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ABSTRACT

The phenomenon of double descent has recently gained attention in supervised
learning. It challenges the conventional wisdom of the bias-variance trade-off by
showcasing a surprising behavior. As the complexity of the model increases, the
test error initially decreases until reaching a certain point where the model starts
to overfit the train set, causing the test error to rise. However, deviating from clas-
sical theory, the error exhibits another decline when exceeding a certain degree of
over-parameterization. We study the presence of double descent in unsupervised
learning, an area that has received little attention and is not yet fully understood.
We conduct extensive experiments using under-complete auto-encoders (AEs) for
various applications, such as dealing with noisy data, domain shifts, and anoma-
lies. We use synthetic and real data and identify model-wise, epoch-wise, and
sample-wise double descent for all the aforementioned applications. Finally, we
assessed the usability of the AEs for detecting anomalies and mitigating the do-
main shift between datasets. Our findings indicate that over-parameterized models
can improve performance not only in terms of reconstruction, but also in enhanc-
ing capabilities for the downstream task.

1 INTRODUCTION

In recent years, there has been a surge in the use of extremely large models for both supervised
and unsupervised tasks. This trend is driven by a desire to solve challenging machine-learning
tasks. However, this pursuit contradicts the well-known bias-variance trade-off, which suggests
that larger models tend to overfit the training data and perform poorly on the test set (Hastie et al.,
2009). Despite this, many over-parameterized models have been able to generalize well (Krizhevsky
et al., 2012; He et al., 2016). This challenges common assumptions regarding the generalization
capabilities of models (Zhang et al., 2021; Advani et al., 2020; Neyshabur et al., 2018), as over-
parameterized models often exhibit significantly superior performance compared to smaller models,
even when interpolating the training data (Belkin et al., 2019b; 2018).

Recently, Belkin et al. (2019a) conducted a study on the bias-variance trade-off for large, complex
deep neural network models. They discovered an interesting phenomenon called double descent.
Initially, as the complexity of the model increases, the test error decreases. Specifically, as the
complexity continues to increase, the variance term starts to dominate the test loss, resulting in
an increase, which is known as the classical bias-variance trade-off. However, at a certain point,
termed the ”interpolation threshold” (Nakkiran et al., 2021), the test loss stops increasing and
begins to decline again in the over-parameterized regime, yielding a curve with two decent regimes.

The phenomenon of double descent has been observed in many frameworks in supervised learning
(see a survey in (Dar et al., 2021)). Model-wise double descent was demonstrated in (Spigler
et al., 2018), while (Nakkiran et al., 2021; Gamba et al., 2022; Hastie et al., 2022) explore the
impact of label noise and Signal-to-Noise ratio (SNR) on the double descent curve respectively.
Nakkiran et al. (2021); Gamba et al. (2022) also demonstrated the phenomenon to epoch-wise and
sample-wise double descent. Multiple descents were discussed in (Adlam & Pennington, 2020;
Liang et al., 2020; Chen et al., 2021), and d’Ascoli et al. (2020) revealed that the interpolation
threshold depends on the linearity and non-linearity of the model. However, the existence of double
descent in core tasks in unsupervised learning is not yet fully understood.
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Figure 1: Demonstration of the double de-
scent phenomenon in unsupervised learning. We
present the test loss for varying epochs and hidden
layer sizes for an under-complete AE.

In this study, we analyze the double descent phenomenon and its implications for crucial unsuper-
vised tasks such as domain adaptation, anomaly detection, and robustness to noisy data, utilizing
under-complete AEs. AEs are general architectures that have been used in unsupervised learning for
numerous tasks, including denoising (Vincent et al., 2008; 2010), manifold learning (Duque et al.,
2020; Wang et al., 2014), clustering (Song et al., 2013; Yang et al., 2019), anomaly detection (Zhou
& Paffenroth, 2017; Sakurada & Yairi, 2014), feature selection (Han et al., 2018; Gong et al., 2022),
domain adaptation (Deng et al., 2014; Yang et al., 2021), segmentation (Baur et al., 2021; Myro-
nenko, 2019), and generative models (Kingma, 2013; Doersch, 2016), making them a prominent use
case when studying double descent in the field of unsupervised learning. We utilized under-complete
AEs to ensure the model learns meaningful representations in the latent space, as over-complete
AEs might simply learn the identity function and fail to capture the underlying data structure.

We present extensive empirical evidence showing that double and triple descent phenomena occur
in unsupervised AEs when the data is contaminated with noise. Our findings reveal that ”memoriza-
tion” plays a critical role, as models can overfit the noise rather than capture the underlying signal,
leading to poor test performance. However, we also discovered that sufficiently large models can still
achieve superior test performance on clean data, even when fitting noisy training samples. This sug-
gests that these models successfully extract the true signal despite the presence of noise. Through ex-
periments on both synthetic and real-world data, we show that double and triple descent curves man-
ifest in under-complete AEs exposed to various types of data contamination. Specifically, we show
that different levels of sample noise, feature noise, domain shift, and the proportion of outliers all
significantly influence the shape of the double descent curve. We observe model-wise, sample-wise,
and epoch-wise double descent patterns across these settings. For instance, in Figure 1, we illustrate
a double descent curve obtained by training an AE on data generated using the ”sample noise” model
described in Subsection 3.1. We follow (Nakkiran et al., 2021) in categorizing models as under-
parameterized or over-parameterized, referring to those on the left or right of the critical regime,
respectively. In these regimes, increasing the model size leads to a reduction in test loss. The critical
regime is characterized by models for which changes in size can either decrease or increase test loss.

Our results have important implications for real-world applications, particularly in unsupervised
learning tasks. We demonstrate that over-parameterized models trained on source domain data can
adapt more effectively to target domains, even under distributional shifts. Additionally, we uncover
non-monotonic behavior in anomaly detection performance as model complexity increases, further
underscoring the practical relevance of our findings when noise and domain shifts are prevalent.

2 RELATED WORK

The discovery of double descent for neural networks (NNs) has led to extensive research aimed at
understanding the behavior of generalization errors. It has also provided insights into why larger
models perform better than smaller or intermediate ones. Most studies have been conducted in a
supervised learning setting, as detailed in (Belkin et al., 2019a; Nakkiran et al., 2021; Dar et al.,
2021; Spigler et al., 2018; Gamba et al., 2022; Adlam & Pennington, 2020; Liang et al., 2020; Chen
et al., 2021; Xia et al., 2022; Kausik et al., 2023). Recent studies (Nakkiran et al., 2021; Hastie
et al., 2022; Bartlett et al., 2020; Li et al., 2020) have introduced label noise, feature noise, and
different levels of SNRs and demonstrated that large over-parameterized NNs can ”memorize” the
noise while still generalizing better than smaller models.

The phenomenon of double descent has not been extensively studied in the context of unsuper-
vised learning, and there are some contradictions in the literature regarding its presence. Principal
Component Analysis (PCA) (Shlens, 2014b) and Principal Component Regression (PCR) (Massy,
1965), which are special types of linear AEs, are widely used unsupervised and supervised learning
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models respectively and can serve as an interesting case study for exploring double descent. Gedon
et al. (2022) argued that there is no double descent in PCA while (Xu & Hsu, 2019; Teresa et al.,
2022) showed evidence for double descent in PCR. Lupidi et al. (2023) used a specific subspace data
model and argued that there is no sign of model-wise double descent in both linear and non-linear
AEs. Sonthalia & Nadakuditi (2023) and Dubova (2022) demonstrated sample-wise double descent
for denoising AEs with different SNR values. Zhang et al. (2023) used a self-supervised learning
framework for signal processing and found epoch-wise double descent for different levels of noise.

