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ABSTRACT

We give a geometry-first account of Transformers with GeLU. On a generic
regular set of parameters, the head-wise symmetry group acts freely and
properly, so the parameter space fibers over a quotient of functionally dis-
tinct models—a clean principal-bundle picture with gauge orbits as fibers
and function-changing directions as horizontals. Using the empirical Fisher
(Fisher-Rao) metric yields a canonical horizontal distribution and clari-
fies that the natural gradient is the horizontal Riesz representative of the
Euclidean gradient (reducing to orthogonal projection only in a special
case). Within this framework, attention behaves like a connection with
generically nonzero curvature (path-dependent transport), while the feed-
forward block is largely fiber-preserving with a dimension-controlled near-
orthogonality to attention. We turn these ideas into practical diagnos-
tics—a least-squares, gauge-aware gradient split and a small-loop holon-
omy estimator—then report Fuclidean-proxy consistency checks aligning
with the theory; full Fisher—Rao evaluations are presented as algorithms
for future work. Architectural choices such as RoPE appear as principled
gauge reductions (e.g., per-head Q/K dimension from d2 to dy).

1 INTRODUCTION

Transformer architectures exhibit extensive parameter symmetries. In particular, head-wise
transformations that preserve the realized function create large gauge orbits in parameter
space and obscure the geometry of optimization. A principled analysis therefore requires
isolating directions tangent to gauge orbits from directions that modify the function, and
studying learning on the resulting quotient manifold.

Preliminaries. Let m : ©p — Q denote the parameter—function map on a regular
(Zariski—open) subset ©¢ of parameters. The fibers of 7 are gauge orbits of a Lie group G,
and Tp© admits the gg—orthogonal decomposition TyO = Vy @& Hy into vertical directions
Vy = kerdmy and horizontal directions Hy. A principal connection specifies Hg smoothly;
its connection 1-form w has curvature Q = dw + 1[w,w], which governs holonomy on Q.

2
Throughout, the horizontal distribution is chosen as the Fisher-Rao (FR) orthogonal com-

L
plement Hy =V, * associated with the empirical Fisher metric gy.

This paper provides a self-contained geometric formulation for Transformers with GeLU
activations. On the regular stratum ©g, the head—wise mazimal symmetry group Gpax =
((GL(di))" x (GL(dy))") x Sy, acts freely and properly, hence 7 : Og — Q := Oy/Gmax is a
principal Gax—bundle (Theorem. The FR connection yields a canonical horizontal /ver-
tical split. In this geometry, the natural gradient is the horizontal Riesz representative of
the Euclidean gradient,

VL = (Gom,)' P}y, VL,

reducing to gg—orthogonal projection only in the special case Ggjy, = I (Theorem3.2). The
attention mechanism induces an Ehresmann connection on the representation bundle with
nonzero curvature on a Zariski-open subset of © (Theorem , whereas the feed—forward
block produces gradients that are predominantly vertical and nearly orthogonal to attention
in the FR metric, with a dimension-controlled bound (Proposition [4.2)).
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Two diagnostic procedures follow from this framework. First, a metric-aware least—squares
decomposition of a gradient into vertical and horizontal components (Algorithm [1)). Second,
a small-loop holonomy estimator with Richardson extrapolation whose bias is O(?) (Algo-
rithm Theorem . All empirical results in this submission use Fuclidean inner products
as computationally tractable proxies for FR quantities; they provide conservative validation
of the predicted geometry (Section . FR—-exact procedures are stated and analyzed but
deferred to future large—scale evaluation.

The scope and assumptions are explicit. We consider standard Transformer blocks with
GeLU and fixed widths. Results are proved on a generic stratum Oy where the relevant
projection operators have full column rank; outside O stabilizers increase and the action
is stratified by orbit type. Architectural variants fit naturally: rotary position embeddings
(RoPE) restrict the /K factor to the plane—wise commutant, reducing the per—head gauge
dimension from d,% to d, while grouped/multi-query attention ties symmetry factors across
heads. The presentation proceeds as follows: Section [2] establishes maximal symmetry
and the principal-bundle structure; Section [3] develops the FR connection and the natural
gradient; Section [4 proves attention curvature and FFN near-verticality; Section [5] presents
the diagnostics and their complexity; Section[6]gives the quotient Morse-Bott view; Section][7]
reports Euclidean—proxy evidence. Proofs appear in the appendix.

2 MAXIMAL GAUGE SYMMETRY AND THE PRINCIPAL BUNDLE

We write h for the number of heads, dj and d, for key/query and value widths, and dpogel
for the model dimension. A single multi-head attention (MHA) layer is parameterized by
0 = {(WCSL)7W§;)7W\9))?:1v WO}7

and a depth-L model by (61,...,0r). The parameter manifold is an open set © C R,
and 7 : © — Q denotes the parameter—function map to the quotient of functionally distinct
models.

Definition 2.1 (Generic stratum). Let ©g C O be the set of parameters such that, for every
head i in every layer:

(G1) rank(Wg)) = rank(WI(g)) =dj and rank(W‘(,i)) = dy;
(GQ) Amodel = hdv;

(G3) (Softmax Jacobian nondegeneracy) for the fized evaluation batch used to define gg, the
Jacobian of the attention weights with respect to pre-softmazx logits has full row rank at
every token position. FEquivalently, the score map varies along at least two independent
horizontal directions locally (no collapsed/constant softmazx across all heads).

This set is Zariski—open and therefore of full measure.

Intuition for freeness and properness. On Oy, the full-column-rank conditions forbid
nontrivial stabilizers: if g = (A;, C;; o) satisfies g-0 = 6, then WCE-;)AZ- = Wé;(l)), WI(;)A;T =

WJE(U(Z)), W‘(;)C'i = W‘(,U(l)) and C;'Wo = Wo force (by identifiability and (G3)) 4; =
C; = I and o = e, hence freeness. Properness follows from the closed-graph criterion for
matrix-group actions: if g, -0, — 6" with 6, — 6 € g, then the full-rank bounds imply
(gn) is bounded and has a convergent subsequence; see Appendix [A| for details.

Two families of changes of basis preserve the realized function: invertible transforms in the
@ /K channels for each head, and invertible transforms in the V' channels paired with a
compensating block in Wy; heads may also be permuted. The resulting symmetry group is

Guax = ((GL(A)" x (GL())") 51,
acting by
<W$)7W§é>> — (WS’)Ai, W}<§>A;T)7 (WS),WO,Z-) Ly (W‘(f)(]i, Cr W),
for (A;) € (GL(dy))", (C;) € (GL(d,))", and by o € S}, permuting heads.



Under review as a conference paper at ICLR 2025

Theorem 2.2 (Maximal gauge group for a single attention layer). On ©q, the group of all
parameter transformations that preserve the multi-head attention block equals

Crax = ((GL(dk))h X (GL(dv))h) 4 Sh,
acting head-wise as above. No additional continuous or discrete symmetries exist.

Proof reference. Appendix[A-T] which establishes sufficiency, attention-weight identifiability
up to permutation, Lie-algebra characterization, block-diagonality (no cross-head mixing
beyond S},), and completeness.

