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Abstract

Reinforcement learning in infinite-horizon Markov decision processes (MDPs) is
typically framed as expected discounted return maximization. In this paper, we
formulate an alternative principle for optimal sequential decision-making in infinite-
horizon MDPs: variational Bayesian inference in transdimensional probabilistic
models. In particular, we specify a probabilistic model over a random-length
state–action trajectory and consider the variational problem of finding an approxi-
mation to the posterior distribution over state–action trajectories conditioned on
state–action trajectories that reflect some desired behavior. We derive a tractable
variational objective for infinite-horizon settings, prove a variational dynamic-
discount policy iteration theorem, show that fixed discount factor KL-regularized
reinforcement learning objectives are special cases of dynamic-discount variational
objectives, and prove that learning dynamic discount factors is optimal.

1 Introduction

We provide a Bayesian framework for deriving behavior-driven optimal decision rules for sequential
decision problems. In particular, we provide a mathematical justification for learned, dynamic dis-
count factors in KL-regularized reinforcement learning, which have been proposed as an empirically
useful tool in recently developed reinforcement learning algorithms [4, 6, 8], and establish a rigorous
foundation for framing modern reinforcement learning methods as probabilistic inference. Although
control as inference has gained in popularity, the treatment of infinite-horizon settings in previous
works is ad-hoc and not probabilistically well-motivated. With this work, we hope to address this
shortcoming and provide a clear formulation of control as inference that carefully disambiguates
modeling and inference assumptions.

Levine [3] and Haarnoja et al. [1] presented a framework for framing maximum-entropy reinforcement
learning as Bayesian inference in probabilistic models over finite-horizon state–action trajectories.
However, most modern reinforcement learning problems are not formulated as finite but as infinite-
horizon problems [5, 9]. To apply their probabilistic probabilistic formulation of reinforcement
learning to infinite-horizon problems, Levine [3] and Haarnoja et al. [1] introduce a fixed discount-
factor into their formulation post-hoc and without providing a probabilistic justification for doing
so. In this paper, we show that including a (fixed) discount factor as proposed by Levine [3] and
Haarnoja et al. [1] is a special case of a more general probabilistic framing of the problem, leads to
a variational formulation with a loose evidence lower bound, and can provably be improved upon
by framing Bayesian variational inference in infinite-horizon MDPs as variational inference in a
transdimensional probabilistic model.

To derive a learning algorithm that allows us to infer a policy that reflects the behavior encoded
in desired state trajectories, we frame the problem of finding an optimal policy as computing
an approximation to the conditional distribution over state–action trajectories given state–action
trajectories that reflect a desired behavior. We formulate a corresponding probabilistic model and
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derive tractable variational objectives for finite- and infinite-horizon settings. Based on these results,
we define a novel Bellman backup operator and show that for tabular settings, the repeated application
of the operator converges to an optimal policy and an optimal dynamic discount factor. Building
on this result, we show that fixed discount factor KL-regularized reinforcement learning objectives
are special cases of the dynamic-discount objectives derived here and demonstrate that variationally
learned, dynamic discount factors are optimal in KL-regularized reinforcement learning.

2 Preliminaries

Standard reinforcement learning (RL) addresses reward maximization in a Markov decision pro-
cess (MDP) defined by the tuple (S,A, pS0 , pd, r, γ) [10, 11], where S and A denote the state
and action space, respectively, p0 denotes the initial state distribution, pd is a state transition dis-
tribution, r is an immediate reward function, and γ is a discount factor. To sample trajectories,
an initial state is sampled according to pS0

, and successive states are sampled from the state tran-
sition distribution St+1 ∼ pd(· | st,at) and actions from a policy At ∼ π(· | st). We will write
T 0:t = {S0,A0,S1, . . . ,St,At} to represent a finite-horizon and T 0 =̇ {St,At}∞t=0 to represent
an infinite-horizon stochastic state–action trajectory, and write τ0:t = {s0,a0, s1, . . . , st,at} and
τ0 =̇ {st,at}∞t=0 for the respective trajectory realizations. Given a reward function r : S ×A → R
and discount factor γ ∈ (0, 1), the objective in reinforcement learning is to find a policy π that
maximizes the returns, defined as Epπ [

∑∞
t=0 γ

tr(st,at)] , where pπ denotes the distribution of states
induced by a policy π.

3 A Variational Formulation of RL in Infinite-Horizon MDPs

Desired behaviors for artificial agents are often abstract and hard to encode into reward functions.
However, in practice, it is often easy to represent desired behaviors via demonstrations. Such
demonstrations can be thought of as sample state–action trajectories from a distribution over optimal
state–action trajectories. In the remainder of this paper, we will demonstrate how to use variational
Bayesian inference to infer an optimal policy from a set of optimal state–action demonstrations.

To start the exposition, we note that for every state in the environment, there exists a desired, or
optimal, behavior that an agent could take. We denote this optimal behavior for any given state as
the set of state–action trajectories by τΩ. Throughout, we will use the index Ω to denote optimality.
Hence, for any state s ∈ S , assuming the MDP is ergodic and transition dynamics are deterministic,
there exists a set of actions that will set an agent on an optimal state–action trajectory, that is,
AΩ =̇ {a ∈ A | s′ ∼ pd(s

′ | s,a) : s′ ∈ τΩ}, meaning there exists a set of actions that will set an
agent on the optimal state–action trajectory with probability one.

If the transition dynamics are stochastic, each state–action pair will have some probability less than
one of transitioning the agent onto an optimal state–action trajectory. Denoting the event of a state
being in the optimal state–action trajectory by s ∈ SΩ, where SΩ =̇ {s ∈ τΩ}, we can define a
random variable ξ(SΩ) =̇ I{s′ ∈ SΩ}. We then have that ξ = 1 if the state s′ into which an agent
transitioned after taking action a in state s is in the optimal trajectory and ξ(SΩ) = 0 otherwise. The
probability of transitioning into a state on the optimal state–action trajectory at time step t+ 1 is then
given by

P(ξt+1(SΩ) = 1 | st,at)=
∫
SΩ

pd(st+1 | st,at)dst+1=

∫
S
pd(st+1 | st,at) I{st+1 ∈ SΩ}dst+1. (1)

In other words, the probability of transitioning into a state on the optimal state–action trajectory
corresponds to marginalization over the set of optimal states SΩ. Equation (1) is a likelihood function.

Similarly, by the Markov property, the joint probability of transitioning into a state on the optimal
state–action trajectory and staying on it from time step 1 to time step t⋆ =̇ t+ 1, given a state–action
trajectory, factorizes and is given by

P(ξ1:t+1(SΩ) = 1 | s0,a0, ..., st,at)

=

t∏
t′=0

∫
SΩ

pd(st′+1 | st′ ,at′) dst′+1 =

t∏
t′=0

∫
S
pd(st′+1 | st′ ,at′) I{st′+1 ∈ SΩ} dst′+1,

(2)

where we start from t′ = 0 without loss of generality.
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3.1 Warm-Up: Finite-Horizon Reinforcement Learning as Variational Inference

First, we consider the finite-horizon setting. This formulation only diverges slightly from prior work
but will help us transition to the transdimensional model formulation for the infinite-horizon setting.

With the notion of trajectory-dependent optimality described in the previous section, we can now
specify a model over finite-horizon state–action trajectories and ξ1:t+1(SΩ),

p(τ0:t, ξ
⋆
1:t+1(SΩ)) =̇pS0

(s0)

t∏
t′=0

P(ξt′+1(SΩ) = 1 | st′ ,at′)p(at | st)
t−1∏
t′=0

pd(st′+1 | st′ ,at′)p(at′ | st′),

where T̃ 0:t is a state–action trajectory starting at state S0 and ending at state St, p(at | st) is
a conditional action prior, pd(st+1 | st,at) is the environment’s state transition distribution, and
ξ⋆1:t+1(SΩ) =̇ {ξt′(SΩ) = 1}t+1

t′=1 is the set of events corresponding to transitioning onto an optimal
trajectory. By extension, the probability of transitioning onto an optimal state–action trajectory and
remaining on it for t⋆ time steps given a state and a prior policy is given by the marginal likelihood

P(ξ1:t+1(SΩ)=1 | s0)=
∫∫

At+1St

pT̃ 0:t|S0
(τ̃0:t | s0)

(
t∏

t′=0

∫
SΩ

pd(st′+1 | st′ ,at′) dst′+1

)
ds1:t da0:t

(3)

where pT̃ 0:t|S0
(τ̃0:t | s0) =̇ p(at | st)

t−1∏
t′=0

pd(st′+1 | st′ ,at′) p(at′ | st′) (4)

is a prior distribution over state–action trajectories. Using an indicator function I{st+1 ∈ SΩ}
denoting whether the next state is on the desired state–action trajectory, the marginal likelihood in
Equation (3) can equivalently be expressed as

P(ξ1:t+1(SΩ) = 1 | s0)

=

∫∫
At+1St

pT̃ 0:t|S0
(τ̃0:t | s0)

(
t∏

t′=0

∫
S
pd(st′+1 | st′ ,at′) I{st′+1 ∈ SΩ} dst′+1

)
ds1:t da0:t.

(5)

This marginalization establishes the connection between the full joint distribution in Equation (3) and
the likelihood of remaining on an optimal state–action trajectory under a state–action trajectory prior
and the likelihood function defined in Equation (1).