Our analysis of double descent differs from previously published studies in three significant ways.
Firstly, when trained on noisy data, we demonstrate that standard under-complete AEs experience
double and even triple descent at the model-wise, sample-wise, and epoch-wise levels. We have also
partitioned the model’s size into bottleneck and other hidden layer dimensions to understand the phe-
nomenon better. Secondly, we show that the noise magnitude and the number of noisy samples affect
the double descent curve. Thirdly, we show that double descent also occurs in common realistic con-
tamination settings in unsupervised learning, such as source-to-target domain shift, anomalous data,
and additive sample and feature noise. Finally, we demonstrate the implications of multiple descents
in unsupervised learning tasks using real-world data, extending beyond reconstruction.

3 DATA MODEL

This section outlines the data and contamination models used to study double descent.

3.1 LINEAR SUBSPACE DATA

We utilized the synthetic dataset of Lupidi et al. (2023) to challenge their assertion that “double
descent does not occur in self-supervised settings”. First, we sample N random i.i.d. Gaussian
vectors, each of size d, representing random features in a latent space, zi ∼ N (0, Id). Next, we
embed the vectors {zi}Ni=1 into a higher dimensional space of size n by multiplying each zi by D of
size n × d, Dzi, where Dij ∼ N (0, 1). This setting can be thought of as measuring {zi}Ni=1 with
a measurement tool D, resulting in higher-dimensional data. Our dataset differs from (Lupidi et al.,
2023) in several ways, and we will investigate four scenarios as part of our study:
Sample Noise. We aim to investigate the impact of the number of noisy training samples on the test
loss curve. In contrast to Lupidi et al. (2023), which adds noise to all samples, we vary the number
of noisy training samples to identify memorization. We do this by introducing a new variable, p,
representing the probability of a sample being noisy. Thus, p · 100% represents the percentage of
noisy samples in the data. As noise is added, we control the SNR by defining the parameter θ.
Another significant change from Lupidi et al. (2023) is the chosen values of SNR, which can be
found in Appendix A, table 2, along with its calculation to derive θ, in Appendix B. This leads to
the following equation, which describes our model for the sample noise scenario:

xi =

{
θDzi + ϵi, with probability p,

θDzi, with probability 1− p,

where ϵi ∼ N (0, In) is an additive white Gaussian noise (AWGN), representing the noise added to
samples with probability p. This setting can be likened to using a noisy measurement device. To
illustrate this generation we present in Appendix A, Figure 14 a visualization of the data model.
Feature Noise. We further study the impact of the number of noisy training features on the test loss
curve. In this scenario, each sample {θDzi}Ni=1 is affected by noise in certain features. We denote
the probability of a feature being noisy by p, controlling each sample’s noisy features. We simulate
a scenario where we have n measuring tools, each measuring a different feature. To introduce noise,
we select the same set of features to be noisy across all samples. This mimics a situation where
⌊n ·p⌋ of the measuring tools are unreliable or noisy. The SNR calculation is explained in Appendix
B and Appendix A, Figure 14 depicts the data generation for this setting.
Domain Shift. We aim to explore how the test loss curve behaves when there is a domain shift
between the train and test datasets. First, we partition the vectors in the latent space {zi}Ni=1 to train
and test vectors, denoted as zitrain and zitest respectively. Then, the train vectors are projected to
a higher dimensional space with the matrix D, and the test vectors are projected with a different
matrix D

′′
, modeling a domain shift. To control the shift, we define D

′′
= D + s ·D′

, where D is
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the matrix multiplying the train vectors and D
′

ij ∼ N (0, 1) is a new random matrix added to cause
perturbations at each entry of D and the parameter s > 0 controls the shift between D and D

′′
.

xi =

{
Dzitrain, if train,
D

′′
zitest, if test.

Since D and D′ are i.i.d., D′′ follows a normal distribution N (0, (1 + s2)I). To obtain the same
norm in the test data, we divide D′′ by

√
1 + s2. This scenario is similar to the case where two

different measuring instruments (i.e., D,D
′′

) are measuring the same phenomenon. This data model
is illustrated in Appendix A, Figure 15, and the definition of the SNR is detailed in Appendix B.

Anomalies. We conduct an experiment to investigate the impact of anomalies in the training set on
the test loss curve. To represent clean samples, we utilize {θDzi}Ni=1. For generating anomalies,
we sample from a normal distribution N (0, In). We introduce a metric termed Signal-to-Anomaly
ratio (SAR), which regulates the magnitude ratio between the clean and anomaly samples through
the parameter θ. Subsequently, we substitute p · 100% of the normal samples with anomalies. This
generation is illustrated in Appendix A, Figure 16.

3.2 SINGLE-CELL RNA DATA

We utilized single-cell RNA sequencing data from (Tran et al., 2020) to illustrate our findings using
real-world data. The data exhibits diverse domain shifts across different laboratory environments
and measurement technologies. This dataset is crucial for assessing the impact of domain shifts on
the test loss curve. Since this data is from a real-world setting, we are unable to control the shifts
between the training (source) and testing (target) datasets, as explained in Subsection 3.1. We also
use this dataset to show double descent when noise is injected to the samples and features (i.e.,
sample and feature noise) manually. We refer to Appendix A for more details.

3.3 CELEBA DATA

We incorporate real-world data to investigate anomaly detection across various model sizes. Specif-
ically, we leverage the CelebA attributes dataset used in (Han et al., 2022), comprising over 200K
samples and 4,547 anomalies, each characterized by 40 binary attributes. We sub-sample 3000 clean
samples and replace p · 100% of them with anomalies to create the training set.

4 RESULTS

Our results presented in the main text are primarily based on a multi-layer perceptron (MLP) under-
complete AEs. However, we have also conducted additional evaluations using convolutional NNs
(CNNs). These findings are presented in Appendix E.2. Each of the reported results is based on 5 to
15 random seeds. Complete implementation details and discussion on the high computational load
that each figure requires can be found in Appendix A. All models are trained using contaminated
datasets and tested on clean data. Consequently, the test loss serves as an indicator of whether the
model has memorized the noise (high test loss) or learned the signal (low test loss). Over-complete
AEs are beyond the scope of this discussion, as they can learn the identity function, leading to trivial
and uninformative data learning. Our emphasis is on standard (unsupervised) AEs, where in the
training process, we minimize the mean squared error (MSE) between the input and the model’s
output. Train loss figures corresponding to all test losses depicted in this section are provided in
Appendix C and more results with a non-linear synthetic dataset are presented in Appendix E.3.

4.1 MODEL-WISE DOUBLE DESCENT

This section analyzes the test loss with increasing model sizes. For AEs, we break down the
well-known ”double descent” phenomenon into two interconnected variations: ”hidden-wise” and
”bottleneck-wise” and show how both contribute to the double descent behavior in the test loss. We
also study the influence of several contaminations described in Section 3 and conclude that the inter-
polation threshold location and value can be manipulated by these factors. We also found that double
descent typically occurs with high levels of sample noise and low SNR values. In these settings, the
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Figure 2: Test and train losses as a function of model size. The test loss demonstrates clear double
descent when varying the bottleneck or hidden layer size. The AEs were trained on the linear
subspace model with sample noise = 90% and SNR = -15 [dB] (see details in Subsection 3.1).

noise predominates the training set, leading models in the critical regime to focus on interpolating
the noise rather than learning the underlying signal to reduce the training loss. This, in turn leads
to higher test loss. This explains why Lupidi et al. (2023) did not observe the phenomenon, as they
used only high SNR levels (10 dB) in the model-wise sample noise scenario.

In Figure 2, we provide visual evidence of the bottleneck-wise and hidden-wise double descent. This
not only helps to distinguish between various model sizes but also underscores the significance of
our different architectural choices. The training loss consistently decreases as the dimensions of the
model increase. In contrast, both the bottleneck and hidden layers exhibit the characteristic double
descent curve, as seen in the decrease in test loss, followed by an increase and then another decline.
This demonstrates that AEs trained on contaminated data can exhibit double descent.

