |                                 | Lexeme     | 0.004  | 0.085  | 0.133 | 0.164 | 0.101 |
| Qwen2.5-7B (Russian)            | Inflection | 0.850 | 0.981 | 0.981 | 0.977 | 0.940 | Qwen2.5-7B (Russian)            | Inflection | 0.526  | 0.376  | 0.591 | 0.604 | 0.652 |
|                                 | Lexeme     | 0.312 | 0.960 | 0.838 | 0.770 | 0.361 |                                 | Lexeme     | 0.011  | 0.062  | 0.175 | 0.183 | 0.123 |
| Qwen2.5-7B-Instruct (Russian)   | Inflection | 0.857 | 0.976 | 0.976 | 0.978 | 0.935 | Qwen2.5-7B-Instruct (Russian)   | Inflection | 0.432  | 0.211  | 0.493 | 0.512 | 0.583 |
|                                 | Lexeme     | 0.308 | 0.958 | 0.828 | 0.765 | 0.371 |                                 | Lexeme     | 0.008  | 0.065  | 0.184 | 0.193 | 0.125 |
| mT5-Base (Russian)              | Inflection | 0.883 | 0.956 | 0.978 | 0.974 | 0.971 | mT5-Base (Russian)              | Inflection | 0.351  | 0.335  | 0.497 | 0.547 | 0.557 |
|                                 | Lexeme     | 0.448 | 0.571 | 0.470 | 0.397 | 0.437 |                                 | Lexeme     | -0.016 | -0.016 | 0.023 | 0.035 | 0.042 |

Table 11: Probing Results for Turkish

| (a) Accuracy (Linear Probes)    |            |       |       |       |       |       | (b) Selectivity (Linear Probes) |            |        |        |        |        |        |
|---------------------------------|------------|-------|-------|-------|-------|-------|---------------------------------|------------|--------|--------|--------|--------|--------|
| Model                           | Task       | 0%    | 25%   | 50%   | 75%   | 100%  | Model                           | Task       | 0%     | 25%    | 50%    | 75%    | 100%   |
| Goldfish Turkish (Turkish)      | Inflection | 0.907 | 0.930 | 0.925 | 0.913 | 0.903 | Goldfish Turkish (Turkish)      | Inflection | 0.345  | 0.407  | 0.491  | 0.492  | 0.500  |
|                                 | Lexeme     | 0.978 | 0.973 | 0.968 | 0.921 | 0.614 |                                 | Lexeme     | -0.002 | 0.008  | 0.074  | 0.089  | 0.144  |
| Qwen2.5-1.5B (Turkish)          | Inflection | 0.719 | 0.869 | 0.847 | 0.849 | 0.831 | Qwen2.5-1.5B (Turkish)          | Inflection | 0.277  | 0.323  | 0.452  | 0.455  | 0.411  |
|                                 | Lexeme     | 0.530 | 0.959 | 0.868 | 0.815 | 0.796 |                                 | Lexeme     | 0.013  | 0.001  | 0.000  | -0.014 | 0.008  |
| Qwen2.5-1.5B-Instruct (Turkish) | Inflection | 0.719 | 0.869 | 0.838 | 0.846 | 0.827 | Qwen2.5-1.5B-Instruct (Turkish) | Inflection | 0.277  | 0.319  | 0.447  | 0.452  | 0.416  |
|                                 | Lexeme     | 0.530 | 0.961 | 0.852 | 0.804 | 0.786 |                                 | Lexeme     | 0.013  | 0.003  | 0.004  | -0.009 | 0.009  |
| Qwen2.5-7B (Turkish)            | Inflection | 0.718 | 0.917 | 0.889 | 0.879 | 0.839 | Qwen2.5-7B (Turkish)            | Inflection | 0.275  | 0.293  | 0.472  | 0.462  | 0.417  |
|                                 | Lexeme     | 0.531 | 0.974 | 0.878 | 0.839 | 0.777 |                                 | Lexeme     | 0.014  | -0.002 | 0.003  | -0.010 | -0.021 |
| Qwen2.5-7B-Instruct (Turkish)   | Inflection | 0.718 | 0.911 | 0.874 | 0.874 | 0.836 | Qwen2.5-7B-Instruct (Turkish)   | Inflection | 0.276  | 0.291  | 0.463  | 0.497  | 0.445  |
|                                 | Lexeme     | 0.531 | 0.975 | 0.854 | 0.803 | 0.731 |                                 | Lexeme     | 0.014  | 0.003  | -0.003 | -0.017 | -0.037 |
| mT5-Base (Turkish)              | Inflection | 0.913 | 0.972 | 0.931 | 0.908 | 0.884 | mT5-Base (Turkish)              | Inflection | 0.071  | 0.165  | 0.261  | 0.331  | 0.366  |
|                                 | Lexeme     | 0.792 | 0.952 | 0.922 | 0.819 | 0.785 |                                 | Lexeme     | 0.008  | 0.013  | 0.042  | 0.035  | 0.057  |
| (c) Accuracy (MLP Probes)       |            |       |       |       |       |       | (d) Selectivity (MLP Probes)    |            |        |        |        |        |        |
| Model                           | Task       | 0%    | 25%   | 50%   | 75%   | 100%  | Model                           | Task       | 0%     | 25%    | 50%    | 75%    | 100%   |
| Goldfish Turkish (Turkish)      | Inflection | 0.911 | 0.918 | 0.916 | 0.899 | 0.887 | Goldfish Turkish (Turkish)      | Inflection | 0.333  | 0.449  | 0.499  | 0.488  | 0.496  |
|                                 | Lexeme     | 0.601 | 0.536 | 0.459 | 0.418 | 0.360 |                                 | Lexeme     | 0.175  | 0.185  | 0.142  | 0.138  | 0.125  |
| Qwen2.5-1.5B (Turkish)          | Inflection | 0.713 | 0.854 | 0.823 | 0.829 | 0.760 | Qwen2.5-1.5B (Turkish)          | Inflection | 0.299  | 0.355  | 0.438  | 0.500  | 0.432  |
|                                 | Lexeme     | 0.459 | 0.500 | 0.369 | 0.325 | 0.232 |                                 | Lexeme     | -0.001 | 0.045  | 0.093  | 0.049  | 0.045  |
| Qwen2.5-1.5B-Instruct (Turkish) | Inflection | 0.712 | 0.857 | 0.831 | 0.817 | 0.760 | Qwen2.5-1.5B-Instruct (Turkish) | Inflection | 0.303  | 0.350  | 0.447  | 0.447  | 0.432  |
|                                 | Lexeme     | 0.462 | 0.491 | 0.367 | 0.333 | 0.233 |                                 | Lexeme     | 0.001  | 0.042  | 0.104  | 0.065  | -0.078 |
| Qwen2.5-7B (Turkish)            | Inflection | 0.713 | 0.923 | 0.902 | 0.900 | 0.828 | Qwen2.5-7B (Turkish)            | Inflection | 0.297  | 0.299  | 0.422  | 0.473  | 0.442  |
|                                 | Lexeme     | 0.519 | 0.805 | 0.639 | 0.525 | 0.441 |                                 | Lexeme     | 0.007  | 0.084  | 0.128  | 0.105  | 0.065  |
| Qwen2.5-7B-Instruct (Turkish)   | Inflection | 0.717 | 0.914 | 0.900 | 0.895 | 0.820 | Qwen2.5-7B-Instruct (Turkish)   | Inflection | 0.303  | 0.297  | 0.437  | 0.492  | 0.432  |
|                                 | Lexeme     | 0.521 | 0.797 | 0.615 | 0.523 | 0.383 |                                 | Lexeme     | 0.012  | 0.087  | 0.147  | 0.103  | 0.061  |
| mT5-Base (Turkish)              | Inflection | 0.884 | 0.915 | 0.875 | 0.836 | 0.839 | mT5-Base (Turkish)              | Inflection | 0.120  | 0.301  | 0.343  | 0.355  | 0.368  |
|                                 | Lexeme     | 0.503 | 0.395 | 0.300 | 0.257 | 0.312 |                                 | Lexeme     | 0.047  | 0.094  | 0.109  | 0.097  | 0.106  |

---

## H DATASET STATISTICS

This section provides statistics and visualizations for the datasets and models used in our experiments across all six languages. Only words containing alphabetic characters and apostrophes were considered.

| Language | Total Words | Unique Lemmas | Unique Forms | Inflection Types | Sentences | Avg. Length |
|----------|-------------|---------------|--------------|------------------|-----------|-------------|
| English  | 54,816      | 7,848         | 11,720       | 8                | 8,415     | 6.5         |
| Chinese  | 44,166      | 11,184        | 11,237       | 4                | 7,892     | 5.8         |
| German   | 84,710      | 24,140        | 31,890       | 9                | 9,234     | 7.3         |
| French   | 115,847     | 13,804        | 24,485       | 6                | 8,765     | 6.6         |
| Russian  | 193,320     | 20,943        | 59,830       | 8                | 10,234    | 7.1         |
| Turkish  | 20,881      | 3,776         | 11,680       | 7                | 6,789     | 6.4         |

Table 12: Dataset statistics across all six languages. Russian has the largest dataset and the highest number of unique forms, reflecting its rich inflectional morphology. Turkish has the fewest total words and lemmas, while Chinese has the fewest inflection types.

### H.1 ENGLISH DATASET DETAILS

For the English GUM corpus specifically, the data covers three main syntactic categories: nouns (49.5%), verbs (31.2%), and adjectives (19.4%).

Table 13a shows the distribution of word categories in the English dataset, and Table 13b presents the distribution of inflection categories.

| Category                  | Count | %    | Inflection  | Count | %    | Metric                    | Value |
|---------------------------|-------|------|-------------|-------|------|---------------------------|-------|
|                           |       |      | Singular    | 19830 | 36.2 |                           |       |
| Noun                      | 27111 | 49.5 | Base        | 10076 | 18.4 | Avg. Words                | 6.5   |
| Verb                      | 17093 | 31.2 | Positive    | 9926  | 18.1 | Median Words              | 5     |
| Adjective                 | 10612 | 19.4 | Plural      | 7281  | 13.3 | Min. Words                | 1     |
|                           |       |      | Past        | 5604  | 10.2 | Max. Words                | 40    |
| (a) Word categories       |       |      | 3rd Person  | 1413  | 2.6  | (c) Sentence length stats |       |
| (b) Inflection categories |       |      | Comparative | 403   | 0.7  |                           |       |
|                           |       |      | Superlative | 283   | 0.5  |                           |       |

Table 13: Distribution statistics for the English dataset. Table (a) shows syntactic categories, (b) details inflection types, and (c) provides sentence length heuristics.

### H.2 TOKENIZATION STATISTICS

| Model              | Tokenizer Type |
|--------------------|----------------|
| BERT Base/Large    | WordPiece      |
| DeBERTa V3 Large   | SentencePiece  |
| GPT-2 variants     | BPE            |
| Pythia variants    | BPE            |
| OLMo 2 variants    | BPE (tiktoken) |
| Gemma 2 variants   | SentencePiece  |
| Qwen 2.5 variants  | Byte-level BPE |
| Llama 3.1 variants | BPE (tiktoken) |

Table 14: Tokenization strategies used by different model families. BPE means byte-pair encoding.

An important consideration for our analysis is how different models tokenize the words in our dataset. Table 15 shows tokenization statistics across the models we analyze. Encoder-only models

like BERT and DeBERTa tend to split words into more tokens than decoder-only models like GPT-2 and Qwen2, which may affect how information is encoded across layers.

| Model                 | Avg. tokens per word | Med. tokens per word | Max tokens per word | Percent multitoken |
|-----------------------|----------------------|----------------------|---------------------|--------------------|
| BERT variants         | 1.11                 | 1.0                  | 6.0                 | 6.95               |
| DeBERTa-v3-large      | 1.03                 | 1.0                  | 4.0                 | 2.2                |
| GPT-2 variants        | 1.52                 | 1.0                  | 5.0                 | 42.25              |
| Pythia-6.9B variants  | 1.48                 | 1.0                  | 5.0                 | 39.1               |
| OLMo2-7B variants     | 1.43                 | 1.0                  | 4.0                 | 35.9               |
| Gemma2-2B variants    | 1.19                 | 1.0                  | 4.0                 | 16.55              |
| Qwen2.5-1.5B variants | 1.43                 | 1.0                  | 4.0                 | 35.9               |
| Llama-3.1-8B variants | 1.43                 | 1.0                  | 4.0                 | 35.85              |

Table 15: Tokenization statistics across different models (English only). Most models have an average of 1.0-1.5 tokens per word and a median of 1, indicating that most words are tokenized as a single unit. However, there is variation in the proportion of words split into multiple tokens. Decoder-only models (e.g., GPT-2, Pythia, Qwen2, LLaMA) split 35-42% of words, while BERT and DeBERTa variants split fewer words (2-7%). Maximum tokens per word range from 4 to 6 across all models.