P(ξ1:t+1(SΩ) = 1 | s0) is the marginal likelihood of remaining on the optimal state trajectory from
time step 1 to time step t+1 under the prior policy p(at | st) and the dynamics model pd(st+1 | st,at).
Using Bayes’ Theorem, we could use the marginal likelihood to compute the posterior distribution
over state–action trajectories, pT̃ 0:t|ξ1:t+1

(· | ξ⋆1:t+1(SΩ)). Unfortunately, the marginal likelihood
in Equation (5) is intractable for all but the simplest probabilistic models.

To infer an approximate posterior distribution over state–action trajectories instead, we express
posterior inference as the variational minimization problem

minqT̃ 0:t
∈Q̂ DKL(qT̃ 0:t

(·) ∥ pT̃ 0:t|ξ1:t+1
(· | ξ⋆1:t+1(SΩ))), (6)

where DKL(· ∥ ·) is the KL divergence, and Q̂ denotes the variational family over which to optimize.
We consider a family of distributions parameterized by a policy π and defined by

qT̃ 0:t
(τ̃0:t) =̇ pS0(s0)π(at | st)

∏t−1

t′=0
pd(st′+1 | st′ ,at′)π(at′ | st′), (7)

where π ∈ Π, a family of policy distributions, and where pS0
(s0)

∏t−1
t′=0 pd(st′+1 | st′ ,at′) is the

true state transition distribution up to and including the state transition at t. In Proposition 1 (Fixed-
Time Variational Objective), we show that under this variational family, the inference problem
in Equation (6) can be equivalently stated as the problem of maximizing an entropy-regularized
expected reward function at every time step, where the reward function is given by the log-likelihood
of transitioning onto an optimal state–action trajectory given a state–action pair. This is effectively
the result obtained by Ziebart et al. [13], Levine [3], and Haarnoja et al. [1].
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3.2 Infinite-Horizon Reinforcement Learning as Variational Bayesian Inference

To derive an infinite-horizon objective, we modify the probabilistic model used above. To represent
the possibility that an agent may stay on the optimal state trajectory for any number of time steps,
that is, for state–action trajectories of varying lengths, we treat the length of the trajectory itself as a
random variable, T , and define the model

p(τ̃0:t, ξ
⋆
1:t+1(SΩ), t) =̇pT (t)pS0

(s0)
∏t

t′=0
P(ξt′+1(SΩ) = 1 | st′ ,at′)pd(st′+1 | st′ ,at′)p(at′ | st′),

where pT (t) is the probability of remaining on the optimal state trajectory for t+ 1 time steps. Since
the trajectory length is itself a random variable, the joint distribution is a transdimensional distribution
defined on

⊎∞
t=0{t} × St ×At [2].

Unlike in the fixed-horizon setting, the variational Bayesian inference problem in the infinite-horizon
setting corresponds to finding the posterior distribution over both state–action trajectories and the
length of the optimal state trajectory T conditioned on the desired behavior ξ⋆1:t+1(SΩ). Analogously
to the steps above, we can express this inference problem variationally as

minqT̃ 0:T ,T∈Q DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |ξ1:T+1
(· | ξ⋆1:t+1(SΩ))), (8)

where t denotes the time step immediately before the outcome is achieved, Q denotes the variational
family. Under this variational distribution, we can obtain an unfactorized variational objective that
does in general not lend itself to stochastic gradient-based optimization (and off-policy reinforcement
learning). The variational objective is given in Proposition 3, but we omit it here for brevity.

To obtain a variational objective amenable to stochastic variational inference and off-policy reinforce-
ment learning, we define the variational family as follows: qT̃ 0:T ,T (τ̃0:t, t) = qT̃ 0:T |T (τ̃0:t | t)qT (t),
where qT is a distribution over T in some variational family QT parameterized by

qT (t) = q∆t+1(∆t+1 = 1)
∏t

t′=1
q∆t′ (∆t′ = 0), (9)

with Bernoulli random variables ∆t denoting the event of “remaining on the optimal state trajectory
from time step 1 to time step t+1,” we can equivalently express the variational problem in Equation (8)
recursively in a way that is tractable and amenable to off-policy optimization:
Theorem 1 (Dynamic-Discount Behavior-Driven RL as Variational Inference). Let qT (t) and
qT̃ 0:t|T (τ̃0:t | t) be as defined in Equation (7) and Equation (9), and define a behavior-driven state
value function,

V π(st,SΩ; qT ) =̇ Eπ(at | st)
[
Qπ(st,at,SΩ; qT )

]
− DKL(π(· | st) ∥ p(· | st)), (10)

a behavior-driven state–action value function
Qπ(st,at,SΩ; qT ) =̇ r(st,at,SΩ; q∆)+q(∆t+1 = 0)Epd(st+1 | st,at)

[
V π(st+1,SΩ;π, qT )

]
, (11)

and a behavior-driven reward-like function
r(st,at,SΩ; q∆) =̇ logP(ξt+1(SΩ) = 1 | st,at)− q∆t+1

(∆t+1 = 1)DKL(q∆t+1
∥ p∆t+1

). (12)
Then given an optimal state trajectory SΩ,

DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |ξ1:t+1
(· | ξ⋆1:T+1(SΩ))) = −Ep(s0)[V

π(s0,SΩ; qT )]+C,

where C =̇ log p(ξ⋆1:T+1(SΩ)) is independent of π and qT , and hence maximizing
Ep(s0)[V

π(s0,SΩ; qT )] is equivalent to minimizing Equation (8) and hence, the following holds:

argmin
π∈Π,qT∈QT

DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |ξ1:T+1
(· | ξ⋆1:T+1(SΩ))) = argmax

π∈Π,qT∈QT

Ep(s0)[V
π(s0,SΩ; qT )].

Theorem 1 tells us that the solution to the variational problem we started out with (Equation (8)),
is in fact the solution to an infinite-horizon reinforcement learning problem with a reward function
determined by the likelihood of transitioning onto an optimal trajectory, a learned, dynamic discount
factor, and KL divergence regularization. In Appendix A, we prove that dynamic-discount factor RL
is optimal and preferred over fixed discount factors. For detailed proofs, see the appendix.

4 Conclusion
Using a variational framing of the inference problem, we showed that optimized, dynamic discount
factors are optimal in KL-regularized RL and that fixed discount factor methods are a special (less
optimal) case of this formulation. We hope that this work contributes to bridging the gap between
reinforcement learning and probabilistic inference research and helps establish a mutual reference
point from which to derive new insights and methods.
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Appendix A Dynamic-Discount Behavior-Driven Reinforcement Learning
Building on Theorem 1, we will now define a dynamic-discount behavior-driven Bellman backup operator and
use it to derive a policy iteration theorem for variational, dynamic-discount reinforcement learning. In particular,
we define:

Definition 1 (Dynamic-Discount Behavior-Driven Bellman Backup Operator). Given a function Q : S × A×
S → R, define the operator T π as

T πQ(st,at,SΩ; qT )=̇r(st,at,SΩ; q∆)+q∆t+1(∆t+1 = 0)Epd(st+1 | st,at)

[
V(st+1,SΩ; qT )

]
, (A.1)

where r(st,at,SΩ; q∆) is from Theorem 1 (Dynamic-Discount Behavior-Driven RL as Variational Inference)
and

V(st,SΩ; qT ) =̇ Eπ(at | st)

[
Q(st,at,SΩ; qT )

]
+ DKL(π(· | st) ∥ p(· | st)). (A.2)

This dynamic-discount, behavior-driven Bellman backup operator is identical to the Bellman backup operator for
KL-regularized reinforcement learning [7] except for the learned, dynamic discount factor, q∆t+1(∆t+1 = 0).

In tabular settings, repeated application of this Bellman operator will result in an optimal policy and an optimal
dynamic discount factor. More specifically, alternating between policy evaluation and optimization of the
variational distribution over the state–action trajectory and the trajectory length converges to an optimal policy.

Theorem 2 (Variational Dynamic-Discount Behavior-Driven Policy Iteration). Assume |A| <∞ and that the
MDP is ergodic.

1. Dynamic-Discount Behavior-Driven Policy Evaluation (D2BD-PE): Given policy π and a function Q0 :
S ×A×S → R, define Qi+1 = T πQi. Then the sequence Qi converges to the lower bound in Theorem 1.

2. Dynamic-Discount Behavior-Driven Policy Improvement (D2BD-PI): The policy

π+ = argmax
π′∈Π

{
Eπ′(at | st)

[
Qπ(st,at,SΩ; qT )

]
− DKL(π

′(· | st) || p(· | st))
}

(A.3)

and the variational distribution over T recursively defined in terms of

q+(∆t+1 = 0 | s0;π,Qπ)

= σ
(
Eπ(at+1 | st+1)pd(st+1 | st,at)[Q

π(st+1,at+1,SΩ; qT )] + σ−1 (p∆t+1(∆t+1 = 0)
)) (A.4)

improve the variational objective. In other words, V π+

(s0,SΩ; qT ) ≥ V π(s0,SΩ; qT ) and
V π(s0,SΩ; q+T ) ≥ V π(s0,SΩ; qT ) for all s0 ∈ S.

3. Alternating between D2BD-PE and D2BD-PI converges to a policy π⋆ and a variational distribution over T ,
q⋆T , such that Qπ⋆

(s,a,SΩ; q⋆T ) ≥ Qπ(s,a,SΩ; qT ) for all (π, qT ) ∈ Π×QT and any (s,a) ∈ S ×A.

