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Abstract

Incremental Learning (IL) has been a long-001
standing problem in both vision and Natural002
Language Processing (NLP) communities. In003
recent years, as Pre-trained Language Models004
(PLMs) have achieved remarkable progress in005
various NLP downstream tasks, utilizing PLMs006
as backbones has become a common practice007
in recent research of IL in NLP. Most assume008
that catastrophic forgetting is the biggest obsta-009
cle to achieving superior IL performance and010
propose various techniques to overcome this011
issue. However, we find that this assumption is012
problematic. Specifically, we revisit more than013
20 methods on four classification tasks (Text014
Classification, Intent Classification, Relation015
Extraction, and Named Entity Recognition) un-016
der the two most popular IL settings (Class-017
Incremental and Task-Incremental) and reveal018
that most of them severely underestimate the019
inherent anti-forgetting ability of PLMs. Based020
on the observation, we propose a frustratingly021
easy method called SEQ* for IL with PLMs.022
The results show that SEQ* has competitive or023
superior performance compared with state-of-024
the-art (SOTA) IL methods yet requires con-025
siderably less trainable parameters and train-026
ing time. These findings urge us to revisit the027
IL with PLMs and encourage future studies to028
have a fundamental understanding of the catas-029
trophic forgetting in PLMs. The data, code and030
scripts are in the supplementray material and031
will be publicly available 1.032

1 Introduction033

Learning knowledge incrementally without much034

forgetting is an essential ability of human be-035

ings but still an unsolved challenge for neural036

networks in achieving human-level intelligence037

(French, 1999). Incrementally learning a sequence038

of tasks can be formulated into the paradigm of039
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Figure 1: The comparison between the proposed SEQ*
and SOTA IL methods on five class-incremental tasks.
We report the average accuracy after learning the final
task. The detailed results are provided in Table 1.

Incremental Learning (IL) and has been impeded 040

by catastrophic forgetting (Kirkpatrick et al., 2017). 041

Catastrophic forgetting refers to neural networks 042

forgetting previous knowledge after learning new 043

tasks (McCloskey and Cohen, 1989). 044

Recent years have witnessed significant break- 045

throughs in Pre-trained Language Models (PLMs) 046

in vision and NLP tasks. Most recent studies of IL 047

use PLMs as the backbone and design various meth- 048

ods for alleviating catastrophic forgetting in NLP 049

tasks. However, is forgetting really catastrophical 050

in PLMs? More specifically, how can we quantify 051

forgetting and how much knowledge is forgotten in 052

various IL scenarios when using various backbones 053

and methods on various tasks? 054

To answer the above question, we carry out 055

extensive experiments to explore forgetting in 056

more than 20 methods on four classification tasks 057

(Text Classification, Intent Classification, Rela- 058

tion Extraction, and Named Entity Recognition) 059
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under the two most popular IL settings (Class-060

Incremental and Task-Incremental) with various061

model architecture (encoder only and decoder only)062

and scales (from 19M to 1.21B number of param-063

eters). Through extensive experiments, we have064

several major findings:065

• The popular assumption that PLMs suffer066

from catastrophic forgetting does not hold.067

Even under sequential fine-tuning (SEQ), the068

PLMs maintain the knowledge without much069

forgetting (Sec. 3.2). From the probing per-070

spective, most existing IL methods do not071

learn incremental knowledge for PLMs (Sec.072

4.2).073

• By combining SEQ with simple strategies074

(Sec. 4.1), we propose SEQ* and find that075

SEQ* has competitive or even superior perfor-076

mance than SOTA IL methods (Figure 1, Sec.077

4.2).078

• The inherent anti-forgetting ability of PLMs079

comes from both the pre-training stage as well080

as the architecture of Transformer (Sec. 3.4).081

Randomly initialised PLMs learn incremen-082

tally when SEQ is performed on a sequence083

of tasks.084

• The forgetting of SEQ is due to the deviation085

of the classifier from the PLM rather than the086

loss of old knowledge in the PLM. (Sec. 3.5).087

Our study urges the NLP community to revisit088

and deepen the understanding of the forgetting in089

PLMs.090

2 Experimental Settings091

2.1 Problem formulation092

Formally, the goal of IL is to learn a model093

fθ : x → y ∈ Y from a sequence of tasks094

D = {D1,D2, · · · ,DT }, where the t-th task Dt =095

{(xt
i, y

t
i)}i=1 contains input samples xt

i ∈ Xt and096

labels yti ∈ Yt. In Class-Incremental Learning097

(CIL), the label sets of different tasks are exclusive:098

Y1 ∩ Y2 · · · YT = ∅, and the task id is unknown099

during inference. In Task-Incremental Learning100

(TIL), the label sets of different tasks may be over-101

lapping: Y1 ∩ Y2 · · · YT ̸= ∅, and the task id is102

required during inference. In general, CIL is much103

more challenging than TIL because PLMs suffer104

from inter-task forgetting much more seriously than105

intra-task forgetting (Tao et al., 2023a). Appendix106

A provides detailed description and evaluation met- 107

rics. 108

2.2 Tasks and Datasets 109

We consider four types of downstream tasks in 110

our experiments: Text classification, intent clas- 111

sification, relation extraction, and named entity 112

recognition. We use the following eight datasets: 113

Topic3Datasets (containing AGNews, DBPedia, 114

and YaHoo (Zhang et al., 2015)) for text classifica- 115

tion; Clinic150 (Larson et al., 2019) and Backing77 116

(Casanueva et al., 2020) for intent classification; 117

FewRel (Han et al., 2018) and TACRED (Zhang 118

et al., 2017) for relation extraction; OntoNotes5 119

(Hovy et al., 2006), I2B2 (Murphy et al., 2010), 120

Few-NERD (Ding et al., 2021) for named entity 121

recognition. Detailed descriptions are provided in 122

Appendix B. 123

2.3 Backbones 124

We consider two popular architectures as back- 125

bone PLMs: encoder-only and decoder-only. For 126

encoder-only backbones, we use bert-base-cased 127

and bert-large-cased (Devlin et al., 2019), the 128

most popular choices in previous IL studies. The 129

encoder-only backbones are typically used as dis- 130

criminant models, and linear layers are added for 131

downstream tasks. We use the GPT2 (Radford 132

et al., 2019) and Pythia suite (Biderman et al., 2023) 133

for decoder-only backbones. Pythia is based on 134

GPT-NeoX (Black et al., 2022), which contains 135

8 model sizes and 154 pre-training checkpoints, 136

enabling research in interpretability and learning 137

dynamics. The decoder-only backbones are typi- 138

cally used as generative models, and no additional 139

linear layers are required since the output target 140

is natural language. The detailed description is 141

provided in Appendix C. 142

3 Revisiting the Forgetting from the 143

Probing Perspective 144

3.1 How to Measure the Forgetting in PLMs? 145

This subsection describes how to measure the for- 146

getting inside PLMs during IL. Specifically, we uti- 147

lize the probing technique, an effective method to 148

evaluate the representation ability of backbones on 149

target tasks (Chen et al., 2023a; Tao et al., 2023b; 150

Davari et al., 2022; Wu et al., 2021). 151

To probe the knowledge in PLMs for all tasks in 152

IL, we add probing classifiers on top of the PLM 153

and train the probing classifiers on all tasks in 154
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Figure 2: An illustration of how we obtain the probing and the observed performance of the model when learning
the fourth task if there are a total of 15 tasks. The observed performance is used as a metric of forgetting in existing
studies. The probing performance indicates how the encoder forgets. However, it is overlooked by previous studies.

IL. Then, we evaluate the PLM and the probing155

classifiers on all tasks and obtain the probing per-156

formance. The probing performance is the upper157

bound performance when the classifiers do not for-158

get. For clarity, the performance evaluated with the159

original model is called the observed performance.160

We note that measuring probing performance will161

not affect the training process of IL since the back-162

bone PLM is frozen when training probing clas-163

sifiers. Furthermore, the original classifiers only164

predict the classes of learned tasks, while the prob-165

ing classifiers predict the classes of all tasks in166

IL. We provide an illustration in Figure 2 and the167

formal definition in Appendix A.168

We consider four metrics for our probing study:169

linear probing, cosine linear probing, prototype170

probing, and cosine prototyping. Linear probing171

has been widely adopted in previous works. In lin-172

ear probing, the probing classifier is a linear layer.173

Cosine linear probing adopts a cosine linear layer174

as the probing classifier. Specifically, the logits175

are computed as the cosine similarities between176

classifier weights and extracted features. Hou et al.177

(2019) show that utilizing cosine linear layers mit-178

igates bias towards new classes in IL. In proto-179

type probing, the probing classifier is a linear layer180

whose weight matrix is calculated as the class fea-181

ture centres. Previous IL studies (Zhou et al., 2023;182

Chen et al., 2023b; Ma et al., 2023) show that using183

class feature centres as prototypes for classification184

is effective. Cosine prototype probing further uti-185

lizes cosine normalization when calculating logits.186

Further discussion is provided in Appendix D.1.187

3.2 Is Sequential Fine-tuning Really the 188

Lower Bound? 189

Sequential fine-tuning (SEQ) has long been re- 190

garded as the lower bound of IL. In this subsection, 191

we revisit SEQ from the probing perspective, and 192

we find that SEQ is severely underestimated when 193

using PLMs for IL. 194

The backbone was small and randomly initial- 195

ized in early studies exploring IL (Kirkpatrick et al., 196

2017; French, 1999; McCloskey and Cohen, 1989). 197

They find that SEQ usually results in models for- 198

getting all previous knowledge when learning new 199

tasks. Recent IL studies in NLP (Razdaibiedina 200

et al., 2023; Zheng et al., 2022; Huang et al., 2021; 201

Sun et al., 2019) also observe that SEQ leads to 202

worse performance. However, in the era of PLMs, 203

fine-tuning has proven to be effective for adapting 204

PLMs to different domains or downstream tasks 205

(Aghajanyan et al., 2020; Devlin et al., 2019; Rad- 206

ford et al., 2018). If fine-tuning really causes PLMs 207

to forget nearly all previous knowledge in IL, it 208

should also cause PLMs to forget all pre-trained 209

knowledge when adapting to new tasks. Obviously, 210

this assumption is not true since fine-tuning is still 211

effective for PLMs (OpenAI, 2023). 212

The observed and probing performance on class- 213

incremental intent classification with generative 214

models are summarized in Figure 3. The results 215

on other IL settings, downstream tasks and back- 216

bones are in Appendix D.2. Figure 3a shows that 217

the observed performance drops dramatically from 218

approximately 98% to 10% as more new tasks are 219
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Figure 3: The observed and probing performance on
Class-Incremental Intent Classification. The dataset is
Clinic150. The backbones are generative models. (a)(b)
are the observed performance and training loss during
IL training. (c)-(f) are the probing performance when
different metrics are adopted.

learned, in line with our understanding of catas-220

trophic forgetting. However, Figure 3c describes an221

entirely different phenomenon. The PLMs achieve222

high probing performance after learning the first223

task. And the linear probing performance has224

barely decreased since the second task. In other225

words, PLMs preserve the knowledge to classify226

all 15 tasks even when adapting to only new tasks227

sequentially. This phenomenon is contradictory to228

what we know about catastrophic forgetting and229

SEQ.230

Indeed, the probing performance is high since all231

tasks’ data is available when training the probing232

classifiers, while the observed performance is poor233

since the original classifiers only train on the data234

from the current task. However, with the above ob-235

servation, we can boost the observed performance236

with simple strategies, which will be described in237

Section 4.1.238

3.3 What is the Best Metric for Probing 239

Performance? 240

In Figure 3, we find that the ranking of four probing 241

metrics is as follows: linear > cosine linear, cosine 242

prototype > prototype probing. This subsection 243

will explain why linear probing is the best metric 244

for probing study. 245
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Figure 4: The histogram of features and different em-
beddings of Pythia-410m. The features are calculated
on the training set of Clinic150, and the output word
embeddings are loaded from pre-trained weights. The
class embeddings refer to the row vectors of the weight
matrix in the probing classifier on Clinic150. The class
prototypes refer to the class feature centres estimated
on the training set of Clinic150.