### H.3 EFFECTS OF TOKENIZATION

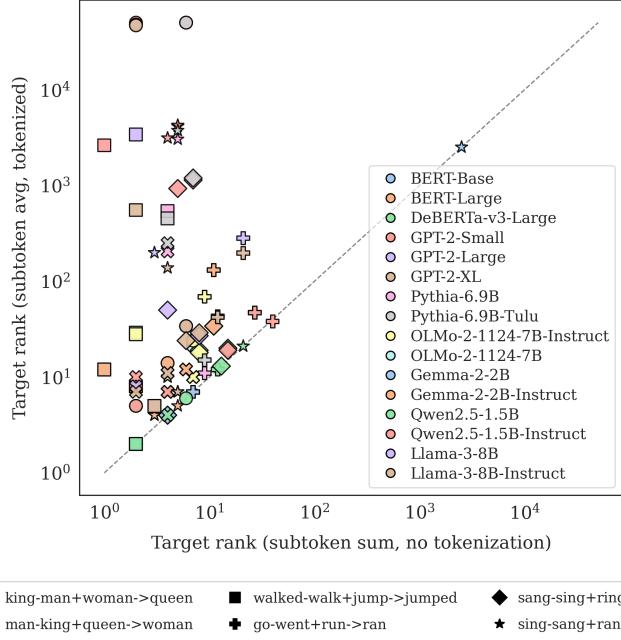


Figure 14: Effect of tokenization strategy on analogy completion rank. Each point corresponds to a model (color) and analogy (shape). The x-axis is the rank using whole-word representations. The y-axis is the rank using tokenized representations. Here, rank means the position of the expected word when all vocabulary words are sorted by similarity to the resulting embedding from vector arithmetic; lower is better. Points above the gray  $y=x$  line mean tokenization hurts performance.

Tokenization is an essential component of language modeling. To test how tokenization influences our findings, we use analogy completion tasks in English (e.g., *man:king::woman:?*) and compare two approaches: averaging subtoken embeddings after standard tokenization and summing embeddings from whole-word tokens.

For each approach, we perform vector arithmetic on word representations (e.g., *king - man + woman*). We measure performance by ranking all vocabulary words by cosine similarity to the resulting

1836 representation, and observe how highly the expected word (*e.g.*, *queen*) ranks, with a lower rank  
 1837 indicating better performance.  
 1838

1839 Whole-word representations markedly outperform averaged subtokens across all models (Figure 14),  
 1840 implying that linguistic regularities are primarily stored in whole-word embeddings rather than  
 1841 compositionally across subtokens. Despite tokenization effects, our classifier results show consistent  
 1842 patterns across models using different tokenizers (see Table 14), indicating robust encoding of lexical  
 1843 and morphological information.

| Model                   | HuggingFace ID                            |
|-------------------------|-------------------------------------------|
| BERT-Base               | bert-base-uncased                         |
| BERT-Large              | bert-large-uncased                        |
| DeBERTa-v3-Large        | microsoft/deberta-v3-large                |
| mt5-base                | google/mt5-base                           |
| GPT-2-Small             | openai-community/gpt2                     |
| GPT-2-Large             | openai-community/gpt2-large               |
| GPT-2-XL                | openai-community/gpt2-xl                  |
| Pythia-6.9B             | EleutherAI/pythia-6.9b                    |
| Pythia-6.9B-Tulu        | allenai/open-instruct-pythia-6.9b-tulu    |
| OLMo-2-1124-7B          | allenai/OLMo-2-1124-7B                    |
| OLMo-2-1124-7B-Instruct | allenai/OLMo-2-1124-7B-Instruct           |
| Gemma-2-2B              | google/gemma-2-2b                         |
| Gemma-2-2B-Instruct     | google/gemma-2-2b-it                      |
| Qwen2.5-1.5B            | Qwen/Qwen2.5-1.5B                         |
| Qwen2.5-1.5B-Instruct   | Qwen/Qwen2.5-1.5B-Instruct                |
| Qwen2.5-7B              | Qwen/Qwen2.5-7B                           |
| Qwen2.5-7B-Instruct     | Qwen/Qwen2.5-7B-Instruct                  |
| Llama-3.1-8B            | meta-llama/Llama-3.1-8B                   |
| Llama-3.1-8B-Instruct   | meta-llama/Llama-3.1-8B-Instruct          |
| Goldfish English        | goldfish-models/goldfish_eng_latn_1000mb  |
| Goldfish Chinese        | goldfish-models/goldfish_zho_hans_1000mb  |
| Goldfish German         | goldfish-models/goldfish_deu_latn_1000mb  |
| Goldfish French         | goldfish-models/goldfish_fra_latn_1000mb  |
| Goldfish Russian        | goldfish-models/goldfish_rus_cyril_1000mb |
| Goldfish Turkish        | goldfish-models/goldfish_tur_latn_1000mb  |

1861 Table 16: Canonical HuggingFace model IDs used to load models in our study.  
 1862  
 1863

## I ADDITIONAL ANALYSIS

### I.1 INTRINSIC DIMENSIONALITY RESULTS

1864 Intrinsic dimensionality analyses are shown in Figure 15 and Table 17. These illustrate how compres-  
 1865 sion varies across layers and between models.  
 1866

| Model                  | $d_{\text{model}}$ | ID <sub>50</sub> |     |       | ID <sub>70</sub> |     |       | ID <sub>90</sub> |      |       |
|------------------------|--------------------|------------------|-----|-------|------------------|-----|-------|------------------|------|-------|
|                        |                    | First            | Mid | Final | First            | Mid | Final | First            | Mid  | Final |
| BERT-Base              | 768                | 123              | 100 | 88    | 244              | 212 | 192   | 461              | 451  | 446   |
| BERT-Large             | 1024               | 138              | 105 | 85    | 286              | 226 | 208   | 567              | 527  | 554   |
| DeBERTa-v3-Large       | 1024               | 196              | 133 | 29    | 377              | 299 | 113   | 688              | 635  | 423   |
| GPT-2-Small            | 768                | 37               | 1   | 1     | 152              | 1   | 1     | 402              | 1    | 3     |
| GPT-2-Large            | 1280               | 24               | 1   | 95    | 172              | 1   | 284   | 583              | 1    | 726   |
| GPT-2-XL               | 1600               | 113              | 1   | 118   | 340              | 1   | 356   | 838              | 1    | 914   |
| Pythia-6.9B            | 4096               | 391              | 1   | 96    | 865              | 1   | 517   | 1952             | 1    | 1925  |
| Pythia-6.9B-Tulu       | 4096               | 390              | 1   | 244   | 862              | 1   | 832   | 1949             | 1    | 2292  |
| OLMo-2-7B              | 4096               | 404              | 310 | 41    | 833              | 896 | 299   | 1772             | 2279 | 1550  |
| OLMo-2-7B-Instruct     | 4096               | 404              | 358 | 111   | 833              | 974 | 567   | 1772             | 2361 | 1964  |
| Gemma-2-2B             | 2304               | 216              | 8   | 11    | 505              | 130 | 70    | 1129             | 794  | 611   |
| Gemma-2-2B-Instruct    | 2304               | 222              | 22  | 8     | 520              | 198 | 57    | 1153             | 899  | 572   |
| Qwen-2.5-1.5B          | 1536               | 184              | 1   | 9     | 399              | 1   | 50    | 835              | 1    | 452   |
| Qwen-2.5-1.5B-Instruct | 1536               | 184              | 1   | 11    | 394              | 1   | 70    | 820              | 1    | 533   |
| Llama-3.1-8B           | 4096               | 373              | 240 | 35    | 789              | 727 | 187   | 1722             | 2051 | 1119  |
| Llama-3.1-8B-Instruct  | 4096               | 372              | 215 | 31    | 788              | 664 | 181   | 1722             | 1957 | 1093  |

1888 Table 17: Number of principal-component axes required to reach 50% (ID<sub>50</sub>), 70% (ID<sub>70</sub>) and 90%  
 1889 (ID<sub>90</sub>) explained variance in the first, middle and last layers of each model.

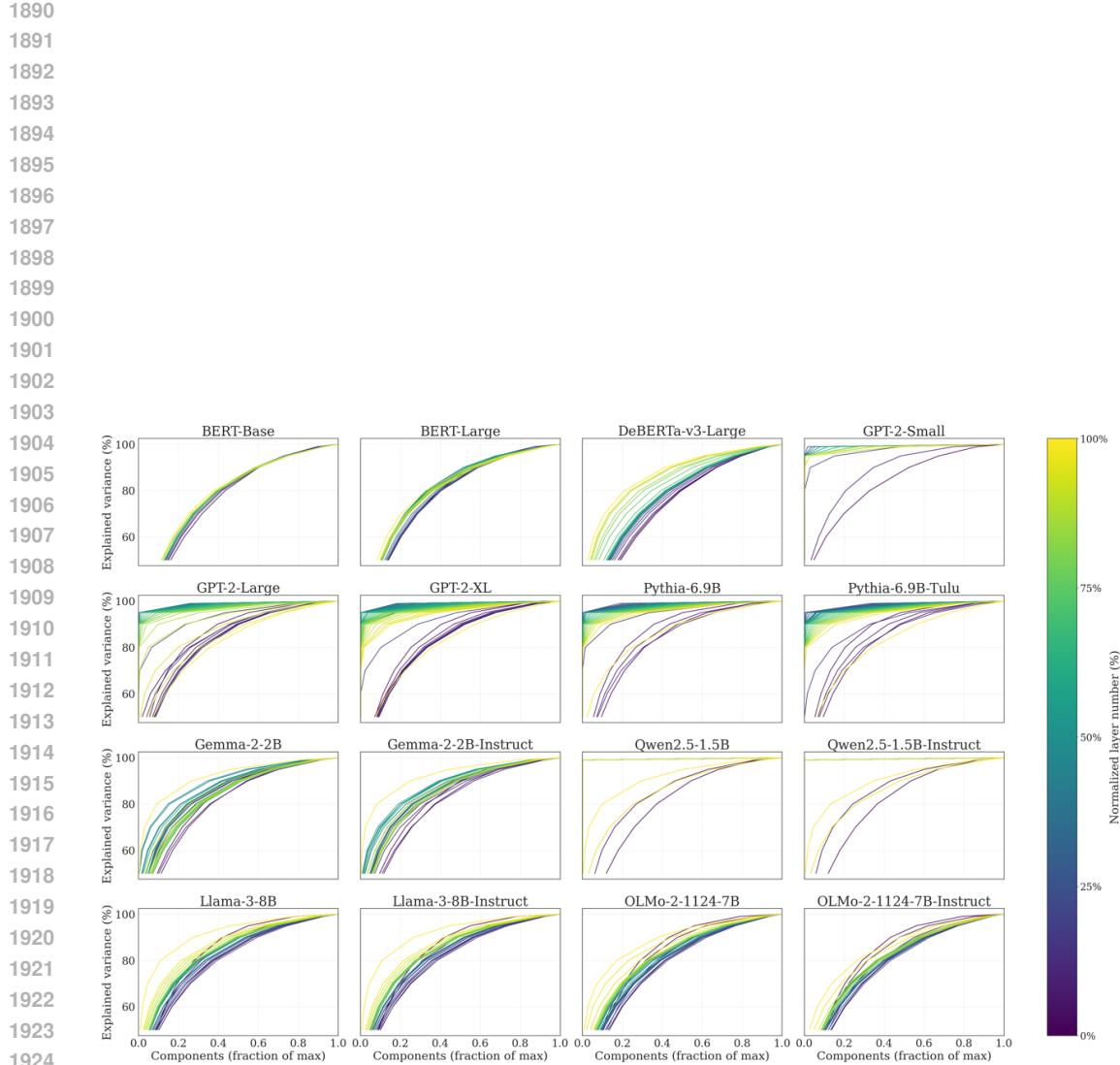


Figure 15: Intrinsic dimensionality curves for all models for English. Each subplot shows the relationship between the percentage of maximum PCA components (x-axis) and the percentage of explained variance (y-axis) across different layers. The color gradient from purple (early layers, 0%) to yellow (late layers, 100%) indicates the relative layer depth within each model. Models like BERT, Gemma, and Llama show similar compression patterns, while GPT-2 variants, Qwen and Pythia exhibit opposite trends in their middle layers.

