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Abstract

Reinforcement learning in infinite-horizon Markov decision processes (MDPs) is1

typically framed as expected discounted return maximization. In this paper, we2

formulate an alternative principle for optimal sequential decision-making in infinite-3

horizon MDPs: variational Bayesian inference in transdimensional probabilistic4

models. In particular, we specify a probabilistic model of random size and consider5

the variational problem of finding an approximation to the posterior distribution6

over state–action trajectories conditioned on state–action trajectories that reflect a7

desired behavior. We derive a tractable variational objective for infinite-horizon8

settings, prove a variational dynamic-discount policy iteration theorem, show that9

fixed discount factor KL-regularized reinforcement learning objectives are special10

cases of dynamic-discount variational objectives, and prove that learning dynamic11

discount factors is optimal.12

1 Introduction13

We provide a Bayesian framework for deriving behavior-driven optimal decision rules for sequential14

decision problems. In particular, we provide a mathematical justification for learned, dynamic dis-15

count factors in KL-regularized reinforcement learning, which have been proposed as an empirically16

useful tool in recently developed reinforcement learning algorithms [6, 8, 4], and establish a rigorous17

foundation for framing modern reinforcement learning methods as probabilistic inference. Although18

control as inference has gained in popularity, the treatment of infinite-horizon settings in previous19

works is ad-hoc and not probabilistically well-motivated. With this work, we hope to address this20

shortcoming and provide a clear formulation of control as inference that carefully disambiguates21

modeling and inference assumptions.22

Levine [3] and Haarnoja et al. [1] presented a framework for framing maximum-entropy reinforcement23

learning as Bayesian inference in probabilistic models over finite-horizon state–action trajectories.24

However, most modern reinforcement learning problems are not formulated as finite but as infinite-25

horizon problems [5, 9]. To apply their probabilistic probabilistic formulation of reinforcement26

learning to infinite-horizon problems, Levine [3] and Haarnoja et al. [1] introduce a fixed discount-27

factor into their formulation post-hoc and without providing a probabilistic justification for doing28

so. In this paper, we show that including a (fixed) discount factor as proposed by Levine [3] and29

Haarnoja et al. [1] is a special case of a more general probabilistic framing of the problem, leads to30

a variational formulation with a loose evidence lower bound, and can provably be improved upon31

by framing Bayesian variational inference in infinite-horizon MDPs as variational inference in a32

transdimensional probabilistic model.33

To derive a learning algorithm that allows us to infer a policy that reflects the behavior encoded34

in desired state trajectories, we frame the problem of finding an optimal policy as computing35

an approximation to the conditional distribution over state–action trajectories given state–action36
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trajectories that reflect a desired behavior. We formulate a corresponding probabilistic model and37

derive tractable variational objectives for finite- and infinite-horizon settings. Based on these results,38

we define a novel Bellman backup operator and show that for tabular settings, the repeated application39

of the operator converges to an optimal policy and an optimal dynamic discount factor. Building40

on this result, we show that fixed discount factor KL-regularized reinforcement learning objectives41

are special cases of the dynamic-discount objectives derived here and demonstrate that variationally42

learned, dynamic discount factors are optimal in KL-regularized RL.43

2 Preliminaries44

Standard reinforcement learning (RL) addresses reward maximization in a Markov decision pro-45

cess (MDP) defined by the tuple (S,A, pS0
, pd, r, γ) [10, 11], where S and A denote the state46

and action space, respectively, p0 denotes the initial state distribution, pd is a state transition dis-47

tribution, r is an immediate reward function, and γ is a discount factor. To sample trajectories,48

an initial state is sampled according to pS0 , and successive states are sampled from the state tran-49

sition distribution St+1 ∼ pd(· | st,at) and actions from a policy At ∼ π(· | st). We will write50

T 0:t = {S0,A0,S1, . . . ,St,At} to represent a finite-horizon and T 0 =̇ {St,At}∞t=0 to represent51

an infinite-horizon stochastic state–action trajectory, and write τ0:t = {s0,a0, s1, . . . , st,at} and52

τ0 =̇ {st,at}∞t=0 for the respective trajectory realizations. Given a reward function r : S ×A → R53

and discount factor γ ∈ (0, 1), the objective in reinforcement learning is to find a policy π that54

maximizes the returns, defined as Epπ
[
∑∞

t=0 γ
tr(st,at)] , where pπ denotes the distribution of states55

induced by a policy π.56

3 A Variational Formulation of RL in Infinite-Horizon MDPs57

Desired behaviors for artificial agents are often abstract and hard to encode into reward functions.58

However, in practice, it is often easy to represent desired behaviors via demonstrations. Such59

demonstrations can be thought of as sample state–action trajectories from a distribution over optimal60

state–action trajectories. In the remainder of this paper, we will demonstrate how to use variational61

Bayesian inference to infer an optimal policy from a set of optimal state–action demonstrations.62

To start the exposition, we note that for every state in the environment, there exists a desired, or63

optimal, behavior that an agent could take. We denote this optimal behavior for any given state as64

the set of state–action trajectories by τΩ. Throughout, we will use the index Ω to denote optimality.65

Hence, for any state s ∈ S , assuming the MDP is ergodic and transition dynamics are deterministic,66

there exists a set of actions that will set an agent on an optimal state–action trajectory, that is,67

AΩ =̇ {a ∈ A | s′ ∼ pd(s
′ | s,a) : s′ ∈ τΩ}, meaning there exists a set of actions that will set an68

agent on the optimal state–action trajectory with probability one.69

If the transition dynamics are stochastic, each state–action pair will have some probability less than70

one of transitioning the agent onto an optimal state–action trajectory. Denoting the event of a state71

being in the optimal state–action trajectory by s ∈ SΩ, where SΩ =̇ {s ∈ τΩ}, we can define a72

random variable ξ(SΩ) =̇ I{s′ ∈ SΩ}. We then have that ξ = 1 if the state s′ into which an agent73

transitioned after taking action a in state s is in the optimal trajectory and ξ(SΩ) = 0 otherwise. The74

probability of transitioning into a state on the optimal state–action trajectory at time step t+ 1 is then75

given by76

P(ξt+1(SΩ) = 1 | st,at)=
∫
SΩ

pd(st+1 | st,at)dst+1=

∫
S
pd(st+1 | st,at) I{st+1 ∈ SΩ}dst+1. (1)

In other words, the probability of transitioning into a state on the optimal state–action trajectory77

corresponds to marginalization over the set of optimal states SΩ. Equation (1) is a likelihood function.78

Similarly, by the Markov property, the joint probability of transitioning into a state on the optimal79

state–action trajectory and staying on it from time step 1 to time step t⋆ =̇ t+ 1, given a state–action80

trajectory, factorizes and is given by81

P(ξ1:t+1(SΩ) = 1 | s0,a0, ..., st,at)

=

t∏
t′=0

∫
SΩ

pd(st′+1 | st′ ,at′) dst′+1 =

t∏
t′=0

∫
S
pd(st′+1 | st′ ,at′) I{st′+1 ∈ SΩ} dst′+1,

(2)

where we start from t′ = 0 without loss of generality.82
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3.1 Warm-Up: Finite-Horizon Reinforcement Learning as Variational Inference83

First, we consider the finite-horizon setting. This formulation only diverges slightly from prior work84

but will help us transition to the transdimensional model formulation for the infinite-horizon setting.85

With the notion of trajectory-dependent optimality described in the previous section, we can now86

specify a model over finite-horizon state–action trajectories and ξ1:t+1(SΩ),87

p(τ0:t, ξ
⋆
1:t+1(SΩ)) =̇pS0

(s0)

t∏
t′=0

P(ξt′+1(SΩ) = 1 | st′ ,at′)p(at | st)
t−1∏
t′=0

pd(st′+1 | st′ ,at′)p(at′ | st′),

where T̃ 0:t is a state–action trajectory starting at state S0 and ending at state St, p(at | st) is88

a conditional action prior, pd(st+1 | st,at) is the environment’s state transition distribution, and89

ξ⋆1:t+1(SΩ) =̇ {ξt′(SΩ) = 1}t+1
t′=1 is the set of events corresponding to transitioning onto an optimal90

trajectory. By extension, the probability of transitioning onto an optimal state–action trajectory and91

remaining on it for t⋆ time steps given a state and a prior policy is given by the marginal likelihood92

P(ξ1:t+1(SΩ) = 1 | s0) =
∫∫

At+1St

pT̃ 0:t|S0
(τ̃0:t | s0)

(
t∏

t′=0

∫
SΩ

pd(st′+1 | st′ ,at′) dst′+1

)
ds1:t da0:t

(3)
93

where pT̃ 0:t|S0
(τ̃0:t | s0) =̇ p(at | st)

t−1∏
t′=0

pd(st′+1 | st′ ,at′) p(at′ | st′) (4)

is a prior distribution over state–action trajectories. Using an indicator function I{st+1 ∈ SΩ}94

denoting whether the next state is on the desired state–action trajectory, the marginal likelihood in95

Equation (3) can equivalently be expressed as96

P(ξ1:t+1(SΩ) = 1 | s0)

=

∫∫
At+1St

pT̃ 0:t|S0
(τ̃0:t | s0)

(
t∏

t′=0

∫
S
pd(st′+1 | st′ ,at′) I{st′+1 ∈ SΩ} dst′+1

)
ds1:t da0:t.