Sample and feature noise. Interestingly, Figure 3a shows that the height of the test loss increases
and the interpolation threshold location shifts towards larger models as the level of sample noise
increases. This can be clarified by the observation that increased noise adversely affects model
learning. Moreover, we need a bigger model to overfit the noisy samples. The absence of double
descent for 0-20% sample noise can be attributed to the insufficient number of noisy samples in
the training data. In Figure 3b, we demonstrate triple descent using single-cell RNA data, where we
notice a similar behavior for the test loss, specifically for each of the two peaks. Evidence for double
descent using the feature noise data model introduced in Subsection 3.1 is presented in Appendix D.

In addition, we observed the phenomenon of final ascent, characterized by double descent following
a final increase in the test loss, initially discussed in the case of supervised learning (Xue et al.,
2022). We present the results of final ascent for unsupervised AEs with the single-cell RNA data
for 0-20% sample noise in Appendix E.4, Figure 55b. We also show how double and triple descent
patterns emerge under different types of noise, such as Laplacian noise, and find double descent for
sparse AEs, as detailed in Appendix E.5.

SNR. We observed that the SNR plays a crucial role in the test loss, which in turn affects its height. A
higher SNR value reduces the impact of noise, allowing the model to learn the underlying signal from
the training set, resulting in a lower test loss. Conversely, a lower SNR value amplifies the influence
of noise, disrupting the model’s ability to learn the signal leading to inferior results in the test loss.
In Figure 4a, for SNR = 0 [dB], the double descent curve is absent because it prevents models in the
critical regime from memorizing the noise, as the noise is not sufficiently dominant. Figure 4 and
Appendix D, Figure 28 present results for the sample and feature noise settings respectively.

(a) Linear subspace data. SNR = -15 [dB]. (b) Single-cell RNA data. SNR = -17 [dB].

Figure 3: Test loss exhibits model-wise double and triple descents for the case of varying sample
noise. Train losses are depicted Appendix C, Figure 19.
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(a) Linear subspace. Sample noise = 80%. (b) Single-cell RNA. Sample noise = 40%.

Figure 4: The effect of SNR for the case of noisy samples on the test loss curve. Train losses are
illustrated in Appendix C, Figure 20.

Domain shift. We study the existence of double descent when the distribution of the training
(source) data, differs from that of the testing (target) data. We investigate the impact of the model
size on learning shared representations for both source and target datasets and reducing the shift
between them. By training the model on the source data and testing it on different targets, we un-
veil non-monotonic behavior for the linear subspace dataset, shown in Figure 5. Additionally, the
test loss rises as the shift is more dominant, and for lower levels of domain shift (shift = 0.1, 0.5),
non-monotonic behavior does not occur since the source and target domains are closely aligned. In
these cases, even models that interpolate the source data and learn domain-specific representations
perform well on the target data, preventing an increase in the test loss. Furthermore, we identify that
over-parameterized models result in lower test loss, leading to improved target data reconstruction.
Subsection 5.1, Figure 12 presents double and triple descent results for the single-cell RNA data and
further insights about the connection of model size and domain adaptation utilizing real-world data.

Anomaly detection. We also identify double descent occurring when anomalies, deviating from
the expected behavior of the data are introduced into the training set. Following the unsupervised
setting, we consider the scenario where there is no anomaly-free dataset available for training,
making it more challenging to differentiate between normal and anomalous data (Cheng et al.,
2021). In particular, we use the anomaly dataset mentioned in Subsection 3.1 with high number
of anomalies in the train set, akin to (Lindenbaum et al., 2024; Lerman & Maunu, 2018b;a), which
included anomalies with up to 99.5% for the subspace recovery setting and (Han et al., 2022), which
includes up to 40% anomalies in the case of unsupervised anomaly detection. We study the test loss
curves by varying the amounts of anomalous training samples. We used a common method where
data points with reconstruction loss surpassing a defined threshold are identified as anomalies as
discussed in (Lindenbaum et al., 2024; Malhotra et al., 2016; Borghesi et al., 2019).

We evaluate the anomaly detection capabilities using the receiver operating characteristic area
under the curve (ROC-AUC) metric. This metric employs the reconstruction error to measure
the model’s ability to distinguish between clean and anomalous data (anomalies are identified as
data points with errors crossing a defined threshold). A higher ROC-AUC value signifies superior
performance. The models in the critical regime depicted in Figure 6a result in higher test loss of the
clean samples, complicating the differentiation between clean and anomaly data, leading to worse
ROC-AUC results. Scaling up the model size results in a secondary descent in the test loss of the
clean data. This double descent curve is particularly evident under conditions of low SAR and a
high number of anomalies in the training set, similar to the results of the sample noise scenario
(the anomalies play the role of the noise). This secondary descent facilitates the model’s ability
to differentiate between clean and anomalous data, resulting in performance comparable to that
of the under-parameterized models in terms of ROC-AUC, while learning meaningful embedding
for both clean data and outliers, resulting in lower test losses. Figure 6b demonstrates the absence

Figure 5: Linear subspace
data exhibits model-wise non-
monotonic behavior for varying
domain shifts. Appendix C,
Figure 21 shows the train loss
behavior.
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(a) Synthetic anomaly data with SAR = -15 [dB].

(b) Synthetic anomaly data with SAR = 0 [dB].
Figure 6: Left: test loss of the clean samples. A double descent pattern emerges for low SARs and
high anomaly presence in the training data. Middle: test loss of the anomaly data. Right: Non-
monotonic behavior of the ROC-AUC.
of double descent due to high SAR. However, similar to Figure 6a, intermediate models exhibit
poorer ROC-AUC performance compared to under and over-parameterized models. We present
more insights on anomaly detection utilizing real-world data in Subsection 5.2.

In conclusion, as contamination setups become more severe, such as higher noise levels, significant
domain shifts, many anomalies, or low SNR, the double descent phenomenon becomes more
pronounced, and the test loss increases. In some instances, these noise levels also cause the critical
regime to shift to the right. In Appendix A, Table 1, we compare the existence of double descent
between unsupervised and supervised learning for varying contamination setups and conclude that
they result in similar behaviors.

4.2 EPOCH-WISE DOUBLE DESCENT

In this section, we explore the presence of double descent versus the number of epochs. This study
represents the first unsupervised investigation of this kind, expanding on similar research carried out
by (Nakkiran et al., 2021) for supervised learning. Figure 7 and Appendix D, Figure 29 show the
impact of the number of noisy samples and features in the train set on the test loss curve respectively.
Increasing noise makes it harder for the model to learn the signal, leading to a higher test loss. A
similar effect is obtained when varying the SNR, where as it decreases, the noise becomes more
dominant, resulting in an increase in the test loss. This is illustrated in Figure 8 and in Appendix D,
Figure 30 for the case of sample and feature noise respectively. Epoch-wise double descent is also
present when there is a domain shift between the train and test sets, as illustrated in Figure 9. 9a
shows that the stronger the shift, the higher the test loss.

4.3 SAMPLE-WISE DOUBLE DESCENT

In this section, we study the impact of the number of training samples on the test loss curve. The
complexity of a model and the number of samples it is trained on both play a crucial role in deter-
mining whether the model is over (small sample size) or under-parameterized (large sample size).

(a) Linear subspace data. SNR = -2 [dB]. (b) Single-cell RNA data. SNR = -17 [dB].

Figure 7: Epoch-wise double descent influenced by the number of noisy samples. Train losses are
depicted in Appendix C, Figure 22.
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(a) Linear subspace. Sample noise = 40%. (b) Single-cell RNA. Sample noise = 90%.

Figure 8: Epoch-wise double descent for the case of sample noise influenced by the SNR. Train
losses are exhibited in Appendix C, Figure 23.