An implication of this result is that an optimal policy found via dynamic-discount behavior-driven policy iteration
has at least as high a state value at S0 = s0 as it would under a fixed discount factor. That is, for pT given by a
fixed geometric distribution with parameter γ, the state–action value function simplifies to the standard Bellman
backup operator,

Qπ(st,at,SΩ; pT ) =̇ log P(ξt+1(SΩ) = 1 | st,at) + γ Epd(st+1 | st,at)

[
V π(st+1,SΩ;π, pT )

]
, (A.5)

and
Qπ(s0,a0,SΩ; q∗T ) ≥ Qπ(s0,a0,SΩ; pT ). (A.6)

In other words, dynamic discount factors are optimal in KL-regularized reinforcement learning and can be
justified using the variational Bayesian inference formulation described here.
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Appendix B Proofs

B.1 Finite- and Infinite-Horizon Variational Objectives

In this section, we present detailed derivations and proofs for the results in the main text.

Proposition 1 (Fixed-Time Variational Objective). Let the variational distribution qT̃ 0:t
(τ̃0:t) be as defined

in Equation (7). Then, given a horizon length t⋆ and optimal state trajectory SΩ,

DKL(qT̃ 0:t
(·) ∥ pT̃ 0:t|ξ1:t+1

(· | ξ⋆1:t+1(SΩ))) = log p(ξ⋆1:t+1(SΩ))− F̄(π,SΩ), (B.7)

where

F̄(π,SΩ) =̇ EqT̃ 0:t
(τ̃0:t)

[ t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(π(· | st′) || p(· | st′))
]
, (B.8)

and since log p(ξ⋆1:t+1(SΩ)) is constant in π,

argmin
π∈Π

DKL(qT̃ 0:t
(·) ∥ pT̃ 0:t|ξ1:t+1

(· | ξ⋆1:t+1(SΩ))) = argmax
π∈Π

F̄(π,SΩ). (B.9)

Proof. To find an approximation to the posterior pT̃ 0:t|ξ1:t+1
(· | ξ⋆1:t+1(SΩ))), we can use variational inference.

To do so, we consider the trajectory distribution under pT̃ 0:t|ξ1:t+1
(· | ξ⋆1:t+1(SΩ))), which by Bayes’ Theorem

is given by

pT̃ 0:t|ξ1:t+1
(· | ξ⋆1:t+1(SΩ)))

=
pS0(s0)

∏t
t′=0 P(ξt′+1(SΩ) = 1 | st′ ,at′)p(at | st)

∏t−1
t′=0 pd(st′+1 | st′ ,at′)p(at′ | st′)

p(ξ⋆1:t+1(SΩ))
.

(B.10)

Inferring an approximation to the posterior distribution pT̃ 0:t|ξ1:t+1
(· | ξ⋆1:t+1(SΩ)) then becomes equivalent to

finding a variational distribution qT̃ 0:T |S0
(· | s0), which induces a trajectory distribution qT̃ 0:t

(·) that minimizes
the KL divergence from qT̃ 0:t

(·) to pT̃ 0:t|ξ1:t+1
(· | ξ⋆1:t+1(SΩ)):

min
qT̃ 0:t

∈Q̂
DKL(qT̃ 0:t

(·) ∥ pT̃ 0:t|ξ1:t+1
(· | ξ⋆1:t+1(SΩ))). (B.11)

If we find a distribution qT̃ 0:t
(·) for which the resulting KL divergence is zero, then qT̃ 0:t

(·) is the exact
posterior. If the KL divergence is positive, then qT̃ 0:t

(·) is an approximate posterior. To solve the variational
problem in Equation (B.11), we can define a factorized variational family

qT̃ 0:t
(τ̃0:t) =̇ pS0(s0)π(at | st)

t−1∏
t′=0

qSt′+1|St′ ,At′
(st′+1 | st′ ,at′)π(at′ | st′), (B.12)

where A0:t and S0:t are latent variables over which to infer an approximate posterior distribution. Returning to
the variational problem in Equation (B.11), we can now write

DKL(qT̃ 0:t
(·) ∥ pT̃ 0:t|ξ1:t+1

(· | ξ⋆1:t+1(SΩ)))

=

∫
At+1

∫
St+1

qT̃ 0:t
(τ̃0:t) log

qT̃ 0:t
(τ̃0:t)

pT̃ 0:t|ξ1:t+1
(τ̃0:t | ξ⋆1:t+1(SΩ))

ds0:tda0:t

= −F̄(π,SΩ) + log p(ξ⋆1:t+1(SΩ)),

(B.13)

where

F̄(π,SΩ) =̇ EqT̃ 0:t
(τ̃0:t)

[
t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)

+ log p(at | st)− log π(at | st) +
t−1∑
t′=0

log p(at′ | st′)− log π(at′ | st′)

+

t−1∑
t′=0

log pd(st′+1 | st′ ,at′)− log qSt′+1|St′ ,At′
(st′+1 | st′ ,at′)

] (B.14)
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and

log p(ξ⋆1:t+1(SΩ))

= log

∫ ∫
At+1St+1

P(ξ1:t+1 = 1 | s0,a0, ..., st,at)pT̃ 0:t
(τ̃0:t)ds0:tda0:t

(B.15)

= log

∫ ∫
At+1St+1

(
t∏

t′=0

∫
S
pd(st′+1 | st′ ,at′) I{st′+1 ∈ SΩ} dst′+1

)
pT̃ 0:t

(τ̃0:t)ds0:tda0:t (B.16)

is a log-marginal likelihood. Following Haarnoja et al. [1], we define the variational distribution over next states
as the true transition dynamics, that is,

qSt+1|St,At(st+1 | st,at) = pd(st+1 | st,at), (B.17)

so that

qT̃ 0:t
(τ̃0:t) =̇ pS0(s0)π(at | st)

t−1∏
t′=0

pd(st′+1 | st′ ,at′)π(at′ | st′). (B.18)

We can then simplify F̄(π,SΩ) to

F̄(π,SΩ) = EqT̃ 0:t
(τ̃0:t)

[
t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(π(· | st′) ∥ p(· | st′))

]
. (B.19)

Since log p(ξ⋆1:t+1(SΩ)) is constant in π, solving the variational optimization problem in Equation (B.11)
is equivalent to maximizing the variational objective with respect to π ∈ Π, where Π is a family of policy
distributions.

Corollary 1 . The objective in Equation (B.19) corresponds to KL-regularized reinforcement learning with a
time-varying reward function given by

r(st′ ,at′ ,SΩ) =̇ log P(ξt′+1(SΩ) = 1 | st′ ,at′).

Proof. Let
r(st′ ,at′ ,SΩ) =̇ log P(ξt′+1(SΩ) = 1 | st′ ,at′). (B.20)

and note that the objective

F̄(π,SΩ) = EqT̃ 0:t
(τ̃0:t)

[
t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(π(· | st′) ∥ p(· | st′))

]
. (B.21)

can equivalently written as

F̄(π,SΩ) = EqT̃ 0:t
(τ̃0:t)

[
t∑

t′=0

r(st′ ,at′ ,SΩ) + DKL(π(· | st′) ∥ p(· | st′))

]
, (B.22)

which, as shown in Haarnoja et al. [1], can be written in the form of Equation (B.65).

Proposition 2 (Unfactorized Dynamic-Discount Behavior-Driven RL as Variational Inference). Let

qT̃ 0:T ,T (τ̃0:t, t) = qT̃ 0:T |T (τ̃0:t | t)qT (t), (B.23)

let qT (t) be a variational distribution defined on t ∈ N0, and let qT̃ 0:T |T (τ̃0:t | t) be as defined in Equation (7).
Then, given an optimal state trajectory SΩ, we have that

DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |ξ1:T+1
(· | ξ⋆1:T+1(SΩ))) = log p(ξ⋆1:T+1(SΩ))−F(π, qT ,SΩ), (B.24)

where

F(π, qT ,SΩ) =̇

∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[ t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)

− DKL(qT̃ 0:T ,T (·) || pT̃ 0:T ,T (·))
] (B.25)

and log p(ξ⋆1:T+1(SΩ)) is constant in π and qT .
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Proof. In general, solving the variational problem

min
q∈Q

DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |ξ1:T+1
(· | ξ⋆1:T+1(SΩ))) (B.26)

is challenging, but as in the fixed-time setting, we can take advantage of the fact that, by choosing a variational
family parameterized by

qT̃ 0:T |T (τ̃0:t | t) =̇ π(at | st)
t−1∏
t′=0

pd(st′+1 | st′ ,at′)π(at′ | st′), (B.27)

with π ∈ Π, we can follow the same steps as in the proof for Proposition 3 and show that given an optimal state
trajectory SΩ,

DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |ξ1:T+1
(· | ξ⋆1:T+1(SΩ)))) = log p(ξ⋆1:T+1(SΩ))−F(π, qT ,SΩ), (B.28)

where

F(π, qT ,SΩ) =̇

∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[ t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)

− DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T (·))
]
,

(B.29)

where qT̃ 0:T ,T (τ̃0:t, t) =̇ qT̃ 0:T |T (τ̃0:t | t)qT (t), and hence, solving the variational problem in Equation (8) is
equivalent to maximizing F(π, qT ,SΩ) with respect to π and qT .