Theorem 2.3 (Principal bundle on the generic stratum). Let Gax act as above. On
the Zariski—open reqular stratum ©Og the action is free and proper; hence w : Qg — Q :=
O0/Gmax is a principal Gax—bundle.

Proof reference. Lemmas [A7) and in Appendix [A]

Corollary 2.4 (Head sharing (GQA/MQA)). If the h heads are partitioned into g key/value
groups with shared (W, Wy) per group, then on the corresponding generic stratum the
continuous symmetry reduces to (GL(dy))?9 x (GL(dy))9 tied per group, with permutations
Sh x 84 acting discretely.

Corollary 2.5 (RoPE reduction). Under rotary position embeddings with a nondegenerate
frequency schedule and even dy, the Q/K factor reduces on each 2 x 2 plane to the real
commutant {al + bJ} = GL(1,C), giving

Grope = ((Cropr)" x (GL(d,))") % S, Cropr = GL(1,C)%/2,

Consequently, the per-head Q/K gauge dimension drops from dz to dy.

Corollary 2.6 (Layerwise product). For a depth-L model without cross-layer parameter
sharing, the model-level gauge group is the direct product

L L L
Gmodel = H caY.  (or H Ggﬁ)aw H GgipE in the corresponding variants).
=1 =1 =1

Corollary 2.7 (Continuous dimension). For a single layer, dimg G2, = h(d: + d2); with

RoPE, dimg G pr = h(dy + d2); with head sharing into g groups, replace h by g in these
counts.

Geometric consequences. Theorem identifies the vertical space Vy = kerdmy as the
tangent to the gauge orbit. In Section [3| we equip ©¢y with the empirical Fisher metric and
define the Fisher-Rao (mechanical) connection by the gg-orthogonal split Ty© = Vy @ Hy,
which underpins the optimization and curvature results that follow.

3 FISHER-RAO CONNECTION AND NATURAL GRADIENT

By Theorem [2:3] the parameter—to—function map 7 : ©g — Q is a principal bundle. At
0 € O, the vertical space
Vo = kerdmy

is the tangent to the gauge orbit through 6. To isolate the directions that change the realized
function, we equip ©¢ with the empirical Fisher (Fisher-Rao) metric g (fixed evaluation
batch) and define the horizontal complement

Hy = V, .

This gg—orthogonal splitting Ty©¢ = Vy @ Hy is the Fisher-Rao (mechanical) connection.

Lemma 3.1 (Gauge-null gradient directions). If L : ©9 — R is gauge-invariant, then
dLg[v] = 0 for all v € Vy. Equivalently, the Riesz representative of dLg with respect to gg
lies in Hy.
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Proof. See Appendix B]

The natural (Riemannian) gradient is characterized intrinsically by
go(VL, w) = (VL,w)  for all w € TyO,,

and, by Lemma [3.1] must be horizontal. The following makes this precise.

Theorem 3.2 (Natural gradient as horizontal Riesz representative). With the Fisher—Rao
connection, the natural gradient at 6 is the unique vector VL € Hy such that

90(VL, w) = (VL, w) Yw € TyOy,

equivalently B
VL = (Gon,)' Py, VL,

where G|y, is the Fisher information restricted to He and Py, is the Euclidean projector.
It reduces to the Euclidean orthogonal projection onto Hg only when Gy, = I.

Proof. Appendix |Bl An equivalent variational form is: among u € Hy, VL uniquely mini-
mizes 1 go(u,u) — (VL,u).

For later use we record the FR-orthogonal decomposition against a vertical generator set
{v; };‘n:f

—1
Gij = go(vi,v;), bi = ge(vi, u), c=G7'b, Uyt = ) CjVj,  Uhor = U — Uyert.
j

Section [5| turns this into an explicit procedure (and its Euclidean proxy); empirical results
in Section [7] use the proxy for tractability, with the FR-exact formulas here serving as the
mathematical ground truth.

Remark 3.3 (Not merely an orthogonal projection). The expression VL = (GQ‘HG)J[P;EQ VL
is the Riesz representative of the gradient functional restricted to Hg. It coincides with
ge—orthogonal projection onto Hg only in the special case Ggjp, = I.

4  ATTENTION CURVATURE AND FFN NEAR-VERTICALITY

The Fisher-Rao connection in Section [3| lives on parameters. On the representation side,
fix a layer and view token features as sections of a bundle whose fibers are the per-token
feature spaces, with heads acting in parallel. The attention update transports features along
data—dependent directions—precisely the setting where an Ehresmann connection and its
curvature organize what “path dependence” means.

Theorem 4.1 (Attention induces a connection with nonzero curvature). Standard multi-
head attention (with GeLU in the surrounding block) induces an Ehresmann connection on
the representation bundle. On the generic stratum of Definition [2.1], its curvature two-
form Q is generically nonzero. In particular, for gg-orthonormal horizontal directions u,v,
transporting around a small rectangle produces a nontrivial gauge displacement proportional

to Q(u,v).

Proof. Appendix [C] The argument linearizes the attention update, identifies the induced
horizontal distribution, and uses a Baker—Campbell-Hausdorff expansion; GeLU smoothness
ensures the required regularity. We also give the small-loop relation and its O(e3) remainder
used in the estimator.

Where attention mixes information across tokens (and so bends horizontal directions), the
position-wise feed—forward block acts pointwise. In Fisher geometry this split shows up in
the relative size and angle of their gradients.

Proposition 4.2 (FFN near-verticality and separation from attention). Measure norms
and angles with the Fisher-Rao metric of Section 3. On the generic stratum, the FFN



Under review as a conference paper at ICLR 2025

gradient is predominantly vertical—its horizontal component is small compared to its vertical
component—and its angle to the attention gradient obeys a dimension—controlled bound

COS ZQ(VFFN, VAtt) S C \/m7

for a constant C' depending smoothly on activation and normalization. In particular, when
dmodel > dhead, the two gradients are nearly orthogonal.

Proof. Appendix@ The key inputs are the block-diagonal (tokenwise) Jacobian of the FFN,
the headwise mixing structure of attention, and the concatenation constraint dyoqe; = hd,,.

Two brief comments help connect theory to practice. First, nonzero curvature is the geomet-
ric statement behind “context sensitivity”: the order of horizontal transports matters up to
a gauge action. Section |§| turns this into a small-loop holonomy estimator with Richardson
extrapolation and O(g3) error. Second, while all statements here are in the Fisher—Rao
metric, our experiments report Fuclidean proxies for scalability (Section @; these provide
conservative surrogates—Fuclidean angles lower—bound Fisher angles and Fuclidean vertical
fractions upper—bound horizontal leakage—without changing the theorems above.

5 DI1AGNOSTICS AND COMPLEXITY

Two concrete procedures make the geometry from Sections [3] and [4] operational. The first
resolves a vector into its gauge (vertical) and function-changing (horizontal) parts with
respect to the Fisher-Rao metric. The second turns curvature into a measurable small-loop
effect. We use the first with Fuclidean inner products in Section [7] as a scalable proxy;
the second is presented here with guarantees and left for future large-scale Fisher-Rao
evaluation.