First, we need to understand what the features 246

(i.e., last hidden states), word embeddings of PLMs 247

and the class embeddings in probing classifiers 248

“look like”. The detailed description is in Appendix 249

D.3. The histograms of the L2 norm and the cosine 250

similarity of features, word embeddings and class 251

embeddings are in Figure 4. Figure 4a shows that 252

the features occupy a narrow cone in the vector 253

space rather than being uniform in all directions, 254

which has been discussed in (Ethayarajh, 2019). 255

More surprisingly, Figure 4b shows that the learned 256

(output) word embeddings are nearly orthogonal 257

to the features. We infer that the cross-entropy 258

loss encourages all word embeddings except the 259

ground truth one to become farther away from the 260

feature during pre-training. In other words, the 261

cross-entropy loss encourages a large difference in 262

logits, and the word embeddings to be orthogonal 263

to the features in order to distinguish logits better. 264
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Therefore, it is not surprising that linear probing265

has the best performance, considering that the word266

embedding layer is essentially a linear layer. From267

this point of view, it is also not surprising that the268

performance of prototype probing is poor since the269

prototypes (class feature centres) also fall in the270

narrow cone space, and it is not an optimal solution271

for distinguishing logits.272

Then, why does cosine normalization degrade273

the performance of linear probing but improve pro-274

totype probing? Figure 4c and 4d are the L2 norm275

of the features and word embedings. We find that276

the norm of word embeddings has a larger discrep-277

ancy than features. It indicates that the norm of278

word embeddings contains the prior knowledge279

obtained from pre-training. Therefore, the cosine280

linear probing ignores the difference in the norm281

of features and thus has poorer performance com-282

pared with linear probing. For prototype probing,283

the prototype falls in a narrow cone space, and the284

similarity between the prototype and features is285

large and close to each other. In this case, cosine286

normalization can eliminate the interference of the287

norm and establish the relationship between logits288

and cosine similarity between features. We provide289

the detailed analysis and full results with differ-290

ent backbones in Appendix D.3. An illustration of291

different types of probing metrics is in Figure 7.292
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Figure 5: The linear probing performance on check-
points with different pre-training steps. (a) and (b) are
evaluated before and after incremental learning using
SEQ. “Intent” and “RE” represent the model is evalu-
ated on the Class-Incremental Intent Classification or
Relation Extraction.

3.4 What is the Role of Pre-training in IL? 293

In this subsection, we reveal that the key to the anti- 294

forgetting ability of PLMs lies in both the Trans- 295

formers’ architecture and the pre-training knowl- 296

edge. 297

We evaluate the linear probing performance on 298

checkpoints with a different number of pre-training 299

steps: {0,16,128,1k,10k,143k(final)}. We load the 300

pre-trained checkpoints (or randomly-initialized 301

checkpoints at step 0) and evaluate their linear prob- 302

ing performance before and after IL using SEQ. 303

Figure 5 shows two main phases in pre-training: 304

overfitting and generalization. In the first phase 305

(step 0 - step 128), the model memorizes the pre- 306

training corpus, and the linear probing performance 307

decreases. In the second phase (step 1k - step 143k), 308

the model gradually learns the pre-training knowl- 309

edge and the linear probing performance increases. 310

However, when the model further generalizes to 311

the pre-training corpus (step 10k - step 143k), the 312

linear probing performance of small backbones 313

(Pythia-70 m and 160m) decreases again due to the 314

gap between pre-training and downstream tasks. 315

This gap can be eliminated when adapting to down- 316

stream tasks (Figure 5a and Figure 3c). For larger 317

backbones (Pythia-410 m, 1b, and 1.4b), the model 318

can be adapted to new tasks directly without this 319

gap. 320

Besides, we have the following interesting find- 321

ings: (1) Pre-training indeed improves the linear 322

probing performance in IL (Figure 5b and 5d). 323

(2) Apart from pre-training, the architecture of 324

the Transformer is also a key factor in the high 325

linear probing accuracy during SEQ. When the 326

downstream task is relatively simple, such as intent 327

classification, even the randomly-initialized mod- 328

els achieve high linear probing performance (Fig- 329

ure 5b). Pre-training brings considerable improve- 330

ments when the downstream task is more complex, 331

such as relation extraction (Figure 5d). (3) More 332

surprisingly, SEQ improves the linear probing per- 333

formance of models from nearly all pre-training 334

steps (Figure 5a v.s. 5a; Figure 5c v.s. 5d). This 335

shows that Transformers’ architecture can incre- 336

mentally absorb new knowledge even when just 337

sequential fine-tuning on new tasks. The detailed 338

settings, visualization of features, and additional re- 339

sults on text classification are provided in Appendix 340

E. 341
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Figure 6: Comparison between the observed linear clas-
sifier and the linear probing classifier during SEQ on
class-incremental intent classification. The backbone
is Pythia-410m. (a)(b) show the average norm of the
class embeddings of each task; (c)(d) show the average
moving distance of the class embeddings of each task.