B.2 Recursive Variational Objective & Bellman Backup Operator

Proposition 3 (Factorized Dynamic-Discount Behavior-Driven RL as Variational Inference). Let the variational
distribution factorize as

qT̃ 0:T ,T (τ̃0:t, t) = qT̃ 0:T |T (τ̃0:t | t)qT (t), (B.30)

let

qT (t) = q∆t+1(∆t+1 = 1)

t∏
t′=1

q∆t′ (∆t′ = 0) (B.31)

be a variational distribution defined on t ∈ N0, and let qT̃ 0:T |T (τ̃0:t | t) be as defined in Equation (7). Then,
given an optimal state trajectory SΩ, Equation (B.25) can be rewritten as

F(π, qT ,SΩ) = EqT̃ 0
(τ̃0)

[
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)(
r(st,at,SΩ; q∆)− DKL(π(· | st) ∥ p(· | st))

)]
(B.32)

where

r(st,at,SΩ; q∆) =̇ log P(ξt+1(SΩ) = 1 | st,at)− q∆t+1(∆t+1 = 1)DKL(q∆t+1 ∥ p∆t+1), (B.33)

Proof. Consider the variational objective F(π, qT ,SΩ) in Equation (B.25):

F(π, qT ,SΩ)

=

∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[ t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T (·))
]

(B.34)

=

∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[
t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− log
qT̃ 0:T |T (τ̃0:t | t)qT (t)
pT̃ 0:T |T (τ̃0:t | t)pT (t)

dτ̃0:t

]
(B.35)

=

∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[
t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− log
qT̃ 0:T |T (τ̃0:t | t)
pT̃ 0:T |T (τ̃0:t | t)

]

−
∞∑
t=0

qT (t) log
qT (t)

qT (t)
.

(B.36)
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Noting that
∑∞

t=0 qT (t) log
qT (t)
qT (t)

= DKL(qT ∥ pT ), we can write

F(π, qT ,SΩ)

=

∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[
t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− log
qT̃ 0:T |T (τ̃0:t | t)
pT̃ 0:T |T (τ̃0:t | t)

]
− DKL(qT ∥ pT )

(B.37)

=

∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[ t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)
]

−
∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[
log

qT̃ 0:T |T (τ̃0:t | t)
pT̃ 0:T |T (τ̃0:t | t)

]
− DKL(qT ∥ pT ).

(B.38)

Further noting that for an infinite-horizon trajectory distribution

qT̃ t′ |St′
(τ̃t′ | st′) =̇

∞∏
t=t′

pd(st+1 | st,at)π(at | st), (B.39)

trajectory realization τ̃t+1 =̇ {τt′}∞t′=t+1, and any joint probability density f(st,at),

∞∑
t=0

qT (t)EqT̃ 0:T |T (τ̃0:t | t)

[
f(st,at)

]
=

∞∑
t=0

(∫
qT̃ T+1

(τ̃t+1)

(∫
St×At

qT̃ 0:t
(τ̃0:t)qT (t)f(st,at)dτ̃0:t

)
dτ̃t+1

) (B.40)

=

∞∑
t=0

(
EqT̃ 0:T |T (τ̃0:t | t)

[
qT (t)f(st,at)

]
·
(∫

qT̃ T+1
(τ̃t+1)dτ̃t+1

)
︸ ︷︷ ︸

=1

)
(B.41)

=

∞∑
t=0

((∫
St×At

q(τ̃0:t)qT (t)f(st,at)dτ̃0:t

)
·
(∫

qT̃ T+1
(τ̃t+1)dτ̃t+1

)
︸ ︷︷ ︸

=1

)
(B.42)

=

∞∑
t=0

∫
qT̃ 0

(τ̃0)qT (t)f(st,at)dτ̃0 (B.43)

=

∫
qT̃ 0

(τ̃0)

∞∑
t=0

qT (t)f(st,at)dτ̃0, (B.44)

we can express Equation (B.38) in terms of the infinite-horizon state–action trajectory

qT̃ 0
(τ̃0) =̇

∞∏
t=0

pd(st+1 | st,at)π(at | st) (B.45)

as

F(π, qT ,SΩ) =

∫
qT̃ 0

(τ̃0)

∞∑
t=0

qT (t)

t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)dτ̃

−
∞∑
t=0

qT (t)DKL(qT̃ 0:T |T (· | t) ∥ pT̃ 0:T |T (· | t))− DKL(qT ∥ pT )

(B.46)

= EqT̃ 0
(τ̃0)

[ ∞∑
t=0

qT (t)
( t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)

− DKL(qT̃ 0:T |T (· | t) ∥ pT̃ 0:T |T (· | t))
)]
− DKL(qT ∥ pT ).

(B.47)

11



Using Lemma 5 and the definition of qT (t) in Equation (9), we can rewrite this objective as

F(π, qT ,SΩ)

= EqT̃ 0
(τ̃0)

[ ∞∑
t=0

( t∏
t′=1

q∆t′ (∆t′ = 0)
)
q∆t′ (∆t′ = 1)

( t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)

− DKL(qT̃ 0:T |T (· | t) ∥ pT̃ 0:T |T (· | t))
)]
−

∞∑
t=0

( t∏
t′=1

q∆t′ (∆t′ = 0)
)
DKL(q∆t+1 || p∆t+1)

(B.48)

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

(
t∏

t′=1

q(∆t′ = 0)

)

·
(
q(∆t+1 = 1)

( t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(qT̃ 0:T |T (· | t) ∥ pT̃ 0:T |T (· | t))
)

− DKL(q∆t+1 ∥ p∆t+1)
)]

,

(B.49)

with

DKL(q∆t+1 ∥ p∆t+1)

= q∆t+1(∆t+1 = 0) log
q∆t+1(∆t+1 = 0)

p∆t+1(∆t+1 = 0)
+ (1− q∆t+1(∆t+1 = 0)) log

1− q∆t+1(∆t+1 = 0)

1− p∆t+1(∆t+1 = 0)
.

(B.50)

Next, to re-express DKL(qT̃ 0:T |T (· | t) ∥ pT̃ 0:T |T (· | t)) as a sum over Kullback-Leibler divergences between
distributions over single action random variables, we note that

DKL(qT̃ 0:T |T (· | t) ∥ pT̃ 0:T |T (· | t)) =
∫
St×At

qT̃ 0:T |T (τ̃0:t | t) log
qT̃ 0:T |T (τ̃0:t | t)
pT̃ 0:T |T (τ̃0:t | t)

dτ̃0:t (B.51)

=

∫
St×At

qT̃ 0:T |T (τ̃0:t | t) log
∏t

t′=1 π(at′ | st′)∏t
t′=1 p(at′ | st′)

dτ̃0:t (B.52)

=

∫
St×At

qT̃ 0:T |T (τ̃0:t | t)
t∑

t′=0

log
π(at′ | st′)
p(at′ | st′)

dτ̃0:t (B.53)

= EqT̃ 0
(τ̃0)

[
t∑

t′=0

∫
A
π(at′ | st′) log

π(at′ | st′)
p(at′ | st′)

dat′

]
(B.54)

= EqT̃ 0
(τ̃0)

[
t∑

t′=0

DKL(π(· | st′) ∥ p(· | st′))

]
, (B.55)

where we have used the same marginalization trick as above to express the expression in terms of an infinite-
horizon trajectory distribution, which allows us to express Equation (B.49) as

F(π, qT ,SΩ)

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

(
t∏

t′=1

q(∆t′ = 0)

)
·
(
q∆t+1(∆t+1 = 1)

( t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)

− EqT̃ 0
(τ̃0)

[
t∑

t′=0

DKL(π(· | st′) ∥ p(· | st′))

])
− DKL(q∆t+1 ∥ p∆t+1)

)]

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

(
t∏

t′=1

q(∆t′ = 0)

)
·
(
q∆t+1(∆t+1 = 1)

(
EqT̃ 0

(τ̃0)

[ t∑
t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)

− DKL(π(· | st′) ∥ p(· | st′))
])
− DKL(q∆t+1 ∥ p∆t+1)

)]
.

(B.56)
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Rearranging and dropping redundant expectation operators, we can now express the objective as

F(π, qT ,SΩ)

= EqT̃ 0
(τ̃0)

[
−

∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)(
q∆t+1(∆t+1 = 1)DKL(q∆t+1 ∥ p∆t+1)

)]

+

∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)q∆t+1(∆t+1 = 1)

)
︸ ︷︷ ︸

=qT (t)

· EqT̃ 0
(τ̃0)

[
t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(π(· | st′) ∥ p(· | st′))

]
,

(B.57)

whereupon we note that the last term can be expressed as
∞∑
t=0

qT (t)EqT̃ 0
(τ̃0)

[
t∑

t′=0

log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(π(· | st′) ∥ p(· | st′))

]

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

t∑
t′=0

qT (t)(log P(ξt′+1(SΩ) = 1 | st′ ,at′)− DKL(π(· | st′) ∥ p(· | st′)))

] (B.58)

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

q(T ≥ t)(log P(ξt+1(SΩ) = 1 | st,at)− DKL(π(· | st) ∥ p(· | st)))

]
(B.59)

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)
︸ ︷︷ ︸

(by Lemma 2)

(log P(ξt+1(SΩ) = 1 | st,at)− DKL(π(· | st) ∥ p(· | st)))

]
,

(B.60)

where the second line follows from expanding the sums and regrouping terms. By substituting the expression
in Equation (B.60) into Equation (B.57), we obtain an objective expressed entirely in terms of distributions over
single-index random variables:

F(π, qT ,SΩ)

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)

·
(
log P(ξt+1(SΩ) = 1 | st,at)− q∆t+1(∆t+1 = 1)DKL(q∆t+1 ∥ p∆t+1)− DKL(π(· | st) ∥ p(· | st))

)]
(B.61)

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)(
r(st,at,SΩ; q∆)− DKL(π(· | st) ∥ p(· | st))

)]
, (B.62)

where we defined

r(st,at,SΩ; q∆) =̇ log P(ξt+1(SΩ) = 1 | st,at)− q∆t+1(∆t+1 = 1)DKL(q∆t+1 ∥ p∆t+1), (B.63)

which concludes the proof.