Gauge—aware decomposition. Let {vj} * , span the vertical space Vy to tolerance. Define
the Fisher-Rao Gram G;; = gg(v;,v;) and the correlations b; = gg(v;, u) for a vector u (e.g.,
u = VL). The FR-orthogonal vertical component tyet solves Ge = b, and tyers = Y 5 €53
the horizontal component is upo = @ — Uyers- The Euclidean proxy replaces gg by the dot
product: stack A = [vec(v1) --- vec(v,,)], then (AT A)c = ATwu. In practice we stabilize
with thin-QR and column-pivoting; these choices do not change the FR definition.

Algorithm 1 Gauge-aware gradient decomposition (Fisher-Rao)

Require: parameter 6 € Oy; vertical generators {v; }'
1: Gz] <_99(Uzavj)a b; <_99(Uza )
2: Solve (G + AI)c = b (Cholesky/CG; optional A>0)
31 Uyert < Zj CjUj, Uhor < U — Uyert
4: return (Uyert, Unor) and vertical fraction ||uyertl| /| w|

j=1; vector u; FR metric gg

From curvature to holonomy. For gg-orthonormal u,v € Hy, consider the horizontal
loop that moves by +cu, +cv, then returns by —eu, —ev.
Theorem 5.1 (Small-loop holonomy scaling). The induced gauge displacement Ag_(u,v)
obeys

1Ag, (u, )| = € [|Q(u,v)]| + O(?),

where Qg is the curvature two-form of the Fisher—Rao connection at 6.

Algorithm 2 Holonomy estimator with Richardson extrapolation

Require: 6; gg-orthonormal u,v € Hg; steps € > &’ >0
1: For each 0 €{e, €'}, traverse the horizontal loop using FR projection at each leg
2: Compute Ap, (u,v) (Lie-algebra coordinates via a log map)
3: h(6) [ Ag, (u,v)]/6?
A 4h(e/2) — h(e)
3

: return h* «

(Richardson; error O(g?))
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Table 1: Cost at a glance for one layer (parameter dim D, generators m = h(dz+d?); with
RoPE: m = h(dy+d?)).

Procedure Leading cost Notes

Euclidean vertical split form AT A: O(m2D); solve: O(m?) CG: O(mD) per matvec
FR vertical split form Gram G: O(m? -FisherEval); solve: O(m?) Heavy for m > 10*
Holonomy (loop + LS) 4 flows + LS on g Richardson reduces O(£?) bias

Cost at a glance. Let m = h(d?+d?) (RoPE reduces d2 — dj, per head). Forming AT A
costs O(m?2D) for parameter dimension D, and solving costs O(m3) (or CG with matvec
O(mD)). At h=12, dy=d,=64, one has m=98,304, so FR projectors and holonomy become
heavy; we therefore use Euclidean proxies in Section [7]and expose FR-exact procedures here
for future evaluation.

These two diagnostics tie the abstract calculus to practice: the first reports how much of a
step is “just gauge,” the second quantifies the path dependence predicted by curvature. In
Section [7] we read existing Euclidean measurements through this lens; FR-exact holonomy
is left for future large-scale runs.

6 OPTIMIZATION ON THE QUOTIENT: A MORSE-BOTT VIEW

Gauge symmetry means many parameter settings realize the same function. On the total
space ©¢ this appears as flat directions tangent to gauge orbits; on the quotient Q =
00/Gmax those directions disappear and the landscape reflects genuine functional change.
The right language is Morse-Bott: critical sets in ©g are manifolds (orbits), while the
induced problem on Q is Morse once we restrict to horizontal directions.

Theorem 6.1 (Gauge orbits as critical manifolds; Morse behavior on the quotient). Let
L : 05— R be gauge-invariant and let 6 € ©q be critical. Then the entire orbit Gumax-0 lies
in the critical set, the Hessian V2>L(0) vanishes on the vertical space Vg = kerdmy, and its
horizontal restriction on Hg is well defined. Writing £ : Q@ — R for the induced loss, [0] is
critical for ¢ and has nondegenerate Hessian equal to the horizontal restriction of V2L(0).
In particular, £ is Morse at [0] whenever the horizontal Hessian is nondegenerate.

Proof. Appendix [E] The argument uses the slice construction around a free, proper orbit
and the horizontal /vertical split from Section

Two consequences are worth keeping in mind. First, methods that suppress vertical com-
ponents—see Algorithm [T}—are aligned with the true second-order structure of the quotient
problem: they follow directions that actually change the function. Second, small horizontal
steps can move far in Euclidean parameter norm while staying close in function space, which
explains why Euclidean distances often overstate functional change and why seemingly “dis-
tant” minima in ©g can sit in the same basin on Q.

The result is local to the generic stratum: near ©( the bundle picture applies cleanly; away
from it stabilizers may grow and the space stratifies. Our empirical reading in Section [7]stays
within ©¢ and interprets existing (Euclidean-proxy) measurements through this quotient
lens.

7 EMPIRICAL CONSISTENCY CHECKS (EUCLIDEAN PROXIES)

All measurements in this section use Fuclidean inner products as computa-
tionally tractable prozies for the Fisher—Rao geometry. They provide conservative
validation of the bundle predictions: Euclidean angles lower bound Fisher-Rao angles, and
Euclidean vertical fractions upper bound horizontal leakage. These proxies are consistent
with the theory but do not constitute full Fisher—Rao validation. FR—exact procedures ap-
pear in Section [f] and proofs in the appendix; we do not add new runs beyond the existing
computations reported here.
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Table 2: Gauge invariance (relative errors across 100 trials). Outputs remain invariant up
to machine precision.

Metric Value Interpretation
Mean relative difference 2.68 x 10715 Machine precision
Maximum relative difference 2.86 x 10~1° ~ 13 emach
Std. deviation 9.41 x 10~'7  Highly consistent
Minimum relative difference  2.52 x 10715 ~ 11 emach

7.1 GAUGE INVARIANCE

A basic check is functional invariance under the head-wise symmetry of Section[2] We apply
controlled transforms from Gpax to MHA layers (h=12, dp=d,=64), including random head
permutations and well-conditioned @Q/K and V/O changes of basis generated by thin—QR
with prescribed singular values; outputs are compared on fixed inputs.

As a control, transformations outside Gax (€.g., cross—head mixing) induce O(1) changes,
consistent with maximality. The same precision holds after 1,000 gradient steps on a recon-
struction objective.

7.2  GAUGE-AWARE GRADIENT SPLIT (EUCLIDEAN PROXY)

The bundle theory (Lemma Theorem |3.2) predicts horizontally aligned gradients in
Fisher geometry. We test the prozy claim by replacing the Fisher inner product in Algo-
rithm [1| with dot products: stack vertical generators into A and solve (AT A)c = ATVL.

On 50 independent samples, we report the Euclidean vertical fraction ||P1()EHC)VL||/ (IVL].

O 6&—&—&—6 —0 —0
0 10 20 30 40 50

Euclidean vertical fraction
o
w
T
|

Sample index

Figure 1: Gauge-aware split (Euclidean proxy). The Euclidean vertical fraction stays below a
10~* threshold across 50 samples, consistent with horizontality predicted by Theorem ﬁ

The Figure [I] is uniform across layers and seeds: vertical fractions remain at numerical
precision, and the horizontal component accounts for essentially all of the norm. This
matches the Riesz characterization in Theorem [3.2}—in practice, gradient steps align with
the quotient geometry.