(5)

This marginalization establishes the connection between the full joint distribution in Equation (3) and97

the likelihood of remaining on an optimal state–action trajectory under a state–action trajectory prior98

and the likelihood function defined in Equation (1).99

P(ξ1:t+1(SΩ) = 1 | s0) is the marginal likelihood of remaining on the optimal state trajectory from100

time step 1 to time step t+1 under the prior policy p(at | st) and the dynamics model pd(st+1 | st,at).101

Using Bayes’ Theorem, we could use the marginal likelihood to compute the posterior distribution102

over state–action trajectories, pT̃ 0:t|ξ1:t+1
(· | ξ⋆1:t+1(SΩ)). Unfortunately, the marginal likelihood103

in Equation (5) is intractable for all but the simplest probabilistic models.104

To infer an approximate posterior distribution over state–action trajectories instead, we express105

posterior inference as the variational minimization problem106

minqT̃ 0:t
∈Q̂ DKL(qT̃ 0:t

(·) ∥ pT̃ 0:t|ξ1:t+1
(· | ξ⋆1:t+1(SΩ))), (6)

where DKL(· ∥ ·) is the KL divergence, and Q̂ denotes the variational family over which to optimize.107

We consider a family of distributions parameterized by a policy π and defined by108

qT̃ 0:t
(τ̃0:t) =̇ pS0(s0)π(at | st)

∏t−1

t′=0
pd(st′+1 | st′ ,at′)π(at′ | st′), (7)

where π ∈ Π, a family of policy distributions, and where pS0
(s0)

∏t−1
t′=0 pd(st′+1 | st′ ,at′) is the109

true state transition distribution up to and including the state transition at t. In Proposition 1 (Fixed-110

Time Variational Objective), we show that under this variational family, the inference problem111

in Equation (6) can be equivalently stated as the problem of maximizing an entropy-regularized112

expected reward function at every time step, where the reward function is given by the log-likelihood113

of transitioning onto an optimal state–action trajectory given a state–action pair. This is effectively114

the result obtained by Ziebart et al. [13], Levine [3], and Haarnoja et al. [1].115
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3.2 Infinite-Horizon Reinforcement Learning as Variational Bayesian Inference116

To derive an infinite-horizon objective, we modify the probabilistic model used above. To represent117

the possibility that an agent may stay on the optimal state trajectory for any number of time steps,118

that is, for state–action trajectories of varying lengths, we treat the length of the trajectory itself as a119

random variable, T , and define the model120

p(τ̃0:t, ξ
⋆
1:t+1(SΩ), t) =̇pT (t)pS0(s0)

∏t

t′=0
P(ξt′+1(SΩ) = 1 | st′ ,at′)pd(st′+1 | st′ ,at′)p(at′ | st′),

where pT (t) is the probability of remaining on the optimal state trajectory for t+ 1 time steps. Since121

the trajectory length is itself a random variable, the joint distribution is a transdimensional distribution122

defined on
⊎∞

t=0{t} × St ×At [2].123

Unlike in the fixed-horizon setting, the variational Bayesian inference problem in the infinite-horizon124

setting corresponds to finding the posterior distribution over both state–action trajectories and the125

length of the optimal state trajectory T conditioned on the desired behavior ξ⋆1:t+1(SΩ). Analogously126

to the steps above, we can express this inference problem variationally as127

minqT̃ 0:T ,T∈Q DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |ξ1:T+1
(· | ξ⋆1:t+1(SΩ))), (8)

where t denotes the time step immediately before the outcome is achieved, Q denotes the variational128

family. Under this variational distribution, we can obtain an unfactorized variational objective that129

does in general not lend itself to stochastic gradient-based optimization (and off-policy reinforcement130

learning). The variational objective is given in Proposition 3, but we omit it here for brevity.131

To obtain a variational objective amenable to stochastic variational inference and off-policy reinforce-132

ment learning, we define the variational family as follows: qT̃ 0:T ,T (τ̃0:t, t) = qT̃ 0:T |T (τ̃0:t | t)qT (t),133

where qT is a distribution over T in some variational family QT parameterized by134

qT (t) = q∆t+1
(∆t+1 = 1)

∏t

t′=1
q∆t′ (∆t′ = 0), (9)

with Bernoulli random variables ∆t denoting the event of “remaining on the optimal state trajectory135

from time step 1 to time step t+1,” we can equivalently express the variational problem in Equation (8)136

recursively in a way that is tractable and amenable to off-policy optimization:137

Theorem 1 (Dynamic-Discount Behavior-Driven RL as Variational Inference). Let qT (t) and138

qT̃ 0:t|T (τ̃0:t | t, s0) be as defined in Equation (7) and Equation (9), and define a behavior-driven state139

value function,140

V π(st,SΩ; qT ) =̇ Eπ(at | st)
[
Qπ(st,at,SΩ; qT )

]
− DKL(π(· | st) ∥ p(· | st)), (10)

a behavior-driven state–action value function141

Qπ(st,at,SΩ; qT ) =̇ r(st,at,SΩ; q∆)+q(∆t+1 = 0)Epd(st+1 | st,at)

[
V π(st+1,SΩ;π, qT )

]
, (11)

and a behavior-driven reward-like function142

r(st,at,SΩ; q∆) =̇ logP(ξt+1(SΩ) = 1 | st,at)− q∆t+1
(∆t+1 = 1)DKL(q∆t+1

∥ p∆t+1
). (12)

Then given an optimal state trajectory SΩ,143

DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |ξ1:t+1(SΩ)(· | ξ
⋆
1:t+1(SΩ)))=−F(π, qT ,SΩ)+C = −V π(s0,SΩ; qT )+C,

where C =̇ log p(ξ⋆1:T+1) is independent of π and qT , and hence maximizing V π(s0,SΩ;π, qT ) is144

equivalent to minimizing Equation (8) and hence, the following holds:145

argmin
π∈Π,qT∈QT

DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |ξ1:T+1
(· | ξ⋆1:T+1)) = argmax

π∈Π,qT∈QT

V π(s0,SΩ; qT ).

Theorem 1 tells us that the solution to the variational problem we started out with (Equation (8)),146

is in fact the solution to an infinite-horizon reinforcement learning problem with a reward function147

determined by the likelihood of transitioning onto an optimal trajectory, a learned, dynamic discount148

factor, and KL divergence regularization. In Appendix A, we prove that dynamic-discount factor RL149

is optimal and preferred over fixed discount factors. For detailed proofs, see the appendix.150

4 Conclusion151

Using a variational framing of the inference problem, we showed that optimized, dynamic discount152

factors are optimal in KL-regularized RL and that fixed discount factor methods are a special (less153

optimal) case of this formulation. We hope that this work contributes to bridging the gap between154

reinforcement learning and probabilistic inference research and helps establish a mutual reference155

point from which to derive new insights and methods.156
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Appendix A Dynamic-Discount Behavior-Driven Reinforcement Learning205

Building on Theorem 1, we will now define a dynamic-discount behavior-driven Bellman backup operator and206

use it to derive a policy iteration theorem for variational, dynamic-discount reinforcement learning. In particular,207

we define:208

Definition 1 (Dynamic-Discount Behavior-Driven Bellman Backup Operator). Given a function Q : S × A×209

S → R, define the operator T π as210

T πQ(st,at,SΩ; qT )=̇r(st,at,SΩ; q∆)+q∆t+1(∆t+1 = 0)Epd(st+1 | st,at)

[
V(st+1,SΩ; qT )

]
, (A.1)

where r(st,at,SΩ; q∆) is from Theorem 1 (Dynamic-Discount Behavior-Driven RL as Variational Inference)211

and212

V(st,SΩ; qT ) =̇ Eπ(at | st)

[
Q(st,at,SΩ; qT )

]
+ DKL(π(· | st) ∥ p(· | st)). (A.2)

This dynamic-discount, behavior-driven Bellman backup operator is identical to the Bellman backup operator for213

KL-regularized reinforcement learning [7] except for the learned, dynamic discount factor, q∆t+1(∆t+1 = 0).214