Theorem 1 (Dynamic-Discount Behavior-Driven RL as Variational Inference). Let qT (t) and qT̃ 0:t|T (τ̃0:t | t)
be as defined in Equation (7) and Equation (9), and define a behavior-driven state value function,

V π(st,SΩ; qT ) =̇ Eπ(at | st)

[
Qπ(st,at,SΩ; qT )

]
− DKL(π(· | st) ∥ p(· | st)), (B.64)

a behavior-driven state–action value function

Qπ(st,at,SΩ; qT ) =̇ r(st,at,SΩ; q∆)+q(∆t+1 = 0)Epd(st+1 | st,at)

[
V π(st+1,SΩ;π, qT )

]
, (B.65)

and a behavior-driven reward-like function

r(st,at,SΩ; q∆) =̇ log P(ξt+1(SΩ) = 1 | st,at)− q∆t+1(∆t+1 = 1)DKL(q∆t+1 ∥ p∆t+1). (B.66)

Then given an optimal state trajectory SΩ,

DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |ξ1:t+1
(· | ξ⋆1:t+1(SΩ)))−C=−F(π, qT ,SΩ) = −V π(s0,SΩ; qT ),
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where C =̇ log p(ξ⋆1:T+1(SΩ)) is independent of π and qT , and hence maximizing V π(SΩ;π, qT ) is equivalent
to minimizing Equation (8) and hence, the following holds:

argmin
π∈Π,qT∈QT

DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |ξ1:T+1
(· | ξ⋆1:T+1(SΩ))) = argmax

π∈Π,qT∈QT

Ep(s0)[V
π(s0,SΩ; qT )].

Proof. Consider the objective derived in Proposition 3,

F(π, qT ,SΩ)

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)

·
(
q∆t+1(∆t+1 = 1) log P(ξt+1(SΩ) = 1 | st,at)− DKL(q∆t+1 ∥ p∆t+1)

)
︸ ︷︷ ︸

=̇ r(st,at,SΩ;q∆)

−DKL(π(at | st) ∥ p(at|st))

]
,

(B.67)

and recall that, by Proposition 2,

DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |ξ1:T+1
(· | ξ⋆1:T+1(SΩ))) = −F(π, qT ,SΩ) + log p(ξ⋆1:T+1(SΩ)). (B.68)

Therefore, to prove the result that

DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |ξ1:T+1
(· | ξ⋆1:T+1(SΩ))) = −V π(s0,SΩ; qT ) + log p(ξ⋆1:T+1(SΩ)),

we just need to show that F(π, qT ,SΩ) = V π(s0,SΩ; qT ) for V π(s0,SΩ; qT ) as defined in the theorem
statement. To do so, we start from the objective F(π, qT ,SΩ) and and unroll it for t = 0:

F(π, qT ,SΩ)

= EqT̃ 0
(τ̃0)

[
∞∑
t=0

(
t∏

t′=1

q∆t′ (∆t′ = 0)

)
r(st,at,SΩ; q∆)− DKL(π(at | st) ∥ p(at|st))

]
(B.69)

= Eπ(a0 | s0)p(s0)

[
r(s0,a0,SΩ; q∆) + Eq(τ1 | s0,a0)

[
∞∑
t=1

t∏
t′=1

q∆t′ (∆t′ = 0)
(
r(st,at,SΩ; q∆)

− DKL(π(· | st) ∥ p(· | st))
)]]
− DKL(π(· | s0) ∥ p(· | s0)).

(B.70)

With this expression at hand, we now define

Qπ
sum(s0,a0,SΩ; qT )

=̇ r(s0,a0,SΩ; q∆) + Eq(τ1|s0,a0)

[
∞∑
t=1

t∏
t′=1

q∆t′ (∆t′ = 0)
(
r(st,at,SΩ; q∆)− DKL(π(· | st) ∥ p(· | st))

)]
,

(B.71)

and note that

F(π, qT ,SΩ) = Eπ(a0 | s0)p(s0)[Q
π
sum(s0,a0,SΩ; qT )− DKL(π(· | s0) ∥ p(· | s0))] = Ep(s0)[V

π(s0,SΩ; qT )],
(B.72)

as per the definition of Ep(s0)[V
π(s0,SΩ; qT )]. To prove the theorem from this intermediate result, we now

have to show that Qπ
sum(s0,a0,SΩ; qT ) as defined in Equation (B.71) can in fact be expressed recursively as

Qπ
sum(st,at,SΩ; qT ) = Qπ(s0,a0,SΩ; qT ) with

Qπ(s0,a0,SΩ; qT ) = r(st,at,SΩ; q∆) + q(∆t+1 = 0)Epd(st+1 | st,at)

[
V π(st+1,SΩ;π, qT )

]
. (B.73)
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To see that this is the case, first, unroll Qπ(s0,a0,SΩ; qT ) for t = 1,

Qπ
sum(s0,a0,SΩ; qT )

= r(s0,a0,SΩ; q∆) + Eq(τ1|s0,a0)

[
∞∑
t=1

t∏
t′=1

q∆t′ (∆t′ = 0)
(
r(st,at,SΩ; q∆)− DKL(π(· | st) ∥ p(· | st))

)]

(B.74)

= r(s0,a0,SΩ; q∆) + Epd(s1|a0,a0)

[
Eq(τ1|s0,a0)

[
∞∑
t=1

t∏
t′=1

q∆t′ (∆t′ = 0)
(
r(st,at,SΩ; q∆)

− DKL(π(· | st) ∥ p(· | st))
)]] (B.75)

= r(s0,a0,SΩ; q∆) + Epd(s1|a0,a0)

[
Eπ(a1 | s1)

[
q∆1(∆1 = 0)

(
r(s1,a1,SΩ; q∆)− DKL(π(· | s1) ∥ p(· | s1))

)
+ Eq(τ2|s1,a1)

[
∞∑
t=2

t∏
t′=2

q∆t′ (∆t′ = 0)
(
r(st,at,SΩ; q∆)− DKL(π(· | st) ∥ p(· | st))

)]]]
,

(B.76)
and note that we can rearrange this expression to obtain the recursive relationship

Qπ
sum(s0,a0,SΩ; qT )

= r(s0,a0,SΩ; q∆) + q∆1(∆1 = 0)Epd(s0+1 | s0,a0)

[
− DKL(π(· | s1) ∥ p(· | s1))

+ Eπ(a1 | s1)

[
r(s1,a1,SΩ; q∆) + E

[
∞∑
t=2

(
t∏

t′=2

q∆t′ (∆t′ = 0)

)(
r(st,at,SΩ; q∆)

− DKL(π(· | st) ∥ p(· | s))
)]]]

,

(B.77)

where the innermost expectation is taken with respect to q(τ2|s1,a1). With this result and noting that

Qπ
sum(s1,a1,SΩ; qT )

= r(s1,a1,SΩ; q∆) + E

[
∞∑
t=2

(
t∏

t′=2

q∆t′ (∆t′ = 0)

)(
r(st,at,SΩ; q∆)− DKL(π(· | st) ∥ p(· | s))

)]
,

(B.78)
where the expectation is again taken with respect to q(τ2|s1,a1), we see that

Qπ
sum(s0,a0,SΩ; qT )

= r(s0,a0,SΩ; q∆) + q∆1(∆1 = 0)Epd(s0+1 | s0,a0)

[
Eπ(a1|s1)

[
Qπ

sum(s1,a1,SΩ; qT )
]

− DKL(π(· | s1) ∥ p(· | s1))
] (B.79)

= r(s0,a0,SΩ; q∆) + q∆1(∆1 = 0)Epd(s1|s,a)

[
V π(s1,SΩ; qT )

]
, (B.80)

for V(st+1,SΩ; qT ) as defined above, as desired. In other words, we have that

F(π, qT ,SΩ) = Eπ(a0 | s0)p(s0)[Q
π
sum(s0,a0,SΩ; qT )− DKL(π(· | s0) ∥ p(· | s0))] = Ep(s0)[V

π(s0,SΩ; qT )].
(B.81)

Combining this result with Proposition 2 and Proposition 3, we finally conclude that

DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |ξ1:T+1
(· | ξ⋆1:T+1(SΩ))) = −F(π, qT ,SΩ) + C = −Ep(s0)[V

π(s0,SΩ; qT )] + C,

(B.82)

where C =̇ log p(ξ⋆1:T+1(SΩ)) is independent of π and qT . Hence, maximizing V π(s0,SΩ; qT ) is equivalent
to minimizing the objective in Equation (8). In other words,

argmin
π∈Π,qT∈QT

{DKL(qT̃ 0:T ,T (·) ∥ pT̃ 0:T ,T |ξ1:T+1
(· | ξ⋆1:T+1(SΩ)))}

= argmax
π∈Π,qT∈QT

F(π, qT ,SΩ) = argmax
π∈Π,qT∈QT

Ep(s0)[V
π(s0,SΩ; qT )].

(B.83)

This concludes the proof.
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B.3 Optimal Variational Posterior over T

Proposition 4 (Optimal Variational Distribution over T ). The optimal variational distribution q⋆T with respect
to Equation (B.64) is defined recursively in terms of q⋆∆t+1

(∆t+1 = 0)∀t ∈ N0 by

q⋆∆t+1
(∆t+1 = 0;π,Qπ) = σ

(
Λ(st, π, qT , Q

π) + σ−1(p∆t+1(∆t+1 = 0)
))
, (B.84)

where

Λ(st, π, qT , Q
π)

=̇ Eπ(at+1 | st+1)pd(st+1 | st,at)π(at | st)[Q
π(st+1,at+1,SΩ; qT )− log P(ξt+1(SΩ) = 1 | st,at)]

and σ(·) is the sigmoid function, that is, σ(x) = 1
e−x+1

and σ−1(x) = log x
1−x

.