This causes the interpolation threshold’s location to change, as shown in Figure 10. This adjustment
can sometimes result in a model that performs worse than a model trained on a smaller set of training
samples. A similar phenomenon was demonstrated in (Nakkiran et al., 2021) in a supervised setting.

We also investigate the impact of gradually increasing the number of training samples on the test loss
curve while keeping the model’s size fixed. Remarkably, we identify a non-monotonic trend in the
test loss curve at Figures 11b, 11c, and Appendix D, Figures 31a and 31b, which sometimes results
in double descent as noticed in 11a. The emergence of non-monotonic behavior is defined by a phase
where an increased number of samples negatively impacts performance, resulting in higher test loss.
Appendix C, Figure 26 depicts the training loss plotted against the number of samples in the scenario
of sample noise. Figure 11 showcases only the results from the linear subspace dataset due to the
insufficient amount of samples in the single-cell RNA dataset. More results regarding sample-wise
double descent can be found in Appendix E.2, E.3. The impact of the noise level, SNR, and the
domain shift on the test loss is consistent with the analyses conducted in Subsections 4.1 and 4.2.

5 REAL WORLD APPLICATIONS

In this section, we demonstrate how our findings can be applied to important tasks in machine
learning, such as domain adaptation and anomaly detection. Our objective is to emphasize the
significance of model size selection rather than to compete with state-of-the-art techniques.

5.1 DOMAIN ADAPTATION

Many frameworks in machine learning are exposed to domain shifts. The difference in distribution
between the training and testing data can lead to inferior results when the model is employed on
new, unseen data. Numerous domain adaptation methods have been proposed for both supervised
and unsupervised settings (Zhou et al., 2022; Peng et al., 2019; Chang et al., 2019; Rozner et al.,
2023; Yampolsky et al., 2023) to minimize the shift between the source and target domains. This
is an ongoing challenge in biology, where researchers attempt to integrate datasets collected under
different environmental conditions that cause distribution shifts. Many studies have been conducted
to develop strategies to mitigate this shift, known in biology as ”batch effect” (Tran et al., 2020).

(a) Linear subspace data with 5% noisy
samples and SNR = 20 [dB].

(b) Single-cell RNA data. The ’Wang’
batch was excluded due to noisy results.

Figure 9: Epoch-wise double descent influenced by the amount of domain shift. Left: we introduce
some noise to emphasize the double descent curve. Appendix C, Figure 24 shows the train losses.
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Figure 10: Model-wise double descent for the linear
subspace data with different number of training sam-
ples. In the yellow interval, models trained with 10000
samples perform worse compared to those trained with
5000 samples. Sample noise = 70% and SNR = -15 [dB].
Train loss results are shown in Appendix C, Figure 25.

In this section, we study the relation between model size and its ability to alleviate distribution
shifts in real world single-cell RNA data 3.2. Our work is the first to show the advantage of over-
parameterized models in unsupervised tasks under real domain shifts through the emergence of
double descent. Tripuraneni et al. (2021) and Kausik et al. (2023) focused on supervised learning
and showed related results, each under their own set of assumptions. We visualize the source and
target datasets using UMAP embeddings (McInnes et al., 2018) in Appendix E.1, Figure 32b. The
top two sub-figures in Figure 12 present the test and train losses respectively for models trained on
source and tested on target datasets. We observed that testing models on the ’Wang’ dataset results
in triple descent, while all other targets result in double descent.

We used the KL-divergence (KLD) (Shlens, 2014a) metric to calculate the distribution shift between
our source data (’Baron’) and the target datasets (’Segerstolpe’, ’Xin’, ’Mutaro’, and ’Wang’). Our
findings show that as the shift between the source and target increases (higher KLD), the test loss
rises, inline with the results of the simulated experiment yielding Figure 5. To evaluate how different
models perform in terms of domain adaptation, we measure how much of the shift was removed by
analyzing the bottleneck representations of the AEs. Precisely, we compute the k = 10 nearest
neighbors of each bottleneck vector and determine the proportion belonging to the same biological
batch as mentioned in (Schilling, 1986), Section 3. We call this metric “k-nearest neighbors domain
adaptation test” (KNN-DAT), indicating the extent of mixing between different domains. KNN-DAT
of 1 implies complete separation, while a lower value indicates better mixing of different domains.
That is, lower values of KNN-DAT imply that the embedding of samples from the target domain is
more similar to the embedding of samples from the source domain.

The bottom row in Figure 12 presents the UMAP representations based on the embeddings of the
learned AEs. For under-parameterized models, KNN-DAT results are better compared to the mod-
els in the critical regime. However, they achieve lower KNN-DAT at the expense of learning the
source data inadequately (high train loss). The model in the critical regime learns domain-specific
features, resulting in high KNN-DAT. We find that over-parameterized models yield the best KNN-
DAT results, achieving a score of 0.75. They also lead to reduced test loss, resulting in improved
reconstruction of the target data. This suggests that over-parameterized models facilitate the tran-
sition between source and target datasets, serving as a viable domain adaptation strategy. We also
display results for the linear subspace dataset in Appendix E.1.

5.2 ANOMALY DETECTION

Unsupervised anomaly detection is a crucial task in machine learning. It has various applications
across scientific fields, and many studies have utilized AEs for anomaly detection (Chandola et al.,
2009; Lindenbaum et al., 2024; Chen et al., 2018; Rozner et al., 2024). We train our AEs on both

(a) sample noise = 90%. (b) SNR = -15 [dB]. (c) Varying domain shifts.

Figure 11: Sample-wise non-monotonicity and double descent for the linear subspace data. Re-
sults for the feature noise scenario are presented in Appendix D, Figure 31 and the training losses in
Appendix C, Figure 26.
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Figure 12: Top: test and train losses of different model sizes utilizing the single-cell RNA dataset.
Training is done on the source data while testing on the target data. Bottom: UMAP of bottleneck
vectors extracted from the encoder’s output and KNN-DAT results for different model sizes.

Figure 13: Left, middle: test loss of clean and anomaly data respectively. Right: non-monotonic
behavior of the ROC-AUC for the celebA dataset.
normal and anomaly data and detect anomalies based on the reconstruction loss as detailed in Sub-
section 4.1. We used the CelebA attributes dataset and conducted an experiment similar to the one in
Subsection 4.1 to investigate how the model’s size affect its ability to detect anomalies. As expected,
in line with the findings in (Han et al., 2022), small models outperform larger models in anomaly
detection (the highest ROC-AUC is achieved by the smallest models in Figure 13). Since we do
not control the SAR value in this data, which is positive, we do not observe a double descent in the
test loss curves. Nonetheless, we identify a non-monotonic behavior of the ROC-AUC curve. Ini-
tially, it decreases for intermediate models, followed by an increase for over-parameterized models.
In conclusion, when employing a model for unsupervised anomaly detection, it is recommended to
avoid selecting intermediate models, as their anomaly detection performance is inferior to under
and over-parameterized models.

6 CONCLUSIONS

In our study, we identified various instances of multiple descents and non-monotonic behaviors
in unsupervised learning. These phenomena occur at the model-wise, epoch-wise, and sample-
wise levels. We used under-complete AEs to investigate these phenomena and found compelling
evidence for their robustness across diverse datasets, model types, and experimental scenarios. We
examined four distinct use cases: sample noise, feature noise, domain shift, and anomalies. Our
experiments revealed multiple instances of consecutive descents, with most of them resulting in
improved (lower) test loss. Additionally, we found a connection between the model’s size and
its real-world performance. Specifically, over-parameterized models can serve as effective domain
adaptation strategies when there is a distribution shift between the source and target data. In the
realm of anomaly detection, we find that it is important to avoid selecting intermediate models that
yield lower ROC-AUC outcomes.Our work was limited by computational resources, preventing us
from using larger datasets for training. However, we hope that our findings will benefit research
groups with greater computational capabilities, enabling them also to explore other frameworks in
unsupervised learning, such as generative models. Another exciting direction for future research is
developing theoretical frameworks that explain our findings, using similar ideas such as in (Curth
et al., 2024; Curth, 2024).