3.5 What is really forgotten in SEQ?342

As discussed in Sec. 3.2, SEQ’s linear probing343

performance showed little degradation or even im-344

provement across all settings. Therefore, the reason345

for forgetting must lie in the classifier. In this sub-346

section, we will take a closer look at the forgetting347

in classifiers.348

Existing studies (Wu et al., 2019; Hou et al.,349

2019) find that the model tends to predict new350

classes during IL. They refer this phenomenon as351

the class imbalance problem between old and new352

classes. In SEQ, the class imbalance problem is353

more severe since only new classes are learned. We354

also observe that the logits of new classes are much355

larger than those of old classes in a SEQ model.356

Because both features and class embeddings deter-357

mine the magnitude of logits, the features occupy358

a narrow cone space, and their norms are relatively359

close, we can infer that the forgetting is caused360

by either (1) the norm of class embeddings or (2)361

the cosine similarity between features and class362

embeddings.363

For the first reason (i.e., class norm), we compare364

the class embedding norm between learned linear365

classifiers and linear probing classifiers in Figure366

6a and 6b. Surprisingly, the class embedding norm367

of new tasks is not larger than those of old tasks368

in the observed classifier of SEQ. It indicates that369

the class norm is not the primary reason for the 370

forgetting in SEQ. 371

For the second reason (i.e., cosine similarity), 372

we compare the moving distance of class embed- 373

dings between the observed and probing classifiers 374

in Figure 6c and 6d. The moving distance of the 375

class embeddings of task t at task t+k is computed 376

as follows: (1) When the model finishes training 377

on task t, we compute the cosine distance between 378

all pairs of class embeddings from task t and class 379

feature centres from all tasks and obtain a cosine 380

similarity matrix Ct
t. (2) When model finishes 381

training on task t+ k, we compute the cosine dis- 382

tance between all pairs of class embeddings from 383

task t and class feature centres from all tasks and 384

obtain a cosine similarity matrix Ct
t+k. (3) Then, 385

the moving distance of task t’s class embeddings 386

is calculated as the average absolute difference be- 387

tween the cosine similarity matrix Ct
t and Ct

t+k. 388

The moving distance measures how the class em- 389

beddings move relatively to all class feature cen- 390

tres since they have been learned. If the classifier 391

does not forget a class, the distance from its class 392

embeddings to all class feature centres should re- 393

main constant. In other words, its moving distance 394

will be zero if the classifier does not forget how 395

to classify this class with the features extracted by 396

PLMs. We provide an illustration in Figure 25. 397

The detailed settings, definition, and additional re- 398

sults with frozen bert-large-cased are provided in 399

Appendix F. 400

Figure 6c and 6d show that the class embeddings 401

of observed classifiers change significantly com- 402

pared with those of probing classifiers. It indicates 403

that the forgetting happens because the old class 404

embeddings are pushed away from their initial and 405

optimal position. The cosine similarity matrices 406

are visualized in Figure 26. 407

4 Revisiting the SOTA Methods in IL 408

4.1 SEQ*: Boosting the Performance of SEQ 409

In this subsection, we propose SEQ* based on the 410

findings about the forgetting in SEQ. 411

In the previous section, we have the following 412

findings about SEQ: (F1) The PLMs do not learn 413

new knowledge in SEQ about the downstream IL 414

tasks; (F2) The PLMs achieve the highest probing 415

performance once being adapted to downstream 416

tasks, and there is little performance degradation 417

when learning on more new tasks (See Figure 3c 418

and Figure 5a); (F3) The classifier forgets dramati- 419

6



cally, while the PLMs do not. The reason is that the420

class embeddings are pushed away from the initial421

learned optimal position.422

Therefore, we propose the following strategies423

for closing the gap between the probing and ob-424

served performance in SEQ: (S1) Freeze the PLMs425

after warm-up; (S2) Freeze the old classifiers when426

learning new tasks; (S3) Use cosine linear classi-427

fiers only when no old data is available in a CIL428

scenario. Otherwise, use linear classifiers; (S4, op-429

tional) Pre-allocate future classifiers. We call the430

method with the above strategies as SEQ*, and an431

illustration is provided in Figure 27.432

The rationale for the above strategies is as fol-433

lows: (S1) is proposed according to (F1). Further-434

more, we propose to warm up (i.e., full-parameter435

fine-tuning) PLMs in only the first task according436

to (F2). In practice, warm-up onlt for 1-3 epochs437

brings considerable improvement across backbones438

and datasets. (S1) and (S2) preserve the relative po-439

sition of class embeddings with respective to class440

feature centres to avoid the issue in (F3). When441

both PLMs and classifiers of old tasks are frozen,442

only the norm of new class embeddings may lead to443

the biased prediction towards new classes. Because444

cosine linear layers are not optimal for exploiting445

PLMs’ knowledge, we propose (S3) to avoid bias446

prediction. In other words, we use linear classifiers447

for the TIL scenario and the CIL scenario where448

old data is stored. Finally, we propose (S4) for449

better forward compatibility (Zhou et al., 2022).450

(S4) is marked as an optional strategy since it re-451

quires additional information on the number of452

total tasks. Therefore, we report the two variants of453

SEQ*, i.e., w/ and w/o (S4), when comparing with454

SOTA methods. We provide detailed discussion455

and explanation in Appendix G.456

4.2 Comparing SOTA methods with SEQ*457

In this subsection, we evaluate SEQ* under ex-458

tensive settings. Despite its simplicity, SEQ* has459

competitive or even superior performance in most460

settings.461

We provide the result under the CIL scenario in462

Figure 1, Table 1 and 2 in the main manuscript due463

to the space limitation. We provide the introduction464

and training details of SOTA methods in Appendix465

H. The full results on other backbones, datasets,466

and IL settings are summarized in Table 7, 8, 10, 11,467

12, 13, 9, 15 in Appendix I. All baselines and SEQ*468

use the same backbone PLM for IL. In all settings469

except for sentence-level classification tasks with470

Table 1: Comparison between SOTA methods and SEQ*
on sentence-level classification tasks. The backbone is
Pythia-410m. The IL scenario is CIL. No old samples
are stored for all models. Lin: use linear classifiers; Cos:
use cosine linear classifiers; FixB: fix backbone PLMs;
FixC: fix old classifiers; FixBC: fix both backbone PLMs
and old classifiers; W: warm up backbone PLMs; P: pre-
allocate future classifiers. The best and second best
results are bold and underlined. The full result is in
Table 7.

Topic3Datasets Clinic150 Banking77 FewRel TACRED

AT AT AT AT AT

LFPT5 16.78 3.48 7.98 5.52 7.60
L2KD 58.89 22.48 47.47 37.08 20.86
LAMOL_KD 49.94 41.99 52.60 25.77 29.03
LAMOL_g 74.45 35.43 48.40 28.10 32.70
LAMOL_t 74.05 43.37 57.00 28.44 28.81
PCLL 58.83 47.09 45.33 31.00 24.50

SEQ (Lin) 19.66 9.26 14.88 13.43 12.64
SEQ (Cos) 16.89 5.97 11.10 11.40 10.08
SEQ (FixB+Cos) 17.13 6.08 10.32 7.45 9.30
SEQ (FixC+Cos) 50.96 64.28 44.93 33.48 28.90
SEQ (FixBC+Cos) 53.18 62.72 44.09 33.58 28.02
SEQ (W+FixBC+Lin) 33.41 19.06 17.79 13.68 13.65
SEQ (P+W+FixBC+Lin) 33.70 27.20 15.09 17.08 14.54

SEQ* (W+FixBC+Cos) 50.77 75.96 53.76 46.12 36.55
SEQ* (P+W+FixBC+Cos) 70.56 84.51 67.12 61.99 44.34

Table 2: Comparison between SOTA methods and SEQ*
on word-level classification tasks. The backbone is bert-
base-cased. The IL scenario is CIL. No old samples
are stored for all models. Other notation is the same as
Table 1. The full result is in Table 13.

Few-NERD OntoNotes5 I2B2

AT AT AT

SpanKL 18.26 40.10 6.12
OCILNER 18.44 39.99 27.27
ExtendNER 20.02 48.08 20.02
DLD 20.75 47.23 30.50
SelfTrain 23.46 51.08 23.60
RDP 27.08 50.45 40.38
CPFD 34.65 55.58 43.52
ICE_O 28.98 51.81 49.12
ICE_PLO 19.94 46.52 47.76
CFNER 27.70 58.07 35.42

SEQ (Lin) 2.97 4.38 5.26
SEQ (W+FixBC+Cos) 7.26 29.12 45.95
SEQ (P+W+FixBC+Cos) 3.17 29.70 47.10

SEQ* (W+FixBC+Lin) 28.13 66.99 71.76
SEQ* (P+W+FixBC+Lin) 28.21 67.39 72.51

discriminant backbones, SEQ* and all baselines 471

store no old samples. 472

From the results in Table 1 and 2, we have 473

the following findings: (1) SEQ* shows compa- 474

rable or better performance on all datasets. Using 475

proper classifiers, fixing old classifiers, and pre- 476

allocating future classifiers improve SEQ signifi- 477

cantly. We highlight that we do not aim to show 478

SEQ* achieves SOTA performance across all set- 479

tings. Instead, we aim to demonstrate that SEQ* 480

serves as a comparable baseline in most IL settings 481

7



and should be considered in further IL studies.482

(2) SEQ* does not perform best when the PLM483

is required to absorb new knowledge, or there are484

overlaps between new and old tasks. For exam-485

ple, Few-NERD contains fine-grained entities, such486

as “Airport” and “Hotel”, which PLMs may not487

have seen during pre-training. In Topic3Datasets,488

“Sci/Tech” and “Computers & Internet” belong to489

two different tasks. Intuitively, the PLM need to490

adjust the class boundary to avoid overlapping be-491

tween classes.492

Furthermore, we compare the linear probing493

performance between SEQ* and SOTA methods494

in Figure 3 and 14. The results show that the495

difference in the linear probing performance is496

small compared with the observed performance.497

The improvement between “BeforeIL” and “Af-498

terIL” mainly comes from the adaptation from pre-499

training to downstream tasks (Figure 3,9,11,12). It500

explains why freezing PLMs after warm-up is ef-501

fective. It also explains why prompt-based methods502

(Razdaibiedina et al., 2023; Wang et al., 2022) are503

effective even if only a tiny portion of the param-504

eters are learned. Furthermore, the performance505

gap between SEQ* and linear probing performance506

still exists. The reason is that backward knowledge507

transfer from new tasks to old tasks is prohibited508

in SEQ*.509

We compare the training time and the number510

of trainable parameters between SEQ* and SOTA511

methods in Table 4. SEQ* requires much less train-512

ing time and trainable parameters for each task.513

Table 3: The linear probing performance with Pythia-
410m. Other settings are the same as Table 1.

Clinic150 FewRel

Before IL After IL Before IL After IL

SEQ (Lin)

91.05±0.65

91.08±0.20

52.18±0.50

77.39±0.28

L2KD 90.88±0.78 76.57±0.46

LAMOL_t 91.30±1.14 81.54±0.66

LAMOL_g 91.42±0.25 81.09±0.71

SEQ* (P+W+FixBC+Cos) 91.12±0.52 77.47±0.84

Table 4: The comparison of training time and trainable
parameters for each task on Clinic150. †: The model
after warm-up.

Time (Min) # Trainable Params each Task

PCLL 199 410M
L2KD 179 405M

LAMOL_KD 119 405M
LAMOL_t 70 405M
LAMOL_g 68 405M

SEQ* 24 10.24K†

5 Related Work 514

Previous studies have assessed catastrophic forget- 515

ting by measuring performance degradation on old 516

tasks. However, there is limited understanding 517

of probing performance in incremental learning. 518

Davari et al. (2022) use linear probing to reveal 519

that representations still experience significant drift 520

due to parameter updates. Wu et al. (2021) con- 521

duct layer-wise probing studies on BERT, revealing 522

catastrophic forgetting in the top and middle lay- 523

ers. They observed that, although BERT maintains 524

high representational ability at the last incremen- 525

tal step, the classifier loses the ability to classify 526

previously learned classes. Chen et al. (2023a) 527

conduct linear probing on k-shot samples from the 528

next task, revealing a strong correlation between 529

retaining past information and learning efficiency 530

on new tasks. Tao et al. (2023b) utilize linear prob- 531

ing to illustrate that BERT is inherently resilient to 532

catastrophic forgetting, even without buffer data in 533

task-incremental learning. In this study, we further 534

investigate the influence of probing metrics, back- 535

bone and classifier architecture, pre-training steps, 536

datasets, and IL methods on the probing perfor- 537

mance. Furthermore, we analyze the forgetting of 538

classifiers from the perspective of norm and cosine 539

similarity. Finally, we propose simple but effective 540

strategies for SEQ and conduct extensive experi- 541

ments to validate its effectiveness. 542

6 Conclusion 543

Incremental learning is a key pillar of human cog- 544

nition and intelligence. As PLMs have become 545

popular in recent years, more and more IL stud- 546

ies adopt PLMs as the backbone model. However, 547

we reveal that existing studies ignore the inherent 548

anti-forgetting of PLMs and design methods based 549

on a problematic assumption. Our findings encour- 550

age the IL community to revisit the assumption of 551

catastrophic forgetting in PLMs and re-evaluate the 552

proposed IL algorithms by comparing them with 553

frozen-based methods such as SEQ*. 554

We suggest two future directions for IL with 555

PLMs: (1) design IL benchmark where domain- 556

specific knowledge is required; (2) design IL al- 557

gorithms that update the knowledge of PLMs with 558

limited time, computation cost and memory budget. 559

Limitations 560

There are two limitations of this study: (1) We only 561

focused on the IL of classification tasks and did not 562

8



explore the forgetting of general forms of knowl-563

edge in PLMs; (2) We did not fully understand the564

internal mechanism of how PLMs incrementally565

learn the knowledge under SEQ.566

Ethical Considerations567

The ethical considerations of our research are care-568

fully addressed to ensure compliance with relevant569

standards and transparency. To this end, we provide570

the following clarifications for reproducibility:571

• We provide a detailed setting of our experi-572

ments.573

• The source code, data, and scripts will all be574

publicly available.575

• Our findings are in alignment with observed576

empirical outcomes.577
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A Problem Formulation977