Proof. Consider F(π, qT ,SΩ):

F(π, qT ,SΩ) = Eπ(at|st)[Q
π(st,at,SΩ; qT )]

= Eπ(at|st)[r(st,at,SΩ; q∆) + q∆t+1(∆t+1 = 0)E
[
V(st+1,SΩ; qT )

]
].

(B.85)

Since the variational objective F(π, qT ,SΩ) can be expressed recursively as

V π(st,SΩ; qT ) =̇ Eπ(at | st)

[
Q(st,at,SΩ; qT )

]
− DKL(π(· | st) ∥ p(· | st)),

with

Qπ(st,at,SΩ; qT ) =̇ r(st,at,SΩ; q∆) + q∆t+1(∆t+1 = 0)Epd(st+1 | st,at)

[
V π(st+1,SΩ; qT )

]
,

r(st,at,SΩ; q∆) =̇ log P(ξt+1(SΩ) = 1 | st,at)− q∆t+1(∆t+1 = 1)DKL(q∆t+1 ∥ p∆t+1),

and since DKL(q∆t+1 ∥ p∆t+1) is strictly convex in q∆t+1(∆t+1 = 0), we can find the globally optimal
Bernoulli distribution parameters q∆t+1(∆t+1 = 0) for all t ∈ N0 recursively. That is, it is sufficient to solve
the problem

q⋆∆t+1
(∆t+1 = 0) =̇ argmax

q∆t+1
(∆t+1=0)

{
F(π, qT ,SΩ)

}
= argmax

q∆t+1
(∆t+1=0)

{
F(π, q∆1 , . . . , q∆t+1 , . . . , s0,S

Ω)
}

(B.86)

for a fixed t + 1. To do so, we take the derivative of F(π, q∆1 , . . . , q∆t+1 , . . . , s0,SΩ), which—defined
recursively—is given by

Eπ(at | st)

[
Q(st,at,SΩ; qT

]
− DKL(π(· | st) ∥ p(· | st))

= Eπ(at | st)

[
r(st,at,SΩ; q∆) + q∆t+1(∆t+1 = 0)Epd(st+1 | st,at)

[
V π(st+1,SΩ; qT )

]]
− DKL(π(· | st) ∥ p(· | st))

(B.87)

= Eπ(at | st)

[
log P(ξt+1(SΩ) = 1 | st,at)− DKL(q∆t+1 ∥ p∆t+1)

+ q∆t+1(∆t+1 = 0)Epd(st+1 | st,at)

[
V π(st+1,SΩ; qT )

] ]
− DKL(π(· | st) ∥ p(· | st))

(B.88)

= Eπ(at | st)

[
log P(ξt+1(SΩ) = 1 | st,at)− DKL(q∆t+1 ∥ p∆t+1)

+ q∆t+1(∆t+1 = 0)Epd(st+1 | st,at)

[
V π(st+1,SΩ; qT )

] ]
− DKL(π(· | st) ∥ p(· | st)),

(B.89)

with respect to q∆t+1(∆t+1 = 0) and set it to zero, which yields

0 = −Eπ(at | st)

[
Eπ(at+1 | st+1)pd(st+1 | st,at)[Q

π(st+1,at+1,SΩ; qT )]
]

+ log
1− q⋆∆t+1

(∆t+1 = 0)

1− p∆t+1(∆t+1 = 0)
− log

q⋆∆t+1
(∆t+1 = 0)

p∆t+1(∆t+1 = 0)
.

(B.90)

Rearranging, we get

q⋆∆t+1
(∆t+1 = 0)

1− q⋆∆t+1
(∆t+1 = 0)

= exp

(
E[Qπ(st+1,at+1,SΩ; qT )] + log

p∆t+1(∆t+1 = 0)

1− p∆t+1(∆t+1 = 0)

)
, (B.91)
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where the expectation is taken with respect to π(at+1 | st+1)pd(st+1 | st,at)π(at | st) and the Q-function
depends on q(∆t′) with t′ > t, but not on q⋆∆t+1

(∆t+1 = 0). Solving for q⋆∆t+1
(∆t+1 = 0). Solving for

q⋆∆t+1
(∆t+1 = 0), we obtain

q⋆∆t+1
(∆t+1 = 0) =

exp(Epπpd
π(at | st)[Q

π(st+1,at+1,SΩ; qT )] + log
p∆t+1

(∆t+1=0)

1−p∆t+1
(∆t+1=0)

)

1 + exp(Epπpd
π(at | st)[Q

π(st+1,at+1,SΩ; qT )] + log
p∆t+1

(∆t+1=0)

1−p∆t+1
(∆t+1=0)

)
(B.92)

= σ
(
Epπpd

[Qπ(st+1,at+1,SΩ; qT )] + σ−1 (p∆t+1(∆t+1 = 0)
) )

, (B.93)

where pπpd =̇ π(at+1 | st+1)pd(st+1 | st,at), σ(·) is the sigmoid function with σ(x) = 1
e−x+1

and
σ−1(x) = log x

1−x
. This concludes the proof.

Remark 1. As can be seen from Proposition 4 (Optimal Variational Distribution over T ), the optimal approxima-
tion to the posterior over T trades off short-term rewards via Eπ(at | st)[r(st,at,SΩ; q∆)], long-term rewards
via Eπ(at+1 | st+1)pd(st+1 | st,at)[Q

π(st+1,at+1,SΩ; qT )], and the prior log-odds of not achieving the outcome

at a given point in time conditioned on the outcome not having been achieved yet,
p∆t+1

(∆t+1=0)

1−p∆t+1
(∆t+1=0)

.

B.4 Dynamic-Discount Behavior-Driven Policy Iteration

Theorem 2 (Variational Dynamic-Discount Behavior-Driven Policy Iteration). Assume |A| <∞ and that the
MDP is ergodic.

1. Dynamic-Discount Behavior-Driven Policy Evaluation (D2BD-PE): Given policy π and a function Q0 :
S ×A×S → R, define Qi+1 = T πQi. Then the sequence Qi converges to the lower bound in Theorem 1
(Dynamic-Discount Behavior-Driven RL as Variational Inference).

2. Dynamic-Discount Behavior-Driven Policy Improvement (D2BD-PI): The policy

π+ = argmax
π′∈Π

{
Eπ′(at | st)

[
Qπ(st,at,SΩ; qT )

]
− DKL(π

′(· | st) || p(· | st))
}

(B.94)

and the variational distribution over T recursively defined in terms of

q+(∆t+1 = 0;π,Qπ)

= σ
(
Eπ(at+1 | st+1)pd(st+1 | st,at)[Q

π(st+1,at+1,SΩ; qT )] + σ−1 (p∆t+1(∆t+1 = 0)
) ) (B.95)

improve the variational objective. In other words, we have that V π+

(s0,SΩ; qT ) ≥ V π(s0,SΩ; qT ) and
V π(s0,SΩ; q+T ) ≥ V π(s0,SΩ; qT ) for all s0 ∈ S.

3. Alternating between D2BD-PE and D2BD-PI converges to a policy π⋆ and a variational distribution over T ,
q⋆T , such that Qπ⋆

(s,a,SΩ; q⋆T ) ≥ Qπ(s,a,SΩ; qT ) for all (π, qT ) ∈ Π×QT and any (s,a) ∈ S ×A.

Proof. Parts of this proof are adapted from the proof given in Haarnoja et al. [1], modified for the Bellman
operator proposed in Definition 1.

1. Dynamic-Discount Behavior-Driven Policy Evaluation (D2BD-PE): Instead of absorbing the entropy term
into the Q-function, we can define an entropy-augmented reward as

rπ(st,at,SΩ; q∆) =̇ log P(ξt+1(SΩ) = 1 | st,at)− DKL(q∆t+1 ∥ p∆t+1)

+ q∆t+1(∆t+1 = 0)Epd(st+1 | st,at)[DKL(π(· | st+1) ∥ p(· | st+1))].
(B.96)

We can then write an update rule according to Definition 1 as

Q̃(st,at,SΩ; qT )← rπ(st,at,SΩ; q∆) + q∆t+1(∆t+1 = 0)E[Q̃(st+1,at+1,SΩ; qT )], (B.97)

where q∆t+1(∆t+1 = 0) ≤ 1 and the expectation is computed under π(at+1 | st+1)pd(st+1 | st,at). This
update is similar to a Bellman update [10], but with a discount factor given by q∆t+1(∆t+1 = 0). In
general, this discount factor q∆t+1(∆t+1 = 0) can be computed dynamically based on the current state and
action, such as in Equation (B.84). As discussed in White [12], this Bellman operator is still a contraction
mapping so long as the Markov chain induced by the current policy is ergodic and there exists a state
such that q∆t+1(∆t+1 = 0) < 1. The first condition is true by assumption. The second condition is true
since q∆t+1(∆t+1 = 0) is given by Equation (B.84), which is always strictly between 0 and 1. Therefore,
we apply convergence results for policy evaluation with transition-dependent discount factors [12] to this
contraction mapping, and the result immediately follows.
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2. Dynamic-Discount Behavior-Driven Policy Improvement (D2BD-PI): Let πold ∈ Π and let Qπold and V πold

be the behavior-driven state and state-action value functions from Definition 1, let qT be some variational
distribution over T , and let πnew be given by

πnew(at|st) = argmax
π′∈Π

{
Eπ′(at | st)

[
Qπold(st,at,SΩ; qT )

]
− DKL(π

′(· | st) ∥ p(· | st))
}

(B.98)