In tabular settings, repeated application of this Bellman operator will result in an optimal policy and an optimal215

dynamic discount factor. More specifically, alternating between policy evaluation and optimization of the216

variational distribution over the state–action trajectory and the trajectory length converges to an optimal policy.217

Theorem 2 (Variational Dynamic-Discount Behavior-Driven Policy Iteration). Assume |A| <∞ and that the218

MDP is ergodic.219

1. Dynamic-Discount Behavior-Driven Policy Evaluation (D2BD-PE): Given policy π and a function Q0 :220

S ×A×S → R, define Qi+1 = T πQi. Then the sequence Qi converges to the lower bound in Theorem 1.221

2. Dynamic-Discount Behavior-Driven Policy Improvement (D2BD-PI): The policy222

π+ = argmax
π′∈Π

{
Eπ′(at | st)

[
Qπ(st,at,SΩ; qT )

]
− DKL(π

′(· | st) || p(· | st))
}

(A.3)

and the variational distribution over T recursively defined in terms of223

q+(∆t+1 = 0 | s0;π,Qπ)

= σ
(
Eπ(at+1 | st+1)pd(st+1 | st,at)[Q

π(st+1,at+1,SΩ; qT )] + σ−1 (p∆t+1(∆t+1 = 0)
)) (A.4)

improve the variational objective. In other words, V π+

(s0,SΩ; qT ) ≥ V π(s0,SΩ; qT ) and224

V π(s0,SΩ; q+T ) ≥ V π(s0,SΩ; qT ) for all s0 ∈ S.225

3. Alternating between D2BD-PE and D2BD-PI converges to a policy π⋆ and a variational distribution over T ,226

q⋆T , such that Qπ⋆

(s,a,SΩ; q⋆T ) ≥ Qπ(s,a,SΩ; qT ) for all (π, qT ) ∈ Π×QT and any (s,a) ∈ S ×A.227

An implication of this result is that an optimal policy found via dynamic-discount behavior-driven policy iteration228

has at least as high a state value at S0 = s0 as it would under a fixed discount factor. That is, for pT given by a229

fixed geometric distribution with parameter γ, the state–action value function simplifies to the standard Bellman230

backup operator,231

Qπ(st,at,SΩ; pT ) =̇ log P(ξt+1(SΩ) = 1 | st,at) + γ Epd(st+1 | st,at)

[
V π(st+1,SΩ;π, pT )

]
, (A.5)

and232

Qπ(s0,a0,SΩ; q∗T ) ≥ Qπ(s0,a0,SΩ; pT ). (A.6)

In other words, dynamic discount factors are optimal in KL-regularized reinforcement learning and can be233

justified using the variational Bayesian inference formulation described here.234
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Appendix B Proofs235

B.1 Finite- and Infinite-Horizon Variational Objectives236

In this section, we present detailed derivations and proofs for the results in the main text.237

Proposition 1 (Fixed-Time Variational Objective). Let the variational distribution qT̃ 0:t
(τ̃0:t) be as defined238

in Equation (7). Then, given a horizon length t⋆ and optimal state trajectory SΩ,239

DKL(qT̃ 0:t
(·) ∥ pT̃ 0:t|∆1:t+1

(· |∆⋆
1:t+1)) = log p(∆⋆

1:t+1)− F̄(π,SΩ), (B.7)

where240

F̄(π,SΩ) =̇ EqT̃ 0:t
(τ̃0:t)

[ t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(π(· | st′) || p(· | st′))
]
, (B.8)

and since log p(∆⋆
1:t+1) is constant in π,241

argmin
π∈Π

DKL(qT̃ 0:t
(·) ∥ pT̃ 0:t|∆1:t+1

(· |∆⋆
1:t+1)) = argmax

π∈Π
F̄(π,SΩ). (B.9)

Proof. To find an approximation to the posterior pT̃ 0:t|∆1:t+1
(· |∆⋆

1:t+1)), we can use variational inference.242

To do so, we consider the trajectory distribution under pT̃ 0:t|∆1:t+1
(· |∆⋆

1:t+1)), which by Bayes’ Theorem is243

given by244

pT̃ 0:t|∆1:t+1
(· |∆⋆

1:t+1)) =
pS0(s0)

∏t
t′=0 P(ξt′+1(SΩ) = 1 | st′ ,at′)p(at | st)

∏t−1
t′=0 pd(st′+1 | st′ ,at′)p(at′ | st′)

p(∆⋆
1:t+1)

.

(B.10)

Inferring an approximation to the posterior distribution pT̃ 0:t|∆1:t+1
(· |∆⋆

1:t+1) then becomes equivalent to245

finding a variational distribution qT̃ 0:T |S0
(· | s0), which induces a trajectory distribution qT̃ 0:t

(·) that minimizes246

the KL divergence from qT̃ 0:t
(·) to pT̃ 0:t|∆1:t+1

(· |∆⋆
1:t+1):247

min
qT̃ 0:t

∈Q̂
DKL(qT̃ 0:t

(·) ∥ pT̃ 0:t|∆1:t+1
(· |∆⋆

1:t+1)). (B.11)

If we find a distribution qT̃ 0:t
(·) for which the resulting KL divergence is zero, then qT̃ 0:t

(·) is the exact248

posterior. If the KL divergence is positive, then qT̃ 0:t
(·) is an approximate posterior. To solve the variational249

problem in Equation (B.11), we can define a factorized variational family250

qT̃ 0:t
(τ̃0:t) =̇ pS0(s0)π(at | st)

t−1∏
t′=0

qSt′+1|St′ ,At′
(st′+1 | st′ ,at′)π(at′ | st′), (B.12)

where A0:t and S0:t are latent variables over which to infer an approximate posterior distribution. Returning to251

the variational problem in Equation (B.11), we can now write252

DKL(qT̃ 0:t
(·) ∥ pT̃ 0:t|∆1:t+1

(· |∆⋆
1:t+1)) =

∫
At+1

∫
St+1

qT̃ 0:t
(τ̃0:t) log

qT̃ 0:t
(τ̃0:t)

pT̃ 0:t|∆1:t+1
(τ̃0:t |∆⋆

1:t+1)
ds0:tda0:t

= −F̄(π,SΩ) + log p(∆⋆
1:t+1),

(B.13)

where253

F̄(π,SΩ) =̇ EqT̃ 0:t
(τ̃0:t)

[
t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)

+ log p(at | st)− log π(at | st) +
t−1∑
t′=0

log p(at′ | st′)− log π(at′ | st′)

+

t−1∑
t′=0

log pd(st′+1 | st′ ,at′)− log qSt′+1|St′ ,At′
(st′+1 | st′ ,at′)

] (B.14)

and254

log p(∆⋆
1:t+1) = log

∫
At+1

∫
St+1

P(∆1:t+1 = 1 | s0,a0, ..., st,at)pT̃ 0:t
(τ̃0:t)ds0:tda0:t (B.15)

= log

∫
At+1

∫
St+1

(
t∏

t′=0

∫
S
pd(st′+1 | st′ ,at′) I{st′+1 ∈ SΩ} dst′+1

)
pT̃ 0:t

(τ̃0:t)ds0:tda0:t

(B.16)
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is a log-marginal likelihood. Following Haarnoja et al. [1], we define the variational distribution over next states255

as the true transition dynamics, that is,256

qSt+1|St,At(st+1 | st,at) = pd(st+1 | st,at), (B.17)

so that257

qT̃ 0:t
(τ̃0:t) =̇ pS0(s0)π(at | st)

t−1∏
t′=0

pd(st′+1 | st′ ,at′)π(at′ | st′). (B.18)

We can then simplify F̄(π,SΩ) to258

F̄(π,SΩ) = EqT̃ 0:t
(τ̃0:t)

[
t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(π(· | st′) ∥ p(· | st′))

]
. (B.19)

Since log p(∆⋆
1:t+1) is constant in π, solving the variational optimization problem in Equation (B.11) is259

equivalent to maximizing the variational objective with respect to π ∈ Π, where Π is a family of policy260

distributions.261

Corollary 1 . The objective in Equation (B.19) corresponds to KL-regularized reinforcement learning with a262

time-varying reward function given by263

r(st′ ,at′ ,∆t′+1) =̇ log P(ξt′+1(SΩ) = 1 | st′ ,at′).