1944  
1945

## 1946 I.2 MASSIVE ACTIVATIONS AND OUTLIER DIMENSIONS

1947  
1948

We computed the maximum absolute activation, maximum mean (absolute value) per dimension, and maximum standard deviation per dimension across all layers for representative models to understand the low intrinsic dimensionality observed in Table Table 17.

1949  
1950

Figures Figures 16–22 show the results. Models like Qwen2.5-1.5B and GPT-2 variants show large maximum activation values. For example, Qwen2.5-1.5B reaches maximum absolute activations around 8000, while models like Llama-3-8B and OLMo-1124-7B show gradual increases across layers, with maximum values only reaching 30-40 in final layers.

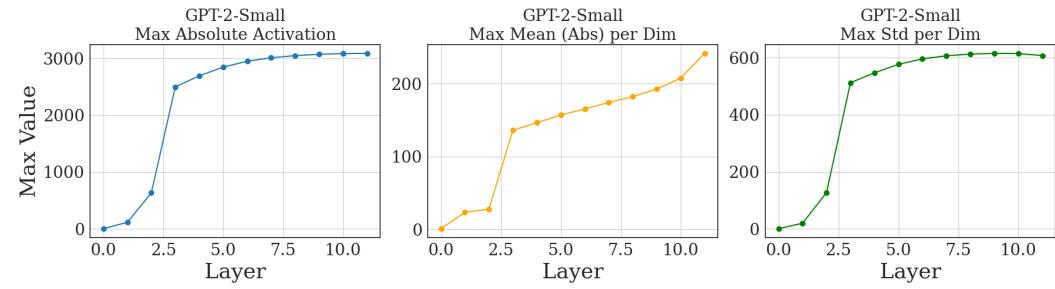
1953

1954  
1955  
1956  
1957  
1958

This corresponds with the intrinsic dimensionality measurements in Table Table 17. Models with large activations in middle layers correspond to those requiring only 1-2 components to reach 50-90% explained variance at those depths. Models with gradual activation increases correspond to those requiring hundreds of components at all depths. The presence of outlier dimensions with large activations makes the representation anisotropic, with variance concentrated along a small number of directions.

1959

1960  
1961  
1962  
1963  
1964  
1965  
1966  
1967  
1968

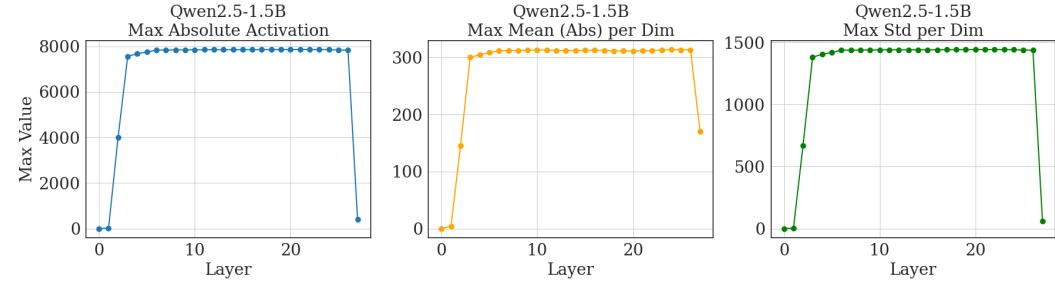


1969  
1970  
1971

Figure 16: Activation statistics across layers for GPT-2-Small.

1972

1973  
1974  
1975  
1976  
1977  
1978  
1979  
1980  
1981



1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

Figure 17: Activation statistics across layers for Qwen2.5-1.5B.

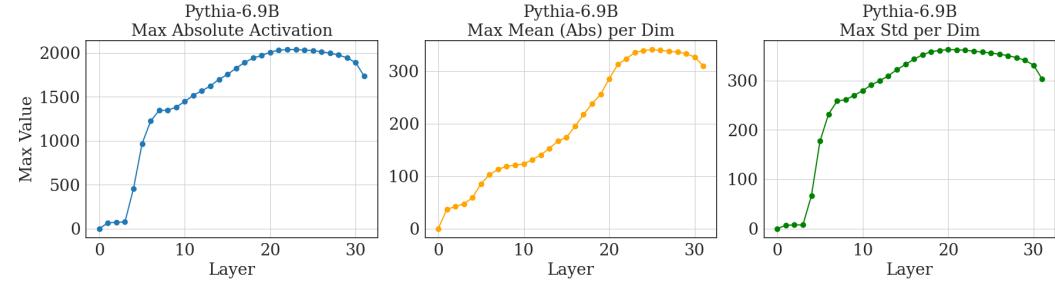


Figure 18: Activation statistics across layers for Pythia-6.9B.

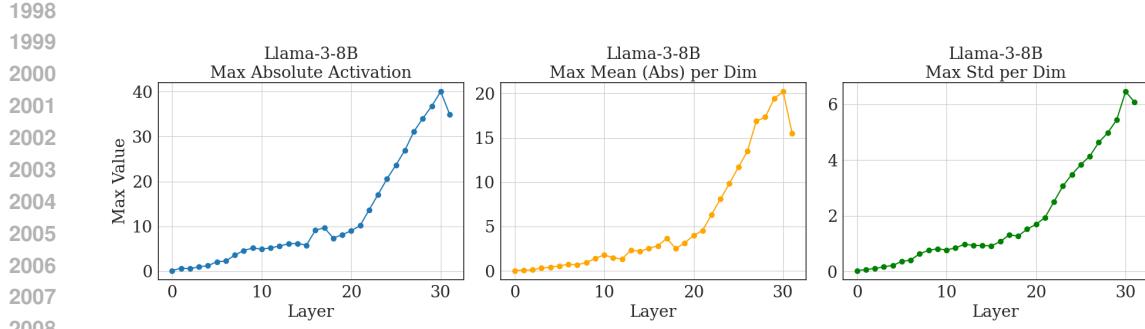


Figure 19: Activation statistics across layers for Llama-3-8B.

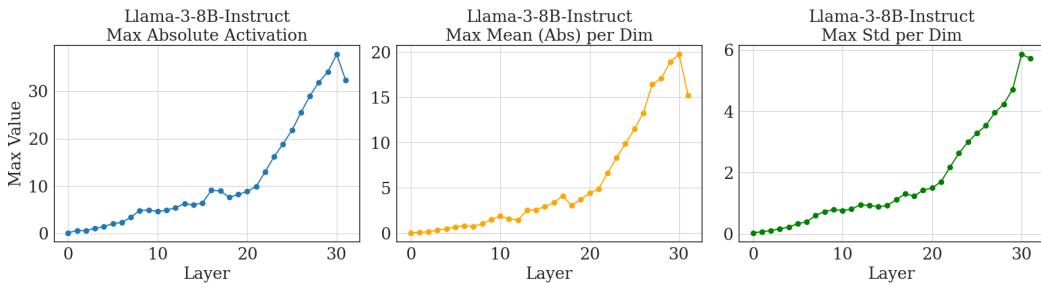


Figure 20: Activation statistics across layers for Llama-3-8B-Instruct.

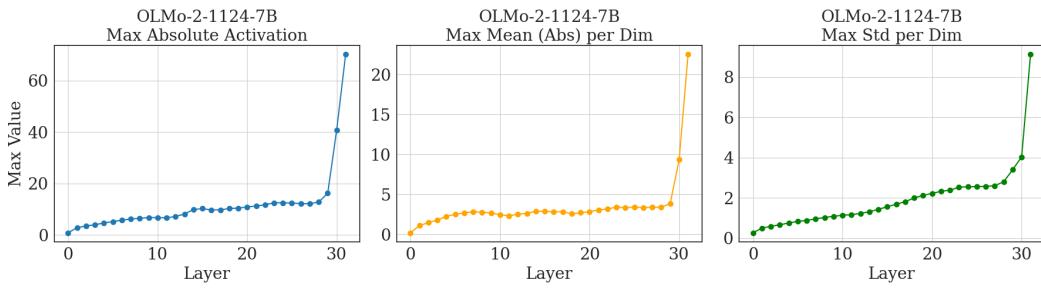


Figure 21: Activation statistics across layers for OLMo-2-1124-7B.

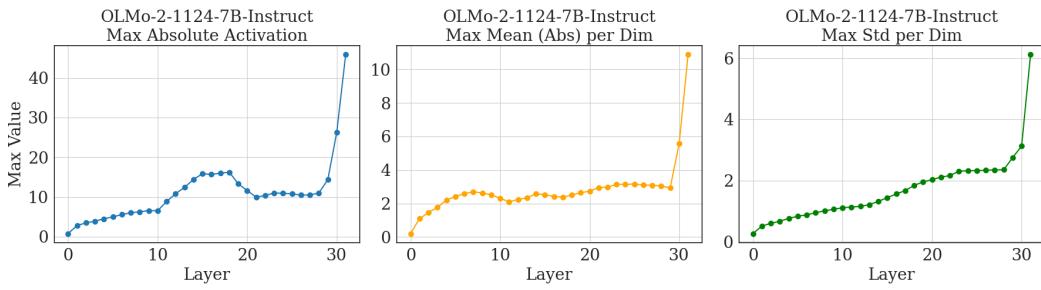
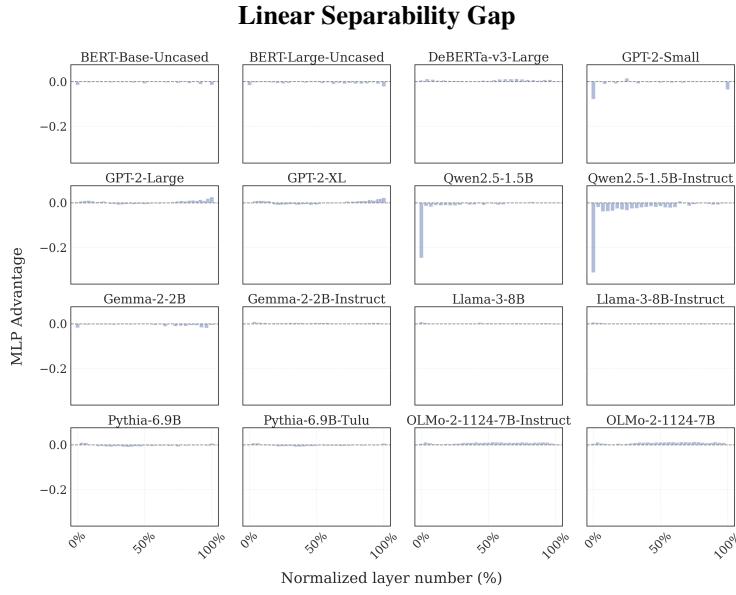


Figure 22: Activation statistics across layers for OLMo-2-1124-7B-Instruct.