= argmax
π′∈Π

Jπold(π
′(at, st), qT ). (B.99)

Then, it must be true that Jπold(πold(at|st); qT ) ≤ Jπold(πnew(at|st); qT ), since one could set
πnew = πold ∈ Π. Thus,

Eπnew(at|st)

[
Qπold(st,at,SΩ; qT )

]
− DKL(πnew(· | st) ∥ p(· | st))

≥ Eπold(at|st)

[
Qπold(st,at,SΩ; qT )

]
− DKL(πold(· | st) ∥ p(· | st)),

(B.100)

and since

V πold(st,SΩ; qT ) = Eπold(at|st)

[
Qπold(st,at,SΩ; qT )

]
− DKL(πold(· | st) ∥ p(· | st)), (B.101)

we get

Eπnew(at|st)

[
Qπold(st,at,SΩ; qT )

]
− DKL(πnew(· | st) ∥ p(· | st)) ≥ V πold(st,SΩ; qT ). (B.102)

We can now write the Bellman equation as

Qπold(st,at,SΩ; qT )

= q∆t+1(∆t+1 = 1) log pd(g | st,at) + q∆t+1(∆t+1 = 0)Epd(st+1 | st,at)[V
πold(st+1,SΩ; qT )]

(B.103)

≤ q∆t+1(∆t+1 = 1) log pd(g | st,at)

+ q∆t+1(∆t+1 = 0)Ep(st′ |st,at)[Eπnew(at′ |st′ )

[
Qπold(st′ ,at′ ,SΩ; qT )

]
− DKL(πnew(· | st′) ∥ p(· | st′))],

(B.104)

...

≤ Qπnew(st,at,SΩ; qT ) (B.105)

where we defined t′ =̇ t+ 1, repeatedly applied the Bellman backup operator defined in Definition 1 and
used the bound in Equation (B.102). Convergence follows from Dynamic-Discount Behavior-Driven Policy
Evaluation above.

3. Locally Optimal Variational Dynamic-Discount Behavior-Driven Policy Iteration: Define πi to be a policy
at iteration i. By ODPI for a given qT , the sequence of state-action value functions {Qπi

(qT )}∞i=1 is
monotonically increasing in i. Since the reward is finite and the negative KL divergence is upper bounded by
zero, Qπ(qT ) is upper bounded for π ∈ Π and the sequence {πi}∞i=1 converges to some π⋆. To see that π⋆

is an optimal policy, note that it must be the case that Jπ⋆(π⋆(at|st); qT ) > Jπ⋆(π(at | st); qT ) for any
π ∈ Π with π ̸= π⋆. By the argument used in ODPI above, it must be the case that the behavior-driven
state-action value of the converged policy is higher than that of any other non-converged policy in Π, that is,
Qπ⋆

(st,at; qT ) > Qπ(st,at; qT ) for all π ∈ Π and any qiT ∈ QT and (s,a) ∈ S ×A. Therefore, given
qT , π⋆ must be optimal in Π, which concludes the proof.

4. Globally Optimal Variational Dynamic-Discount Behavior-Driven Policy Iteration: Let πi be a policy and
let qiT be variational distributions over T at iteration i. By Locally Optimal Variational Dynamic-Discount
Behavior-Driven Policy Iteration, for a fixed qiT with qiT = qjT∀i, j ∈ N0, the sequence of {(πi, qiT )}∞i=1

increases the objective Equation (B.24) at each iteration and converges to a stationary point in πi, where
Qπ⋆

(st,at; q
i
T ) > Qπ(st,at; q

i
T ) for all π ∈ Π and any qiT ∈ QT and (s,a) ∈ S ×A. Since the

objective in Equation (B.24) is concave in qT , it must be the case that for, q⋆
i

T ∈ QT , the optimal variational
distribution over T at iteration i, defined recursively by

q⋆
i

(∆t+1 = 0;πi, Qπi

)

= σ
(
Eπ(at+1 | st+1)pd(st+1 | st,at)[Q

πi

(st+1,at+1,SΩ; qT (π
i, Qπi

))] + σ−1(p∆t+1(∆t+1 = 0)
)
,

for t ∈ N0, Qπ(st,at; q
⋆
T ) > Qπ(st,at; qT ) for all π ∈ Π and any (s,a) ∈ S ×A. Note that qT is

defined implicitly in terms of πi and Qπi

, that is, the optimal variational distribution over T at iteration
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i is defined as a function of the policy and Q-function at iteration i. Hence, it must then be true that for
Qπ⋆

(st,at; q
⋆
T ) > Qπ⋆

(st,at; qT ) for all q⋆T (π
⋆, Qπ⋆

) ∈ QT and for any π⋆ ∈ Π and (s,a) ∈ S ×A.
In other words, for an optimal policy and corresponding Q-function, there exists an optimal variational
distribution over T that maximizes the Q-function, given the optimal policy. Repeating locally optimal
variational behavior-driven policy iteration under the new variational distribution q⋆T (π

⋆, Qπ⋆

) will yield an
optimal policy π⋆⋆ and computing the corresponding optimal variational distribution, q⋆⋆T (π⋆⋆, Qπ⋆⋆

) will
further increase the variational objective such that for π⋆⋆) ∈ Π and q⋆⋆T (π⋆⋆, Qπ⋆⋆

) ∈ QT , we have that

Qπ⋆⋆

(st,at; q
⋆⋆
T ) > Qπ⋆⋆

(st,at; q
⋆
T ) > Qπ⋆

(st,at; q
⋆
T ) > Qπ⋆

(st,at; qT ) (B.106)

for any π⋆ ∈ Π and (s,a) ∈ S ×A. Hence, global optimal variational behavior-driven policy iteration
increases the variational objective at every step. Since the objective is upper bounded (by virtue of the
rewards being finite and the negative KL divergence being upper bounded by zero) and the sequence of
{(πi, qiT )}∞i=1 increases the objective Equation (B.24) at each iteration, by the monotone convergence
theorem, the objective value converges to a supremum and since the objective function is concave the
supremum is unique. Hence, since the supremum is unique and obtained via global optimal variational
outcome–driven policy iteration on (π, qT ) ∈ Π × QT , the sequence of {(πi, qiT )}∞i=1 converges to a
unique stationary point (π⋆, q⋆T ) ∈ Π×QT , where Qπ⋆

(st,at; q
⋆
T ) > Qπ(st,at; q

i
T ) for all π ∈ Π and

any qiT ∈ QT and (s,a) ∈ S ×A.

Corollary 3 (Optimality of Variational Outcome Driven Policy Iteration). Variational Dynamic-
Discount Behavior-Driven Policy Iteration on (π, qT ) ∈ Π×QT results in an optimal policy at least as good
or better than any optimal policy attainable from policy iteration on π ∈ Π alone.

Remark 2. The convergence proof of ODPE assumes a transition-dependent discount factor [12], because the
variational distribution used in Equation (B.84) depends on the next state and action as well as on the desired
outcome.

B.5 Lemmas

Lemma 1. Let q(T = t) =̇ q(T = t|T ≥ t)
∏t

i=1 q(T ̸= i − 1|T ≥ i − 1) be a discrete probability
distribution with support N0. Then for any t ∈ N0, we have that

q(T ≥ t) =

∞∑
i=t

q(T = i|T ≥ i)

i∏
j=1

q(T ̸= j − 1|T ≥ j − 1) =

t∏
i=1

q(T ̸= i− 1|T ≥ i− 1). (B.107)

Proof. We proof the statement by induction on t.

Base case: For t = 0, q(T ≥ 0) = 1 by definition of the empty product.

Inductive case: Note that q(T ≤ t) =
∏t

i=1 q(T = i− 1|T ≥ i− 1). Show that

q(T ≥ t) =

t∏
i=1

q(T ̸= i− 1|T ≥ i− 1) =⇒ q(T ≥ t+ 1) =

t+1∏
i=1

q(T ̸= i− 1|T ≥ i− 1). (B.108)

Consider q(T ≥ t + 1) =
∑∞

i=t+1 q(T = i|T ≥ i)
∏i

j=1 q(T ̸= j − 1|T ≥ j − 1). To proof the inductive
hypothesis, we need to show that the following equality is true:

∞∑
i=t+1

q(T = i|T ≥ i)

i∏
j=1

q(T ̸= j − 1|T ≥ j − 1) =

t+1∏
i=1

q(T ̸= i− 1|T ≥ i− 1) (B.109)

⇐⇒
∞∑
i=t

q(T = i|T ≥ i)

i∏
j=1

q(T ̸= j − 1|T ≥ j − 1)− q(T = t|T ≥ t)

t∏
j=1

q(T ̸= j − 1|T ≥ j − 1)

= q(T ̸= t|T ≥ t)

t∏
i=1

q(T ̸= i− 1|T ≥ i− 1).

(B.110)

By the inductive hypothesis,

q(T ≥ t) =

∞∑
i=t

q(T = i|T ≥ i)

i∏
j=1

q(T ̸= j − 1|T ≥ j − 1) =

t∏
i=1

q(T ̸= i− 1|T ≥ i− 1), (B.111)
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and so

Equation (B.110)⇐⇒
t∏

j=1

q(T ̸= j|T ≥ j)− q(T ̸= t+ 1|T ≥ t+ 1 (B.112)

·
t∏

j=1

q(T = j|T ≥ j) = q(T ̸= t|T ≥ t)

t∏
i=1

q(T ̸= i− 1|T ≥ i− 1). (B.113)

Factoring out
∏t

i=1 q(T ̸= i− 1|T ≥ i− 1), we get

⇐⇒
t∏

j=1

q(T ̸= j − 1|T ≥ j − 1) (1− q(T = t|T ≥ t))︸ ︷︷ ︸
=q(T ̸=t|T≥t)

= q(T ̸= t|T ≥ t)

t∏
j=1

q(T = j − 1|T ≥ j − 1)

(B.114)

⇐⇒ q(T ̸= t|T ≥ t)

t∏
j=1

q(T ̸= j − 1|T ≥ j − 1) = q(T ̸= t|T ≥ t)

t∏
j=1

q(T ̸= j − 1|T ≥ j − 1),

(B.115)

which proves the inductive hypothesis.