Proof. Let264

r(st′ ,at′ ,∆t′+1) =̇ log P(ξt′+1(SΩ) = 1 | st′ ,at′). (B.20)

and note that the objective265

F̄(π,SΩ) = EqT̃ 0:t
(τ̃0:t)

[
t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(π(· | st′) ∥ p(· | st′))

]
. (B.21)

can equivalently written as266

F̄(π,SΩ) = EqT̃ 0:t
(τ̃0:t)

[
t∑

t′=0

r(st′ ,at′ ,∆t′+1) + DKL(π(· | st′) ∥ p(· | st′))

]
, (B.22)

which, as shown in Haarnoja et al. [1], can be written in the form of Equation (11).267

Proposition 3 (Unfactorized Dynamic-Discount Behavior-Driven RL as Variational Inference). Let268

qT̃ 0:T ,T (τ̃0:t, t) = qT̃ 0:T |T (τ̃0:t | t)qT (t), (B.23)

let qT (t) be a variational distribution defined on t ∈ N0, and let qT̃ 0:T |T (τ̃0:t | t) be as defined in Equation (7).269

Then, given an optimal state trajectory SΩ, we have that270

DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |∆1:T+1
(· |∆⋆

1:T+1)) = log p(∆⋆
1:T+1)−F(π, qT ,SΩ), (B.24)

where271

F(π, qT ,SΩ) =̇

∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[ t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(qT̃ 0:T ,T (·) || pT̃ 0:T ,T (·))
]

(B.25)

and log p(∆⋆
1:T+1) is constant in π and qT .272

Proof. In general, solving the variational problem273

min
q∈Q

DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |∆1:T+1
(· |∆⋆

1:T+1)) (B.26)

is challenging, but as in the fixed-time setting, we can take advantage of the fact that, by choosing a variational274

family parameterized by275

qT̃ 0:T |T (τ̃0:t | t) =̇ π(at | st)
t−1∏
t′=0

pd(st′+1 | st′ ,at′)π(at′ | st′), (B.27)

with π ∈ Π, we can follow the same steps as in the proof for Proposition 1 (Fixed-Time Variational Objective)276

and show that given an an optimal state trajectory SΩ,277

DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |∆1:T+1
(· |∆⋆

1:T+1))) = log p(∆⋆
1:T+1)−F(π, qT ,SΩ), (B.28)
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where278

F(π, qT ,SΩ)

=̇

∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[ t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(qT̃ 0:T ,T |S0
(· | s0) ∥ pT̃ 0:T ,T |S0

(· | s0))
]
,

(B.29)

where qT̃ 0:T ,T (τ̃0:t, t) =̇ qT̃ 0:T |T (τ̃0:t | t)qT (t), and hence, solving the variational problem in Equation (8) is279

equivalent to maximizing F(π, qT ,SΩ) with respect to π and qT .280

B.2 Recursive Variational Objective & Bellman Backup Operator281

Proposition 4 (Factorized Dynamic-Discount Behavior-Driven RL as Variational Inference). Let the variational282

distribution factorize as283

qT̃ 0:T ,T (τ̃0:t, t) = qT̃ 0:T |T (τ̃0:t | t)qT (t), (B.30)

let284

qT (t) = q∆t+1(∆t+1 = 1)

t∏
t′=1

q∆t′ (∆t′ = 0) (B.31)

be a variational distribution defined on t ∈ N0, and let qT̃ 0:T |T (τ̃0:t | t) be as defined in Equation (7). Then,285

given an optimal state trajectory SΩ, Equation (B.25) can be rewritten as286

F(π, qT ,SΩ) = EqT̃ 0
(τ̃0)

[
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)(
r(st,at,SΩ; q∆)− DKL(π(· | st) ∥ p(· | st))

)]
(B.32)

where287

r(st,at,SΩ; q∆) =̇ log P(ξt+1(SΩ) = 1 | st,at)− q∆t+1(∆t+1 = 1)DKL(q∆t+1 ∥ p∆t+1), (B.33)

Proof. Consider the variational objective F(π, qT ,SΩ) in Equation (B.25):288

F(π, qT ,SΩ)

=

∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[ t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T (·))
]

(B.34)

=

∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[
t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− log
qT̃ 0:T |T (τ̃0:t | t)qT (t)
pT̃ 0:T |T (τ̃0:t | t)pT (t)

dτ̃0:t

]
(B.35)

=

∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[
t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− log
qT̃ 0:T |T (τ̃0:t | t)
pT̃ 0:T |T (τ̃0:t | t)

]
−

∞∑
t=0

qT (t) log
qT (t)

qT (t)
.

(B.36)

Noting that
∑∞

t=0 qT (t) log
qT (t)
qT (t)

= DKL(qT ∥ pT ), we can write289

F(π, qT ,SΩ)

=

∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[
t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− log
qT̃ 0:T |T (τ̃0:t | t)
pT̃ 0:T |T (τ̃0:t | t)

]
− DKL(qT ∥ pT )

(B.37)

=

∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[ t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)
]

−
∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[
log

qT̃ 0:T |T (τ̃0:t | t)
pT̃ 0:T |T (τ̃0:t | t)

]
− DKL(qT ∥ pT ).

(B.38)
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Further noting that for an infinite-horizon trajectory distribution290

qT̃ t′ |St′
(τ̃t′ | st′) =̇

∞∏
t=t′

pd(st+1 | st,at)π(at | st), (B.39)

trajectory realization τ̃t+1 =̇ {τt′}∞t′=t+1, and any joint probability density f(st,at),291

∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[
f(st,at)

]
=

∞∑
t=0

(∫
qT̃ T+1

(τ̃t+1)

(∫
St×At

qT̃ 0:t
(τ̃0:t)qT (t)f(st,at)dτ̃0:t

)
dτ̃t+1

) (B.40)

=

∞∑
t=0

(
EqT̃ 0:T |T (τ̃0:t | t)

[
qT (t)f(st,at)

]
·
(∫

qT̃ T+1
(τ̃t+1)dτ̃t+1

)
︸ ︷︷ ︸

=1

)
(B.41)

=

∞∑
t=0

((∫
St×At

q(τ̃0:t)qT (t)f(st,at)dτ̃0:t

)
·
(∫

qT̃ T+1
(τ̃t+1)dτ̃t+1

)
︸ ︷︷ ︸

=1

)
(B.42)

=

∞∑
t=0

∫
qT̃ 0

(τ̃0)qT (t)f(st,at)dτ̃0 (B.43)

=

∫
qT̃ 0

(τ̃0)

∞∑
t=0

qT (t)f(st,at)dτ̃0, (B.44)

we can express Equation (B.38) in terms of the infinite-horizon state–action trajectory292

qT̃ 0
(τ̃0) =̇

∞∏
t=0

pd(st+1 | st,at)π(at | st) (B.45)

as293

F(π, qT ,SΩ) =

∫
qT̃ 0

(τ̃0)

∞∑
t=0

qT (t)

t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)dτ̃

−
∞∑
t=0

qT (t)DKL(qT̃ 0:T |T (· | t) ∥ pT̃ 0:T |T (· | t))− DKL(qT ∥ pT )

(B.46)

= EqT̃ 0
(τ̃0)

[ ∞∑
t=0

qT (t)
( t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)

− DKL(qT̃ 0:T |T (· | t) ∥ pT̃ 0:T |T (· | t))
)]
− DKL(qT ∥ pT ).

(B.47)

Using Lemma 5 and the definition of qT (t) in Equation (9), we can rewrite this objective as294

F(π, qT ,SΩ)

= EqT̃ 0
(τ̃0)

[ ∞∑
t=0

( t∏
t′=1

q∆t′ (∆t′ = 0)
)
q∆t′ (∆t′ = 1)

( t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)

− DKL(qT̃ 0:T |T (· | t) ∥ pT̃ 0:T |T (· | t))
)]
−

∞∑
t=0

( t∏
t′=1

q∆t′ (∆t′ = 0)
)
DKL(q∆t+1 || p∆t+1)

(B.48)

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

(
t∏

t′=1

q(∆t′ = 0)

)

·
(
q(∆t+1 = 1)

( t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(qT̃ 0:T |T (· | t) ∥ pT̃ 0:T |T (· | t))
)

− DKL(q∆t+1 ∥ p∆t+1)
)]

,

(B.49)
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with295

DKL(q∆t+1 ∥ p∆t+1)

= q∆t+1(∆t+1 = 0) log
q∆t+1(∆t+1 = 0)

p∆t+1(∆t+1 = 0)
+ (1− q∆t+1(∆t+1 = 0)) log

1− q∆t+1(∆t+1 = 0)

1− p∆t+1(∆t+1 = 0)
.