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY

Please refer to Appendix A for all the necessary information for reproducing the results. This in-
cludes a detailed explanation of the datasets, which is also discussed in Section 3. Additionally,
Appendix A covers more datasets which are used in Appendix E, model types, hyperparameters,
and the loss function used during training. The SNR calculations are provided in Appendix B.
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A IMPLEMENTATION DETAILS

In this section, we provide complete implementation details for all experiments conducted in the
paper. Illustrations of the linear subspace dataset generation introduced in Subsection 3.1 for the
scenarios of sample and feature noise, domain shift, and anomalies are displayed in Figures 14, 15,
and 16 respectively. We also provide Table 1 for comparison between the double descent results of
supervised and unsupervised regimes.

Figure 14: Data generation for the scenarios of sample and feature noise with p = 0.5. The first
(leftmost) matrix depicts the latent vectors Z. The second matrix illustrates the latent vectors being
projected into a higher dimensional space, and the rightmost matrices contain clean (blue) and noisy
(red) samples / features respectively.

Figure 15: Data generation for the scenario of domain shift. The matrix on the left depicts the latent
vectors Z and the two middle matrices represent the separation to source (Ztrain) and target (Ztest).
The two rightmost matrices illustrate the latent vectors of the train and test data being projected into
a higher dimensional space with different matrices (D,D

′′
), resulting in a domain shift.

Figure 16: Data generation for the case of anomalies and p = 0.5. The matrix on the left depicts the
anomalous data, the middle matrix represents the clean data, and the rightmost matrix contains both
clean (blue) and outlier (red) samples.

Parameters. Table 2 details the hyper-parameters and other variables for the training process with
the linear subspace, non-linear subspace (Appendix E.3), single-cell RNA, CelebA, and MNIST
(Appendix E.2) datasets. The training optimizer utilized was Adam (Kingma & Ba, 2014), and the
loss function for reconstruction is the mean squared error, which is mentioned in this Section.

Data. For the linear subspace, non-linear subspace, and MNIST datasets, we generate 5000
samples for training and 10000 for testing across all scenarios (sample noise, feature noise, domain
shift, and anomaly detection). Regarding the single-cell RNA data, we have focused on dataset
number 4 from (Tran et al., 2020), which includes 5 distinct domains (biological batches) named
’Baron’, ’Mutaro,’ ’Segerstolpe,’ ’Wang,’ and ’Xin’, each representing 15 different cell types. Each
cell (sample) in this dataset contains over 15000 genes (features). To facilitate the training of deep
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Table 1: The existence of double descent in unsupervised and supervised learning.

Setup Unsupervised Supervised Behavior Notes (unsup.)

Sample noise exists (our paper) exists (see Sections 1, 2) similar low SNR needed
Feature noise exists (our paper) exists (see Section 2) similar low SNR needed
Domain shift exists (our paper) exists (see Subsection 5.1) similar
Anomalies exists (our paper) not explored -

Table 2: Parameters and hyper-parameters

Parameters Linear/ non-linear Subspace RNA CelebA MNIST

Model MLP MLP MLP CNN
Learning rate 0.001 0.001 0.001 0.001
Optimizer Adam Adam Adam Adam
Epochs 200 1000 200 1000
Batch size 10 128 10 128
Data’s latent size (d) 20 - - -
Number of features (n) 50 1000 40 784
Train dataset size 5000 5000 3000 5000
SNR/ SAR [dB] -20, -15, -10, -7, -5, -2, 0, 2
Sample/ feature noise (p) 0, 0.1, 0.2,...,1
Domain shift scale (s) 1, 2, 3, 4 - - -
Bottleneck layer size 25, 30, 45 20, 100, 300 25 10, 30, 50, 500
Hidden layer size 4 - 500 10 - 3000 4-400 -
Channels - - - 1-64

models while preserving the domain shift, we have retained the top 1000 prominent features. We
utilize the ’Baron’ biological batch as our source data for the scenario of domain shift, comprising
5000 training samples, while the target batches are ’Mutaro’ (2122 samples), ’Segerstople’ (2127
samples), ’Wang’ (457 samples), and ’Xin’ (1492 samples). As for the sample and feature noise
scenarios, we use the ’Baron’ domain for both sample and feature noise scenarios due to its largest
sample size (8569). We allocate 5000 samples for training and introduce additive white Gaussian
noise (AWGN) to specific samples and features, as described in subsection 3.1. The calculations
of the SNR for both sample and feature noise cases are provided in Section B. The reserved 3569
samples are for testing. Please be aware that all the domains in this dataset are inherently noisy,
reflecting their real-world nature. Therefore, even when no additional noise is applied (p = 0), the
data remains noisy. This may account for why the test loss does not decrease monotonically as the
model size increases for cases with low noise levels, as shown in Appendix E.4, Figure 55b.

For the celebA dataset, we sub-sample 3000 clean samples and replace ⌊3000 · p⌋ of them with
anomalies to ensure that ∼ p · 100% of the data is contaminated with anomalies. Due to the limited
availability of anomaly data (4547 samples), the test set includes ⌊(1 − p) · 4547⌋ anomalies along
with an equal number of clean samples.

Models. All experiments, including the linear subspace, non-linear subspace, single-cell RNA,
and celebA datasets are conducted using the same MLP AE architecture. To facilitate the explo-
ration of double descent in both bottleneck layer size and hidden layer size, we employ a simplified
model mentioned in (Lupidi et al., 2023) consisting of a single hidden layer for both the encoder and
decoder, as depicted in Figure 17. We also utilize a CNN AE architecture consisting of three convo-
lution layers in the encoder part, followed by a bottleneck layer, and then a decoder part consisting
of three deconvolution layers trained on the MNIST dataset as illustrated in Figure 18 (results for
the CNN AE are reported in Appendix E.2).

We work with under-complete AEs to encourage the acquisition of a meaningful embedding in the
latent space and prevent the model from learning the identity function. The size of these models is
determined by the sizes of the hidden layers (for MLP), the number of channels (for CNN), and the
bottleneck layer, while the width of these models remains constant.
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Figure 17: Left: Demonstration of the MLP-based AE model structure. Right: model’s number of
parameters for single-cell RNA settings (bottleneck layer size = 300 and input size = 1000 features).

Figure 18: Upper: Demonstration of CNN AE model structure. Lower: number of parameters.

Loss function. All AEs are trained with the mean squared error (MSE) loss function:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2.

Where n is the number of data samples, yi is the true value, and ŷi is the predicted value. Due to
contamination in the training dataset, the norm of train samples tends to be higher than that of the
clean test samples. As the MSE loss is not scale-invariant, we opt to normalize both train and test
losses only after the training process is complete, using 1

n

∑n
i=1(yi − ȳ)2, Where ȳ is the mean of

{yi}ni=1. This strategy enables us to continue utilizing the MSE loss function while facilitating a fair
and meaningful comparison between train and test losses.

Results. Ensuring the robustness of the findings across various model initializations and enhancing
their reliability, all figures combine several results of different random seeds. The bolded curves in
each figure represent the average across the results of different seeds, and the transparent curve
around each bolded curve represents the ±1 standard error from the mean.