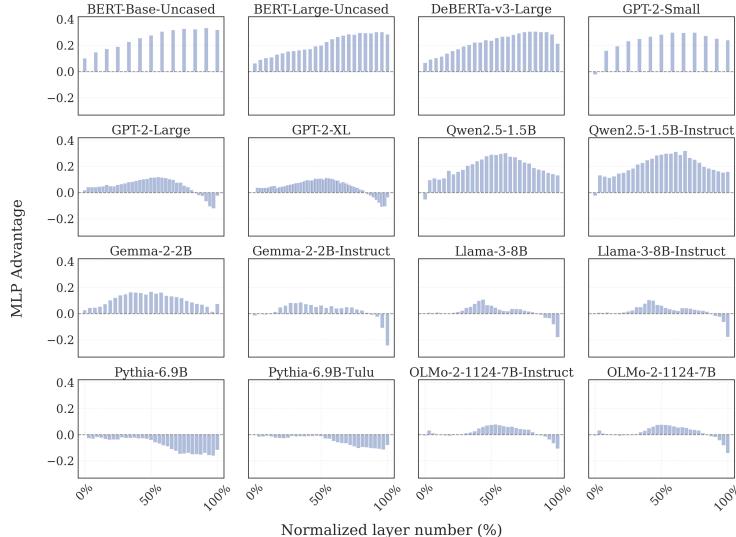
---

2052      **I.3 LINEAR SEPARABILITY GAP**  
 2053

2054 Figures 23 and 24 show the linear separability gap for lemma and inflection prediction across models  
 2055 and layers.

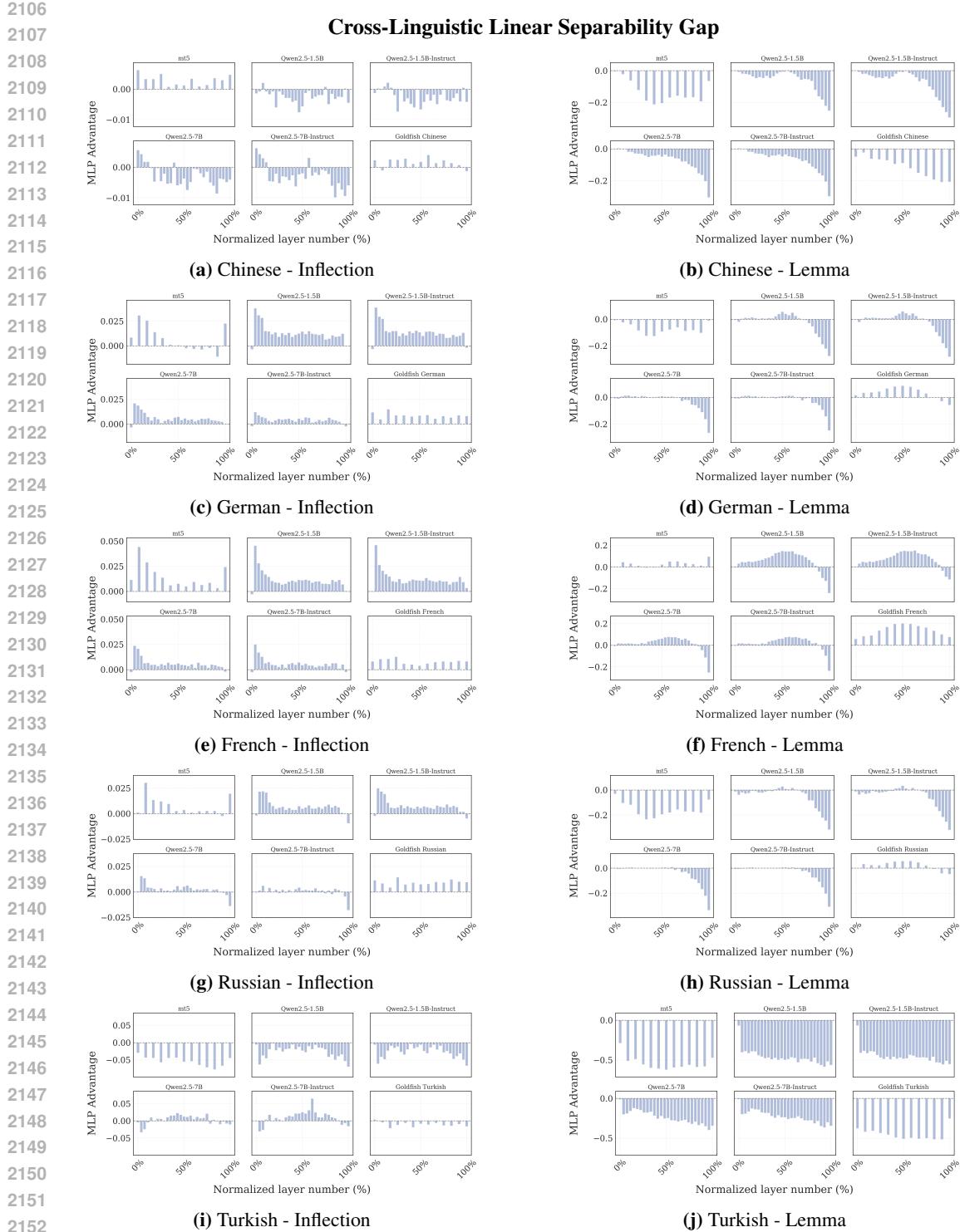


2077      **(a) Linear separability gap for inflection prediction**



2096      **(b) Linear separability gap for lemma prediction**

2097      Figure 23: Performance advantage of MLP classifiers over linear classifiers (in percentage points)  
 2098 across model layers for English. The linear separability gap measures how much a non-linear  
 2099 transformation improves classifier performance compared to a simple linear mapping. For inflection  
 2100 prediction, the gap is consistently minimal (mostly within  $\pm 0.02$  percentage points) and sometimes  
 2101 negative, indicating that inflectional features are primarily encoded in a linear fashion throughout the  
 2102 network. By contrast, the linear separability gap for lemma prediction is relatively large (0.1–0.3  
 2103 percentage points) and positive across most models



2154  
2155  
2156  
2157  
2158  
2159

Figure 24: Cross-linguistic linear separability gap showing performance advantage of MLP classifiers over linear classifiers across model layers for five additional languages. For inflectional features, mT5 and Goldfish models show slight positive gaps (indicating modest benefits from non-linear classification), while Qwen2.5 variants show slight negative gaps (indicating linear classifiers are sufficient or superior). For lexical features, all models show negative gaps that are most pronounced in early layers, suggesting that linear regression with regularization consistently outperforms MLPs for lexical classification across all model families and languages.

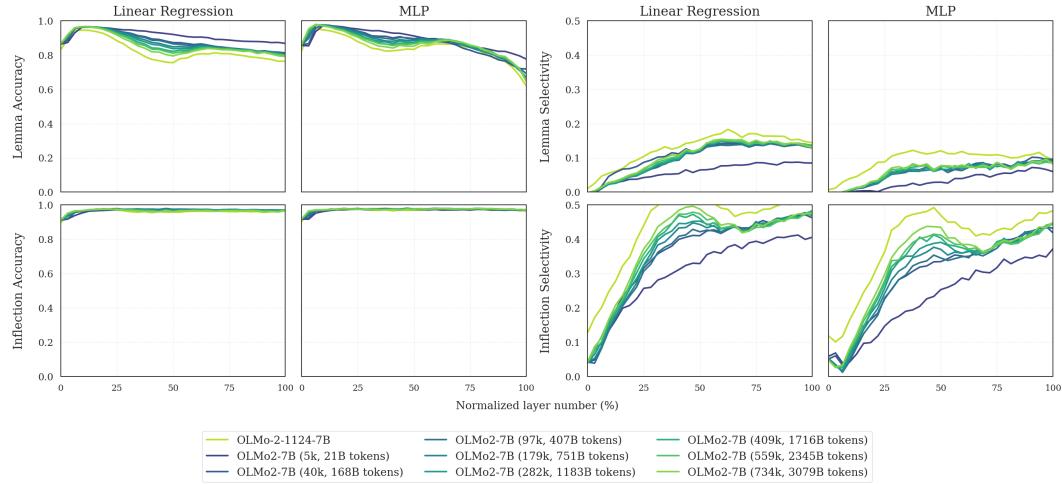
---

2160

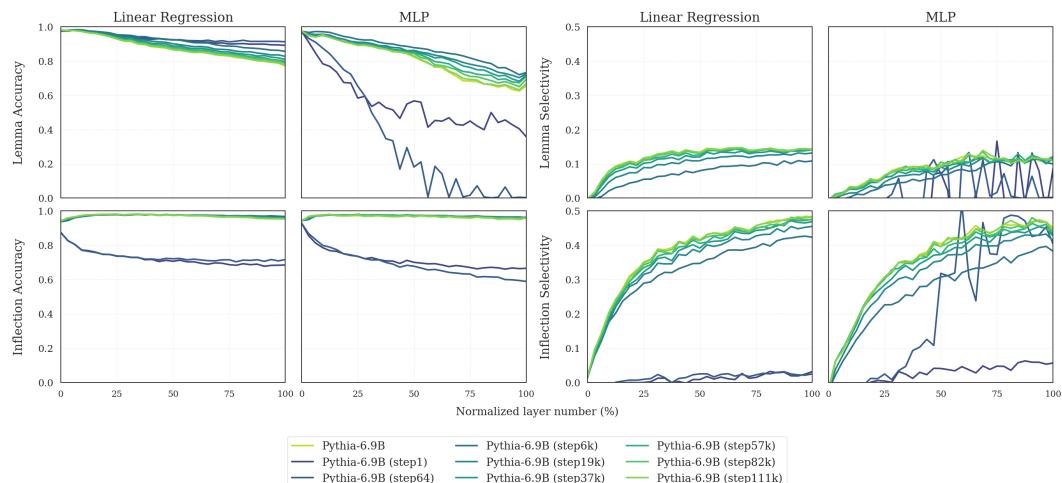
#### 2161 I.4 TRAINING DYNAMICS

2162

2163 See Figures 25 and 26 for probing accuracy and selectivity across pretraining checkpoints for  
2164 OLMo-2-7B and Pythia-6.9B.



2181 **Figure 25: OLMo-2-7B Training Dynamics.** Performance across pretraining checkpoints (5k–734k  
2182 steps) for English. The full model is 928k steps. Checkpoints are colored from brightest (earliest)  
2183 to darkest (latest). **Left:** Prediction accuracy for Lemma (top) and Inflection (bottom). Early  
2184 checkpoints exhibit higher lemma accuracy than later ones, while inflectional accuracy remains flat.  
2185 **Right:** Selectivity scores for the same tasks. Selectivity generally increases with model depth and  
2186 training steps, particularly for inflection.



2204 **Figure 26: Pythia-6.9B Training Dynamics.** Performance across pretraining checkpoints (step  
2205 1–111k) for English. The full model is 143k steps. Checkpoints are colored from brightest (earliest)  
2206 to darkest (latest). **Left:** Prediction accuracy for Lemma (top) and Inflection (bottom). Lemma  
2207 accuracy declines both with deeper layers and with more training, whereas inflectional accuracy stays  
2208 uniformly high. **Right:** Selectivity scores for the same tasks, showing distinct separation between  
2209 early and late checkpoints in the inflection task.

---

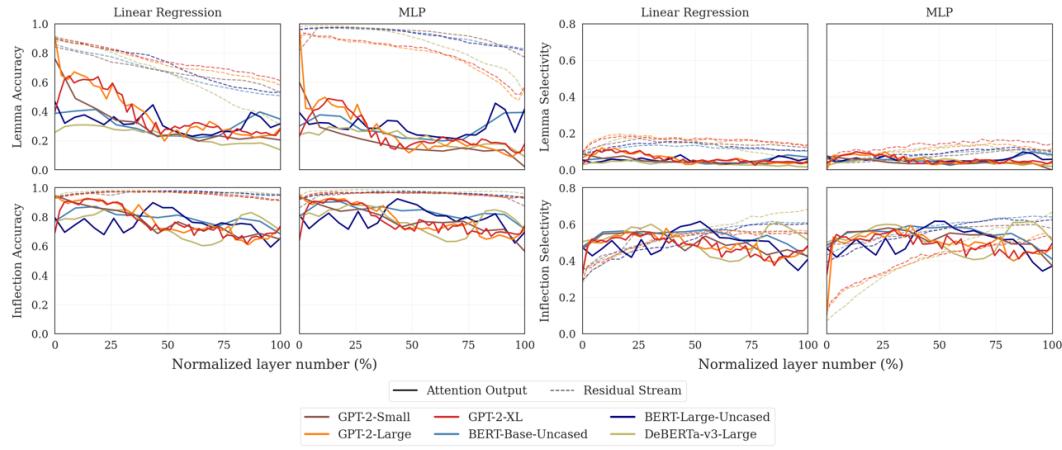
## 2214 J ATTENTION HEAD ANALYSIS

2216 We conducted additional experiments analyzing attention head outputs alongside residual stream  
 2217 representations to understand how different components of transformer models contribute to linguistic  
 2218 encoding.