The near-zero (Euclidean) vertical fractions indicate gradients lie almost entirely in function-
changing (horizontal) directions, consistent with Theoremfor gauge-invariant objectives.

Note on scope. Angles between attention and FFN gradients are likewise reported with
Euclidean inner products; they should be read as lower bounds on Fisher angles. FR-exact
angle and holonomy measurements are enabled by Section [5| and left for future large-scale
evaluation.

8 ARCHITECTURAL VARIANTS AND LIMITATIONS

Real systems add positional structure and sharing patterns that slightly change the symme-
try—and with it, the bundle—without altering the main thread of our results. We record
the two common cases and then state the limits of our analysis in plain terms.
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Rotary position embeddings (RoPE). RoPE rotates Q/K channels in 2x2 planes
determined by frequencies. On each plane the admissible head-wise transform collapses to
the real commutant {al+bJ} of that rotation, so the @/ K factor of Ginax reduces plane-wise.
A useful way to remember the effect is dimensional: per head, the /K gauge dimension
drops from d? to dj, while the V/O factor stays at d2. All statements in Sectionsremain
true after substituting this reduced group and restricting the generic stratum accordingly;
the Fisher—-Rao connection is defined exactly as before by gs—orthogonality to the (now
smaller) vertical space.

Grouped and multi-query attention (GQA/MQA). When heads share key/value
projections, the layer symmetry is no longer a direct product across individual heads but
across groups that share parameters. Concretely, one replaces Gupax by a product over
groups, with the shared GL(dy) or GL(d,) factor acting jointly on the grouped channels.
The principal-bundle theorem and the free—proper argument are unchanged under this sub-
stitution, and the diagnostics of Section [B] apply verbatim once the vertical generator set
respects the sharing pattern.

Limitations. Our claims are local and precise by design. They are proved on a
Zariski—open regular stratum Oy where stabilizers are trivial; away from ©( the orbit
type changes and the ambient space stratifies, so we avoid global topological statements
(e.g., global connectivity of minima). The Fisher-Rao connection depends on the evalua-
tion batch (standard in information geometry); consequently, numerical angles or vertical
fractions are batch—specific. For scalability, the empirical section reports Fuclidean prox-
ies; these are consistent with the theory but do not constitute full Fisher—Rao validation.
The Fisher—Rao—exact procedures are presented in Section [5| for future large-scale eval-
uation. We restrict to smooth activations (GeLU) so that the curvature expansion and
Fisher calculus are well-defined; non-smooth activations such as ReLU require a stratified
or Clarke—generalized treatment and fall outside our scope here. Finally, Fisher—Rao pro-
jectors and holonomy are costly at scale (they solve Gram systems and perform horizontal
projections along loops); we therefore expose the methods and guarantees but do not add
new measurements beyond the existing Euclidean computations.

Takeaway. RoPE and GQA/MQA change the structure group in controlled
ways—shrinking or tying @Q/K symmetries—while the principal-bundle picture and the
Fisher-Rao connection survive intact. The limitations above mark exactly where our guaran-
tees apply and explain why we pair Euclidean—proxy measurements with Fisher—Rao—exact
algorithms.

9 RELATED WORK

Symmetries in neural networks. Permutation invariances in multilayer perceptrons
have been recognized for decades Hecht-Nielsen| (1990)); |Ainsworth et al.| (2023); |[Entezari
et al.|(2022]), and convolutional networks admit translation symmetries naturally modeled by
group actions |[Cohen & Welling| (2016). For Transformers, recent analyses have documented
partial symmetries and superposition effects Henighan et al.[(2023);|Elhage et al.| (2022]), but
a complete account of the mazimal head—wise gauge and its consequences has been missing.
Our work fills this gap by proving a principal-bundle structure on a generic stratum (see
and developing a connection—curvature calculus on the quotient.

Information geometry and optimization. Natural gradient methods |Amari| (1998]);
Amari & Nagaokal (2000); |Amari| (2016)); [Martens (2020]) and their scalable approximations
Pascanu & Bengio| (2013)); [Ollivier| (2015)); Bernacchia & Pigolotti| (2018) bring Riemannian
structure to learning, typically as an algorithmic tool. Here the Fisher metric plays a
different role: it selects a connection on the principal bundle, and the natural gradient is
the Riesz representative restricted to the horizontal subspace (Theorem [3.2]). Prior studies
of Transformer optimization and loss geometry [Liu et al.| (2020); |Zhang et al.| (2020) report
phenomena—flat directions, easy-to-traverse basins—that our quotient viewpoint explains
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cleanly: gauge orbits give Morse—Bott critical manifolds on ©q, while the induced loss on
the base is Morse (Theorem [6.1)).

Interpretability and model merging. Mechanistic interpretability proceeds by reverse
engineering circuits and features |Olsson et al.| (2022)); [Nanda et al.| (2023). The bundle
picture complements that line of work: fibers formalize “functionally the same” models,
while horizontal directions capture genuine functional change. Practical procedures like
canonicalization and model merging |Ainsworth et al.| (2023); [Singh & Jaggi| (2020) then
acquire a geometric reading—deterministic gauge-fixes become sections of the bundle rather
than ad hoc normal forms (cf. [5).

Curvature, holonomy, and representation transport. Curvature has entered ma-
chine learning through Hessian structure and flatness surrogates [Martens & Grosse| (2015));
Chaudhari et al| (2017); [He & colleagues (2020)). Holonomy and parallel transport are less
common but natural in sequence models where order matters. We formalize attention as an
Ehresmann connection on a representation bundle and show that curvature is generically
nonzero (Theorem ; a small-loop expansion relates curvature to a measurable holonomy
(Theorem [5.1]). For background, see [Kobayashi & Nomizu| (1963); [Lee| (2013).

Remark 9.1 (Architectural variants and gauge structure). Architectural choices adjust the
structure group in predictable ways. Rotary position embeddings (RoPE) |Su et all| (2024)
impose position-dependent rotations after linear projections, constraining any A € GL(dy)
to commute with the rotation blocks; for standard 2 x 2 planes, this reduces the query—key
factor to the commutant Cropr = (GL(1,C))%/2 (Proposition . Multi-query attention
Shazeer| (2019) couples heads by sharing key—value projections, shrinking the gauge degrees of
freedom from h(dz+d?) to h-di +d? while maintaining expressivity. Both variants preserve
the principal-bundle perspective on the appropriate generic stratum; see[8

Position in the literature. Most geometric treatments fix a parameterization and study
its local properties, or impose a data-dependent canonical form before analysis. We take the
opposite route: start from the maximal head—wise gauge, prove a principal-bundle structure,
and use the empirical Fisher metric to define a connection. This yields a horizontal/verti-
cal calculus that explains optimization behavior (Theorem [3.2), clarifies architectural roles
(attention curvature vs. near-vertical FFN flows; Theorem Proposition , and sup-
plies operational diagnostics (Algorithm [I} Algorithm —all within a single, coordinate-free
framework.