A.1 Overview of IL978

Incremental Learning (IL) aims to learn a model979

on new tasks incrementally without forgetting pre-980

vious knowledge. In this paper, we only consider981

classification tasks, which are popular and chal-982

lenging settings in existing studies. Formally, IL983

aims to learn a model fθ : x → y ∈ Y from the984

sequence of tasks D = {D1,D2, · · · ,DT }, where985

the t-th task Dt = {(xt
i, y

t
i)}i=1 contains input 986

samples xt
i ∈ Xt and labels yti ∈ Yt. There are 987

three popular scenarios in IL: Class-Incremental 988

Learning (CIL), Task-Incremental Learning (TIL), 989

and Domain-Incremental Learning (DIL). In CIL, 990

the label sets of different tasks are exclusive: Y1 ∩ 991

Y2 · · · YT = ∅, and the task identity is unknown 992

during inference. In TIL, the label sets of different 993

tasks may be overlapping: Y1∩Y2 · · · YT ̸= ∅, and 994

the task identity is required during inference. In 995

DIL, the label sets of different tasks are the same: 996

Y1 = Y2 = YT . Under the data replay setting, a 997

buffer M is introduced for storing old represen- 998

tative instances. In the main experiments of this 999

research, we consider the most challenging sce- 1000

nario, CIL, where catastrophic forgetting occurs 1001

most severely. The result on TIL is also reported 1002

when compared with state-of-the-art methods. 1003

A.2 Evaluation Metric for IL 1004

We adopt average accuracy (Chaudhry et al., 2018) 1005

as the metric for evaluation. Specifically, the aver- 1006

age accuracy at task t is defined as the following 1007

At =
1

t

t∑
i=1

at,i, (1) 1008

where at,i represents the accuracy evaluated on 1009

the test set of task i after training the model incre- 1010

mentally from tasks 1 to t. The average accuracy 1011

indicates the performance on all learnt tasks. In 1012

the main manuscript, we report the average accu- 1013

racy after learning the final task, i.e., AT . Besides, 1014

we report the average incremental accuracy Ā in 1015

the appendix. The average incremental accuracy is 1016

computed as follows: 1017

Ā =
1

T

T∑
t=1

At (2) 1018

It indicates the average of the average accuracy 1019

over all incremental steps. 1020

We note that the probing accuracy is calculated 1021

as the average of the test accuracy on all T tasks: 1022

Aprob =
1

T

T∑
i=1

aprob,i, (3) 1023

aprob,i represents the accuracy evaluated on the 1024

test set of task i after training probing classifiers. 1025

The probing accuracy is the performance when 1026

the classifier is optimal. According to the probing 1027
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Table 5: The statistics on eight datasets for incremental learning. Granularity: the classification granularity.
For example, named entity recognition models classify each word into an entity type or non-entity, while intent
classification models classify sentences into intent categories. # base classes: the number of classes to learn in the
first task; # Inc. classes: the number of classes to learn in the incremental task (i.e., the second and subsequent
tasks).

Granularity Task Dataset # Classes # Tasks # Base Classes # Inc. Classes # Training Instances # Test Instances

Sentence Level

Text Classification Topic3Datasets 25 5 5 5 75000 46000

Intent Classification
Clinic150 150 15 10 10 15000 4500
Banking77 77 7 11 11 7191 2800

Relation Extraction
FewRel 80 8 10 10 33600 11200

TACRED 40 8 5 5 5909 1259

Word Level Named Entity Recognition

Few-NERD 66 11 6 6 131758 230025
Ontonotes5 18 6 8 2 59922 23836

I2B2 16 5 8 2 59376 41397

Table 6: The details of the 9 backbones. †: Non-embedding parameters according to Biderman et al. (2023).

Architecture Model Class Pretrained Weights Parameters Layers Hidden Dim Link

Encoder-Only BERT
bert-base-cased 109M 12 768 Link
bert-large-cased 335M 24 1024 Link

Decoder-Only

GPT-NeoX

Pythia-70m 19M† 6 512 Link
Pythia-160m 85M† 12 768 Link
Pythia-410m 302M† 24 1024 Link

Pythia-1b 805M† 16 2048 Link
Pythia-1.4b 1.21B† 24 2048 Link

GPT2
gpt2-base 124M 12 768 Link
gpt2-large 774M 36 1280 Link

experiments in Sec. 3, the PLMs almost do not1028

forget. Therefore, the probing performance can1029

be regarded as the upper bound performance when1030

using PLMs for IL.1031

B Datasets1032

The statistics of the eight datasets are summarized1033

in Table 5. For text classification, we construct1034

Topic3Datasets from AGNews, DBPedia, and Ya-1035

Hoo (Zhang et al., 2015). We remove Sports, Busi-1036

ness & Finance,Science & Mathematics from Ya-1037

Hoo since they overlap with the classes in AGNews.1038

We subsample 3000 training samples and 2000 test1039

samples for each class (only 1900 test samples for1040

the four classes in AGNews). The class order is1041

obtained by sorting class names alphabetically and1042

shuffling them using the random seed 1.1043

We use the default class order for Clinc150,1044

Banking77, FewRel, and TACRED. We follow1045

(Shao et al., 2023) to convert the class name to1046

semantic labels for generative backbones. For ex-1047

ample, in TARCRED, org:founded_by is converted1048

to organization related: founded by.1049

For Few-NERD, Ontontes5, and I2B2, the class1050

order is obtained by sorting class names alphabeti- 1051

cally. We use the BIO schema for tagging. The # 1052

class represents the number of entities in Table 5. 1053

For sentence-level classification tasks, we report 1054

the accuracy. For word-level classification tasks, 1055

we report the macro-f1 due to the class imbalance. 1056

C Backbones 1057

The statistics of the 9 backbones are summarised 1058

in Table 6. We download the pre-trained weights 1059

from Huggingface (Wolf et al., 2019). 1060

C.1 Discriminant Backbones 1061

For discriminant backbones (i.e., encoder-only 1062

backbones), we use the [CLS] feature for sentence- 1063

level classification tasks and the feature of last hid- 1064

den states for word-level classification tasks. We do 1065

not use prompts for discriminant backbones. When 1066

learning each new task, we add a linear layer on 1067

top of the backbone for classification. For example, 1068

in the bert-base case, we add a linear layer whose 1069

input dimension and output dimension are 768 and 1070

10 for learning the first task in Clinic150. Then, 1071

we add another linear layer with the same architec- 1072
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ture as the previous one when learning the second1073

task. In the CIL scenario, the output logits over all1074

learned categories are obtained by concatenating1075

the logits from all classifiers. In the TIL scenario,1076

the output logits are the logits from the classifier1077

with the same task ID as the input sample.1078

C.2 Generative Backbones1079

For generative backbones (i.e., decoder-only back-1080

bones), we train the model to output the class name1081

with causal language modelling loss. We do not use1082

generative backbones for word-level classification1083

tasks because it requires special design on input1084

and output format (Zhao et al., 2022) and the eval-1085

uation is different from that of sequential labelling1086

models (Monaikul et al., 2021). For text and in-1087

tent classification, we use the following prompt:1088

“Input sentence: {text}\n The label: {label}{eos1089

token}”. For relation extraction, we use the fol-1090

lowing prompt: “Input sentence: {text}\n The re-1091

lationship between {head entity} and {tail entity}1092

is {label}{eos token}”. We note that we use the1093

same prompt for all baseline models unless they1094

have special designs on prompts. Following Sun1095

et al. (2019), only the causal language modelling1096

loss of “{label}{eos token}” is optimized. For the1097

probing study, we use the last hidden states of the1098

last word as the feature.1099

The max sequence length is 256 in1100

Topic3Datasets, 50 in Clinic150, 64 in Banking77,1101

100 in FewRel, and 128 in other datasets. We use1102

exactly the same backbone for all baselines unless1103

they have special designs on backbones.1104

D Revisiting IL with Probing Study1105

D.1 Four Probing Metrics1106

Linear Probing trains a new linear layer on top of1107

the backbone model. We do not use bias for linear1108

probing classifiers because there is no significant1109

difference between the probing performance. We1110

train the linear probing classifier for 20 epochs1111

with an initial learning rate of 0.001. The linear1112

probing classifier is trained on the training data1113

from all T tasks jointly using cross-entropy loss.1114

The Adam (Kingma and Ba, 2014) optimizer is1115

used, and the batch size is set as 128. We note1116

that the training data from all tasks is mixed for1117

optimization. Otherwise, the probing performance1118

is degraded significantly.1119

Cosine Linear Probing is the same as linear1120

probing except that the cosine similarity is adopted1121

for calculating logits. We use the same training 1122

process as the linear probing classifier to train the 1123

cosine linear probing classifier. Hou et al. (2019) 1124

propose to use cosine linear layers for IL to avoid 1125

prediction bias towards new classes. However, we 1126

find that using cosine linear layers does not improve 1127

probing performance. 1128

Prototype Probing requires no training of prob- 1129

ing classifiers. It calculates the class feature centre 1130

for each class using all training data. It makes pre- 1131

dictions of a test sample according to its Euclidean 1132

distances to all class centres. The prototype prob- 1133

ing classifier can be regarded as a linear classifier 1134

with a weight matrix specified as all class centres. 1135

Cosine Prototype Probing is the same as pro- 1136

totype probing except that the cosine similarity is 1137

adopted for calculating logits. The idea of using 1138

prototypes is widely adopted in IL (Ma et al., 2023; 1139

Cui et al., 2021; Han et al., 2020). However, we 1140

reveal that using prototypes for classification may 1141

not be the best option. 1142

D.2 Probing Performance with Different 1143

Backbones 1144

We provide the probing performance of SEQ on 1145

class-incremental intent classification in Figure 3 1146

and 8, relation extraction in Figure 9 and 10, text 1147

classification in Figure 13 and 14, and named entity 1148

recognition in Figure 12 and 11. We summarize 1149

the findings as follows: 1150

• The linear probing performance is signifi- 1151

cantly higher than the other three metrics 1152

across backbones, tasks, and datasets. 1153

• For all probing metrics, the probing perfor- 1154

mance always increases when learning the 1155

first task. 1156

• For generative backbones, the probing perfor- 1157

mance has not decreased or even increased 1158

since the second task. It indicates that the 1159

smaller backbone can adapt to downstream 1160

tasks by SEQ. The larger backbone can adapt 1161

to downstream tasks without training and 1162

maintain the knowledge during SEQ. 1163

• For discriminant backbones, using the linear 1164

classifier maintains the probing performance, 1165

while the cosine linear classifier degrades the 1166

probing performance significantly. There is 1167

no significant difference between bert-base- 1168

cased and bert-large-cased in the probing per- 1169

formance. 1170
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(a) Lin. Prob (b) Cos.Lin. Prob (c) Proto. Prob (d) Cos.Proto Prob

Figure 7: The illustration of different metrics for probing study.
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Figure 8: The observed and probing performance on Class-Incremental Intent Classification. The dataset is Clinic150.
The backbones are generative models. (a) shows the observed performance during IL training. (b)(c)(d)(e) show the
probing performance when different metrics, including linear probing, cosine linear probing, prototype probing, and
cosine prototype probing.
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Figure 9: The observed and probing performance on Class-Incremental Relation Extraction. The dataset is FewRel.
The backbones are generative models. Other settings are the same as Figure 8.
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Figure 10: The observed and probing performance on class-incremental relation extraction. The dataset is FewRel.
The backbones are discriminant models. Other settings are the same as Figure 8.