Environments and Computational Time. All experiments were conducted on NVIDIA RTX
6000 Ada Generation with 47988 MiB, NVIDIA GeForce RTX 3080 with 10000 MiB, Tesla V100-
SXM2-32GB with 34400 MiB, and NVIDIA GeForce GTX 1080 Ti with 11000 MiB.
Each result in Figure 3 represents an average over 10 seeds. The hidden layer sizes for the linear
subspace data range from 4 to 500 with a step size of 4, and for the single-cell RNA data, they
range from 10 to 500 with a step size of 10, and from 500 to 3000 with a step size of 50. This
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results in 125 and 110 models trained for each dataset, respectively. Figure 3a illustrates 10 different
sample noise levels, requiring the training of 125 × 10 × 10 = 12, 500 models. Similarly, Figure
3b depicts 4 different sample noise levels, corresponding to 110× 10× 4 = 4, 400 trained models.
In total, 16,900 models, each with up to 8 million parameters trained on 5,000 data points were
needed to obtain the results. In Appendix E.2, Figure 34, we present results for CNNs including
between 1 to 64 channels trained on 5,000 images from the MNIST dataset including 5 levels of
sample noise and 6 levels of feature noise for 10 different seeds. These experiments require training
64 × 11 × 10 = 7, 040 models with up to 13 million parameters. Each evaluation of a specific
experiment takes several days if trained on the NVIDIA RTX 6000 and weeks if trained on the other
mentioned GPUs to obtain the results.

B SNR CALCULATIONS

In this section, we will outline our approach for calculating the signal-to-noise ratio (SNR) for all
experiments involving the addition of noise. Initially, we convert the SNR from decibels to linear
SNR using the formula:

SNR = 10(
SNR[dB]

20 ). (1)

We have a closed-form equation for the linear subspace dataset to determine the scalar θ required to
multiply the train samples and achieve the desired linear SNR value. We use the fact that both train
and noise are sampled from an i.i.d. normal distribution and calculate θ for the sample noise, feature
noise, domain shift, and anomalies.

Notations:
z − d× 1 vector. Represents a vector in a latent space of size d.
D − n × d matrix. Represents a random matrix to project z from a d dimensional space into a
higher-dimensional space (n > d).
ϵ− n× 1 vector. Represents the noise added to a vector with n dimensions.

For the scenario of sample noise, where a particular sample is affected by noise across all its features:

SNR2 =
E[∥θDz∥22]
E[∥ϵ∥22]

=
E[θ2zTDTDz]

E[ϵT ϵ]
=

θ2Ez[ED|z[z
TDTDz|z]]

E [
∑n

i=1 ϵ
2
i ]

=︸︷︷︸
(a)

(2)

θ2Ez[z
TED|z[D

TD]z]

n
=︸︷︷︸
(b)

θ2Ez[z
Tn · Id×dz]

n
=

θ2 · n · Ez[z
T z]

n
= θ2E

[
d∑

i=1

z2i

]
=︸︷︷︸
(a)

θ2 · d.

Isolating θ, we get that θ = SNR√
d

.

(a) Given a vector a ∼ N (0, In) of n i.i.d. samples, E
[∑n

i=1 a
2
i

]
=

∑n
i=1 E[a2i ] =

∑n
i=1 1 = n.

(b) Given a matrix M ∼ N (0, In) of size n× n where all entries are i.i.d., then

E[MTM ] = E

 M2
1,1 + · · ·+M2

n,1 . . . M1,1M1,n + · · ·+Mn,1Mn,n

...
. . .

...
M1,1M1,n + · · ·+Mn,1Mn,n . . . M2

1,n + · · ·+M2
n,n

 =

n . . . 0
...

. . .
...

0 . . . n

 = n · In×n.

For the scenario of feature noise, each train sample has only n · p noisy features, meaning the noise
vector contains values for only n · p entries. Consequently, θ is determined by

√
p
d · SNR. For

practitioners who want to explore the scenario involving domain shift, where the source and target
are noisy, note that the matrix responsible for projecting ztest into a higher-dimensional space is
denoted as D

′′
= D+ s ·D′

where D
′

is sampled from a standard normal distribution N (0, I) and
both D and D

′
are i.i.d. Consequently, D

′′

ij ∼ N (0, 1 + s2). Substituting D with D
′′

in equation
equation 2, we find that ED′′ |z[D

′′TD
′′
] = n · (1 + s2) · Id, leading to SNR2 = (1 + s2) · θ2 · d,
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therefore θ = SNR√
(s2+1)d

. In other words, since the covariance matrix of D
′′

is (1+ s2)I , we need to

make sure we first normalize the matrix by
√
1 + s2 to maintain the identity covariance matrix.

For other datasets, such as the single-cell RNA dataset, we normalize each sample x by its norm
∥x∥, and similarly normalize each noise vector n, yielding: x̂ =

x

∥x∥
and n̂ =

n

∥n∥
. This ensures

that the ratio
x̂

n̂
equals 1. By employing equation equation 1, we attain the intended linear SNR

factor θ, and then scale down n̂ by θ, yielding n̂scaled =
n̂

θ
. This guarantees that the linear SNR is

x̂

ˆnscaled
= θ.

C TRAIN LOSS RESULTS

In this section, we provide the train loss figures corresponding to each of the test losses mentioned
in the main paper.

(a) Linear subspace data with SNR = -15 [dB]. (b) Single-cell RNA data with SNR = -17 [dB].

Figure 19: Model-wise train losses for the case of varying sample noise.

(a) Linear subspace data. Sample noise = 80%. (b) Single-cell RNA data,. Sample noise = 40%.

Figure 20: Model-wise train losses for the case of noisy samples and varying SNR.

Figure 21: Train loss of source data for the
linear subspace data.
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(a) Linear subspace data with SNR = -2 [dB]. (b) Single-cell RNA data with SNR = -17 [dB].

Figure 22: Epoch-wise train losses for varying number of noisy samples.

(a) Linear subspace data. Sample noise = 40%. (b) Single-cell RNA data. Sample noise = 90%.

Figure 23: Epoch-wise train losses for the case of sample noise influenced by the SNR.

(a) Linear subspace data with 5% noisy samples
and SNR = 20 [dB].

(b) Single-cell RNA data trained on the ’Baron’
batch.

Figure 24: Epoch-wise train loss influenced by the amount of domain shift.

Figure 25: Train loss of the linear subspace
data with sample noise = 70% and SNR = -15
[dB] for different number of training samples.

Figure 26: Train loss rises as the number of sam-
ples increase for the scenario of sample noise. Sim-
ilar behavior exists for feature noise and domain
shift scenarios. The rise occurs due to the model
entering the under-parameterized regime for larger
number of training samples. However, despite the
increase in training loss with a higher number of
samples, the test loss decreases, suggesting im-
proved reconstruction of the test samples.
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D RESULTS FOR FEATURE NOISE

In this section, we present the results for the feature noise scenario. Feature noise adds complexity
since each sample contains noise in some of its features. As a result, the model never encounters
samples with entirely clean features, making it unable to isolate and focus on clean data. Conse-
quently, the model experiences difficulty in learning the correct data structure. Surprisingly, in-
creasing feature noise actually leads to a decrease in the test loss for the single-cell RNA dataset
(Figure 27b). This can also be observed in Appendix E.2, Figure 34b and Appendix E.3, Figure
44b. Moreover, the peak shifts left as the number of noisy features rise in Figure 27a.

(a) Double descent for the linear subspace data
trained with SNR = -13 [dB]. The model also ex-
hibits the final ascent phenomenon (Xue et al.,
2022).

(b) Non-monotonic behavior for the Single-cell
RNA data trained with SNR = -12 [dB]. Beyond
a hidden layer size of 2000, the test loss continues
to decrease, while the train loss increases.

Figure 27: Test loss exhibits model-wise double descent and non-monotonic behaviors for the case
of varying feature noise.

(a) Linear subspace data with 40% noisy fea-
tures. Beyond hidden layer of size 300, the test
loss rises.

(b) Single-cell RNA data with 10% noisy fea-
tures. Beyond a hidden layer size of 2600, the
test loss continues to decrease, and the train loss
increases.

Figure 28: The effect of SNR for the case of noisy features on the test loss curve.
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(a) Linear subspace data with SNR = -12 [dB]. (b) Single-cell RNA data with SNR = -12 [dB].