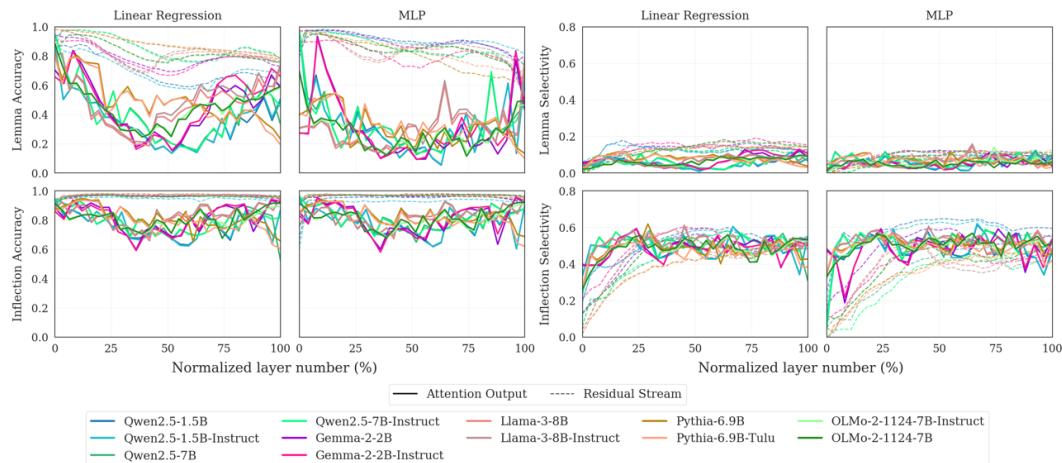
### 2220 J.1 METHODOLOGY

2222 We averaged activations across all attention heads at each layer for Qwen2.5-1.5B and  
 2223 Qwen2.5-1.5B-Instruct models using the English dataset. We then trained linear regression  
 2224 and MLP classifiers on both attention head outputs and residual stream representations to compare  
 2225 their encoding patterns.

### 2227 J.2 RESULTS



2243 Figure 27: Combined analysis of linguistic task accuracy (left two columns) and classifier selectivity  
 2244 (right two columns) for attention head outputs (solid lines) versus residual stream representations  
 2245 (dashed lines) across BERT and GPT-2 model families. The top row corresponds to Lemma tasks,  
 2246 and the bottom row to Inflection tasks.



2264 Figure 28: Combined analysis of linguistic task accuracy (left two columns) and classifier selectivity  
 2265 (right two columns) for attention head outputs (solid lines) versus residual stream representations  
 2266 (dashed lines) across contemporary model families. The top row corresponds to Lemma tasks, and  
 2267 the bottom row to Inflection tasks.

---

## 2268 K STEERING VECTOR ANALYSIS

2269  
 2270 We conducted steering vector experiments to test whether inflectional representations can be func-  
 2271 tionally manipulated and to understand model sensitivity to activation interventions.  
 2272

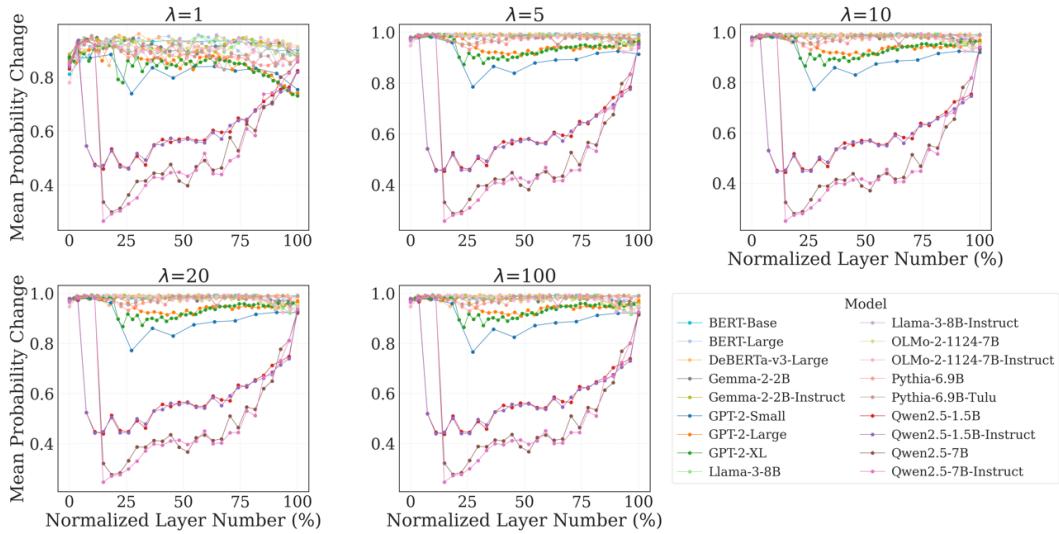
### 2273 K.1 METHODOLOGY

2274 For each inflectional category, we computed steering vectors as:  
 2275

$$2277 \quad \mathbf{s}_i = \mu_i - \lambda \cdot \frac{1}{|C| - 1} \sum_{j \in C, j \neq i} \mu_j \quad (7)$$

2279 We tested multiple values of  $\lambda$  (1, 5, 10, 20, 100) and measured the impact on MLP classifier  
 2280 performance when adding these steering vectors to existing activations for 1000 test words. We  
 2281 evaluated both mean probability change and prediction flip rate across all models.  
 2282

## 2283 K.2 RESULTS



2303 Figure 29: Mean probability change for inflection prediction when applying steering vectors across  
 2304 different  $\lambda$  values. Five panels show results for  $\lambda \in \{1, 5, 10, 20, 100\}$ . All models start with high  
 2305 effectiveness ( $\approx 0.9$ -1.0) at layer 0. Most models maintain stable performance, but Qwen2.5 variants  
 2306 show pronounced sensitivity dips around 10% layer depth before recovering. Higher  $\lambda$  values increase  
 2307 steering effectiveness while preserving the overall pattern.  
 2308  
 2309  
 2310  
 2311  
 2312  
 2313  
 2314  
 2315  
 2316  
 2317  
 2318  
 2319  
 2320  
 2321

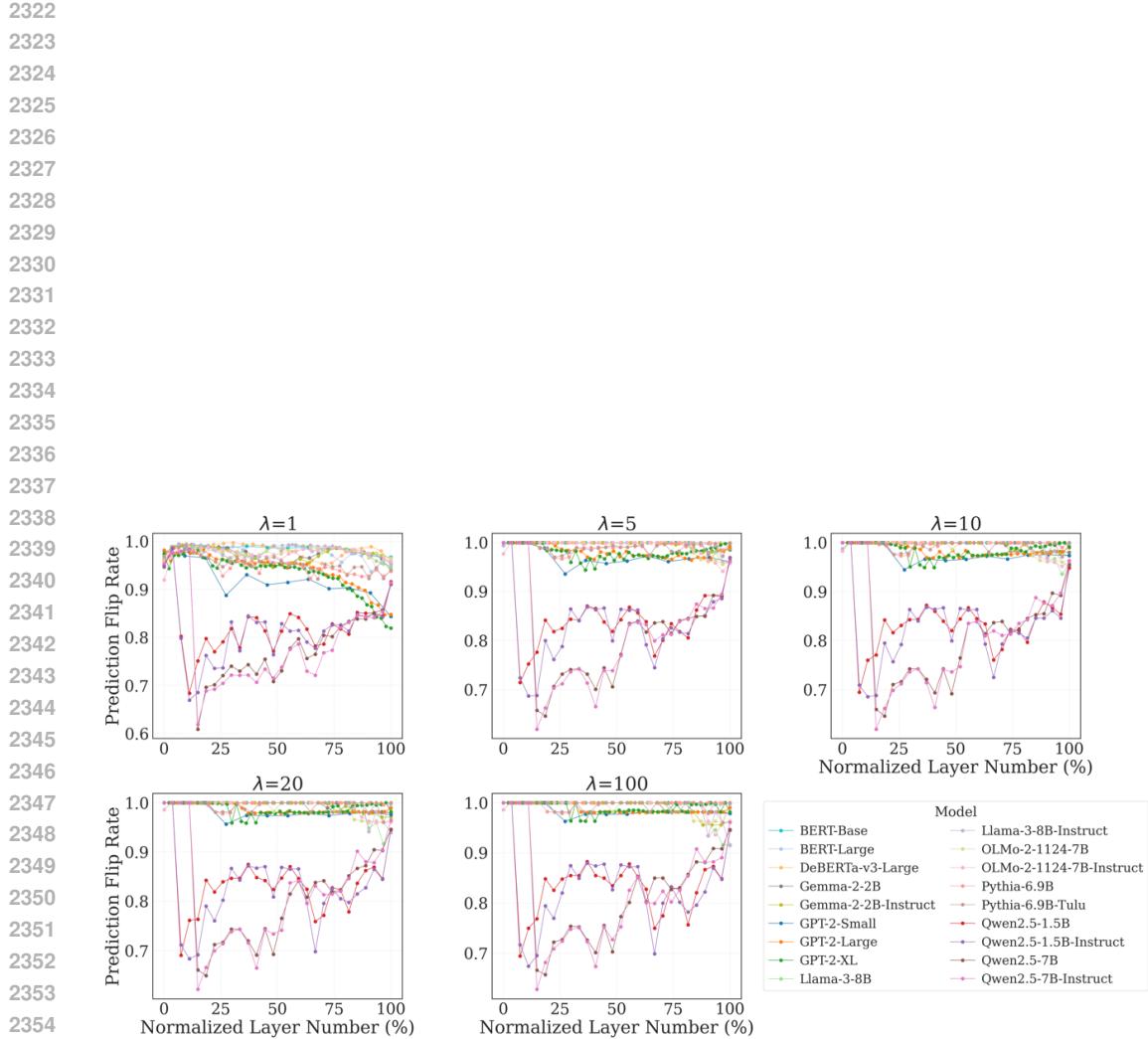


Figure 30: Prediction flip rate when applying steering vectors across different  $\lambda$  values. The flip rate patterns mirror the probability change results, with most models maintaining high rates (0.98-1.00) throughout all layers. Qwen2.5 variants show characteristic V-shaped dips to  $\approx 0.60-0.70$  around 10% layer depth. The consistency across  $\lambda$  values suggests that steering effectiveness depends more on model architecture than intervention strength.

