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Abstract

We introduce Value-Implicit Pre-training (VIP), a self-supervised pre-trained1

visual representation capable of generating dense and smooth reward functions2

for unseen robotic tasks. VIP casts representation learning from human videos3

as an offline goal-conditioned reinforcement learning problem and derives a self-4

supervised dual goal-conditioned value-function objective that does not depend5

on actions, enabling pre-training on unlabeled human videos. Theoretically, VIP6

can be understood as a novel implicit time contrastive learning that makes for7

temporally smooth embedding that enables the value function to be implicitly8

defined via the embedding distance, which can be used as the reward function for9

any downstream task specified through goal images. Trained on large-scale Ego4D10

human videos and without any fine-tuning on task-specific robot data, VIP’s frozen11

representation can provide dense visual reward for an extensive set of simulated and12

real-robot tasks, enabling diverse reward-based policy learning methods, including13

visual trajectory optimization and online/offline RL, and significantly outperform14

all prior pre-trained representations. Notably, VIP can enable few-shot offline RL15

on a suite of real-world robot tasks with as few as 20 trajectories. Project website:16

https://sites.google.com/view/rl-vip17

1 Value-Implicit Pre-Training18

Due to space limit, we provide the full version of this section in Appendix D.19

1.1 Foundation: Self-Supervised Value Learning from Human Videos20

While human videos are out-of-domain data for robots, they are in-domain for learning a goal-21

conditioned human policy. Given that human videos naturally contain goal-directed behavior, one22

reasonable idea of utilizing offline human videos for representation learning is to solve an offline23

goal-conditioned RL problem over the space of human policies and then extract the learned visual24

representation. However, this idea is seemingly implausible because the offline human dataset does25

not come with any action labels that are typically required for policy learning. Our key insight is that,26

for a suitable choice of offline policy optimization problem, we can solve for the dual value learning27

problem that does not depend on any action label in the offline dataset. In particular, leveraging the28

idea of Fenchel duality (Rockafellar, 1970) from convex optimization, we have the following result:29

Proposition 1.1. Under assumption of deterministic transition dynamics, the dual optimization30

problem of (11) is31

maxϕ minV Ep(g)

[
(1− γ)Eµ0(o;g)[V (ϕ(o);ϕ(g))] + logE(o,o′;g)∼D [exp (r(o, g) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g)))]

]
,

(1)
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Figure 1: Value-Implicit Pre-training (VIP). Pre-trained on large-scale, in-the-wild human videos, frozen
VIP network can provide visual reward and representation for downstream robotics tasks and enable diverse
visuomotor control strategies without any task-specific fine-tuning.

where µ0(o; g) is the goal-conditioned initial observation distribution, and D(o, o′; g) is the goal-32

conditioned distribution of two consecutive observations in dataset D.33

As shown, actions do not appear in the objective. Furthermore, since all expectations in (12) can be34

sampled using the offline dataset, this dual value-function objective can be self-supervised with an35

appropriate choice of reward function. In particular, since our goal is to acquire a value function that36

extracts a general notion of goal-directed task progress from passive offline human videos, we set37

r(o, g) = I(o == g)− 1, which we refer to as δ̃g(o) in shorthand. This reward provides a constant38

negative reward when o is not the provided goal g, and does not require any task-specific engineering.39

The resulting value function V (ϕ(o);ϕ(g)) captures the discounted total number of steps required40

to reach goal g from observation o, and will objective will encourage learning visual features ϕ that41

are amenable to predicting the discounted temporal distance between two frames in a human video42

sequence. With enough size and diversity in the training dataset, we hypothesize that this value43

function can generalize to completely unseen (robot) domains.44

1.2 Analysis: Implicit Time Contrastive Learning45

In this section, we show that (1) can be understood as a novel implicit temporal contrastive rep-46

resentation learning that acquires temporally smooth embedding distance over video sequences,47

underpinning VIP’s efficacy jointly as a visual representation and reward for downstream control.48