10 CONCLUSION

We presented a coordinate—free account of Transformer geometry built on a maximal
head—wise gauge and a principal-bundle structure on a generic stratum. Equipped with
the empirical Fisher metric, this yields a Fisher—-Rao connection, a clean horizontal/vertical
calculus, and a precise statement that the natural gradient is the horizontal Riesz repre-
sentative . On the representation side, attention induces a connection with generically
nonzero curvature , while FFN behaves as a nearly fiber—preserving flow (Proposi-
tion . These ingredients lead to practical diagnostics—gauge—-aware gradient splitting
and a small-loop holonomy estimator (Algorithm [If Algorithm —and a Morse—Bott
view that explains why apparent “mode” gaps in parameter space collapse on the quotient

(6-1)-

Our analysis is intentionally narrow and precise: it is local to the generic stratum, met-
ric—dependent through the empirical Fisher, and focused on GeLU for smoothness. Within
that scope, the principal-bundle picture clarifies optimization behavior, gives a geometric
meaning to the attention/FFN split, and turns context sensitivity into a quantity that can
be measured. We hope this framework serves as a durable foundation for geometry—aware
analysis and tooling in Transformers.
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This work studies internal symmetries and geometric structure of standard Transformer
blocks. Experiments use synthetic inputs and publicly available checkpoints; no personal
or sensitive data are involved, and no user-facing deployment is performed. All diagnostics
(e.g., gauge-aware gradient decomposition and small-loop holonomy procedures) are offline
analyses intended to clarify invariances, optimization geometry, and representation trans-
port. Environmental impact is limited to training-free evaluations and lightweight gradient
computations; we report implementation details in the Reproducibility Statement.

REPRODUCIBILITY STATEMENT

We provide algorithmic details for our diagnostics in [5]and full procedural notes in[F]and [B]
Table [2| reports gauge-invariance verification, and Figure [1| reports Euclidean-proxy vertical
fractions for gradient decomposition.

A Group AcCTION, MAXIMAL GAUGE, AND THE PRINCIPAL BUNDLE
Setup. Recall the head-wise action of
Gmax = ((GL(dk))h X (GL(dv))h) X Sh
on parameters by
W Wy WA, WRATTY, (WP, Wo) s (WHC, €7 Wo),

together with head permutations, restricted to the generic stratum © of Definition [2.1]
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A.1 MAXIMAL GAUGE GROUP: FULL PROOFS

Lemma A.1 (Sufficiency: sector-wise invariances). For any A; € GL(dy) and C; € GL(d,),
WS WD) s W AL, WPATT), (W Wou) s WG, 7 Wo,)

preserve QiKiT and V;Wo ;, hence the layer output; permutations o € Sy, also preserve it.

Proof. Direct calculation shows Qj(K/)" = Q;K, and V/W{, ; = ViWo ; for all inputs. [

Lemma A.2 (Attention-weight identifiability up to permutation). If two parameter sets

realize the same attention layer for all inputs, then attention weights are preserved up to a
fized head permutation o € Sy,.

construct X @ with a;(X®) ~ I and o (X@) = 0 for j # i. Equality of outputs forces a
bijection between heads, hence a permutation. O

Proof. Use head-isolating inputs guaranteed by (G3) and controllability (dmodel > 2dk):

Lemma A.3 (Lie algebra of infinitesimal symmetries). The Lie algebra is

h

h
Omax — @g[(dk) @ @g[(dv)3

i=1

with generators SW3) = WS Xi, sWi = -WP X[, oW = wiv;, 6Wo, = ~YiWo,.

Proof. Differentiate the invariance identities of Lemma along a smooth one-parameter
subgroup. O

Lemma A.4 (No cross-head mixing beyond permutations). Any linear map on the con-
catenated value space that preserves the layer for all inputs must be block-diagonal up to a
permutation; i.e., heads cannot be mized except by o € Sp,.

Proof. Apply Lemma to isolate heads, then use linear independence of the Wy block
rows (under dpodel = hd, and genericity) to force off-diagonal blocks to vanish. O

Theorem A.5 (Maximality). On ©g, the full symmetry group equals Gumax and no addi-
tional continuous or discrete symmetries exist.

Proof. By Lemma[AT] Gyax preserves the function. Conversely, Lemma [A72] gives the per-
mutation part; Lemmapins down the connected component as [ [, GL(dx) x [ [, GL(d,);
Lemma[A 4] excludes cross-head mixing beyond Sj. Hence every symmetry lies in Gax. O

Head sharing (GQA/MQA). When keys/values are tied into g groups, the same ar-
gument forces A; and C; to tie per group, yielding a continuous symmetry (GL(dg))? X
(GL(dy))¢ with permutations Sj x S.

RoPE commutant and dimension drop. On each 2x2 RoPE plane with rotation R(¢),
commuting with all R(¢) forces A =al +bJ (J = [{ ']). Across dj,/2 planes this yields
Cropr = GL(1,C)%/2 with real dimension dj per head; the V/O factor remains d2.

Proposition A.6 (RoPE commutant reduction and dimension). With rotary position em-
beddings (even dy ), each 2Xx2 rotation plane restricts admissible Q/K transforms to the real
commutant {al+bJ} on that plane. Equivalently, the Q/K factor reduces to a block-diagonal

commutant subgroup (canonically (GL(1,C))%*/2), so the per-head Q/K gauge dimension
drops from di to dy. The V/O factor remains d.

12
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A.2 FREE AND PROPER ACTION; PRINCIPAL BUNDLE

Lemma A.7 (Trivial stabilizers on ©g). If § € ©g and g € Guax satisfy g-0 = 0, then
g=e.

Proof. Write g = ((A;)"_,, (C;)"_,, ). By definition of the action,
WS)Ai = W(gf(i)), V[/}(g)/li_T = Wl((a(i)), W‘(,i)C'i = W‘(/a(i)), Ci_lVVO = Wo on the i-th block rows.

On Oy, (G1) gives full column rank for each Wg), WI(;), ‘(/i) and full row rank d, for the
i-th block-row selector S;Wo. First, C; "Wo = Wo on rows of head i implies (S;Wo) =
(S;C;7'Wo) = (SiC; 1S )(SiWo) so, since S;Wo has rank d,,, we get S;C; 'S, = I, and
hence C; = I. Then W‘(/Z )C’i = W‘(/U(i)) reduces to W‘(,Z ) — W‘(/d(i)), so unless blocks coincide
identically we must have o (i) = 7; on ©¢ distinct heads are nondegenerate and in general
position, hence o = id. Finally, from Wg)Ai = Wg) and WI(;)A;T = Wl((i) with WS), WI(;)
full column rank, we obtain A; = I for each ZE| Thus g = e. O

Lemma A.8 (Properness on the regular stratum). The Gpax—action on g is proper.

Proof (sequential/closed—graph characterization). Let 0, — 0 € g and g, -0, — 0’ with
gn = ((AE”)),», (an))i, o). Since Sy, is finite, pass to a subsequence with o,, = 0. We show
{gn} is bounded in Guax and hence has a convergent subsequence in the (closed) matrix
group.