Figure 29: Epoch-wise double descent influenced by the number of noisy features.

(a) Linear subspace data. Feature noise = 80%. (b) Single-cell RNA data. Feature noise = 50%.

Figure 30: Epoch-wise double descent for the case of feature noise influenced by the SNR.

(a) Sample-wise non-monotonicity for varying
SNRs in the scenario of feature noise = 90 %.

(b) Sample-wise non-monotonicity for varying
number of noisy features. SNR = -13 [dB].

Figure 31: Sample-wise non-monotonicity pattern for the linear subspace data for the scenario of
feature noise.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E ADDITIONAL EXPERIMENTS

E.1 MORE RESULTS FOR DOMAIN ADAPTATION

This section presents the UMAP visualizations of the different domains for both the linear sub-
space and single-cell RNA data in Figure 32. Results for different model sizes trained on the linear
subspace dataset are also reported in Figure 33.

(a) The UMAP representation shows a clear do-
main shift between the source and target datasets.

(b) Clusters represent different cell types. Differ-
ent domains are represented by different colors.

Figure 32: UMAP representations of source and target datasets for the linear subspace dataset (left)
and single-cell RNA dataset (right).

Figure 33 illustrates the results based on a similar experiment conducted in Section 5.1 for the lin-
ear subspace data. As expected, the interpolating models exhibit the poorest KNN-DAT outcomes.
Over-parameterized models introduce a decrease in the test loss indicating an improved reconstruc-
tion of the target data. In this scenario, we noticed that smaller models perform better than over-
parameterized models based on KNN-DAT results. We think that the small size of the hidden layer
(4) and the high dimensionality of the dataset (50 features) result in significant information loss in
these layers. This could lead to closely clustered vectors in the embedding space, ultimately causing
low KNN-DAT results. However, a hidden layer of size 4 indicates insufficient capacity to represent
the signal, as shown by the high values of test and train losses in Figure 33.

Figure 33: UMAP of the latent (bottleneck) vectors with a size of 45 and KNN-DAT results for
different model sizes trained on the linear subspace dataset for a shift of 3.
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E.2 DOUBLE DESCENT RESULTS FOR CNNS TRAINED ON MNIST

(a) Sample noise scenario with SNR = -17 [dB]. (b) Feature noise scenario with SNR = -20 [dB].

Figure 34: Model-wise double descent for CNNs trained on MNIST with varying levels of sample
noise (left) and feature noise (right).

In this section, we demonstrate that the double descent phenomenon can be reproduced in other
unsupervised AE architectures. We employed the MNIST dataset (LeCun et al., 1998) and trained
under-complete CNNs as detailed in Figure 18. For the case of sample noise, the noise is added to
p · 100% of the images, and for the feature noise scenario, noise is introduced to p · 100% of the
pixels of each image. To demonstrate the phenomenon with the presence of domain shift, the model
is trained on the MNIST-M and MNIST datasets and tested on MNIST and MNIST-M, respectively.
Results for model-wise double descent for varying amounts of sample and feature noise cases are
presented in Figure 34.

In Figure 35, we show the test and train loss results (top two sub-figures) for three different mod-
els trained on MNIST with 50% sample noise and an SNR of -15 dB and find out that over-
parameterized models can reduce the noise levels in an image. The smallest model, with 3 channels,
is under-parameterized. The second model, within the critical regime, with 5 channels, performs
poorly, while the third is over-parameterized, containing 60 channels. Interestingly, We noticed that
even though our AE was not trained to remove noise (as in denoising AEs (Vincent et al., 2008;
2010)), over-parameterized models were able to reduce noise to some extent. In contrast, models
within the critical regime performed significantly worse.

After training, we evaluated each model by feeding it images with varying SNR values and ex-
amining the reconstructed outputs (bottom sub-figure in Figure 35). The over-parameterized model
produced the best-quality reconstructed images. Following that, the under-parameterized model per-
formed moderately well, and the model in the critical regime generated the noisiest images. This is
because the critical model focused on memorizing the noise during training instead of learning the
underlying signal, resulting in consistently noisy outputs. In contrast, the over-parameterized model
had enough capacity to memorize the noise and learn the signal. While the under-parameterized
model cleans the images better than the critical model, it still distorts some details compared to the
over-parameterized model due to its limited capacity.

To quantify noise reduction, we used the Peak Signal-to-Noise Ratio (PSNR), a metric that assesses
signal quality by comparing the original image to its noisy version. PSNR measures the ratio be-
tween the maximum possible value of a signal (R2) and the power of the noise (MSE). Higher PSNR
values indicate better quality, meaning less noise. The formula for PSNR is

PSNR = 10 · log
(

R2

MSE(x, f(x+ n))

)
,

where x + n represents the noisy image (n is the noise), and x is the clean version. This metric,
expressed in decibels, allows us to evaluate how well each model cleans the images. As shown,
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Figure 35: Models trained on 50% noisy MNIST images with SNR = -15 [dB] and tested on MNIST
images with different values of SNR.

the over-parameterized model consistently achieves the highest PSNR values (highlighted in bold
green), while the poorly interpolating model, which primarily memorized noise, produces the lowest
PSNR values (in red). In conclusion, over-parameterized models are capable of reducing noise when
trained on noisy data, even without being explicitly tasked to do so.

We proceed by illustrating the impact of SNR on the test loss curve for both sample and feature noise
scenarios in Figure 36. As expected, the test loss increases for low SNR values. We then investigate
the effect of domain shifts between the training and testing datasets in two cases. First, models are
trained on the MNIST dataset and tested on the MNIST-M dataset, as shown in Figure 37a. Second,
models are trained on MNIST-M and tested on MNIST, as seen in Figure 37b. In both cases, the
model-wise double descent curve is observed.

We further illustrate this phenomenon along the epochs axis, displaying non-monotonic behavior
and double descent under different levels of sample and feature noise (Figure 38) and showing the
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(a) Sample noise = 50%. (b) Feature noise = 10%.

Figure 36: Model-wise double descent for CNN trained on MNIST with varying levels of SNRs.
Left: sample noise, right: feature noise.

(a) Source data: MNIST, target data: MNIST-M. (b) Source data: MNIST-M, target data: MNIST.

Figure 37: Model-wise double descent for CNN trained and tested on different domains.
impact of SNR variation (Figure 39). Additionally, we provide similar results under domain shift
conditions between the train and test datasets (Figure 40). Sample-wise double descent and non-
monotonic behavior is observed as well in all contamination setups. The cases of varying levels of
sample noise and feature noise are displayed in Figure 41 and for varying SNRs for both scenarios
in Figure 42. Sample-wise double descent is also illustrated in Figure 43 for when a domain shift is
present between the training data (MNIST) and the testing data (MNIST-M).

E.3 DOUBLE DESCENT RESULTS FOR THE NON-LINEAR SUBSPACE DATASET

Building on the linear subspace dataset discussed in Subsection 3.1, we have developed a new dataset
with non-linear characteristics to investigate the double descent phenomenon in more complex sce-
narios. Although the single-cell RNA dataset is already non-linear, we have created this dataset to
demonstrate the reproducibility of the double descent phenomenon across various datasets.

As in the linear subspace model discussed in Subsection 3.1, we sample N latent vectors {zi}Ni=1
from a normal distribution and project them to a higher dimension using a random matrix D1.
The key difference is the inclusion of non-linear components z2i and z3i , each projected to a higher
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(a) SNR = 0 [dB]. (b) SNR = -5 [dB].

Figure 38: Epoch-wise non-monotonic behavior for varying levels of sample noise (left) and feature
noise (right).

(a) Sample noise = 100%. (b) Feature noise = 40%.