(B.50)

Next, to re-express DKL(qT̃ 0:T |T (· | t) ∥ pT̃ 0:T |T (· | t)) as a sum over Kullback-Leibler divergences between296

distributions over single action random variables, we note that297

DKL(qT̃ 0:T |T (· | t) ∥ pT̃ 0:T |T (· | t)) =
∫
St×At

qT̃ 0:T |T (τ̃0:t | t) log
qT̃ 0:T |T (τ̃0:t | t)
pT̃ 0:T |T (τ̃0:t | t)

dτ̃0:t (B.51)

=

∫
St×At

qT̃ 0:T |T (τ̃0:t | t) log
∏t

t′=1 π(at′ | st′)∏t
t′=1 p(at′ | st′)

dτ̃0:t (B.52)

=

∫
St×At

qT̃ 0:T |T (τ̃0:t | t)
t∑

t′=0

log
π(at′ | st′)
p(at′ | st′)

dτ̃0:t (B.53)

= EqT̃ 0
(τ̃0)

[
t∑

t′=0

∫
A
π(at′ | st′) log

π(at′ | st′)
p(at′ | st′)

dat′

]
(B.54)

= EqT̃ 0
(τ̃0)

[
t∑

t′=0

DKL(π(· | st′) ∥ p(· | st′))

]
, (B.55)

where we have used the same marginalization trick as above to express the expression in terms of an infinite-298

horizon trajectory distribution, which allows us to express Equation (B.49) as299

F(π, qT ,SΩ)

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

(
t∏

t′=1

q(∆t′ = 0)

)
·
(
q∆t+1(∆t+1 = 1)

( t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)

− EqT̃ 0
(τ̃0)

[
t∑

t′=0

DKL(π(· | st′) ∥ p(· | st′))

])
− DKL(q∆t+1 ∥ p∆t+1)

)]

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

(
t∏

t′=1

q(∆t′ = 0)

)
·
(
q∆t+1(∆t+1 = 1)

(
EqT̃ 0

(τ̃0)

[ t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)

− DKL(π(· | st′) ∥ p(· | st′))
])
− DKL(q∆t+1 ∥ p∆t+1)

)]
.

(B.56)

Rearranging and dropping redundant expectation operators, we can now express the objective as300

F(π, qT ,SΩ)

= EqT̃ 0
(τ̃0)

[
−

∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)(
q∆t+1(∆t+1 = 1)DKL(q∆t+1 ∥ p∆t+1)

)]

+

∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)q∆t+1(∆t+1 = 1)

)
︸ ︷︷ ︸

=qT (t)

· EqT̃ 0
(τ̃0)

[
t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(π(· | st′) ∥ p(· | st′))

]
,

(B.57)
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whereupon we note that the last term can be expressed as301

∞∑
t=0

qT (t)EqT̃ 0
(τ̃0)

[
t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(π(· | st′) ∥ p(· | st′))

]

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

t∑
t′=0

qT (t)(log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(π(· | st′) ∥ p(· | st′)))

] (B.58)

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

q(T ≥ t)(log P(ξt+1(SΩ) = 1 | st,at)− DKL(π(· | st) ∥ p(· | st)))

]
(B.59)

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)
︸ ︷︷ ︸

(by Lemma 2)

(log P(ξt+1(SΩ) = 1 | st,at)− DKL(π(· | st) ∥ p(· | st)))

]
,

(B.60)

where the second line follows from expanding the sums and regrouping terms. By substituting the expression302

in Equation (B.60) into Equation (B.57), we obtain an objective expressed entirely in terms of distributions over303

single-index random variables:304

F(π, qT ,SΩ)

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)

·
(
log P(ξt+1(SΩ) = 1 | st,at)− q∆t+1(∆t+1 = 1)DKL(q∆t+1 ∥ p∆t+1)− DKL(π(· | st) ∥ p(· | st))

)]
(B.61)

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)(
r(st,at,SΩ; q∆)− DKL(π(· | st) ∥ p(· | st))

)]
, (B.62)

where we defined305

r(st,at,SΩ; q∆) =̇ log P(ξt+1(SΩ) = 1 | st,at)− q∆t+1(∆t+1 = 1)DKL(q∆t+1 ∥ p∆t+1), (B.63)

which concludes the proof.306

Theorem 1 (Recursive Dynamic-Discount Behavior-Driven RL as Variational Inference). Let qT (t) and307

qT̃ 0:t|T (τ̃0:t | t) be as defined in Equation (7) and Equation (9), and define308

V π(st,SΩ; qT ) =̇ Eπ(at | st)

[
Qπ(st,at,SΩ; qT )

]
− DKL(π(· | st) ∥ p(· | st)), (B.64)

Qπ(st,at,SΩ; qT ) =̇ r(st,at,SΩ; q∆) + q(∆t+1 = 0)Epd(st+1 | st,at)

[
V π(st+1,SΩ;π, qT )

]
, (B.65)

r(st,at,SΩ; q∆) =̇ log P(ξt+1(SΩ) = 1 | st,at)− q∆t+1(∆t+1 = 1)DKL(q∆t+1 ∥ p∆t+1). (B.66)

Then given an optimal state trajectory SΩ,309

DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |∆1:t+1(SΩ)(· |∆
⋆
1:t+1(SΩ))) = −F(π, qT ,SΩ) + C = −V π(s0,SΩ; qT ) + C,

where C =̇ log p(∆⋆
1:T+1) is independent of π and qT , and hence maximizing V π(s0,SΩ;π, qT ) is equivalent310

to minimizing Equation (8). In other words,311

argmin
π∈Π,qT∈QT

{DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |S0,ST⋆
(· |∆⋆

1:T+1))}

= argmax
π∈Π,qT∈QT

F(π, qT ,SΩ) = argmax
π∈Π,qT∈QT

V π(s0,SΩ; qT ).

Proof. The proof follows directly from the proof of Theorem 1 in Rudner et al. [8].312

B.3 Optimal Variational Posterior over T313

Proposition 2 (Optimal Variational Distribution over T ). The optimal variational distribution q⋆T with respect314

to Equation (10) is defined recursively in terms of q⋆∆t+1
(∆t+1 = 0)∀t ∈ N0 by315

q⋆∆t+1
(∆t+1 = 0;π,Qπ) = σ

(
Λ(st, π, qT , Q

π) + σ−1(p∆t+1(∆t+1 = 0)
))
, (B.67)
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where316

Λ(st, π, qT , Q
π) =̇ Eπ(at+1 | st+1)pd(st+1 | st,at)π(at | st)[Q

π(st+1,at+1,SΩ; qT )− log P(ξt+1(SΩ) = 1 | st,at)]

and σ(·) is the sigmoid function, that is, σ(x) = 1
e−x+1

and σ−1(x) = log x
1−x

.317

Proof. Consider F(π, qT ,SΩ):318

F(π, qT , st,SΩ) = Eπ(at|st)[Q
π(st,at,SΩ; qT )]

= Eπ(at|st)[r(st,at,SΩ; q∆) + q∆t+1(∆t+1 = 0)E
[
V(st+1,SΩ; qT )

]
].

(B.68)

Since the variational objective F(π, qT , st,SΩ) can be expressed recursively as319

V π(st,SΩ; qT ) =̇ Eπ(at | st)

[
Q(st,at,SΩ; qT )

]
− DKL(π(· | st) ∥ p(· | st)),

with320

Qπ(st,at,SΩ; qT ) =̇ r(st,at,SΩ; q∆) + q∆t+1(∆t+1 = 0)Epd(st+1 | st,at)

[
V π(st+1,SΩ; qT )

]
,

r(st,at,SΩ; q∆) =̇ log P(ξt+1(SΩ) = 1 | st,at)− q∆t+1(∆t+1 = 1)DKL(q∆t+1 ∥ p∆t+1),

and since DKL(q∆t+1 ∥ p∆t+1) is strictly convex in q∆t+1(∆t+1 = 0), we can find the globally optimal321

Bernoulli distribution parameters q∆t+1(∆t+1 = 0) for all t ∈ N0 recursively. That is, it is sufficient to solve322

the problem323

q⋆∆t+1
(∆t+1 = 0) =̇ argmax

q∆t+1
(∆t+1=0)

{
F(π, qT ,SΩ)

}
= argmax

q∆t+1
(∆t+1=0)

{
F(π, q∆1 , . . . , q∆t+1 , . . . , s0,S

Ω)
}

(B.69)

for a fixed t + 1. To do so, we take the derivative of F(π, q∆1 , . . . , q∆t+1 , . . . , s0,SΩ), which—defined324

recursively—is given by325

Eπ(at | st)

[
Q(st,at,SΩ; qT

]
− DKL(π(· | st) ∥ p(· | st))

=Eπ(at | st)

[
r(st,at,SΩ; q∆) + q∆t+1(∆t+1 = 0)Epd(st+1 | st,at)

[
V π(st+1,SΩ; qT )

]]
− DKL(π(· | st) ∥ p(· | st))

(B.70)

=Eπ(at | st)

[
log P(ξt+1(SΩ) = 1 | st,at)− DKL(q∆t+1 ∥ p∆t+1)

+ q∆t+1(∆t+1 = 0)Epd(st+1 | st,at)

[
V π(st+1,SΩ; qT )

] ]
− DKL(π(· | st) ∥ p(· | st))

(B.71)

=Eπ(at | st)

[
log P(ξt+1(SΩ) = 1 | st,at)− DKL(q∆t+1 ∥ p∆t+1)

+ q∆t+1(∆t+1 = 0)Epd(st+1 | st,at)

[
V π(st+1,SΩ; qT )

] ]
− DKL(π(· | st) ∥ p(· | st)),

(B.72)

with respect to q∆t+1(∆t+1 = 0) and set it to zero, which yields326

0 = −Eπ(at | st)

[
Eπ(at+1 | st+1)pd(st+1 | st,at)[Q

π(st+1,at+1,SΩ; qT )]
]

+ log
1− q⋆∆t+1

(∆t+1 = 0)

1− p∆t+1(∆t+1 = 0)
− log

q⋆∆t+1
(∆t+1 = 0)

p∆t+1(∆t+1 = 0)
.