Uniform left/right inverses from genericity. Because 6 € Oy and 6, — 6, there exists a
neighborhood U of 6 and positive constants

aqg,ak,ay,ao >0

such that for all ¥ € U and all heads i: (i) the smallest singular values satisfy
omin(Wé;) (?) > ag, O'min(WI((Z)(ﬁ)) > ag, Umin(W‘(/l)(ﬁ)) > ay; and (ii) the block-row
map S;Wo(¥) has full row rank d, with omin(SiWo(¥)) > ao. Hence there exist uni-
formly bounded left inverses Lq ;(¥), Lk :(?), Ly(¥) and right/left inverses for S;Wo (1)

with operator norms bounded by aél, al_(l, 04‘_/1, a(_)l respectively.
Boundedness of AE") and (AZ(-"))’l. From the Q—equation at 6,, we have

W) AP — WD 0+ B, ED -0
because g, - 6,, — 0’ and all maps are continuous. Left-multiplying by Lq ;(6,) yields

A7 = Lai@) WG (0n) + Lo.i(6a) EG).
o {Agn)}n is bounded (uniform bound from || Lg ;|| < ozél and boundedness of Wg(i))(ﬂn)).
Similarly, from the K—equation
Wi (0,) AT = wEW e, +BY, BY =0,

left—multiply by Lk ;(6,) to obtain a uniform bound on Agn)’f—r and thus on (Agn))_l.
Boundedness of Ci(") and (Cfn))_l. From

Wi 0,) 0 = w0, + BF, B o,

left—multiplying by Ly ;(6,) gives a uniform bound on Ci(n). For the inverse, use the
O-equation on the i—th block rows:

O S Wol0) = SWol0,) + ES).  BS) o0,

i) %

If RoPE is enabled, A; is further constrained to the real commutant on each 2 x 2 plane; the
same argument forces A; = I within that commutant.
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Right—multiply by a uniformly bounded right inverse of S;Wy(6,) (or, equivalently,
left-multiply by the bounded left inverse of (S;Wo(6,,)) ") to get a uniform bound on C’i(n)’fl.

Therefore, for each head 4, the sets {Agn)}n, {(Al(-"))_l}n, {C’i(n)}n7 {(Ci(n))_l}n are bounded.
Together with o,, = o, this implies {g,} is bounded in Gyax and hence admits a convergent
subsequence in the (closed) Lie group. This is equivalent to properness of the action map
on Og. O

Remark A.9 (RoPE restriction). If RoPFE is enabled, each A; lies in the real commutant
on every 2x2 rotation plane. The arguments above apply plane—wise with the same uniform
singular—value bounds (now on the compressed blocks), so the boundedness and convergence
conclusions remain valid.

Theorem A.10 (Principal-bundle structure, restated). Under Lemmas and the
Guax—action on Oy is free and proper. Therefore

T:00— Q = 0y/Gmax

s a principal Guax—bundle, and the fibers are gauge orbits.

Proof. A free, proper Lie-group action admits local slices and hence local trivializations,
yielding a principal bundle. O

B Fi1SHER-RAO CONNECTION AND NATURAL GRADIENT

This appendix spells out the Fisher-Rao (FR) geometry behind Section [3|in a coordinate-
free way and then gives the compact coordinate formula used in the main text. Throughout,
g is the empirical Fisher metric on ©¢ (defined on a fixed evaluation batch), and

ToOo = Vo ® Ho

is its gp—orthogonal split into vertical (gauge) and horizontal (function-changing) directions.

Riesz map and horizontality. Let Rg: TpO¢ — T Oq be the Riesz isomorphism deter-
mined by gy, i.e. (Ro(u),w) = go(u,w) for all u,w. If L is gauge-invariant, the differential
kills vertical vectors and therefore lives entirely on the horizontal dual.

Lemma B.1 (Gauge-null differential). If L is gauge-invariant, then dLg[v] = 0 for all
v € Vy. Equivalently, R, (dLg) € Hy.

Proof. For any Lie-algebra element X, the curve ¢ — exp(tX)-6 stays in the fiber and L is

constant along it, so %L:OL(exp(tX)of)) = 0. The fundamental vector field py(X) spans
O

Vg, which gives the claim.
Natural gradient as a Riesz representative. The natural (Riemannian) gradient at
0 is defined intrinsically by

go(VL, w) = (VL, w) for all w € TyOy.

Lemma forces VL to be horizontal; the next theorem packages this as an exact Riesz
statement and a variational principle.

Theorem B.2 (Natural gradient as horizontal Riesz representative). There is a unique
vector VL € Hg such that go(VL,w) = (VL,w) for all w € TyO¢. Equivalently,

VL = Ry, (ALo) ,

and, in any local chart where Gy is the matriz of go and Py, is the Euclidean projector onto

H@; .
VL = (Gou,)' P}, VL.

Moreover, VL is the unique minimizer of the strictly convex functional

u = %ge(wu) — (VL, u) over u € Hy.

14
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Proof. By Lemma dLg € Hy, and the restriction Ry, : Hg — Hj is an isomorphism.
The coordinate expression follows by identifying Rg|3, with Ggjz, and restricting the Eu-

clidean adjoint via P;_[e. The variational statement is the standard Riesz minimization on a
Hilbert space. U

Corollary B.3 (When “projection” is correct). If the Fisher matriz restricted to Hey is the
identity in the chosen chart, Gy, = I, then VL = PLGVL. In general, identifying the
natural gradient with an orthogonal projection is incorrect unless this special case holds.

Projectors and a practical decomposition. Given vertical generators {Uj}Tzl at 0,
the FR-orthogonal vertical component of u is obtained from the Gram system

m
Gij = gﬁ(via ’Uj)a b; = ge(vi» U)v Ge= ba Uvert = E CjUj, Uhor = U — Uvert-
Jj=1

This is Algorithm [1] in Section [5| In practice we allow a small Tikhonov term (G + AI) for
numerical stability. The Euclidean proxy replaces gg by dot products (stack the generators
into A and solve (AT A)c = ATu); it does not change the definition of uyet in FR geometry
and is used only for scalable measurement in Section [7]

Batch dependence. The empirical Fisher depends on the evaluation batch; all FR state-
ments here and in Section [Blare made relative to a fixed batch. This affects numerical values
(angles, fractions) but not the structural results above.

C ATTENTION AS CONNECTION; CURVATURE AND HOLONOMY

We pass from the parameter bundle to the representation side. Fix a layer and let R denote
the representation bundle whose fiber over an input sequence is the token feature space (with
heads acting in parallel). The attention update provides horizontal lifts of base variations
(data directions), hence an Ehresmann connection on R. We write Q for its curvature
two—form and use the Fisher-Rao horizontal/vertical split from Section

Induced connection and explicit sensitivities. Let Y = Attn(X;0) =
Z?Zl ;(X;0) V;(X;0) with a = softmax(Z) and Z = ﬁ QK. For a horizontal direction
w e 7‘[97

DY =Y (Dyoi)Vi + Y i DyVi,  Dya = Jam(Z)vee(DyZ), (C.1)

7
where Jo(Z) = Diag(a) —aa' is the softmax Jacobian (blockwise across query positions)
and

DyZ = ﬁ((DwQ)KT + Q(DwK)T). (C.2)

The horizontal lift X, is the vector field on R defined by X,,-Y := D, Y.

Theorem C.1 (Attention curvature is generically nonzero). On a Zariski—-open (hence
full-measure) subset of O, the curvature two—form Q of the induced connection on R is
nonzero. In particular, if there exist horizontal directions u,v € Hg such that the weight
sensitivities Dy and Dya are not collinear and the set {V;} is not jointly degenerate along
both w and v, then Qg(u,v) # 0.