D.3 A Closer Look at Features, Word1171

Embeddings, and Class Embeddings1172

To investigate the significant difference between1173

the four probing metrics, we plot the histogram of1174

the features, the (output) word embeddings, and 1175

the class embeddings in (cosine) linear classifiers. 1176

In this research, the features of PLMs refer to the 1177

last hidden states of the last word in generative 1178

backbones and the [CLS] token in discriminant 1179
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Figure 11: The observed and probing performance on class-incremental named entity recognition. The dataset is
Ontonotes5. The backbones are discriminant models. Other settings are the same as Figure 8.
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Figure 12: The observed and probing performance on class-incremental named entity recognition. The dataset is
I2B2. The backbones are discriminant models. Other settings are the same as Figure 8.
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Figure 13: The observed and probing performance on
class-incremental text classification. The dataset is
Topic3datasets. The backbones are generative models.
Other settings are the same as Figure 8.
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Figure 14: The observed and probing performance on
class-incremental text classification. The dataset is
Topic3datasets. The backbones are discriminant models.
Other settings are the same as Figure 8.

backbones. The class prototype refers to the class1180

feature centres. The class embeddings refer to the1181

row vectors of the weight matrix in linear layers.1182

For example, for a linear layer whose input and1183

output dimensions are 768 and 20, respectively, its 1184

weight matrix has the shape 20× 768. Then, each 1185

row vector corresponds to a certain category, and 1186

its shape is 1× 768. When using linear classifiers 1187

for prediction, the logits of a certain category are 1188

computed as the dot product between the feature 1189

and the class embeddings of that category. 1190

During pre-training, the logits over vocabulary 1191

are computed as the dot product between features 1192

and word embeddings. In the probing study, the 1193

logits over categories are computed as the dot prod- 1194

uct between features and class embeddings. There- 1195

fore, we need to figure out the relationship between 1196

features, word embeddings, and class embeddings. 1197

We note that there is a dense layer (i.e., linear layer) 1198

between backbones and linear classifiers in BERT, 1199

and we ignore it for simplicity. 1200

The histogram of the cosine similarity and L2 1201

norm is provided in Figure 15 (Pythia-410m), 16 1202

(Pythia-160m), 17 (bert-large-cased), 18 (bert-base- 1203

cased). The dataset is Clinic150. We note that the 1204

PLMs are loaded directly without fine-tuning. The 1205

features are computed on the whole training set 1206

of Clinic150. The word embeddings are loaded 1207

directly from PLMs. The class embeddings of the 1208

linear probing classifiers are obtained by training 1209

probing classifiers. 1210

From the result, we have the following findings: 1211

• The features of PLMs have high cosine simi- 1212

larity, indicating that they fall in a cone space. 1213
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Figure 15: The histogram of features and different embeddings of Pythia-410m. The features are calculated on
the training set of Clinic150, and the output word embeddings are loaded from pre-trained weights. The class
embeddings refer to the weight in the probing classifier on Clinic150. The class prototypes refer to the class feature
centres on the training set of Clinic150.
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Figure 16: The histogram of features and different embeddings of Pythia-160m. Other settings are the same as
Figure 15

• The features are almost orthogonal to the1214

word embeddings in all backbones except for1215

Pythia-160m.1216

• The features are almost orthogonal to the class1217

embeddings in all backbones.1218

• The features have high cosine similarity with1219

the prototypes.1220

• The L2 norm of word embeddings, class em-1221

beddings have large discrepancy for all back- 1222

bones except for Pythia-160m. 1223

These findings explain why the linear classifier is 1224

the best option to utilize the backbone’s knowledge. 1225

Specifically, the word embedding layer is also a lin- 1226

ear classifier for pre-training, and thus, the features 1227

are most discriminative when multiplied with the 1228

class embeddings of linear classifiers. Furthermore, 1229

the discrepancy of the L2 norm of word and class 1230

embeddings suggests that the norm contains the 1231
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Figure 17: The histogram of features and different embeddings of bert-large-cased. Other settings are the same as
Figure 15.
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Figure 18: The histogram of features and different embeddings of bert-base-cased. Other settings are the same as
Figure 15.

prior knowledge obtained from pre-training. We1232

illustrate the four probing metrics in Figure 7.1233

The word embeddings in Pythia-160m have high1234

cosine similarity with features. We speculate the1235

reason is that the parameters are not enough for1236

generalization with causal language modelling loss.1237

E The Role of Pre-training1238

The result of text classification is shown in Figure1239

19. It shows a similar trend as intent classification1240

and relation extraction in Figure 5.1241

We further analyze why even a randomly- 1242

initialized model (step 0) achieves high probing 1243

performance. We use t-SNE (Van der Maaten and 1244

Hinton, 2008) to visualize the features of randomly 1245

initialized models and PLMs in Figure 20 and 21. 1246

Figure 20a shows that randomly initialized mod- 1247

els extract discriminative features with the Trans- 1248

former architecture, which is overlooked in pre- 1249

vious IL studies. With SEQ or pre-training, the 1250

representation ability is enhanced, and the category 1251

boundaries become clearer. For the harder dataset, 1252

FewRel, the randomly-initialized model also learns 1253

19



100 101 102 103 104 105 106

Pretraining Steps

0

20

40

60

80

100
Li

n.
 P

ro
b.

 A
cc

ur
ac

y 
(%

)

OverFitting Generalize

Gap

Pythia-70m
Pythia-160m
Pythia-410m

(a) TC+Before SEQ

100 101 102 103 104 105 106

Pretraining Steps

0

20

40

60

80

100

Li
n.

 P
ro

b.
 A

cc
ur

ac
y 

(%
)

OverFitting Generalize

Gap

Pythia-70m
Pythia-160m
Pythia-410m

(b) TC+After SEQ

Figure 19: The linear probing performance on PLMs with different pre-training steps. (a) and (b) are evaluated before
and after incremental learning using SEQ. “TC” represents that the model is evaluated on the Class-Incremental
Text Classification.
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(d) After SEQ w/ pre-training

Figure 20: The t-SNE visualization of features on Clinic150. The backbone model is Pythia-410m. Only the first 20
classes are visualized for clarity. (a)(b): the backbone model is randomly initialized without pre-training; (c)(d): the
backbone model is pre-trained.
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Figure 21: The t-SNE visualization of features on FewRel. The backbone model is Pythia-410m. Only the first 10
classes are visualized for clarity. (a)(b): the backbone model is randomly initialized without pre-training; (c)(d) the
backbone model is pre-trained.

the downstream knowledge through SEQ (Figure1254

21a vs 21b). It explains why the performance is1255

improved by SEQ without pre-training.1256

In summary, we highlight that both pre-training1257

and the architecture of Transformers are the key1258

factors of the anti-forgetting ability of PLMs. Most1259

existing studies (Scialom et al., 2022; Peng et al., 1260

2023) only attribute it to the pre-training stage. Our 1261

findings are consistent with the recent advance in 1262

the incremental learning dynamics of Transformers 1263

(Tarzanagh et al., 2023). Tarzanagh et al. (2023) 1264

discover that the rank of attention head weights 1265
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(d) Probing Classifier

Figure 22: Comparison between the observed and probing classifiers after SEQ on class-incremental intent
classification. The backbone is Pythia-410 m and frozen during IL. (a)(b) show the average norm of the class
embeddings of each task; (c)(d) show the average moving distance of the class embeddings of each task.
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(c) Observed Classifier
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(d) Probing Classifier

Figure 23: Comparison between the observed and probing classifiers after SEQ on class-incremental intent
classification. The backbone is bert-large-cased. (a)(b) show the average norm of the class embeddings of each task;
(c)(d) show the average moving distance of the class embeddings of each task.
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(d) Probing Classifier

Figure 24: Comparison between the observed and probing classifiers after SEQ on class-incremental intent
classification. The backbone is bert-large-cased and frozen during IL. (a)(b) show the average norm of the class
embeddings of each task; (c)(d) show the average moving distance of the class embeddings of each task.

gradually increases during training. We leave a1266

deeper analysis of the incremental learning dynam-1267

ics of the Transformers architecture to the future.1268

F The Forgetting in Classifiers1269

F.1 Overview of the Forgetting in Classifiers1270

Recall that we train probing classifiers on top of1271

PLMs and achieve superior performance during1272

SEQ. In contrast, the observed performance has1273

dropped consistently since the second task. In pre-1274

vious studies (Wu et al., 2019; Hou et al., 2019),1275

they attributed the reason for catastrophic forget-1276

ting to the bias prediction between new and old1277

categories. Indeed, a model trained with SEQ con-1278

sistently achieves high performance on the new task 1279

while the accuracy on old tasks becomes nearly 1280

zero. In other words, the model predicts larger log- 1281

its on new classes and smaller logits on old classes. 1282

Then, we investigate the dynamics of L2 norm and 1283

cosine similarity between features and class em- 1284

beddings during SEQ. 1285

F.2 The Bias in the L2 Norm of Class 1286

Embeddings 1287

We summarize the results of SEQ when the back- 1288

bone is Pythia-410m in Figure 6, frozen Pythia- 1289

410m in Figure 22, bert-large-cased in Figure 23, 1290

and frozen bert-large-cased in Figure 24. The class 1291
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(a) Initial Learned (b) Forgetting (c) No Forgetting

Figure 25: The illustration of the moving distance of class embeddings. (a) shows the cosine similarity between
class embeddings and class feature centres after a new task is learned; (b) shows that forgetting happens when the
relative cosine similarity is changed; (c) shows that forgetting will not happen when the relative cosine similarity is
maintained.
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(b) Obs. Cls. after Task 5
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(c) Obs. Cls. after Task 10
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(d) Obs. Cls. after Task 15
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(g) Prob. Cls. after Task 10
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(h) Prob. Cls. after Task 15

Figure 26: Comparison between the cosine similarity matrix between the linear classifiers (Obs. Cls.) and probing
classifiers (Prob. Cls.). The backbone is Pythia-410m. The model is trained on class-incremental intent classification
and is evaluated after learning 1,5,10,15 tasks. The result shows that the class embeddings in observed classifiers
change significantly compared with probing classifiers.

embeddings in each task are sorted according to1292

the norm for clarity. The results show no apparent1293

tendency in the norm of the class embeddings in1294

both observed classifiers and probing classifiers.1295

The norm of the class embeddings of newer classes1296

even decreases when the backbone is bert-large-1297

cased. Therefore, the norm is not the critical factor1298

in the bias prediction towards new classes in SEQ.1299

F.3 The Bias in the Cosine Similarity between 1300

Features and Class Embeddings 1301

First, we define the moving distance to measure 1302

how the cosine similarity between features and 1303

class embeddings changes during SEQ. After a 1304

new task is learned, the relative position between 1305

features and class embeddings is optimal for this 1306

task. Intuitively, the forgetting happens only when 1307

the relative position changes. Ideally, if all pairs of 1308

features and class embeddings remain at the same 1309

angle, forgetting will not occur. In practice, we 1310

measure the cosine similarity between class em- 1311
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(a) S1: warm-up and freeze PLM (b) S2: freeze old classifiers