---

## 2376 L CLASSIFIER ERROR ANALYSIS

2378 We conducted a detailed error analysis of our classifiers to better understand their performance across  
 2379 different morphological features and languages. See Table 18 through Table 36 for the full results.  
 2380

| 2381 <b>Model</b>       | 2382 3rd person<br>(n=249) | 2382 Base<br>(n=1,833) | 2382 Comparative<br>(n=76) | 2382 Past<br>(n=1,003) | 2382 Plural<br>(n=1,247) | 2382 Positive<br>(n=1,785) | 2382 Singular<br>(n=3,587) | 2382 Superlative<br>(n=52) |
|-------------------------|----------------------------|------------------------|----------------------------|------------------------|--------------------------|----------------------------|----------------------------|----------------------------|
| BERT-Base               | 0.960                      | 0.965                  | 0.817                      | 0.967                  | 0.983                    | 0.946                      | 0.971                      | 0.759                      |
| BERT-Large              | 0.956                      | 0.964                  | 0.861                      | 0.968                  | 0.982                    | 0.950                      | 0.971                      | 0.768                      |
| DeBERTa-v3-Large        | 0.938                      | 0.974                  | 0.831                      | 0.961                  | 0.986                    | 0.954                      | 0.977                      | 0.706                      |
| GPT-2-Small             | 0.828                      | 0.958                  | 0.840                      | 0.956                  | 0.974                    | 0.941                      | 0.964                      | 0.754                      |
| GPT-2-Large             | 0.812                      | 0.958                  | 0.826                      | 0.951                  | 0.975                    | 0.936                      | 0.967                      | 0.792                      |
| GPT-2-XL                | 0.817                      | 0.959                  | 0.813                      | 0.948                  | 0.977                    | 0.940                      | 0.968                      | 0.788                      |
| Pythia-6.9B             | 0.886                      | 0.972                  | 0.904                      | 0.964                  | 0.989                    | 0.957                      | 0.977                      | 0.907                      |
| Pythia-6.9B-Tulu        | 0.899                      | 0.973                  | 0.909                      | 0.967                  | 0.989                    | 0.956                      | 0.976                      | 0.910                      |
| OLMo-2-1124-7B          | 0.938                      | 0.968                  | 0.902                      | 0.972                  | 0.981                    | 0.923                      | 0.966                      | 0.888                      |
| OLMo-2-1124-7B-Instruct | 0.927                      | 0.967                  | 0.896                      | 0.971                  | 0.981                    | 0.923                      | 0.965                      | 0.872                      |
| Gemma-2-2B              | 0.901                      | 0.968                  | 0.797                      | 0.969                  | 0.986                    | 0.947                      | 0.974                      | 0.833                      |
| Gemma-2-2B-Instruct     | 0.913                      | 0.966                  | 0.863                      | 0.973                  | 0.988                    | 0.938                      | 0.972                      | 0.872                      |
| Qwen2.5-1.5B            | 0.856                      | 0.950                  | 0.802                      | 0.942                  | 0.972                    | 0.919                      | 0.957                      | 0.688                      |
| Qwen2.5-1.5B-Instruct   | 0.774                      | 0.954                  | 0.647                      | 0.945                  | 0.972                    | 0.921                      | 0.965                      | 0.630                      |

2396 Table 18: Breakdown of inflection classification accuracy by morphological feature for each model  
 2397 using linear regression classifiers (English). Inflections are grouped by their morphological features  
 2398 (e.g., Past, Plural, Comparative). For each group, the reported accuracy is the average of accuracies  
 2399 from classifiers trained at each model layer. All accuracy values are on a 0–1 scale. Comparative and  
 2400 superlative forms consistently show the lowest accuracy across all models, reflecting the challenges  
 2401 of these less frequent morphological categories.

| 2404 <b>Model</b>       | 2405 3rd person<br>(n=249) | 2405 Base<br>(n=1,833) | 2405 Comparative<br>(n=76) | 2405 Past<br>(n=1,003) | 2405 Plural<br>(n=1,247) | 2405 Positive<br>(n=1,785) | 2405 Singular<br>(n=3,587) | 2405 Superlative<br>(n=52) |
|-------------------------|----------------------------|------------------------|----------------------------|------------------------|--------------------------|----------------------------|----------------------------|----------------------------|
| BERT-Base               | 0.973                      | 0.969                  | 0.910                      | 0.972                  | 0.989                    | 0.959                      | 0.974                      | 0.939                      |
| BERT-Large              | 0.967                      | 0.970                  | 0.910                      | 0.973                  | 0.988                    | 0.961                      | 0.975                      | 0.931                      |
| DeBERTa-v3-Large        | 0.954                      | 0.976                  | 0.925                      | 0.966                  | 0.989                    | 0.962                      | 0.979                      | 0.867                      |
| GPT-2-Small             | 0.921                      | 0.963                  | 0.928                      | 0.952                  | 0.972                    | 0.930                      | 0.963                      | 0.870                      |
| GPT-2-Large             | 0.857                      | 0.962                  | 0.872                      | 0.955                  | 0.976                    | 0.942                      | 0.967                      | 0.854                      |
| GPT-2-XL                | 0.921                      | 0.963                  | 0.928                      | 0.952                  | 0.972                    | 0.930                      | 0.963                      | 0.870                      |
| Pythia-6.9B             | 0.932                      | 0.972                  | 0.921                      | 0.961                  | 0.982                    | 0.949                      | 0.971                      | 0.886                      |
| Pythia-6.9B-Tulu        | 0.948                      | 0.974                  | 0.932                      | 0.964                  | 0.983                    | 0.949                      | 0.971                      | 0.897                      |
| OLMo-2-1124-7B          | 0.957                      | 0.968                  | 0.926                      | 0.966                  | 0.989                    | 0.949                      | 0.973                      | 0.905                      |
| OLMo-2-1124-7B-Instruct | 0.939                      | 0.967                  | 0.903                      | 0.967                  | 0.988                    | 0.949                      | 0.973                      | 0.873                      |
| Gemma-2-2B              | 0.913                      | 0.967                  | 0.863                      | 0.968                  | 0.990                    | 0.950                      | 0.976                      | 0.907                      |
| Gemma-2-2B-Instruct     | 0.930                      | 0.970                  | 0.878                      | 0.975                  | 0.989                    | 0.946                      | 0.974                      | 0.906                      |
| Qwen2.5-1.5B            | 0.882                      | 0.948                  | 0.822                      | 0.943                  | 0.974                    | 0.927                      | 0.957                      | 0.736                      |
| Qwen2.5-1.5B-Instruct   | 0.808                      | 0.953                  | 0.697                      | 0.947                  | 0.974                    | 0.930                      | 0.965                      | 0.682                      |

2419 Table 19: Breakdown of inflection classification accuracy by morphological feature for each model  
 2420 using Multi-Layer Perceptron (MLP) classifiers (English). Inflections are grouped by their morpho-  
 2421 logical features (e.g., Past, Plural, Comparative). For each group, the reported accuracy is the average  
 2422 of accuracies from classifiers trained at each model layer. All accuracy values are on a 0–1 scale.  
 2423 MLP classifiers provide modest improvements over linear regression, particularly for comparative  
 2424 and superlative forms, though the relative ordering across morphological features remains consistent.

---

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

| Model                   | Noun<br>(n=1,739) | Verb<br>(n=641) | Adjective<br>(n=641) | Adverb<br>(n=23) | Pronoun<br>(n=1) | Preposition<br>(n=1) | Conjunction<br>(n=1) | Interjection<br>(n=1) | Other<br>(n=9) |
|-------------------------|-------------------|-----------------|----------------------|------------------|------------------|----------------------|----------------------|-----------------------|----------------|
| BERT-Base               | 0.636             | 0.737           | 0.609                | 0.805            | 0.292            | 0.000                | 0.585                | 0.000                 | 0.902          |
| BERT-Large              | 0.684             | 0.777           | 0.653                | 0.826            | 0.580            | 0.154                | 0.662                | 0.065                 | 0.897          |
| DeBERTa-v3-Large        | 0.592             | 0.737           | 0.585                | 0.723            | 0.440            | 0.077                | 0.438                | 0.081                 | 0.866          |
| GPT-2-Small             | 0.631             | 0.789           | 0.612                | 0.813            | 0.542            | 0.000                | 0.415                | 0.033                 | 0.896          |
| GPT-2-Large             | 0.691             | 0.810           | 0.688                | 0.847            | 0.853            | 0.174                | 0.267                | 0.115                 | 0.912          |
| GPT-2-XL                | 0.713             | 0.827           | 0.708                | 0.847            | 0.724            | 0.222                | 0.311                | 0.241                 | 0.899          |
| Pythia-6.9B             | 0.856             | 0.926           | 0.836                | 0.926            | 0.938            | 0.443                | 0.566                | 0.488                 | 0.934          |
| Pythia-6.9B-Tulu        | 0.864             | 0.930           | 0.843                | 0.930            | 0.923            | 0.514                | 0.651                | 0.476                 | 0.936          |
| OLMo-2-1124-7B          | 0.798             | 0.875           | 0.794                | 0.913            | 0.697            | 0.339                | 0.363                | 0.495                 | 0.913          |
| OLMo-2-1124-7B-Instruct | 0.798             | 0.868           | 0.792                | 0.902            | 0.606            | 0.339                | 0.331                | 0.495                 | 0.910          |
| Gemma-2-2B              | 0.757             | 0.869           | 0.736                | 0.876            | 0.667            | 0.179                | 0.205                | 0.288                 | 0.891          |
| Gemma-2-2B-Instruct     | 0.749             | 0.844           | 0.742                | 0.872            | 0.620            | 0.137                | 0.152                | 0.247                 | 0.912          |
| Qwen2.5-1.5B            | 0.652             | 0.801           | 0.650                | 0.828            | 0.526            | 0.082                | 0.223                | 0.068                 | 0.867          |
| Qwen2.5-1.5B-Instruct   | 0.642             | 0.800           | 0.632                | 0.831            | 0.544            | 0.082                | 0.245                | 0.068                 | 0.877          |
| Llama-3.1-8B            | 0.776             | 0.882           | 0.771                | 0.887            | 0.831            | 0.286                | 0.396                | 0.321                 | 0.911          |
| Llama-3.1-8B-Instruct   | 0.796             | 0.892           | 0.788                | 0.896            | 0.908            | 0.300                | 0.443                | 0.357                 | 0.917          |

2449 Table 20: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model  
2450 using linear regression classifiers (English). Lemmas are grouped by their POS tags (*e.g.*, Noun,  
2451 Verb, Adjective). For each group, the reported accuracy is the average of accuracies from classifiers  
2452 trained at each model layer. All accuracy values are on a 0–1 scale. Performance varies significantly  
2453 with frequency: frequent categories like nouns and verbs achieve higher accuracy, while infrequent  
2454 categories like pronouns and prepositions show lower performance due to limited training examples.

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

| Model                   | Noun<br>(n=1,739) | Verb<br>(n=641) | Adjective<br>(n=641) | Adverb<br>(n=23) | Pronoun<br>(n=1) | Preposition<br>(n=1) | Conjunction<br>(n=1) | Interjection<br>(n=1) | Other<br>(n=9) |
|-------------------------|-------------------|-----------------|----------------------|------------------|------------------|----------------------|----------------------|-----------------------|----------------|
| BERT-Base               | 0.775             | 0.831           | 0.748                | 0.873            | 0.458            | 0.125                | 0.756                | 0.267                 | 0.898          |
| BERT-Large              | 0.813             | 0.863           | 0.785                | 0.884            | 0.540            | 0.231                | 0.725                | 0.323                 | 0.897          |
| DeBERTa-v3-Large        | 0.689             | 0.803           | 0.682                | 0.802            | 0.700            | 0.115                | 0.662                | 0.242                 | 0.861          |
| GPT-2-Small             | 0.678             | 0.792           | 0.665                | 0.765            | 0.042            | 0.000                | 0.610                | 0.000                 | 0.830          |
| GPT-2-Large             | 0.754             | 0.837           | 0.755                | 0.827            | 0.347            | 0.188                | 0.596                | 0.385                 | 0.871          |
| GPT-2-XL                | 0.774             | 0.844           | 0.771                | 0.827            | 0.561            | 0.232                | 0.561                | 0.431                 | 0.860          |
| Pythia-6.9B             | 0.774             | 0.856           | 0.768                | 0.862            | 0.554            | 0.229                | 0.528                | 0.310                 | 0.868          |
| Pythia-6.9B-Tulu        | 0.818             | 0.880           | 0.803                | 0.887            | 0.554            | 0.343                | 0.613                | 0.381                 | 0.889          |
| OLMo-2-1124-7B          | 0.818             | 0.877           | 0.828                | 0.896            | 0.727            | 0.290                | 0.734                | 0.505                 | 0.885          |
| OLMo-2-1124-7B-Instruct | 0.822             | 0.874           | 0.829                | 0.897            | 0.667            | 0.306                | 0.750                | 0.473                 | 0.886          |
| Gemma-2-2B              | 0.763             | 0.860           | 0.763                | 0.881            | 0.574            | 0.125                | 0.443                | 0.182                 | 0.880          |
| Gemma-2-2B-Instruct     | 0.777             | 0.846           | 0.785                | 0.882            | 0.580            | 0.137                | 0.400                | 0.299                 | 0.875          |
| Qwen2.5-1.5B            | 0.747             | 0.838           | 0.742                | 0.811            | 0.228            | 0.131                | 0.628                | 0.164                 | 0.857          |
| Qwen2.5-1.5B-Instruct   | 0.749             | 0.840           | 0.738                | 0.818            | 0.211            | 0.098                | 0.564                | 0.123                 | 0.860          |
| Llama-3.1-8B            | 0.798             | 0.879           | 0.807                | 0.886            | 0.800            | 0.214                | 0.679                | 0.393                 | 0.882          |
| Llama-3.1-8B-Instruct   | 0.824             | 0.893           | 0.826                | 0.895            | 0.831            | 0.257                | 0.689                | 0.429                 | 0.887          |

2477 Table 21: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model using  
2478 Multi-Layer Perceptron (MLP) classifiers (English). Lemmas are grouped by their POS tags (*e.g.*, Noun,  
2479 Verb, Adjective). For each group, the reported accuracy is the average of accuracies from classifiers  
2480 trained at each model layer. All accuracy values are on a 0–1 scale. MLP classifiers provide  
2481 consistent improvements over linear regression across all POS categories, though the frequency-  
2482 dependent performance patterns persist.