(B.73)

Rearranging, we get327

q⋆∆t+1
(∆t+1 = 0)

1− q⋆∆t+1
(∆t+1 = 0)

= exp

(
E[Qπ(st+1,at+1,SΩ; qT )] + log

p∆t+1(∆t+1 = 0)

1− p∆t+1(∆t+1 = 0)

)
, (B.74)

where the expectation is taken with respect to π(at+1 | st+1)pd(st+1 | st,at)π(at | st) and the Q-function328

depends on q(∆t′) with t′ > t, but not on q⋆∆t+1
(∆t+1 = 0). Solving for q⋆∆t+1

(∆t+1 = 0). Solving for329

q⋆∆t+1
(∆t+1 = 0), we obtain330

q⋆∆t+1
(∆t+1 = 0) =

exp(Epπpd
π(at | st)[Q

π(st+1,at+1,SΩ; qT )] + log
p∆t+1

(∆t+1=0)

1−p∆t+1
(∆t+1=0)

)

1 + exp(Epπpd
π(at | st)[Q

π(st+1,at+1,SΩ; qT )] + log
p∆t+1

(∆t+1=0)

1−p∆t+1
(∆t+1=0)

)
(B.75)

= σ
(
Epπpd

[Qπ(st+1,at+1,SΩ; qT )] + σ−1 (p∆t+1(∆t+1 = 0)
) )

, (B.76)

where pπpd =̇ π(at+1 | st+1)pd(st+1 | st,at), σ(·) is the sigmoid function with σ(x) = 1
e−x+1

and331

σ−1(x) = log x
1−x

. This concludes the proof.332
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Remark 1. As can be seen from Proposition 2 (Optimal Variational Distribution over T ), the optimal approxima-333

tion to the posterior over T trades off short-term rewards via Eπ(at | st)[r(st,at,SΩ; q∆)], long-term rewards334

via Eπ(at+1 | st+1)pd(st+1 | st,at)[Q
π(st+1,at+1,SΩ; qT )], and the prior log-odds of not achieving the outcome335

at a given point in time conditioned on the outcome not having been achieved yet,
p∆t+1

(∆t+1=0)

1−p∆t+1
(∆t+1=0)

.336

B.4 Dynamic-Discount Behavior-Driven Policy Iteration337

Theorem 2 (Variational Dynamic-Discount Behavior-Driven Policy Iteration). Assume |A| <∞ and that the338

MDP is ergodic.339

1. Dynamic-Discount Behavior-Driven Policy Evaluation (D2BD-PE): Given policy π and a function Q0 :340

S ×A×S → R, define Qi+1 = T πQi. Then the sequence Qi converges to the lower bound in Theorem 1341

(Dynamic-Discount Behavior-Driven RL as Variational Inference).342

2. Dynamic-Discount Behavior-Driven Policy Improvement (D2BD-PI): The policy343

π+ = argmax
π′∈Π

{
Eπ′(at | st)

[
Qπ(st,at,SΩ; qT )

]
− DKL(π

′(· | st) || p(· | st))
}

(B.77)

and the variational distribution over T recursively defined in terms of344

q+(∆t+1 = 0;π,Qπ)

= σ
(
Eπ(at+1 | st+1)pd(st+1 | st,at)[Q

π(st+1,at+1,SΩ; qT )] + σ−1 (p∆t+1(∆t+1 = 0)
) ) (B.78)

improve the variational objective. In other words, we have that V π+

(s0,SΩ; qT ) ≥ V π(s0,SΩ; qT ) and345

V π(s0,SΩ; q+T ) ≥ V π(s0,SΩ; qT ) for all s0 ∈ S.346

3. Alternating between D2BD-PE and D2BD-PI converges to a policy π⋆ and a variational distribution over T ,347

q⋆T , such that Qπ⋆

(s,a,SΩ; q⋆T ) ≥ Qπ(s,a,SΩ; qT ) for all (π, qT ) ∈ Π×QT and any (s,a) ∈ S ×A.348

Proof. Parts of this proof are adapted from the proof given in Haarnoja et al. [1], modified for the Bellman349

operator proposed in Definition 1.350

1. Dynamic-Discount Behavior-Driven Policy Evaluation (D2BD-PE): Instead of absorbing the entropy term351

into the Q-function, we can define an entropy-augmented reward as352

rπ(st,at,SΩ; q∆) =̇ log P(ξt+1(SΩ) = 1 | st,at)− DKL(q∆t+1 ∥ p∆t+1)

+ q∆t+1(∆t+1 = 0)Epd(st+1 | st,at)[DKL(π(· | st+1) ∥ p(· | st+1))].
(B.79)

We can then write an update rule according to Definition 1 as353

Q̃(st,at,SΩ; qT )← rπ(st,at,SΩ; q∆) + q∆t+1(∆t+1 = 0)Eπ(at+1 | st+1)pd(st+1 | st,at)[Q̃(st+1,at+1,SΩ; qT )],

(B.80)

where q∆t+1(∆t+1 = 0) ≤ 1. This update is similar to a Bellman update [10], but with a discount354

factor given by q∆t+1(∆t+1 = 0). In general, this discount factor q∆t+1(∆t+1 = 0) can be computed355

dynamically based on the current state and action, such as in Equation (B.67). As discussed in White [12],356

this Bellman operator is still a contraction mapping so long as the Markov chain induced by the current357

policy is ergodic and there exists a state such that q∆t+1(∆t+1 = 0) < 1. The first condition is true by358

assumption. The second condition is true since q∆t+1(∆t+1 = 0) is given by Equation (B.67), which359

is always strictly between 0 and 1. Therefore, we apply convergence results for policy evaluation with360

transition-dependent discount factors [12] to this contraction mapping, and the result immediately follows.361

2. Dynamic-Discount Behavior-Driven Policy Improvement (D2BD-PI): Let πold ∈ Π and let Qπold and V πold362

be the behavior-driven state and state-action value functions from Definition 1, let qT be some variational363

distribution over T , and let πnew be given by364

πnew(at|st) = argmax
π′∈Π

{
Eπ′(at | st)

[
Qπold(st,at,SΩ; qT )

]
− DKL(π

′(· | st) ∥ p(· | st))
}

(B.81)

= argmax
π′∈Π

Jπold(π
′(at, st), qT ). (B.82)

Then, it must be true that Jπold(πold(at|st); qT ) ≤ Jπold(πnew(at|st); qT ), since one could set365

πnew = πold ∈ Π. Thus,366

Eπnew(at|st)

[
Qπold(st,at,SΩ; qT )

]
− DKL(πnew(· | st) ∥ p(· | st))

≥ Eπold(at|st)

[
Qπold(st,at,SΩ; qT )

]
− DKL(πold(· | st) ∥ p(· | st)),

(B.83)
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and since367

V πold(st,SΩ; qT ) = Eπold(at|st)

[
Qπold(st,at,SΩ; qT )

]
− DKL(πold(· | st) ∥ p(· | st)), (B.84)

we get368

Eπnew(at|st)

[
Qπold(st,at,SΩ; qT )

]
− DKL(πnew(· | st) ∥ p(· | st)) ≥ V πold(st,SΩ; qT ). (B.85)

We can now write the Bellman equation as369

Qπold(st,at,SΩ; qT )

= q∆t+1(∆t+1 = 1) log pd(g | st,at) + q∆t+1(∆t+1 = 0)Epd(st+1 | st,at)[V
πold(st+1,SΩ; qT )]

(B.86)

≤ q∆t+1(∆t+1 = 1) log pd(g | st,at) + q∆t+1(∆t+1 = 0)Ep(st′ |st,at)[Eπnew(at′ |st′ )

[
Qπold(st′ ,at′ ,SΩ; qT )

]
− DKL(πnew(· | st′) ∥ p(· | st′))],

(B.87)

...