(c) S3: use proper classifiers (d) S4, optional: pre-allocate future classifiers

Figure 27: An illustration of the proposed SEQ*.

beddings and class feature centres instead of all1312

features. An illustration is provided in Figure 25.1313

Formally, we define the moving distance of class1314

embeddings of the i-th task at the i+ k-th task as1315

follows:1316

MDi
i+k =

1

mn

m=|Yall|∑
m=1

n=|Yt|∑
n=1

|Ci
i+k[m,n]−Ci

i[m,n]|

(4)1317

The Yall and Yt represent the label set of all T1318

tasks and the t-th task respectively. C represent1319

the cosine similarity matrix between all pairs of1320

class embeddings and class feature centres. Ci
i+k1321

represents the cosine similarity matrix between all1322

pairs of class embeddings from task i and all class1323

feature centres, and it is measured at task i + k.1324

Ci
i+k[m,n] is the entry of the cosine similarity ma-1325

trix Ci
i+k at position [m,n]. This entry represents1326

the cosine similarity between the n-th class embed-1327

dings of task t and the m-th class embeddings of1328

all T tasks.1329

We summarize the moving distance of SEQ1330

when the backbone is Pythia-410m in Figure 6,1331

frozen Pythia-410m in Figure 22, bert-large-cased1332

in Figure 23, and frozen bert-large-cased in Figure1333

24. The results clearly show that the old class em-1334

beddings in observed classifiers have drifted out of1335

position since they were learned. Besides, the mov-1336

ing distance becomes larger when the backbone is1337

frozen. In contrast, the old class embeddings in 1338

the probing classifier do not deviate much from the 1339

initial position. 1340

We provide instances of the cosine similarity 1341

matrix in Figure 26. The cosine similarity matrix 1342

of observed classifiers changes significantly when 1343

new tasks are learned. The forgetting is more ap- 1344

parent when we focus on the diagonal. 1345

In summary, we reveal that the change of relative 1346

position between class embeddings and features 1347

leads to the forgetting of classifiers. Additionally, 1348

the old knowledge is preserved if the relative posi- 1349

tion is maintained, as in probing classifiers. 1350

G SEQ*: Boosting Performance of SEQ 1351

We illustrate the proposed four strategies in Figure 1352

27. (S1) Freeze the PLMs after warm-up. For 1353

generative backbones, we train models with causal 1354

language modelling loss to generate the ground- 1355

truth class name in the warm-up stage. For dis- 1356

criminant backbones, we train models with classi- 1357

fiers to predict the class ID with cross-entropy loss. 1358

We warm up 1 epoch for discriminant backbones 1359

and 3 epochs for generative backbones. After the 1360

warm-up stage at the first task, all parameters of 1361

backbones are frozen and will not be updated in 1362

the subsequent incremental tasks. 1363

(S2) Freeze the old classifiers. When the model 1364

finishes training on the current task, we freeze the 1365
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classifier of the current task. When learning more1366

tasks, we only update the new classifier while the1367

old classifiers are frozen.1368

(S3) Use cosine linear classifiers only when no1369

old data is available in the CIL scenario. Oth-1370

erwise, use linear classifiers. We use linear clas-1371

sifiers even without old samples for named entity1372

classification because the non-entity tokens (i.e.,1373

“Other” tokens) can be regarded as old samples1374

from previous tasks (Zheng et al., 2022).1375

(S4, optional) Pre-allocate future classifiers.1376

For example, when learning the 10 classes in the1377

first task of Clinic150, the future classifiers from1378

task 2 to task 15 are pre-allocated. The future1379

classifiers are trained in advance in the first task1380

through the softmax layer even when there are no1381

instances from task 2 to task 15. This strategy is1382

especially effective for generative backbones. The1383

reason may be that it enhances the forward compat-1384

ibility of classifiers, and thus, new classifiers are1385

easier to adapt to new classes when old classifiers1386

are frozen.1387

H Introduction of Baselines1388

Except for Topic3Datasets, we train all baselines1389

for 5 epochs for each incremental task. On1390

Topic3Datasets, we train all baselines for 3 epochs1391

for each incremental task. The learning rate of1392

backbones and classifiers are 1×10−5 and 1×10−31393

respectively. We use AdamW (Loshchilov and Hut-1394

ter, 2018) optimizer. We use RTX 3090 GPUs for1395

our experiments. Each experiment is repeated three1396

times, and the average and standard deviations are1397

reported. We train SEQ* and all baselines with ex-1398

actly the same training settings for fair comparison.1399

We search the best hyper-parameters for each com-1400

pared method and use the same hyper-parameters1401

across backbones and datasets.1402

The introduction of SOTA methods is as follows:1403

• SEQ: SEQ refers to sequential fine-tuning.1404

For generative backbones, SEQ trains models1405

to output the class name with causal language1406

modelling loss. For discriminant backbones,1407

SEQ trains models with classifiers to predict1408

the correct class ID.1409

• LAMOL (Sun et al., 2019): LAMOL trains1410

a generative model with question-answering1411

and generation targets and generates pseudo1412

samples before learning each new task. The1413

weight of the generation target λ = 0.25. The1414

ratio of pseudo samples with respect to the 1415

training data of new task γ = 0.20. The 1416

top-k sampling for generating pseudo samples 1417

K = 20. There are two variations of LAMOL, 1418

including LAMOL_t and LAMOL_g. The dif- 1419

ference is whether or not to use task-specific 1420

tokens for generation. 1421

• L2KD (Chuang et al., 2020): L2KD proposes 1422

to add knowledge distillation targets based 1423

on LAMOL. We implement the word-level 1424

(Word-KD) variation since it performs best on 1425

text classification tasks. 1426

• LAMOL_KD: LAMOL_KD further uti- 1427

lizes knowledge distillation based on 1428

LAMOL_t. Unlike L2KD, the teacher model 1429

in LAMOL_KD is trained on all previous 1430

tasks. The new data is for learning both 1431

LOAMOL targets, and the pseudo data is 1432

for word-level knowledge distillation as 1433

regularization terms. LAMOL_KD is an 1434

extension to LAMOL. 1435

• PCLL (Zhao et al., 2022): PCLL is build upon 1436

LAMOL. Furthermore, PCLL utilizes the tar- 1437

gets of varational autoencoders and word- 1438

level knowledge distillation to train generative 1439

models. 1440

• LFPT5 (Qin and Joty, 2021): LFPT5 fur- 1441

ther utilizes knowledge distillation based on 1442

LAMOL. Besides, LFPT5 utilizes prompt tun- 1443

ing instead of fine-tuning the whole model. 1444

The number of tokens for prompt tuning is 10. 1445

• AdapterCL (Madotto et al., 2021): AdapterCL 1446

learns one adapter (Houlsby et al., 2019) for 1447

each task. During inference in CIL, the model 1448

predicts the task ID according to causal lan- 1449

guage modelling loss, which requires T for- 1450

ward passes for each instance. 1451

• LoRA (Hu et al., 2021): LoRA learns one 1452

LoRA adapter for each task. We only compare 1453

LoRA in the TIL setting. We set the rank 1454

r = 4 and the scaling parameter α = 8. We 1455

use the implementation of LoRA in the PEFT 1456

library (Mangrulkar et al., 2022). 1457

• ProgPrompt (Razdaibiedina et al., 2023): Pro- 1458

gressive Prompt learns soft prompt for each 1459

task progressively. Following (Razdaibiedina 1460

et al., 2023), we Use a residual two-layer MLP 1461
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to encode soft prompt, and the number of soft1462