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

Table 22: Breakdown of inflection classification accuracy for each model by inflection type using Linear Regression and Multi-Layer Perceptron (MLP) classifiers (Chinese). Accuracies are calculated over all examples for a given group across all layers. Counts (n) are derived from a single representative layer for each group. All accuracy values are on a 0–1 scale.

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

| Model                 | Linear Regression   |                   |                 |                       | MLP                 |                   |                 |                       |
|-----------------------|---------------------|-------------------|-----------------|-----------------------|---------------------|-------------------|-----------------|-----------------------|
|                       | Positive<br>(n=300) | Base<br>(n=2,074) | Plural<br>(n=3) | Singular<br>(n=3,947) | Positive<br>(n=300) | Base<br>(n=2,074) | Plural<br>(n=3) | Singular<br>(n=3,947) |
| mT5-Base              | 0.739               | 0.913             | 0.436           | 0.962                 | 0.783               | 0.919             | 0.231           | 0.961                 |
| Qwen2.5-1.5B          | 0.785               | 0.929             | 0.034           | 0.969                 | 0.801               | 0.924             | 0.092           | 0.967                 |
| Qwen2.5-1.5B-Instruct | 0.779               | 0.925             | 0.034           | 0.964                 | 0.803               | 0.923             | 0.057           | 0.967                 |
| Qwen2.5-7B            | 0.824               | 0.937             | 0.310           | 0.970                 | 0.828               | 0.929             | 0.310           | 0.969                 |
| Qwen2.5-7B-Instruct   | 0.819               | 0.936             | 0.299           | 0.970                 | 0.823               | 0.928             | 0.276           | 0.969                 |
| Goldfish Chinese      | 0.793               | 0.912             | 0.000           | 0.958                 | 0.816               | 0.915             | 0.000           | 0.957                 |

| Model                 | Noun<br>(n=1,179) | Verb<br>(n=564) | Adjective<br>(n=108) | Adverb<br>(n=22) | Preposition<br>(n=20) | Other<br>(n=50) |
|-----------------------|-------------------|-----------------|----------------------|------------------|-----------------------|-----------------|
| mT5-Base              | 0.838             | 0.828           | 0.786                | 0.762            | 0.920                 | 0.726           |
| Qwen2.5-1.5B          | 0.810             | 0.797           | 0.746                | 0.715            | 0.872                 | 0.699           |
| Qwen2.5-1.5B-Instruct | 0.813             | 0.799           | 0.748                | 0.713            | 0.873                 | 0.700           |
| Qwen2.5-7B            | 0.887             | 0.882           | 0.846                | 0.847            | 0.915                 | 0.817           |
| Qwen2.5-7B-Instruct   | 0.886             | 0.877           | 0.843                | 0.835            | 0.913                 | 0.811           |
| Goldfish Chinese      | 0.883             | 0.878           | 0.845                | 0.875            | 0.954                 | 0.858           |

Table 23: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model, using Linear Regression classifiers (Chinese). Lemmas are grouped by their POS tags (e.g., Noun, Verb, Adjective). Accuracies are calculated over all examples for a given group across all layers. Counts (n) are derived from a single representative layer for each group. All accuracy values are on a 0–1 scale.

| Model                 | Noun<br>(n=1,179) | Verb<br>(n=564) | Adjective<br>(n=108) | Adverb<br>(n=22) | Preposition<br>(n=20) | Other<br>(n=50) |
|-----------------------|-------------------|-----------------|----------------------|------------------|-----------------------|-----------------|
| mT5-Base              | 0.698             | 0.712           | 0.564                | 0.571            | 0.884                 | 0.569           |
| Qwen2.5-1.5B          | 0.748             | 0.761           | 0.658                | 0.668            | 0.826                 | 0.669           |
| Qwen2.5-1.5B-Instruct | 0.735             | 0.745           | 0.643                | 0.643            | 0.814                 | 0.655           |
| Qwen2.5-7B            | 0.815             | 0.826           | 0.749                | 0.745            | 0.848                 | 0.750           |
| Qwen2.5-7B-Instruct   | 0.815             | 0.822           | 0.747                | 0.734            | 0.845                 | 0.744           |
| Goldfish Chinese      | 0.766             | 0.771           | 0.647                | 0.621            | 0.912                 | 0.682           |

Table 24: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model, using Multi-Layer Perceptron (MLP) classifiers (Chinese). Lemmas are grouped by their POS tags (e.g., Noun, Verb, Adjective). Accuracies are calculated over all examples for a given group across all layers. Counts (n) are derived from a single representative layer for each group. All accuracy values are on a 0–1 scale.

2538  
2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

| Model                 | Base<br>(n=417) | 3rd person<br>(n=517) | Positive<br>(n=1,720) | Past<br>(n=839) | Plural<br>(n=1,076) | Superlative<br>(n=52) | Singular<br>(n=3,197) | Comparative<br>(n=141) |
|-----------------------|-----------------|-----------------------|-----------------------|-----------------|---------------------|-----------------------|-----------------------|------------------------|
| mT5-Base              | 0.908           | 0.941                 | 0.940                 | 0.960           | 0.882               | 0.572                 | 0.962                 | 0.636                  |
| Qwen2.5-1.5B          | 0.849           | 0.889                 | 0.922                 | 0.914           | 0.888               | 0.657                 | 0.953                 | 0.796                  |
| Qwen2.5-1.5B-Instruct | 0.844           | 0.887                 | 0.922                 | 0.910           | 0.889               | 0.659                 | 0.952                 | 0.795                  |
| Qwen2.5-7B            | 0.892           | 0.922                 | 0.939                 | 0.947           | 0.909               | 0.826                 | 0.962                 | 0.878                  |
| Qwen2.5-7B-Instruct   | 0.915           | 0.934                 | 0.945                 | 0.962           | 0.924               | 0.866                 | 0.968                 | 0.909                  |
| Goldfish German       | 0.938           | 0.941                 | 0.955                 | 0.979           | 0.916               | 0.542                 | 0.968                 | 0.708                  |

2549  
2550 Table 25: Breakdown of inflection classification accuracy for each model by inflection type using  
2551 Linear Regression classifiers (German). Accuracies are calculated over all examples for a given  
2552 group across all layers. Counts (n) are derived from a single representative layer for each group. All  
2553 accuracy values are on a 0–1 scale.

2554

2555

2556

2557

| Model                 | Base<br>(n=417) | 3rd person<br>(n=517) | Positive<br>(n=1,720) | Past<br>(n=839) | Plural<br>(n=1,076) | Superlative<br>(n=52) | Singular<br>(n=3,197) | Comparative<br>(n=141) |
|-----------------------|-----------------|-----------------------|-----------------------|-----------------|---------------------|-----------------------|-----------------------|------------------------|
| mT5-Base              | 0.921           | 0.945                 | 0.948                 | 0.959           | 0.884               | 0.723                 | 0.967                 | 0.770                  |
| Qwen2.5-1.5B          | 0.890           | 0.915                 | 0.930                 | 0.940           | 0.897               | 0.831                 | 0.958                 | 0.892                  |
| Qwen2.5-1.5B-Instruct | 0.888           | 0.914                 | 0.930                 | 0.938           | 0.898               | 0.825                 | 0.957                 | 0.897                  |
| Qwen2.5-7B            | 0.912           | 0.932                 | 0.944                 | 0.956           | 0.913               | 0.868                 | 0.964                 | 0.924                  |
| Qwen2.5-7B-Instruct   | 0.925           | 0.941                 | 0.950                 | 0.966           | 0.928               | 0.901                 | 0.970                 | 0.936                  |
| Goldfish German       | 0.947           | 0.957                 | 0.964                 | 0.978           | 0.923               | 0.817                 | 0.970                 | 0.896                  |

2567  
2568 Table 26: Breakdown of inflection classification accuracy for each model by inflection type using  
2569 Multi-Layer Perceptron (MLP) classifiers (German). Accuracies are calculated over all examples for  
2570 a given group across all layers. Counts (n) are derived from a single representative layer for each  
2571 group. All accuracy values are on a 0–1 scale.

2572

2573

2574

2575

| Model                 | Linear Regression |                 |                      |                 | MLP               |                 |                      |                 |
|-----------------------|-------------------|-----------------|----------------------|-----------------|-------------------|-----------------|----------------------|-----------------|
|                       | Noun<br>(n=1,262) | Verb<br>(n=395) | Adjective<br>(n=406) | Other<br>(n=12) | Noun<br>(n=1,262) | Verb<br>(n=395) | Adjective<br>(n=406) | Other<br>(n=12) |
| mT5-Base              | 0.685             | 0.662           | 0.568                | 0.750           | 0.611             | 0.602           | 0.486                | 0.723           |
| Qwen2.5-1.5B          | 0.743             | 0.725           | 0.715                | 0.775           | 0.721             | 0.700           | 0.687                | 0.711           |
| Qwen2.5-1.5B-Instruct | 0.740             | 0.722           | 0.715                | 0.766           | 0.722             | 0.698           | 0.687                | 0.704           |
| Qwen2.5-7B            | 0.821             | 0.809           | 0.808                | 0.829           | 0.795             | 0.786           | 0.783                | 0.814           |
| Qwen2.5-7B-Instruct   | 0.815             | 0.803           | 0.803                | 0.821           | 0.795             | 0.785           | 0.782                | 0.813           |
| Goldfish German       | 0.720             | 0.747           | 0.701                | 0.769           | 0.758             | 0.772           | 0.742                | 0.769           |

2586  
2587 Table 27: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model, using  
2588 Linear Regression and Multi-Layer Perceptron (MLP) classifiers (German). Lemmas are grouped  
2589 by their POS tags (e.g., Noun, Verb, Adjective). Accuracies are calculated over all examples for  
2590 a given group across all layers. Counts (n) are derived from a single representative layer for each  
2591 group. All accuracy values are on a 0–1 scale.

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

| Model                 | Base<br>(n=688) | 3rd person<br>(n=776) | Positive<br>(n=1,833) | Past<br>(n=857) | Plural<br>(n=1,457) | Singular<br>(n=5,169) |
|-----------------------|-----------------|-----------------------|-----------------------|-----------------|---------------------|-----------------------|
| mT5-Base              | 0.934           | 0.912                 | 0.879                 | 0.908           | 0.954               | 0.970                 |
| Qwen2.5-1.5B          | 0.933           | 0.858                 | 0.896                 | 0.903           | 0.958               | 0.967                 |
| Qwen2.5-1.5B-Instruct | 0.930           | 0.852                 | 0.893                 | 0.898           | 0.958               | 0.966                 |
| Qwen2.5-7B            | 0.955           | 0.918                 | 0.918                 | 0.931           | 0.965               | 0.975                 |
| Qwen2.5-7B-Instruct   | 0.951           | 0.913                 | 0.915                 | 0.928           | 0.964               | 0.974                 |
| Goldfish French       | 0.942           | 0.955                 | 0.937                 | 0.930           | 0.968               | 0.976                 |

Table 28: Breakdown of inflection classification accuracy for each model by inflection type using Linear Regression classifiers (French). Accuracies are calculated over all examples for a given group across all layers. Counts (n) are derived from a single representative layer for each group. All accuracy values are on a 0–1 scale.