Figure 39: Epoch-wise double descent and non-monotonic behavior for varying SNRs. Left: sample
noise, right: feature noise.

dimensional space with different random matrices D2 and D3. To create contaminated setups of
sample and feature noise, noise is added to p · 100% of the data where θ controls the SNR:

xi =

{
θ(D1zi +D2z

2
i +D3z

3
i ) + ϵi, with probability p,

θ(D1zi +D2z
2
i +D3z

3
i ), with probability 1− p,

For the domain shift scenario, we divide the latent vectors into training and testing sets and use the
same parameter ’s’ as described in Subsection 3.1 to control the shift between the train and test sets
in the following manner: D

′′

i = Di + s ·D′
for 1 ≤ i ≤ 3 and get:

xi =

{
D1z

i
train +D2(z

i
train)

2 +D3(z
i
train)

3, if train,
D

′′

1 z
i
test +D

′′

2 (z
i
test)

2 +D
′′

3 (z
i
test)

3, if test.

For anomaly detection, clean samples are represented by θ(D1zi +D2z
2
i +D3z

3
i ), with p · 100%

of them replaced by anomalies sampled from a normal distribution, as detailed in Subsection 3.1.

We start by presenting results for the sample and feature noise scenarios as depicted in Figure 44.
As shown, the test loss results for the case of sample noise (Figure 44a) resemble those of the linear
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(a) Source = MNIST, target = MNIST-M. (b) Source = MNIST-M, target = MNIST.

Figure 40: Epoch-wise double descent and non-monotonic behavior for domain shift.

(a) SNR = -17 [dB]. (b) SNR = -20 [dB].

Figure 41: Sample-wise double descent and non-monotonic behavior for varying levels of sample
noise (left) and feature noise (right).

subspace data model presented in Figure 3a. Figure 44b demonstrates the model-wise final ascent
phenomenon for the case of feature noise as elaborated in Appendix E.4. Figure 45 shows how the
SNR affects the test loss curve for both sample and feature noise cases. As observed, the test loss
increases with decreasing SNR. Additionally, the final ascent in the test loss is depicted in 45b for the
feature noise scenario, where the slope becomes steeper as the SNR decreases. We also demonstrate
the double descent and final ascent results regarding the domain shift scenario in Figure 46 and the
anomaly detection capabilities in Figure 47.

We also observed epoch-wise double descent and non-monotonic behavior for this dataset, as shown
in Figure 48 for different percentages of sample and feature noise and in Figure 49 for varying SNR
levels under the same noise conditions. Additionally, epoch-wise double descent is also observed
when a domain shift is present between the train and test sets, as depicted in Figure 50. Instances of
sample-wise double descent and non-monotonic curves are also reported and displayed in Figure 51
for varying levels of sample and feature noise, Figure 52 for varying levels of SNR, and in Figure
53 for domain shift.
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(a) Sample noise = 50%. (b) SNR = -20 [dB].

Figure 42: Sample-wise double descent and non-monotonic behavior for varying levels of SNR.
Left: sample noise, right: feature noise.

Figure 43: Sample-wise double descent for models trained on the MNIST dataset and tested on the
MNIST-M dataset.

E.4 FINAL ASCENT PHENOMENON

While training various models on different datasets contaminated with sample and feature noise at
different SNR levels and domain shifts between train and test sets, we observed a final ascent phe-
nomenon characterized by a pattern of decreasing-increasing-decreasing-increasing test loss. The
phenomenon was first observed in Xue et al. (2022) in supervised learning with label noise. We sus-
pect a potential connection to this phenomenon in unsupervised learning, which we have yet to fully
analyze. We refer to Figure 55a, which illustrates the final ascent results for the linear subspace
dataset under extreme conditions of 100% sample noise, as a continuation of Figure 3a. We also
present the final ascent results for the single-cell RNA dataset in Figure 55b. Another instance of
final ascent with the presence of varying feature noise is illustrated in Figure 27a for the linear sub-
space dataset and in Figures 44b, 45b for the non-linear subspace dataset. Results are also replicated
using the non-linear subspace dataset under various domain shifts, as observed in Figure 46.

E.5 MULTIPLE DESCENTS UNDER DIFFERENT NOISE TYPES AND SPARSE AES

This section explores the emergence of double and triple descent for noise distributions beyond
Gaussian noise and sparse AEs. Figure 55 illustrates the phenomenon for the linear subspace and
single-cell RNA datasets when subjected to Laplacian noise. The experimental setup mirrors that of
Figure 3. As shown, both datasets exhibit similar results under these conditions.

We extend our research to recent applications of AEs, including sparse AEs, which are increasingly
utilized in explainable AI (XAI) (Gao et al., 2024) and have been adopted by Google in their Gemini
project. Using sparse CNN AEs, we trained models on the MNIST dataset containing 80% noisy
samples and observed the emergence of double descent. The models were configured with a bot-
tleneck layer of size 550, and the parameter k, determining the top k highest bottleneck values to
retain, was set to 500. The results are illustrated in Figure 56.
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(a) Sample noise scenario with SNR = -15 [dB].
(b) Feature noise scenario exhibits final ascent
(Appendix E.4) with SNR = -20 [dB].

Figure 44: Model-wise double descent for the non-linear subspace data with varying levels of sample
noise (left) and final ascent with varying levels of feature noise (right).

(a) Double descent with sample noise = 80%.
(b) Double descent and final ascent with feature
noise = 100%.

Figure 45: Effect of SNR on the test loss curve as a function of model size. Left: sample noise
scenario. Right: feature noise scenario.

Figure 46: Model-wise double descent and final ascent for the scenario of domain shift.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 47: Non-linear anomaly data with SAR = -15 [dB]. Left: test loss of the clean samples.
A double descent pattern emerges for low SARs and high anomaly presence in the training data.
Middle: test loss of the anomaly data. Right: Non-monotonic behavior of the ROC-AUC.

(a) SNR = 0 [dB]. (b) SNR = -15 [dB].

Figure 48: Epoch-wise double descent and non-monotonic behavior for varying levels of sample
noise (left) and feature noise (right). For the scenario of feature noise, we mostly noticed the non-
monotonic curve at 10%.

(a) Sample noise = 30%. (b) Feature noise = 10%.

Figure 49: Epoch-wise double descent and non-monotonic behavior for varying levels of SNR. Left:
sample noise, right: feature noise.
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Figure 50: Epoch-wise double descent for when a domain shift is present between train and test sets.

(a) SNR = -15 [dB]. (b) SNR = -20 [dB].

Figure 51: Sample-wise double descent and non-monotonic behavior for varying levels of sample
noise (left) and feature noise (right).

(a) Sample noise = 90%. (b) SNR = -20 [dB].

Figure 52: Sample-wise double descent and non-monotonic behavior for varying levels of SNR.
Left: sample noise, right: feature noise.
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Figure 53: Sample-wise non-monotonic behavior for the domain shift scenario.

(a) Linear subspace data and SNR = -15 [dB]. (b) Single-cell RNA data and SNR = -10 [dB].

Figure 54: Test loss exhibits model-wise double descent followed by a final ascent for the scenario
of varying sample noise.

(a) Linear subspace data and SNR = -15 [dB]. (b) Single-cell RNA data and SNR = -17 [dB].

Figure 55: Test loss exhibits model-wise double descent for the case of Laplace noise.
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Figure 56: Test loss exhibits model-wise double descent for sparse CNN AEs trained on MNIST
with bottleneck layer size of 550 and k = 500.

35


	Introduction
	Related work
	Data model
	Linear subspace data
	Single-cell rna data
	CelebA data

	Results
	Model-wise double descent
	Epoch-wise double descent
	Sample-wise double descent

	Real world applications
	Domain adaptation
	Anomaly detection

	Conclusions
	Implementation details
	SNR calculations
	Train loss results
	Results for feature noise
	Additional experiments
	More results for domain adaptation
	Double descent results for CNNs trained on MNIST
	Double descent results for the non-linear subspace dataset
	Final ascent phenomenon
	Multiple descents under different noise types and sparse AEs