prompt tokens for each task is 5. ProgPrompt1463

can only be used for the TIL setting because1464

the task ID is required during inference.1465

• ER: Experience replay stores representative1466

old samples and jointly optimizes both new1467

and old samples when learning new tasks.1468

• DER++ (Buzzega et al., 2020): DER++ is1469

based on data replay. Besides, DER++ adds1470

an MSE loss to regularize the logits of old1471

samples between teacher and student.1472

• CLSER (Arani et al., 2022): CLSER is based1473

on DER++. Besides, CLSER additionally1474

stores two models (i.e., fast model and slow1475

model) for selecting teacher logits when com-1476

puting the MSE loss.1477

• SpanKL (Zhang and Chen, 2023): SpanKL1478

converts the named entity recognition task1479

from entity-level annotation to Span-level an-1480

notation, using a binary cross-entropy loss1481

function and a distillation loss, with the distil-1482

lation loss coefficient λ is 1.1483

• OCILNER (Ma et al., 2023): OCILNER uti-1484

lizes contrastive learning to adaptively de-1485

tect entity clusters and utilizes two distance-1486

based methods to label non-entity tokens. The1487

threshold for labelling Non-entity is the me-1488

dian class similarity of all classes in the mem-1489

ory.1490

• ExtendNER (Monaikul et al., 2021): Extend-1491

NER utilizes knowledge distillation to review1492

old entity types, and the distillation loss coef-1493

ficient λ is 2.1494

• DLD (Zhang et al., 2023c): DLD improves1495

the knowledge distillation method in Extend-1496

NER, dividing it into negative terms and posi-1497

tive terms for knowledge distillation, and the1498

distillation loss coefficient λ is 2.1499

• SelfTrain (Rosenberg et al., 2005; De Lange1500

et al., 2019): SelfTrain utilizes the teacher1501

model to directly label current data and train1502

it together with samples of new entity types.1503

• RDP (Zhang et al., 2023b): RDP utilizes the1504

previous model to pseudo-label new data and1505

increases self-entropy loss to improve the con-1506

fidence of model prediction. The self-entropy1507

loss coefficient λ is 0.1.1508

• CPFD (Zhang et al., 2023a): CPFD designed 1509

a pooled feature distillation loss and proposed 1510

a confidence-based pseudo-label annotation 1511

method. The feature distillation loss coeffi- 1512

cient λ is 2. 1513

• ICE (Liu and Huang, 2023): ICE includes 1514

two methods, ICE_O and ICE_PLO. These 1515

methods freeze the backbone model and the 1516

old classifiers. ICE_O combine the non-entity 1517

logits with the new task logits to obtain the 1518

output probability during training. ICE_PLO 1519

uses all previous logits and new logits dur- 1520

ing training. Unlike ICE, SEQ* addition- 1521

ally warm-up the PLMs and pre-allocating 1522

future classifiers. Furthermore, ICE is limited 1523

to class-incremental information extraction, 1524

while SEQ* can be applied to both sentence 1525

and word-level classification tasks. 1526

• CFNER (Zheng et al., 2022): CFNER pro- 1527

poses a causal effect framework to alleviate 1528

the forgetting of old entity types and uses cur- 1529

riculum learning methods to reduce the impact 1530

of noisy labels. The number of matched to- 1531

kens K is 3. 1532

I Revisiting SOTA Methods 1533

I.1 CIL with Generative Backbones for 1534

Sentence-Level Tasks 1535

The results of SOTA methods and SEQ* with 1536

Pythia-410m, Pythia-160, gpt2-base, gpt2-large are 1537

provided in Table 7, 8, 9. We compare AdapterCL 1538

only on GPT2 because Adapter is not implemented 1539

for Pythia. From the results, we have the following 1540

findings: 1541

SEQ* shows competitive or even superior per- 1542

formance on all datasets. The warm-up strategy 1543

(S1) is effective when the gap between pre-training 1544

and downstream data is large (Clinic150, Bank- 1545

ing77, FewRel, TACRED). In contrast, it is not so 1546

effective when the gap is small (Topic3Datasets). 1547

Freezing old classifiers (S2) is more important than 1548

freezing backbones. The result also validates that 1549

the forgetting results from classifiers instead of 1550

backbone PLMs. Using cosine linear classifiers 1551

(S3) is crucial when the IL scenario is CIL, and no 1552

old samples are stored. Otherwise, models will be 1553

strongly biased towards new classes. Pre-allocating 1554

future classifiers (S4) are very effective for gener- 1555

ative backbones and brings considerable improve- 1556

ments. The reason may be that training future clas- 1557

25



sifiers in advance reduces the overlapping between1558

class embeddings.1559

The LAMOL-based methods achieve superior1560

performance on the topic classification datasets.1561

It indicates that generating pseudo samples is ef-1562

fective when the downstream data have close data1563

distribution with the pre-training data. However,1564

their performance is much worse than SEQ* when1565

more tasks are learned (Clinc150), or the gap be-1566

tween pre-training and downstream data is larger1567

(FewRel, TACRED). LFPT5 has the worst perfor-1568

mance in our settings. LFPT5 was originally de-1569

signed for T5 (Raffel et al., 2020), and we find that1570

the decoder-only models do not learn to generate1571

pseudo samples by just learning soft prompts.1572

SEQ* fails to achieve superior performance1573

on gpt2-base. We find the training loss hard1574

to decrease when adding cosine classifiers on1575

top of the gpt2-base. On gpt2-large, SEQ* out-1576

performs AdapterCL significantly while updating1577

much fewer parameters.1578

I.2 CIL with Discriminant Backbones for1579

Sentence-Level Tasks1580

We compare SEQ* with two strong rehearsal-based1581

methods, DER++ and CLSER. Both DER++ and1582

CLSER store teacher models for knowledge distil-1583

lation and require updating all parameters in PLMs.1584

From the results in Table 10 and 11, we find that1585

both DER++ and CLSER bring considerable im-1586

provement upon ER. However, SEQ* again shows1587

competitive or superior performance on all datasets.1588

It indicates that knowledge distillation is effective1589

for preserving knowledge. However, fully fine-1590

tuning PLMs causes more forgetting. Therefore,1591

stability is more important than plasticity when1592

designing IL algorithms for PLMs.1593

Besides, we have the following minor find-1594

ings: (1) Pre-allocating future classifiers with dis-1595

criminant backbones is less effective than genera-1596

tive backbones. (2) Freezing only old classifiers1597

achieves the best performance on Clinic150 and1598

TACRED. It shows that freezing backbone PLMs1599

may not be necessary for some datasets. The rela-1600

tive position between old class embeddings and fea-1601

tures may still be preserved when SEQ with frozen1602

old class embeddings. (3) Using bert-large-cased1603

may not lead to better results than bert-base-cased.1604

We empirically find that training with bert-large-1605

cased is more unstable than bert-base-cased.1606

I.3 CIL with Discriminant Backbones for 1607

Word-Level Tasks 1608

We evaluate SEQ* on class-incremental named 1609

entity recognition since its popularity. In class- 1610

incremental named entity recognition, the non- 1611

entity tokens (“Other” tokens) can be regarded as 1612

old samples (Zheng et al., 2022). Existing methods 1613

such as (Monaikul et al., 2021; Zheng et al., 2022) 1614

utilize the Other tokens for knowledge distillation. 1615

And Zhang et al. (2023b), Zhang et al. (2023c), 1616

Zhang et al. (2023a) also verify the effectiveness 1617

of applying knowledge distillation. However, the 1618

results in Table 12, 13 show that SEQ* outperforms 1619

them by a large margin on OntoNotes5 and I2B2. 1620

On the challenging dataset Few-NERD, SEQ* beat 1621

7 SOTA methods for class-incremental named en- 1622

tity recognition. 1623

When using bert-large-cased, the performance 1624

of CFNER, DLD, and SpanKL becomes more un- 1625

stable. In contrast, SEQ* are more robust to the 1626

choice of PLMs and show consistent superior per- 1627

formance. 1628

Finally, we also find that the choice of classifier 1629

is crucial for class-incremental named entity recog- 1630

nition. When using cosine linear classifiers, the per- 1631

formance is degraded significantly. Therefore, we 1632

use linear classifiers for all baselines and SEQ* for 1633

a fair comparison, although CFNER, DLD, RDP, 1634

and CPFD adopt cosine linear classifiers in their 1635

original implementation. We speculate the reason 1636

is that using cosine linear classifiers prevents mod- 1637

els from learning the prior distribution between 1638

classes, which is crucial for class-imbalanced tasks. 1639

The result in Table 14 shows that the linear prob- 1640

ing performance of both SEQ* and SOTA methods 1641

increases. It indicates that all models enable PLMs 1642

to adapt to downstream tasks. Furthermore, SEQ*, 1643

SelfTrain and ExtendNER have higher linear prob- 1644

ing performance than SEQ (Lin). It indicates that 1645

forgetting causes the degradation of linear probing 1646

performance, and it can be alleviated by freezing 1647

PLMs or knowledge distillation. 1648

I.4 TIL for Sentence-Level Tasks 1649

We consider LoRA and ProgPrompt for the base- 1650

lines in TIL. LoRA has been widely adopted for 1651

adapting PLMs to downstream tasks. The result in 1652

Table 15 shows that SEQ* achieves competitive per- 1653

formance but requires much fewer new parameters 1654

to learn compared with LoRA. ProgPrompt relies 1655

heavily on the choice of PLMs and shows poor 1656
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Table 7: Comparison between SOTA methods and SEQ* on sentence-level classification tasks. The backbone is
Pythia-410m. The IL scenario is CIL. No old samples are stored for all models. Other notation is the same as Table
1.

Topic3Datasets Clinic150 Banking77 FewRel TACRED

AT Ā AT Ā AT Ā AT Ā AT Ā

LFPT5 16.78 39.23 3.48 19.99 7.98 19.87 5.52 9.05 7.60 15.90
L2KD 58.89 72.82 22.48 51.23 47.47 75.11 37.08 57.29 20.86 41.15
LAMOL_KD 49.94 70.61 41.99 68.08 52.60 73.44 25.77 49.46 29.03 48.38
LAMOL_g 74.45 84.36 35.43 60.67 48.40 73.93 28.10 50.81 32.70 49.90
LAMOL_t 74.05 84.84 43.37 67.77 57.00 78.13 28.44 51.19 28.81 48.41
PCLL 58.83 74.18 47.09 71.72 45.33 72.25 31.00 51.93 24.50 51.59

SEQ (Lin) 19.66 45.55 12.26 28.33 14.88 34.17 13.43 35.78 12.64 32.06
SEQ (Cos) 16.89 41.68 5.97 18.27 11.10 15.62 11.40 17.76 10.08 16.75
SEQ (FixB+Cos) 17.13 42.38 6.08 18.31 10.32 12.72 7.45 19.59 9.30 15.73
SEQ (FixC+Cos) 50.96 55.69 64.28 56.54 44.93 36.40 33.48 34.74 28.90 26.61
SEQ (FixBC+Cos) 53.18 57.35 62.72 56.43 44.09 33.96 33.58 33.54 28.02 26.50
SEQ (W+FixBC+Lin) 33.41 54.47 19.06 33.90 17.79 40.93 13.68 36.14 13.65 33.78
SEQ (P+W+FixBC+Lin) 33.70 52.33 27.20 37.50 15.09 36.70 17.08 37.00 14.54 34.12

SEQ* (W+FixBC+Cos) 50.77 61.69 75.96 74.29 53.76 50.02 46.12 50.36 36.55 33.51
SEQ* (P+W+FixBC+Cos) 70.56 83.69 84.51 89.43 67.12 75.54 61.99 73.97 44.34 48.52

Table 8: Comparison between SOTA methods and SEQ* on sentence-level classification tasks. The backbone is
Pythia-160m. The IL scenario is CIL. No old samples are stored for all models. Other notation is the same as Table
1.

Topic3Datasets Clinic150 Banking77 FewRel TACRED

AT Ā AT Ā AT Ā AT Ā AT Ā

LFPT5 11.61 34.39 0.00 5.17 2.85 8.80 0.78 4.31 5.14 15.02
L2KD 52.33 70.76 21.84 47.06 37.43 56.40 21.70 47.51 10.79 28.61
LAMOL_KD 45.66 65.92 34.05 56.15 40.39 61.96 22.35 42.96 18.08 37.07
LAMOL_g 66.09 80.98 32.35 54.50 44.78 66.15 21.33 42.18 25.93 39.24
LAMOL_t 66.11 80.27 32.62 58.99 45.93 64.08 21.09 44.27 19.75 40.21
PCLL 44.43 66.43 39.89 64.26 41.25 63.07 26.79 48.76 21.14 42.53

SEQ (Lin) 19.99 44.28 10.94 25.49 13.16 32.10 12.69 34.07 11.56 31.65
SEQ (Cos) 12.33 18.78 5.22 8.22 6.75 7.28 5.99 10.67 8.77 12.55
SEQ (FixB+Cos) 8.98 14.80 5.42 8.98 7.07 8.23 6.80 8.16 9.44 12.70
SEQ (FixC+Cos) 42.89 33.35 43.53 36.47 28.66 20.04 26.55 23.74 23.51 19.29
SEQ (FixBC+Cos) 44.57 32.20 43.11 37.67 27.01 22.47 26.80 22.87 23.96 20.29
SEQ (W+FixBC+Lin) 23.35 46.60 7.51 24.93 13.24 29.78 11.70 34.38 10.59 28.72
SEQ (P+W+FixBC+Lin) 18.45 45.66 10.02 23.56 13.73 31.39 13.54 33.05 10.90 29.25

SEQ* (W+FixBC+Cos) 42.30 47.28 67.97 62.37 45.80 37.40 47.38 50.54 34.27 31.25
SEQ* (P+W+FixBC+Cos) 57.71 52.33 77.94 83.73 62.66 64.81 59.57 72.23 36.99 40.21

performance on Pythia-410m and 160m. Since the1657

scenario of TIL is much simpler than that of CIL,1658

and all methods achieve high accuracy, we did not1659

conduct as many experiments in TIL as in CIL.1660
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Table 9: Comparison between SOTA methods and SEQ* on clinic150. The backbone is gpt2-base and gpt2-large.
The IL scenario is CIL. No old samples are stored for all models. Aprob,0: the linear probing performance before
IL; Aprob,T : the linear probing performance after IL. Other notation is the same as Table 1.