Proof. Compute the commutator of horizontal lifts on Y:
[X.,X,]-Y = DuD,Y — D,D,Y.
Using equation twice and the product rule,

DuDY =Y (DuDya;) Vi + > (Dyei) DuVi+ Y (Duci) DVi + > a; DyDyV;,

(2

DyD,Y =Y (DyDuci)Vi+ > (Duai) DyV; + Y (Dyei) DuVi+ Y | ai DyD,V;.

7
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Subtracting gives cancellation of the mixed first—order products and second—order V terms,
leaving

[Xu, Xo] Y = Z(DuDvai—DvDuozi)Vi. (C.3)
i
Thus the commutator is driven by the non—commutativity of the weight variations. By
equation
Dupa = Jun(Z) vec(ﬁ((DwQ)KT +Q(DwK)T)>.

Unless D,a and D,a are collinear and the {V;} conspire to cancel in equation the
commutator is nonzero. Since the exceptional set where these algebraic equalities hold is
contained in a proper algebraic subset of Oy, nonvanishing is generic. By the definition of the

induced connection, the vertical component of [X,, X,]| equals Qg(u,v), hence Qq(u,v) #0
generically.

Explicit BCH for horizontal loops. Let u,v € Hy be gy—orthonormal and ®.,, the
horizontal flow along w for time €. Consider the small horizontal loop

Ds(uv U) = & ,0P0P 0P .
Write X,,, X, for the horizontal vector fields. Using the Baker—-Campbell-Hausdorff (BCH)

expansion for commutators of flows,

De(uvv) = eXp(EQ[XUvXU] + %([XW[XU’XU]]_F[va[XwXuH) + 0(64)>7 (04)

as operators on sections of R. Projecting to the vertical component and using [X,,, X, |V =
Qg (u,v) yields the second-order holonomy law with an explicit third—order correction:

Proposition C.2 (BCH expansion and vertical projection). In Lie-algebra coordinates for
the structure group,

ADE(U;U) = 52 QG(“»”) + %([Xuv[XuaXv]]vert“i’[X117[X1)7Xu]]vert) + 0(54)-

Consequently, |Ag, (u,v)| = &2||Q%(u,v)|| + O(e?) for any norm smoothly equivalent to the
operator norm.

Proof. Apply equation [C-4] and take the vertical projection; norms of the multilinear re-
mainder are controlled by smoothness of X, X,, on Oy. O

Holonomy scaling and Richardson bias removal. Define H(s) = [|Ag_(u,v)| /g%
From Proposition H(e) = ||Q(u,v)|| + ce + O(g?) for some smooth ¢ = ¢(,u,v). The
standard Richardson extrapolate
4H(e/2) — H(e)

3

cancels the linear term and satisfies H* = || Qg (u,v)|| + O(£?).

H* =

Implementation note. The gauge displacement A_(u,v) is obtained by least-squares
alignment onto a vertical generator basis (the same used in the gauge—aware projector),
followed by a local logarithm in the structure group. This matches Algorithm[2]and underlies
Theorem [l

D FFN NEAR-VERTICALITY AND ATTENTION-FFN SEPARATION

We quantify the informal picture from Section [ the position-wise feed—forward block
(FFN) acts almost entirely along fibers, while attention mixes across tokens and bends hor-
izontal directions. Throughout we assume GeLLU smoothness and the same fixed evaluation
batch used to define the Fisher-Rao (FR) metric.
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Structure of the FFN Jacobian. Let FFN(X;0) = W5 ¢(W1X +b1)+bs act tokenwise,
with ¢ = GeLLU. The Jacobian with respect to parameters decomposes as
T
DoFFN(X;0) = @ {(¢,(W1It +b1) @ Wy ) DgWy + DgWy (Wi +b1) + Dgbe|,
t=1
a block—diagonal sum over tokens t. After composing with the value/output readout in
MHA, the dominant directions created by these blocks coincide, up to small residuals con-
trolled by ¢, with the vertical generators associated with head—wise V/O transformations.

Lemma D.1 (Block-diagonal FFN and the vertical span). Under the FR metric, the image
of DoFFN lies in the closure of the span of vertical generators {v;} associated with head-wise
V/O transformations, up to a remainder whose FR norm is controlled by the GeLU slope
statistics on the evaluation batch:

V dhead

1/2
2o Ve, < (B VX +00)IP]) i S22 | Ve,

where k1N captures the (bounded) contribution of normalization layers and residual scalings.

Proof. Since DyFFN is block—diagonal across tokens, its contribution to dm cannot mix to-
ken indices. The vertical generator family corresponding to V/O changes spans precisely
the directions that adjust head—wise value subspaces while compensating in Wy. Projecting
DyFFN onto this span leaves a remainder driven by the tokenwise slope ¢’ and normaliza-
tion/residual gates; Jensen—Cauchy—Schwarz controls its FR norm. The dimensional factor
comes from comparing the head subspace to the model space under dyodel = h dy, . ]

Proposition D.2 (FFN near—verticality and Fisher angle bound). With the FR inner
product,

dhead ||PH9 VFFN ‘ ’ ge C dhead

cos Zg, (VFFN7 VAtt) < C

dimodel’ | Verx Hgs dmodel”

where C' depends smoothly on GeLU slope statistics and normalization constants on the
evaluation batch.

Proof. Decompose both gradients into head—wise components and apply Cauchy—Schwarz
in the FR metric. Attention’s horizontal part lives in a subspace whose effective dimension
scales with dpeder (token mixing), while Lemma places the FFN gradient near the
vertical span generated by V/O (headwise) directions, with horizontal leakage controlled by
the GeLU slope and normalization factors. The ratio of dimensions dhead/dmoder yields the
stated square-root factor; the constant C' collects bounded batch—dependent terms. O

Remarks. (i) The bounds are local to the fixed batch that defines gg; changing the batch
perturbs C' but not the scaling. (ii) Euclidean angles reported in Section |z| are conserva-
tive: they lower—bound Fisher angles and thus preserve the qualitative separation predicted
here. (iii) The same argument applies layerwise; at model scale one sums the per-layer
contributions, with residuals controlled by standard stability estimates.

E  MORSE-BOTT STRUCTURE AND THE QUOTIENT LOSS
This section gives the proof of Theorem [6.1] from the main text.

Proof of Theorem[6.1 Gauge—invariance gives dLg[v] = 0 for every v € Vy (Lemma ,
so the entire orbit Gy -6 lies in the critical set and the Hessian V2L(#) annihilates V.
Since the Gax—action on Qg is free and proper (Theorem , the slice theorem yields a
submanifold S through 6 with TpS = Hy and a Gpax—equivariant diffeomorphism from a
neighborhood of 6 onto a neighborhood of the orbit modeled on Gp.x X S. Restricting L
to S freezes vertical directions, so the Hessian of L|g at 6 equals the horizontal block of
V2L(#). The quotient map identifies S with a chart of Q around [6]; because Lo = L,
the Hessian V2¢([#]) matches the horizontal restriction of V2L(#). Nondegeneracy of the
horizontal block is therefore equivalent to £ being Morse at [6]. O
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Remarks. (i) The argument is local to the regular stratum ©g; outside it, stabilizers may
grow and the space stratifies. (ii) The identification of V2¢([¢]) with the horizontal block is
independent of the slice, since all slices share TpS = Hy.