Lemma 2. Let qT (t) and pT (t) be discrete probability distributions with support N0, let ∆t be a Bernoulli
random variable, with success defined as T = t + 1 given that T ≥ t, and let q∆t be a discrete probability
distribution over ∆t for t ∈ N\{0}, so that

q∆t+1(∆t+1 = 0) =̇ q(T ̸= t |T ≥ t)

q∆t+1(∆t+1 = 1) =̇ q(T = t |T ≥ t).
(B.116)

Then we can write q(T = t) = q∆t+1(∆t+1 = 1)
∏t

i=1 q∆i(∆i = 0) for any t ∈ N0 and have that

q(T ≥ t) =

∞∑
i=t

q∆i+1(∆i+1 = 1)

i∏
j=1

q∆j (∆j = 0) =

t∏
i=1

q∆i(∆i = 0). (B.117)

Proof. By Lemma 1, we have that for any t ∈ N0

q(T ≥ t) =

∞∑
i=t

q(T = i|T ≥ i)

i∏
j=1

q(T ̸= j − 1|T ≥ j − 1) =

t∏
i=1

q(T ̸= i− 1|T ≥ i− 1). (B.118)

The result follows by replacing q(T = i|T ≥ i) by q∆i+1(∆i+1 = 1), q(T ̸= j − 1|T ≥ j − 1) by
q∆j (∆j = 0), and q(T ̸= i− 1|T ≥ i− 1) by q∆i(∆i = 0).

Lemma 3. Let qT (t) and pT (t) be discrete probability distributions with support N0. Then for any k ∈ N0,

Et∼q(T |T≥k)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
= f(q, p, k) + q(T ̸= k |T ≥ k)Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k + 1)

p(T = t |T ≥ k + 1)

]
.

(B.119)

Proof. Consider Et∼q(T |T≥k)

[
log q(T=t |T≥k)

p(T=t |T≥k)

]
and note that by the law of total expectation we can rewrite

it as

Et∼q(T |T≥k)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
= q(T = k |T ≥ k)Et∼q(T |T=k)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
+ q(T ̸= k |T ≥ k)Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

] (B.120)

= q(T = k |T ≥ k) log
q(T = k |T ≥ k)

p(T = k |T ≥ k)
+ q(T ̸= k |T ≥ k)Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
.

(B.121)
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For all values of T ≥ k + 1, we have that

q(T = t |T ≥ k) = q(T = t |T ≥ k + 1)q(T ̸= k |T ≥ k) (B.122)
p(T = t |T ≥ k) = p(T = t |T ≥ k + 1)p(T ̸= k |T ≥ k) (B.123)

and so we can rewrite the expectation in Equation (B.121) as

Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
= Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)
+ log

q(T ̸= k |T ≥ k)

p(T ̸= k |T ≥ k)

]
(B.124)

= Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
+ log

q(T ̸= k |T ≥ k)

p(T ̸= k |T ≥ k)
(B.125)

Combining Equation (B.125) with Equation (B.121), we have

Et∼q(T |T≥k)

[
log

q(T = t |T ≥ k)

p(T = t |T ≥ k)

]
= q(T = k |T ≥ k) log

q(T = k |T ≥ k)

p(T = k |T ≥ k)
+ q(T ̸= k |T ≥ k) log

q(T ̸= k |T ≥ k)

p(T ̸= k |T ≥ k)︸ ︷︷ ︸
=̇ f(q,p,k)

+ q(T ̸= k |T ≥ k)Et∼q(T |T≥k+1)

[
log

q(T = t |T ≥ k + 1)

p(T = t |T ≥ k + 1)

]
,

(B.126)

which concludes the proof.

Lemma 4. Let qT (t) and pT (t) be discrete probability distributions with support N0. Then the KL divergence
from qT to pT can be written as

DKL(qT || pT ) =
∞∑
t=0

q(T ≥ t)f(qT , pT , t) (B.127)

where f(qT , pT , t) is shorthand for

f(qT , pT , t) = q(T = t |T ≥ t) log
q(T = t |T ≥ t)

p(T = t |T ≥ t)
+ q(T ̸= t |T ≥ t) log

q(T ̸= t |T ≥ t)

p(T ̸= t |T ≥ t)
. (B.128)

Proof. Note that q(T = k) denotes the probability that the distribution q assigns to the event T = k and q(T ≥
m) denotes the tail probability, that is, q(T ≥ m) =

∑∞
t=m q(T = t). We will write q(T |T ≥ m) to denote

the conditional distribution of q given T ≥ m, that is, q(T = k|T ≥ m) = 1[k ≥ m]q(T = k)/q(T ≥ m).
We will use analogous notation for p.

By the definition of the KL divergence and using the fact that, since the support is lowerbounded by T = 0,
q(T = 0) = q(T = 0 |T ≥ 0), we have

DKL(qT ∥ pT ) = Et∼q(T )

[
log

q(T = t)

p(T = t)

]
= Et∼q(T |T≥0)

[
log

q(T = t |T ≥ 0)

p(T = t |T ≥ 0)

]
. (B.129)
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Using Lemma 3 with k = 0, 1, 2, 3, . . . , we can expand the above expression to get

DKL(qT ∥ pT )

= f(qT , pT , 0) + q(T ̸= 0 |T ≥ 0)Et∼q(T |T≥1)

[
log

q(T = t |T ≥ 1)

p(T = t |T ≥ 1)

]
(B.130)

= f(q, p, 0) + q(T ̸= 0 |T ≥ 1)f(qT , pT , 1)

+ q(T ̸= 0 |T ≥ 0)q(T ̸= 1 |T ≥ 1)Et∼q(T |T≥2)

[
log

q(T = t |T ≥ 2)

p(T = t |T ≥ 2)

]
(B.131)

= 1︸︷︷︸
=q(T≥0)

·f(q, p, 0)

+ q(T ̸= 0 |T ≥ 0)︸ ︷︷ ︸
=q(T≥1)

f(q, p, 1)

+ q(T ̸= 0 |T ≥ 0)q(T ̸= 1 |T ≥ 1)︸ ︷︷ ︸
=q(T≥2)

f(qT , pT , 2)

+ q(T ̸= 0 |T ≥ 0)q(T ̸= 1 |T ≥ 1)q(T ̸= 2 |T ≥ 2)︸ ︷︷ ︸
=q(T≥3)

Et∼q(T |T≥3)

[
log

q(T = t |T ≥ 3)

p(T = t |T ≥ 3)

]
(B.132)

=

∞∑
t=0

q(T ≥ t)f(qT , pT , t), (B.133)

where f(qT , pT , t) is shorthand for

f(qT , pT , t) = q(T = t |T ≥ t) log
q(T = t |T ≥ t)

p(T = t |T ≥ t)
+ q(T ̸= t |T ≥ t) log

q(T ̸= t |T ≥ t)

p(T ̸= t |T ≥ t)
. (B.134)

and we used the fact that, by Lemma 1,

q(T ≥ t) =

t∏
k=1

q(T ̸= k − 1 |T ≥ k − 1). (B.135)

This completes the proof.

Lemma 5. Let qT (t) and pT (t) be discrete probability distributions with support N0, let ∆t be a Bernoulli
random variable, with success defined as T = t given that T ≥ t, and let q∆t and p∆t be discrete probability
distributions over ∆t for t ∈ N0\{0}, so that

q∆t+1(∆t+1 = 0) =̇ q(T ̸= t |T ≥ t) q∆t+1(∆t+1 = 1) =̇ q(T = t |T ≥ t) (B.136)

p∆t+1(∆t+1 = 0) =̇ p(T ̸= t |T ≥ t) p∆t+1(∆t+1 = 1) =̇ p(T = t |T ≥ t). (B.137)

Then the KL divergence from qT to pT can be written as

DKL(qT || pT ) =
∞∑
t=0

( t∏
k=1

q∆t(∆t = 0)
)
DKL(q∆t+1 || p∆t+1) (B.138)

Proof. The result follows from Lemma 4, Equation (B.135), Equation (B.136), and the definition of f . In detail,
from Lemma 1, and Equation (B.136) we have that

q(T ≥ t) =

t∏
k=1

q(T ̸= k − 1 |T ≥ k − 1) =

t∏
k=1

q∆k (∆k = 0). (B.139)

From the definition of f(qT , pT , t), we have

f(qT , pT , t) = q(T = t |T ≥ t) log
q(T = t |T ≥ t)

p(T = t |T ≥ t)
+ q(T ̸= t |T ≥ t) log

q(T ̸= t |T ≥ t)

p(T ̸= t |T ≥ t)
(B.140)

= q∆t+1(∆t+1 = 0) log
q∆t+1(∆t+1 = 0)

p∆t+1(∆t+1 = 0)
+ q(∆t+1 = 1) log

q∆t+1(∆t+1 = 1)

p∆t+1(∆t+1 = 1)
(B.141)

= DKL(q∆t+1 ∥ p∆t+1). (B.142)

Combining Equation (B.139), Equation (B.142), and Equation (B.127) completes the proof.
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