Backbone Method AT Ā Aprob,0 Aprob,T # New Params per Task

gpt2-base

AdapterCL 71.64 75.57 83.71 84.05 894K
SEQ (Cos) 1.31 4.34 83.71 85.28 7.68K
SEQ* (W+FixBC+Cos) 4.55 9.22 83.71 86.84 7.68K
SEQ* (P+W+FixBC+Cos) 10.17 14.59 83.71 86.76 7.68K

gpt2-large

AdapterCL 70.42 78.91 91.95 91.87 7421K
SEQ (Cos) 6.48 20.25 91.95 93.89 12.8K
SEQ* (W+FixBC+Cos) 72.95 68.28 91.95 94.06 12.8K
SEQ* (P+W+FixBC+Cos) 87.93 91.41 91.95 94.18 12.8K

Table 10: Comparison between SOTA methods and SEQ* on sentence-level classification tasks. The backbone is
bert-large-cased. The IL scenario is CIL. Each model stores 1 sample for each class. Other notation is the same as
Table 1.

Topic3Datasets Clinic150 Banking77 FewRel TACRED

AT Ā AT Ā AT Ā AT Ā AT Ā

ER 56.65 74.93 65.32 82.57 49.07 72.79 38.94 66.23 36.36 54.69
CLSER 56.36 74.68 73.12 86.80 50.07 70.85 45.59 67.9 42.53 57.41
DER++ 61.49 78.83 72.7 86.49 56.15 76.67 44.41 68.32 42.5 59.05

SEQ (Lin) 20.28 45.4 7.62 25.45 13.19 22.78 14.72 36.11 13.6 33.08
SEQ (Cos) 17.55 24.17 8.33 15.56 10.04 12.4 9.55 15.8 9.46 14.79
SEQ (FixB+Lin) 44.58 67.70 24.35 57.02 20.29 49.23 14.09 35.62 12.50 26.12
SEQ (FixC+Lin) 58.24 76.63 78.86 89.90 58.34 75.17 44.36 69.77 45.26 60.46
SEQ (FixBC+Lin) 61.20 80.52 47.11 70.17 46.29 64.24 29.43 49.85 23.14 32.73
SEQ (W+FixBC+Cos) 36.52 59.05 44.9 58.49 31.09 51.25 34.15 49.52 23.8 40.78
SEQ (P+W+FixBC+Cos) 33.48 55.2 10.95 12.44 14.53 25.84 21.7 35.71 16.9 30.78

SEQ* (W+FixBC+Lin) 62.63 80.63 73.12 86.81 62.02 80.04 51.57 72.5 43.8 58.47
SEQ* (P+W+FixBC+Lin) 64.39 81.92 72.52 86.49 61.15 79.42 49.71 70.87 41.98 58.2

Table 11: Comparison between SOTA methods and SEQ* on sentence-level classification tasks. The backbone is
bert-base-cased. The IL scenario is CIL. Each model stores 1 sample for each class. Other notation is the same as
Table 1.

Topic3Datasets Clinic150 Banking77 FewRel TACRED

AT Ā AT Ā AT Ā AT Ā AT Ā

ER 51.90 72.76 63.11 82.33 49.76 73.20 40.32 64.02 35.50 53.17
CLSER 57.23 75.67 71.77 86.46 51.17 74.75 43.33 67.63 42.13 55.24
DER++ 64.78 79.29 69.05 86.13 55.84 76.63 44.67 67.73 40.58 56.11

SEQ (Lin) 23.62 48.38 11.09 30.88 14.07 23.78 15.16 36.29 12.77 35.60
SEQ (Cos) 17.65 25.84 7.06 14.77 9.48 11.80 8.54 13.78 9.98 16.54
SEQ (FixB+Lin) 39.98 64.44 25.26 57.33 21.07 49.61 14.38 36.56 14.36 26.20
SEQ (FixC+Lin) 53.90 74.28 78.08 89.03 59.64 77.19 46.06 66.87 45.65 57.79
SEQ (FixBC+Lin) 61.81 79.63 44.97 69.10 40.77 63.96 32.24 50.07 21.26 29.28
SEQ (W+FixBC+Cos) 31.91 54.39 13.11 14.09 15.74 25.82 18.47 31.04 22.53 40.77
SEQ (P+W+FixBC+Cos) 26.45 51.71 40.23 53.29 30.73 49.88 33.96 49.64 14.86 23.29

SEQ* (W+FixBC+Lin) 63.12 81.77 69.30 84.21 61.95 80.18 53.66 72.56 40.63 56.44
SEQ* (P+W+FixBC+Lin) 63.58 80.39 68.50 83.24 61.94 80.20 52.76 72.41 42.08 56.95
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Table 12: Comparison between SOTA methods and SEQ* on word-level classification tasks. The backbone is
bert-large-cased. The IL scenario is CIL. No old samples are stored for all models. Other notation is the same as
Table 1.

Few-NERD OntoNotes5 I2B2

AT Ā AT Ā AT Ā

SpanKL 0.00 0.00 0.00 0.00 0.00 1.98
OCILNER 22.83 31.78 37.67 53.58 36.94 52.12
ExtendNER 20.69 31.77 46.46 57.65 26.22 44.62
DLD 21.46 38.42 48.96 58.17 0.00 28.75
SelfTrain 25.73 40.48 49.31 57.70 36.83 55.00
RDP 30.66 45.93 54.41 64.30 42.96 61.59
CPFD 35.65 48.88 59.02 64.51 24.75 52.98
ICE_O 25.61 29.35 47.19 48.21 53.03 55.07
ICE_PLO 17.54 22.11 42.53 46.16 47.76 53.21
CFNER 29.90 44.02 48.62 57.96 1.23 27.05

SEQ (Lin) 3.31 16.49 4.42 21.42 4.77 25.46
SEQ (W+FixBC+Cos) 9.21 21.40 32.60 50.51 43.64 59.50
SEQ (P+W+FixBC+Cos) 5.09 18.25 33.95 50.94 46.25 61.71

SEQ* (W+FixBC+Lin) 27.72 42.27 67.21 73.23 74.76 77.17
SEQ* (P+W+FixBC+Lin) 28.52 42.57 68.87 73.70 72.66 75.79
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Table 13: Comparison between SOTA methods and SEQ* on word-level classification tasks. The backbone is
bert-base-cased. The IL scenario is CIL. No old samples are stored for all models. Other notation is the same as
Table 1.

Few-NERD OntoNotes5 I2B2

AT Ā AT Ā AT Ā

SpanKL 18.26 39.28 40.10 53.88 6.12 34.84
OCILNER 18.44 29.80 39.99 54.70 27.27 47.74
ExtendNER 20.02 36.34 48.08 57.02 20.02 36.34
DLD 20.75 35.53 47.23 58.04 30.50 48.03
SelfTrain 23.46 39.88 51.08 57.41 23.60 39.49
RDP 27.08 43.43 50.45 60.32 40.38 58.12
CPFD 34.65 46.92 55.58 59.34 43.52 56.15
ICE_O 28.98 33.94 51.81 53.06 49.12 54.56
ICE_PLO 19.94 29.31 46.52 49.79 47.76 53.35
CFNER 27.70 42.13 58.07 63.76 35.42 51.44

SEQ (Lin) 2.97 16.21 4.38 21.20 5.26 25.26
SEQ (W+FixBC+Cos) 7.26 19.72 29.12 47.60 45.95 61.29
SEQ (P+W+FixBC+Cos) 3.17 19.65 29.70 48.30 47.10 60.42

SEQ* (W+FixBC+Lin) 28.13 42.72 66.99 71.80 71.76 73.71
SEQ* (P+W+FixBC+Lin) 28.21 43.06 67.39 72.27 72.51 75.48

Table 14: The linear probing performance with backbone bert-base-cased. Other settings are the same as Table 13.

OntoNotes5 I2B2

Before IL After IL Before IL After IL

SEQ (Lin)

52.89±0.41

71.93±1.04

58.18±0.92

73.40±0.94

SelfTrain 74.29±0.75 74.54±0.57

ExtendNER 73.96±0.85 76.40±0.55

SEQ* (P+W+FixBC+Lin) 74.05±1.02 75.08±1.15
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Table 15: Comparison between SOTA methods and SEQ* on clinic150 and FewRel. The backbone is Pythia-410m,
Pythia-160m, bert-large-cased and bert-base-cased. The IL scenario is TIL. No old samples are stored for all models.
Other notation is the same as Table 1.

Backbone Method
Clinic150 FewRel

AT Ā # New Params per Task AT Ā # New Params per Task

Pythia-410m

LoRA 97.04 98.60 393K 95.29 96.62 393K
ProgPrompt 57.91 98.00 5.12K 46.73 55.05 5.12K
SEQ* (W+FixBC+Lin) 98.04 98.01 10.24K 90.02 93.03 10.24K
SEQ* (P+W+FixBC+Lin) 98.27 98.02 10.24K 91.25 93.61 10.24K

Pythia-160m

LoRA 51.62 50.81 147K 83.93 87.35 147K
ProgPrompt 13.00 27.03 3.84K 14.79 22.36 3.84K
SEQ* (W+FixBC+Lin) 95.94 96.75 7.68K 88.42 91.35 7.68K
SEQ* (P+W+FixBC+Lin) 96.42 97.09 7.68K 88.62 92.23 7.68K

bert-large-cased

LoRA 98.86 98.97 393K 93.63 95.27 393K
ProgPrompt† 94.82 96.85 15.36K 90.96 92.90 15.36K
SEQ* (W+FixBC+Lin) 97.80 97.80 10.24K 85.56 87.75 10.24K
SEQ* (P+W+FixBC+Lin) 97.70 97.64 10.24K 85.93 88.29 10.24K

bert-base-cased

LoRA 98.53 98.46 147K 94.00 95.42 147K
ProgPrompt† 98.15 98.25 11.52K 92.38 94.03 11.52K
SEQ* (W+FixBC+Lin) 96.71 96.64 7.68K 86.50 88.64 7.68K
SEQ* (P+W+FixBC+Lin) 96.30 96.20 7.68K 86.65 88.73 7.68K
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