| Model                 | Base<br>(n=688) | 3rd person<br>(n=776) | Positive<br>(n=1,833) | Past<br>(n=857) | Plural<br>(n=1,457) | Singular<br>(n=5,169) |
|-----------------------|-----------------|-----------------------|-----------------------|-----------------|---------------------|-----------------------|
| mT5-Base              | 0.957           | 0.937                 | 0.911                 | 0.935           | 0.957               | 0.977                 |
| Qwen2.5-1.5B          | 0.954           | 0.905                 | 0.914                 | 0.925           | 0.965               | 0.968                 |
| Qwen2.5-1.5B-Instruct | 0.954           | 0.902                 | 0.911                 | 0.924           | 0.965               | 0.968                 |
| Qwen2.5-7B            | 0.966           | 0.936                 | 0.930                 | 0.937           | 0.970               | 0.976                 |
| Qwen2.5-7B-Instruct   | 0.962           | 0.931                 | 0.926                 | 0.934           | 0.970               | 0.975                 |
| Goldfish French       | 0.974           | 0.967                 | 0.945                 | 0.942           | 0.973               | 0.979                 |

Table 29: Breakdown of inflection classification accuracy for each model by inflection type using Multi-Layer Perceptron (MLP) classifiers (French). Accuracies are calculated over all examples for a given group across all layers. Counts (n) are derived from a single representative layer for each group. All accuracy values are on a 0–1 scale.

| Model                 | Linear Regression |                 |                      |                 | MLP               |                 |                      |                 |
|-----------------------|-------------------|-----------------|----------------------|-----------------|-------------------|-----------------|----------------------|-----------------|
|                       | Noun<br>(n=1,496) | Verb<br>(n=406) | Adjective<br>(n=358) | Other<br>(n=15) | Noun<br>(n=1,496) | Verb<br>(n=406) | Adjective<br>(n=358) | Other<br>(n=15) |
| mT5-Base              | 0.708             | 0.577           | 0.605                | 0.799           | 0.755             | 0.560           | 0.636                | 0.820           |
| Qwen2.5-1.5B          | 0.754             | 0.725           | 0.673                | 0.824           | 0.807             | 0.765           | 0.751                | 0.853           |
| Qwen2.5-1.5B-Instruct | 0.750             | 0.718           | 0.671                | 0.820           | 0.824             | 0.776           | 0.768                | 0.869           |
| Qwen2.5-7B            | 0.840             | 0.814           | 0.764                | 0.869           | 0.856             | 0.825           | 0.794                | 0.884           |
| Qwen2.5-7B-Instruct   | 0.833             | 0.805           | 0.758                | 0.860           | 0.851             | 0.818           | 0.792                | 0.883           |
| Goldfish French       | 0.749             | 0.758           | 0.661                | 0.811           | 0.894             | 0.869           | 0.813                | 0.888           |

Table 30: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model, using Linear Regression and Multi-Layer Perceptron (MLP) classifiers (French). Lemmas are grouped by their POS tags (e.g., Noun, Verb, Adjective). Accuracies are calculated over all examples for a given group across all layers. Counts (n) are derived from a single representative layer for each group. All accuracy values are on a 0–1 scale.

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

| Model                 | Base<br>(n=690) | 3rd person<br>(n=456) | Positive<br>(n=1,192) | Past<br>(n=455) | Plural<br>(n=1,333) | Superlative<br>(n=3) | Singular<br>(n=3,316) | Comparative<br>(n=23) |
|-----------------------|-----------------|-----------------------|-----------------------|-----------------|---------------------|----------------------|-----------------------|-----------------------|
| mT5-Base              | 0.930           | 0.978                 | 0.975                 | 0.957           | 0.877               | 0.000                | 0.977                 | 0.799                 |
| Qwen2.5-1.5B          | 0.925           | 0.946                 | 0.974                 | 0.938           | 0.923               | 0.015                | 0.966                 | 0.835                 |
| Qwen2.5-1.5B-Instruct | 0.924           | 0.943                 | 0.974                 | 0.934           | 0.921               | 0.015                | 0.966                 | 0.817                 |
| Qwen2.5-7B            | 0.949           | 0.966                 | 0.979                 | 0.958           | 0.948               | 0.094                | 0.977                 | 0.872                 |
| Qwen2.5-7B-Instruct   | 0.951           | 0.974                 | 0.980                 | 0.970           | 0.948               | 0.080                | 0.980                 | 0.918                 |
| Goldfish Russian      | 0.940           | 0.950                 | 0.976                 | 0.931           | 0.921               | 0.000                | 0.976                 | 0.867                 |

2657

Table 31: Breakdown of inflection classification accuracy for each model by inflection type using Linear Regression classifiers (Russian). Accuracies are calculated over all examples for a given group across all layers. Counts (n) are derived from a single representative layer for each group. All accuracy values are on a 0–1 scale.

2661

2662

2663

2664

2665

| Model                 | Base<br>(n=690) | 3rd person<br>(n=456) | Positive<br>(n=1,192) | Past<br>(n=455) | Plural<br>(n=1,333) | Superlative<br>(n=3) | Singular<br>(n=3,316) | Comparative<br>(n=23) |
|-----------------------|-----------------|-----------------------|-----------------------|-----------------|---------------------|----------------------|-----------------------|-----------------------|
| mT5-Base              | 0.959           | 0.978                 | 0.969                 | 0.966           | 0.904               | 0.000                | 0.978                 | 0.849                 |
| Qwen2.5-1.5B          | 0.952           | 0.955                 | 0.972                 | 0.948           | 0.933               | 0.089                | 0.970                 | 0.899                 |
| Qwen2.5-1.5B-Instruct | 0.950           | 0.954                 | 0.973                 | 0.947           | 0.933               | 0.089                | 0.969                 | 0.911                 |
| Qwen2.5-7B            | 0.963           | 0.964                 | 0.978                 | 0.960           | 0.951               | 0.246                | 0.979                 | 0.910                 |
| Qwen2.5-7B-Instruct   | 0.961           | 0.970                 | 0.978                 | 0.966           | 0.949               | 0.126                | 0.980                 | 0.924                 |
| Goldfish Russian      | 0.965           | 0.972                 | 0.978                 | 0.948           | 0.943               | 0.000                | 0.977                 | 0.934                 |

2674

Table 32: Breakdown of inflection classification accuracy for each model by inflection type using Multi-Layer Perceptron (MLP) classifiers (Russian). Accuracies are calculated over all examples for a given group across all layers. Counts (n) are derived from a single representative layer for each group. All accuracy values are on a 0–1 scale.

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

| Model                 | Linear Regression |                 |                      |                | MLP             |                 |                      |                |
|-----------------------|-------------------|-----------------|----------------------|----------------|-----------------|-----------------|----------------------|----------------|
|                       | Noun<br>(n=982)   | Verb<br>(n=333) | Adjective<br>(n=275) | Other<br>(n=4) | Noun<br>(n=982) | Verb<br>(n=333) | Adjective<br>(n=275) | Other<br>(n=4) |
| mT5-Base              | 0.660             | 0.614           | 0.542                | 0.648          | 0.492           | 0.484           | 0.387                | 0.426          |
| Qwen2.5-1.5B          | 0.777             | 0.712           | 0.759                | 0.720          | 0.712           | 0.696           | 0.716                | 0.647          |
| Qwen2.5-1.5B-Instruct | 0.772             | 0.704           | 0.756                | 0.720          | 0.710           | 0.689           | 0.717                | 0.643          |
| Qwen2.5-7B            | 0.854             | 0.790           | 0.843                | 0.812          | 0.798           | 0.794           | 0.813                | 0.749          |
| Qwen2.5-7B-Instruct   | 0.845             | 0.778           | 0.835                | 0.807          | 0.794           | 0.785           | 0.809                | 0.744          |
| Goldfish Russian      | 0.795             | 0.723           | 0.764                | 0.676          | 0.810           | 0.776           | 0.759                | 0.657          |

2694

2695

2696

2697

2698

2699

Table 33: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model, using Linear Regression and Multi-Layer Perceptron (MLP) classifiers (Russian). Lemmas are grouped by their POS tags (e.g., Noun, Verb, Adjective). Accuracies are calculated over all examples for a given group across all layers. Counts (n) are derived from a single representative layer for each group. All accuracy values are on a 0–1 scale.

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

Table 34: Breakdown of inflection classification accuracy for each model by inflection type using Linear Regression classifiers (Turkish). Accuracies are calculated over all examples for a given group across all layers. Counts (n) are derived from a single representative layer for each group. All accuracy values are on a 0–1 scale.

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

| Model                 | Base<br>(n=154) | 3rd person<br>(n=51) | Positive<br>(n=401) | Past<br>(n=168) | Plural<br>(n=33) | Singular<br>(n=632) |
|-----------------------|-----------------|----------------------|---------------------|-----------------|------------------|---------------------|
| mT5-Base              | 0.860           | 0.911                | 0.928               | 0.966           | 0.837            | 0.952               |
| Qwen2.5-1.5B          | 0.808           | 0.802                | 0.721               | 0.928           | 0.861            | 0.892               |
| Qwen2.5-1.5B-Instruct | 0.809           | 0.817                | 0.720               | 0.941           | 0.878            | 0.899               |
| Qwen2.5-7B            | 0.865           | 0.879                | 0.810               | 0.966           | 0.903            | 0.909               |
| Qwen2.5-7B-Instruct   | 0.850           | 0.874                | 0.796               | 0.960           | 0.886            | 0.900               |
| Goldfish Turkish      | 0.847           | 0.915                | 0.880               | 0.964           | 0.872            | 0.963               |

| Model                 | Base<br>(n=154) | 3rd person<br>(n=51) | Positive<br>(n=401) | Past<br>(n=168) | Plural<br>(n=33) | Singular<br>(n=632) |
|-----------------------|-----------------|----------------------|---------------------|-----------------|------------------|---------------------|
| mT5-Base              | 0.755           | 0.760                | 0.848               | 0.922           | 0.515            | 0.949               |
| Qwen2.5-1.5B          | 0.770           | 0.767                | 0.667               | 0.919           | 0.765            | 0.914               |
| Qwen2.5-1.5B-Instruct | 0.762           | 0.757                | 0.662               | 0.917           | 0.766            | 0.913               |
| Qwen2.5-7B            | 0.853           | 0.845                | 0.791               | 0.956           | 0.875            | 0.937               |
| Qwen2.5-7B-Instruct   | 0.845           | 0.844                | 0.786               | 0.956           | 0.875            | 0.932               |
| Goldfish Turkish      | 0.832           | 0.879                | 0.870               | 0.957           | 0.834            | 0.957               |

Table 35: Breakdown of inflection classification accuracy for each model by inflection type using Multi-Layer Perceptron (MLP) classifiers (Turkish). Accuracies are calculated over all examples for a given group across all layers. Counts (n) are derived from a single representative layer for each group. All accuracy values are on a 0–1 scale.

| Model                 | Linear Regression |                |                      |                 | MLP             |                |                      |                 |
|-----------------------|-------------------|----------------|----------------------|-----------------|-----------------|----------------|----------------------|-----------------|
|                       | Noun<br>(n=221)   | Verb<br>(n=53) | Adjective<br>(n=104) | Other<br>(n=13) | Noun<br>(n=221) | Verb<br>(n=53) | Adjective<br>(n=104) | Other<br>(n=13) |
| mT5-Base              | 0.866             | 0.823          | 0.921                | 0.955           | 0.215           | 0.421          | 0.374                | 0.637           |
| Qwen2.5-1.5B          | 0.834             | 0.805          | 0.866                | 0.877           | 0.307           | 0.439          | 0.449                | 0.693           |
| Qwen2.5-1.5B-Instruct | 0.816             | 0.791          | 0.860                | 0.874           | 0.305           | 0.439          | 0.448                | 0.691           |
| Qwen2.5-7B            | 0.871             | 0.850          | 0.900                | 0.904           | 0.595           | 0.625          | 0.695                | 0.809           |
| Qwen2.5-7B-Instruct   | 0.850             | 0.823          | 0.883                | 0.885           | 0.579           | 0.613          | 0.678                | 0.800           |
| Goldfish Turkish      | 0.929             | 0.904          | 0.940                | 0.969           | 0.386           | 0.550          | 0.477                | 0.808           |

Table 36: Breakdown of lemma classification accuracy by Part of Speech (POS) for each model, using Linear Regression and Multi-Layer Perceptron (MLP) classifiers (Turkish). Lemmas are grouped by their POS tags (*e.g.*, , Noun, Verb, Adjective). Accuracies are calculated over all examples for a given group across all layers. Counts (n) are derived from a single representative layer for each group. All accuracy values are on a 0–1 scale.