F  ALGORITHMS AND REPRODUCIBILITY

This appendix gives the concrete procedures behind Section [5] and the minimal choices
needed to reproduce our figures. We keep the presentation compact; all routines are drop—in
and numerically stable at the scales reported in Section [7}

Vertical generators (respecting RoPE and sharing). We obtain a numerically in-
dependent spanning set of the vertical space Vy by differentiating the Gax—action. For
X € gl(dy), ‘ ‘ ' . 4
Sy (X): WS Wiy (W x, -widxT),
and for Y € gl(d,),
sOL () (W Wo) s (WY, insert — Y in the ith d,block of Wo).

Head permutations generate a discrete symmetry and do not contribute to Vy. With RoPE
(even dy), we restrict X plane—wise to the commutant {al + bJ} on each 2x2 rotation
block; with GQA/MQA we tie the corresponding X or Y across shared heads. In practice
we assemble candidates, vectorize, and perform thin—QR with column pivoting to remove
near—collinear directions (tolerance 107'%), yielding a well-conditioned basis {v;}7;.

FR and Euclidean projectors (implementation). Given {v;} and a vector u (e.g.,
u = VL), the FR-orthogonal decomposition solves the Gram system

Gij = go(vi,vj), bi = go(vi, u), (G+ Al)e=1b,
with optional Tikhonov A€ [1071°,107] for stability. We then set
Uvyert = Z CjUyj, Uhor = U — Uyert-
J
The Euclidean proxy replaces gg by the dot product: stack A = [vec(vy) --- vec(vy,)] and

solve (ATA + Al)c = ATu. We report the wertical fraction ||uyert||/||u|| and the residual
[|[Ac — u||/||u|| (Euclidean) or ||(G + AI)c — bl|/||b|]| (FR) as fit diagnostics.

Algorithm 3 Vertical/Horizontal Decomposition (FR and Euclidean)

Require: basis {v;}7L; for Vp; vector u; metric handle inner(-, )
1: G;; < inner(v;,v;), b; < inner(v;,u)
2: Solve (G + AI)c = b (Cholesky if well-conditioned, else CG with stopping on relative
residual 10719)
3! Uyert < Zj CjVj, Unor = U — Uyert
4: return (Uyert, Unor), vertical fraction ||uyert||/||u||, residual

Holonomy estimator (procedure and bias control). For gs—orthonormal u,v € Hy,
we traverse the small horizontal loop +eu — +ev — —eu — —ew, projecting to H at
each leg with the FR projector above. The net effect is a vertical displacement represented
in Lie-algebra coordinates by aligning the before/after states to the vertical basis (least
squares). Denote H () = ||Ag_ (u,v)||/e%
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Algorithm 4 Holonomy Estimator with Richardson Extrapolation

Require: 6; orthonormal u,v € Hy; steps € > &’ =¢/2
1: for 0 € {¢,¢'} do
2: Flow horizontally by +du, +dv, —du, —dv, projecting to H at each leg

3: Compute Apg,(u,v) via least-squares alignment to Lie generators; set H(J) <
1Ag, (u,v)]/6°
4: end for

AH(2/2) — H(e)

5: return H* = bias O(£2)); report |H* — H(g/2)| as an error prox
y

Complexity at a glance. Let m = h(d;+d2); RoPE reduces d2 —dy per head. Forming
AT A costs O(m?2D) for parameter dimension D, and solving costs O(m?) (dense) or O(mD)
per CG iteration. At h=12, dp=d,=64 one has m~98,304, so FR projectors and holonomy
become expensive; this is why Section [7] uses Euclidean proxies while Section [5] exposes
FR-exact routines.

Deterministic gauge—fix (for reproducibility, not theory). To make measurements
repeatable, we select a canonical representative on each orbit by: (i) thin—-QR with positive
diagonals for V/O and the induced block update on Wy; (ii) plane-wise Gram balancing
for /K within the RoPE commutant; (iii) deterministic head ordering by a fixed tie-break
rule (e.g., lexicographic on row—major Wo blocks). This is a section choice—it does not
constrain the theory—and affects only how we display or cache parameters.

Minimal reproducibility notes. Hardware: H100 (95 GB); CUDA 12.1; PyTorch 2.4.1;
float64. Seeds: 42; fixed evaluation batch for Fisher quantities; dataloader shuffling off
for invariance checks. Tolerances: QR pivot threshold 10719; linear-solve residuals 10710,
Euclidean vertical-fraction threshold 10~ in plots. All scripts use the same random seeds
and fixed batch to ensure comparability across runs.

G EXPERIMENTAL CONFIGURATION AND PROCEDURES

This note collects the minimal details needed to reproduce the figures in Section [7] We
keep the setup intentionally simple and fixed: one hardware/software stack, one evaluation
batch, and a deterministic gauge—fix used only for display consistency.

Environment and common settings. Unless stated otherwise, computations use
float64 on a single H100 (95 GB), CUDA 12.1, PyTorch 2.4.1, with TF32 disabled. The
global seed is 42. A single evaluation batch is used throughout to define Fisher—-Rao quan-
tities and to keep all comparisons on identical data. The architecture matches Section
(e.g., h=12, dy=d,=64 in the invariance experiment). Thin-QR with column pivoting is
used with a pivot tolerance of 1071; linear solves stop at relative residual 10710,

Deterministic gauge—fix (for repeatability, not theory). To make outputs bytewise
identical across runs, we pick a canonical representative per gauge orbit: (i) thin—QR with
positive diagonals for V/O and the induced block update in Wo; (ii) plane-wise Gram bal-
ancing for @/K within the RoPE commutant; (iii) a fixed head order by a simple tie-break
rule. This is a section choice only; it does not constrain the theory or diagnostics (see

Section .

Gauge invariance (Table [2). We sample (4;,C;) € GL(dx) x GL(d,) per head with
prescribed condition numbers (via thin—-QR on random draws), optionally permute heads,
apply

WS W) WS A, WRATTY, (W Wo) w (W0, O Wo),

evaluate on the fixed batch, and report ||[Y' — Y]|/||Y]|. Controls outside Gmax (€.8.,
cross—head mixing) yield ©(1) changes.
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Gauge—aware split (Figure [1). We compute per—sample gradients for a mean—-squared
reconstruction objective and apply the Fuclidean proxy of Algorithm [} stack numerically
independent vertical generators into a matrix A (thin-QR with pivoting), solve (AT A +
M)c = ATVL (with optional A € [1071°,1079]), and report the normalized Euclidean
vertical fraction ||Ac||/||VL| along with residuals ||Ac — VL||/||VL|| as a fit diagnostic.

Fisher—-Rao counterparts (for future scale). The FR-exact projector and the
small-loop holonomy estimator are given in Algorithm [I] and Algorithm [4] with deriva-
tions in §B]and §C| They require Gram systems on the vertical basis and horizontal projec-
tions along the loop, which are costly at large m = h(di+d?) (RoPE reduces di — dj, per
head). We therefore use the Euclidean proxy for Section [7| and provide the FR procedures
as ready-made routines for future large-scale evaluation.
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