≤ Qπnew(st,at,SΩ; qT ) (B.88)

where we defined t′ =̇ t+ 1, repeatedly applied the Bellman backup operator defined in Definition 1 and370

used the bound in Equation (B.85). Convergence follows from Dynamic-Discount Behavior-Driven Policy371

Evaluation above.372

3. Locally Optimal Variational Dynamic-Discount Behavior-Driven Policy Iteration: Define πi to be a policy373

at iteration i. By ODPI for a given qT , the sequence of state-action value functions {Qπi

(qT )}∞i=1 is374

monotonically increasing in i. Since the reward is finite and the negative KL divergence is upper bounded by375

zero, Qπ(qT ) is upper bounded for π ∈ Π and the sequence {πi}∞i=1 converges to some π⋆. To see that π⋆
376

is an optimal policy, note that it must be the case that Jπ⋆(π⋆(at|st); qT ) > Jπ⋆(π(at | st); qT ) for any377

π ∈ Π with π ̸= π⋆. By the argument used in ODPI above, it must be the case that the behavior-driven378

state-action value of the converged policy is higher than that of any other non-converged policy in Π, that is,379

Qπ⋆

(st,at; qT ) > Qπ(st,at; qT ) for all π ∈ Π and any qiT ∈ QT and (s,a) ∈ S ×A. Therefore, given380

qT , π⋆ must be optimal in Π, which concludes the proof.381

4. Globally Optimal Variational Dynamic-Discount Behavior-Driven Policy Iteration: Let πi be a policy and382

let qiT be variational distributions over T at iteration i. By Locally Optimal Variational Dynamic-Discount383

Behavior-Driven Policy Iteration, for a fixed qiT with qiT = qjT∀i, j ∈ N0, the sequence of {(πi, qiT )}∞i=1384

increases the objective Equation (B.24) at each iteration and converges to a stationary point in πi, where385

Qπ⋆

(st,at; q
i
T ) > Qπ(st,at; q

i
T ) for all π ∈ Π and any qiT ∈ QT and (s,a) ∈ S ×A. Since the386

objective in Equation (B.24) is concave in qT , it must be the case that for, q⋆
i

T ∈ QT , the optimal variational387

distribution over T at iteration i, defined recursively by388

q⋆
i

(∆t+1 = 0;πi, Qπi

)

= σ
(
Eπ(at+1 | st+1)pd(st+1 | st,at)[Q

πi

(st+1,at+1,SΩ; qT (π
i, Qπi

))] + σ−1(p∆t+1(∆t+1 = 0)
)
,

for t ∈ N0, Qπ(st,at; q
⋆
T ) > Qπ(st,at; qT ) for all π ∈ Π and any (s,a) ∈ S ×A. Note that qT is389

defined implicitly in terms of πi and Qπi

, that is, the optimal variational distribution over T at iteration390

i is defined as a function of the policy and Q-function at iteration i. Hence, it must then be true that for391

Qπ⋆

(st,at; q
⋆
T ) > Qπ⋆

(st,at; qT ) for all q⋆T (π
⋆, Qπ⋆

) ∈ QT and for any π⋆ ∈ Π and (s,a) ∈ S ×A.392

In other words, for an optimal policy and corresponding Q-function, there exists an optimal variational393

distribution over T that maximizes the Q-function, given the optimal policy. Repeating locally optimal394

variational behavior-driven policy iteration under the new variational distribution q⋆T (π
⋆, Qπ⋆

) will yield an395

optimal policy π⋆⋆ and computing the corresponding optimal variational distribution, q⋆⋆T (π⋆⋆, Qπ⋆⋆

) will396

further increase the variational objective such that for π⋆⋆) ∈ Π and q⋆⋆T (π⋆⋆, Qπ⋆⋆

) ∈ QT , we have that397

Qπ⋆⋆

(st,at; q
⋆⋆
T ) > Qπ⋆⋆

(st,at; q
⋆
T ) > Qπ⋆

(st,at; q
⋆
T ) > Qπ⋆

(st,at; qT ) (B.89)

for any π⋆ ∈ Π and (s,a) ∈ S ×A. Hence, global optimal variational behavior-driven policy iteration398

increases the variational objective at every step. Since the objective is upper bounded (by virtue of the399

rewards being finite and the negative KL divergence being upper bounded by zero) and the sequence of400

{(πi, qiT )}∞i=1 increases the objective Equation (B.24) at each iteration, by the monotone convergence401

theorem, the objective value converges to a supremum and since the objective function is concave the402
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supremum is unique. Hence, since the supremum is unique and obtained via global optimal variational403

outcome–driven policy iteration on (π, qT ) ∈ Π × QT , the sequence of {(πi, qiT )}∞i=1 converges to a404

unique stationary point (π⋆, q⋆T ) ∈ Π×QT , where Qπ⋆

(st,at; q
⋆
T ) > Qπ(st,at; q

i
T ) for all π ∈ Π and405

any qiT ∈ QT and (s,a) ∈ S ×A.406

407

Corollary 3 (Optimality of Variational Outcome Driven Policy Iteration). Variational Dynamic-408

Discount Behavior-Driven Policy Iteration on (π, qT ) ∈ Π×QT results in an optimal policy at least as good409

or better than any optimal policy attainable from policy iteration on π ∈ Π alone.410

Remark 2. The convergence proof of ODPE assumes a transition-dependent discount factor [12], because the411

variational distribution used in Equation (B.67) depends on the next state and action as well as on the desired412

outcome.413

B.5 Lemmas414

Lemma 1. Let q(T = t) =̇ q(T = t|T ≥ t)
∏t

i=1 q(T ̸= i − 1|T ≥ i − 1) be a discrete probability415

distribution with support N0. Then for any t ∈ N0, we have that416

q(T ≥ t) =

∞∑
i=t

q(T = i|T ≥ i)

i∏
j=1

q(T ̸= j − 1|T ≥ j − 1) =

t∏
i=1

q(T ̸= i− 1|T ≥ i− 1). (B.90)

Proof. We proof the statement by induction on t.417

Base case: For t = 0, q(T ≥ 0) = 1 by definition of the empty product.418

Inductive case: Note that q(T ≤ t) =
∏t

i=1 q(T = i− 1|T ≥ i− 1). Show that419

q(T ≥ t) =

t∏
i=1

q(T ̸= i− 1|T ≥ i− 1) =⇒ q(T ≥ t+ 1) =

t+1∏
i=1

q(T ̸= i− 1|T ≥ i− 1). (B.91)

Consider q(T ≥ t + 1) =
∑∞

i=t+1 q(T = i|T ≥ i)
∏i

j=1 q(T ̸= j − 1|T ≥ j − 1). To proof the inductive420

hypothesis, we need to show that the following equality is true:421

∞∑
i=t+1

q(T = i|T ≥ i)

i∏
j=1

q(T ̸= j − 1|T ≥ j − 1) =

t+1∏
i=1

q(T ̸= i− 1|T ≥ i− 1) (B.92)

⇐⇒
∞∑
i=t

q(T = i|T ≥ i)

i∏
j=1

q(T ̸= j − 1|T ≥ j − 1)− q(T = t|T ≥ t)

t∏
j=1

q(T ̸= j − 1|T ≥ j − 1)

= q(T ̸= t|T ≥ t)
t∏

i=1

q(T ̸= i− 1|T ≥ i− 1).

(B.93)

By the inductive hypothesis,422

q(T ≥ t) =

∞∑
i=t

q(T = i|T ≥ i)

i∏
j=1

q(T ̸= j − 1|T ≥ j − 1) =

t∏
i=1

q(T ̸= i− 1|T ≥ i− 1), (B.94)

and so423

Equation (B.93)⇐⇒
t∏

j=1

q(T ̸= j|T ≥ j)− q(T ̸= t+ 1|T ≥ t+ 1 (B.95)

·
t∏

j=1

q(T = j|T ≥ j) = q(T ̸= t|T ≥ t)
t∏

i=1

q(T ̸= i− 1|T ≥ i− 1). (B.96)
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Factoring out
∏t

i=1 q(T ̸= i− 1|T ≥ i− 1), we get424

⇐⇒
t∏

j=1

q(T ̸= j − 1|T ≥ j − 1) (1− q(T = t|T ≥ t))︸ ︷︷ ︸
=q(T ̸=t|T≥t)

= q(T ̸= t|T ≥ t)

t∏
j=1

q(T = j − 1|T ≥ j − 1)

(B.97)

⇐⇒ q(T ̸= t|T ≥ t)

t∏
j=1

q(T ̸= j − 1|T ≥ j − 1) = q(T ̸= t|T ≥ t)

t∏
j=1

q(T ̸= j − 1|T ≥ j − 1),

(B.98)
which proves the inductive hypothesis.425

Lemma 2. Let qT (t) and pT (t) be discrete probability distributions with support N0, let ∆t be a Bernoulli426

random variable, with success defined as T = t + 1 given that T ≥ t, and let q∆t be a discrete probability427

distribution over ∆t for t ∈ N\{0}, so that428

q∆t+1(∆t+1 = 0) =̇ q(T ̸= t |T ≥ t)

q∆t+1(∆t+1 = 1) =̇ q(T = t |T ≥ t).
(B.99)

Then we can write q(T = t) = q∆t+1(∆t+1 = 1)
∏t

i=1 q∆i(∆i = 0) for any t ∈ N0 and have that429

q(T ≥ t) =
∞∑
i=t

q∆i+1(∆i+1 = 1)

i∏
j=1

q∆j (∆j = 0) =

t∏
i=1

q∆i(∆i = 0). (B.100)

Proof. By Lemma 1, we have that for any t ∈ N0430

q(T ≥ t) =

∞∑
i=t

q(T = i|T ≥ i)

i∏
j=1

q(T ̸= j − 1|T ≥ j − 1) =

t∏
i=1

q(T ̸= i− 1|T ≥ i− 1). (B.101)

The result follows by replacing q(T = i|T ≥ i) by q∆i+1(∆i+1 = 1), q(T ̸= j − 1|T ≥ j − 1) by431

q∆j (∆j = 0), and q(T ̸= i− 1|T ≥ i− 1) by q∆i(∆i = 0).432

Lemma 3. Let qT (t) and pT (t) be discrete probability distributions with support N0. Then for any k ∈ N0,433

Et∼q(T |T≥k)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
= f(q, p, k) + q(T ̸= k |T ≥ k)Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k + 1)

p(T = t |T ≥ k + 1)

]
.

(B.102)

Proof. Consider Et∼q(T |T≥k)

[
log q(T=t |T≥k)

p(T=t |T≥k)

]
and note that by the law of total expectation we can rewrite434

it as435

Et∼q(T |T≥k)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
= q(T = k |T ≥ k)Et∼q(T |T=k)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
+ q(T ̸= k |T ≥ k)Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

] (B.103)

= q(T = k |T ≥ k) log
q(T = k |T ≥ k)

p(T = k |T ≥ k)
+ q(T ̸= k |T ≥ k)Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
.

(B.104)

For all values of T ≥ k + 1, we have that436

q(T = t |T ≥ k) = q(T = t |T ≥ k + 1)q(T ̸= k |T ≥ k) (B.105)
p(T = t |T ≥ k) = p(T = t |T ≥ k + 1)p(T ̸= k |T ≥ k) (B.106)

and so we can rewrite the expectation in Equation (B.104) as437

Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
= Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)
+ log

q(T ̸= k |T ≥ k)

p(T ̸= k |T ≥ k)

]
(B.107)

= Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
+ log

q(T ̸= k |T ≥ k)

p(T ̸= k |T ≥ k)
(B.108)
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Combining Equation (B.108) with Equation (B.104), we have438

Et∼q(T |T≥k)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
= q(T = k |T ≥ k) log

q(T = k |T ≥ k)

p(T = k |T ≥ k)
+ q(T ̸= k |T ≥ k) log

q(T ̸= k |T ≥ k)

p(T ̸= k |T ≥ k)︸ ︷︷ ︸
=̇ f(q,p,k)

+ q(T ̸= k |T ≥ k)Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k + 1)

p(T = t |T ≥ k + 1)

]
,

(B.109)

which concludes the proof.439

Lemma 4. Let qT (t) and pT (t) be discrete probability distributions with support N0. Then the KL divergence440

from qT to pT can be written as441

DKL(qT || pT ) =
∞∑
t=0

q(T ≥ t)f(qT , pT , t) (B.110)

where f(qT , pT , t) is shorthand for442

f(qT , pT , t) = q(T = t |T ≥ t) log
q(T = t |T ≥ t)

p(T = t |T ≥ t)
+ q(T ̸= t |T ≥ t) log

q(T ̸= t |T ≥ t)

p(T ̸= t |T ≥ t)
. (B.111)

Proof. Note that q(T = k) denotes the probability that the distribution q assigns to the event T = k and q(T ≥443

m) denotes the tail probability, that is, q(T ≥ m) =
∑∞

t=m q(T = t). We will write q(T |T ≥ m) to denote444

the conditional distribution of q given T ≥ m, that is, q(T = k|T ≥ m) = 1[k ≥ m]q(T = k)/q(T ≥ m).445

We will use analogous notation for p.446

By the definition of the KL divergence and using the fact that, since the support is lowerbounded by T = 0,447

q(T = 0) = q(T = 0 |T ≥ 0), we have448

DKL(qT ∥ pT ) = Et∼q(T )

[
log

q(T = t)

p(T = t)

]
= Et∼q(T |T≥0)

[
log

q(T = t |T ≥ 0)

p(T = t |T ≥ 0)

]
. (B.112)

Using Lemma 3 with k = 0, 1, 2, 3, . . . , we can expand the above expression to get449

DKL(qT ∥ pT ) = f(qT , pT , 0) + q(T ̸= 0 |T ≥ 0)Et∼q(T |T≥1)

[
log

q(T = t |T ≥ 1)

p(T = t |T ≥ 1)

]
(B.113)

= f(q, p, 0) + q(T ̸= 0 |T ≥ 1)f(qT , pT , 1)

+ q(T ̸= 0 |T ≥ 0)q(T ̸= 1 |T ≥ 1)Et∼q(T |T≥2)

[
log

q(T = t |T ≥ 2)

p(T = t |T ≥ 2)

]
(B.114)

= 1︸︷︷︸
=q(T≥0)

·f(q, p, 0)

+ q(T ̸= 0 |T ≥ 0)︸ ︷︷ ︸
=q(T≥1)

f(q, p, 1)

+ q(T ̸= 0 |T ≥ 0)q(T ̸= 1 |T ≥ 1)︸ ︷︷ ︸
=q(T≥2)

f(qT , pT , 2)

+ q(T ̸= 0 |T ≥ 0)q(T ̸= 1 |T ≥ 1)q(T ̸= 2 |T ≥ 2)︸ ︷︷ ︸
=q(T≥3)

Et∼q(T |T≥3)

[
log

q(T = t |T ≥ 3)

p(T = t |T ≥ 3)

]
(B.115)

=

∞∑
t=0

q(T ≥ t)f(qT , pT , t), (B.116)

where f(qT , pT , t) is shorthand for450

f(qT , pT , t) = q(T = t |T ≥ t) log
q(T = t |T ≥ t)

p(T = t |T ≥ t)
+ q(T ̸= t |T ≥ t) log

q(T ̸= t |T ≥ t)

p(T ̸= t |T ≥ t)
. (B.117)

and we used the fact that, by Lemma 1,451

q(T ≥ t) =

t∏
k=1

q(T ̸= k − 1 |T ≥ k − 1). (B.118)

This completes the proof.452
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Lemma 5. Let qT (t) and pT (t) be discrete probability distributions with support N0, let ∆t be a Bernoulli453

random variable, with success defined as T = t given that T ≥ t, and let q∆t and p∆t be discrete probability454

distributions over ∆t for t ∈ N0\{0}, so that455

q∆t+1(∆t+1 = 0) =̇ q(T ̸= t |T ≥ t) q∆t+1(∆t+1 = 1) =̇ q(T = t |T ≥ t) (B.119)

p∆t+1(∆t+1 = 0) =̇ p(T ̸= t |T ≥ t) p∆t+1(∆t+1 = 1) =̇ p(T = t |T ≥ t). (B.120)

Then the KL divergence from qT to pT can be written as456

DKL(qT || pT ) =
∞∑
t=0

( t∏
k=1

q∆t(∆t = 0)
)
DKL(q∆t+1 || p∆t+1) (B.121)

Proof. The result follows from Lemma 4, Equation (B.118), Equation (B.119), and the definition of f . In detail,457

from Lemma 1, and Equation (B.119) we have that458

q(T ≥ t) =

t∏
k=1

q(T ̸= k − 1 |T ≥ k − 1) =

t∏
k=1

q∆k (∆k = 0). (B.122)

From the definition of f(qT , pT , t), we have459

f(qT , pT , t) = q(T = t |T ≥ t) log
q(T = t |T ≥ t)

p(T = t |T ≥ t)
+ q(T ̸= t |T ≥ t) log

q(T ̸= t |T ≥ t)

p(T ̸= t |T ≥ t)
(B.123)

= q∆t+1(∆t+1 = 0) log
q∆t+1(∆t+1 = 0)

p∆t+1(∆t+1 = 0)
+ q(∆t+1 = 1) log

q∆t+1(∆t+1 = 1)

p∆t+1(∆t+1 = 1)
(B.124)

= DKL(q∆t+1 ∥ p∆t+1). (B.125)

Combining Equation (B.122), Equation (B.125), and Equation (B.110) completes the proof.460
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