Assuming that the optimal V ∗ is found in (1), with a few algebraic manipulation steps (see Appendix E49

for a derivation), we can massage (13) into an expression that resembles the InfoNCE (Oord et al.,50

2018) time contrastive learning (Sermanet et al., 2018) (see Appendix B.2 for a definition and51

additional background) objective:52

minϕ(1− γ)Ep(g),µ0(o;g)

[
− log eV

∗(ϕ(o);ϕ(g))

ED(o,o′;g)[exp(δ̃g(o)+γV ∗(ϕ(o′);ϕ(g))−V ∗(ϕ(o),ϕ(g)))]
−1

(1−γ)

]
(2)

In particular, p(g) can be thought of the distribution of “anchor” observations, µ0(s; g) the distribution53

of “positives” samples, and D(o, o′; g) the distribution of “negatives” samples. Since the value54

function encodes negative discounted temporal distance, due to the recursive nature of value temporal-55

difference (TD), in order for the one-step TD error to be globally minimized along a video sequence,56

observations that are temporally farther away from the goal will naturally be repelled farther away in57

the representation space compared to observations that are nearby in time. Therefore, the repulsion58

of the negative observations is an implicit, emergent property from the optimization of (2), instead of59

an explicit constraint as in standard (time) contrastive learning. In Appendix D, we detail how this60

implicit time contrast mechanism gives rise to a temporally smooth visual representation that makes61

for effective zero-shot reward-specification.62
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1.3 Algorithm: Value-Implicit Pre-Training (VIP)63

Recall that V ∗ is assumed to be known for the derivation in Section 1.2, but in practice, its analytical64

form is rarely known. Now, given that V ∗ plays the role of a distance measure in our implicit65

time contrastive learning framework, a simple and intuitive way to approximate V ∗ in practice is to66

implicitly parameterize it to be a choice of distance measure. In this work, we choose the common67

choice of the negative L2 distance used in prior work Sermanet et al. (2018); Nair et al. (2022):68

V ∗(ϕ(o), ϕ(g)) := −∥ϕ(o)− ϕ(g)∥2. Altogether, VIP training is illustrated in Alg. 2; it is simple69

and its core training loop can be implemented in fewer than 10 lines of PyTorch code (Alg. 3).70

Algorithm 1 Value-Implicit Pre-Training (VIP)

1: Require: Offline (human) videos D = {(oi1, ..., oiih)}
N
i=1, visual architecture ϕ

2: for number of training iterations do
3: Sample sub-trajectories {oit, ..., oik, oik+1, ..., o

i
T }Bi=1 ∼ D, t ∈ [1, ih − 1], t ≤ k < T, T ∈ (t, ih], ∀i

4: L(ϕ) := 1−γ
B

∑B
i=1

[∥∥ϕ(oit)− ϕ(oiT )
∥∥
2

]
+ log 1

B

∑B
i=1

[
exp

(∥∥ϕ(oik)− ϕ(oiT )
∥∥
2
− δ̃oi

T
(oik)− γ

∥∥ϕ(oik+1)− ϕ(oiT )
∥∥
2

)]
5: Update ϕ using SGD: ϕ← ϕ− αϕ∇L(ϕ)

2 Experiments71

Figure 2: Visual traj. opt. and RL results (max success rate %).

In this section, we demonstrate VIP’s72

effectiveness as both a pre-trained73

visual reward and representation on74

three distinct reward-based policy75

learning settings. Due to space limit,76

we delve into results directly, and77

all omitted experimental details are78

contained in App. G; additional re-79

sults and analysis are presented in80

App.I. At a high level, VIP fixes the81

visual architecture (ResNet50) and82

pre-training dataset (Ego4D) as a83

state-of-art pre-trained representation84

R3M (Nair et al., 2022), differing pri-85

marily in the training objective. We use FrankaKitchen (Gupta et al., 2019) for evaluation. Each task86

is specified via only a goal image, requiring the pre-trained representations to provide embedding-87

distance based reward (4) and visual encoding.88

2.1 Trajectory Optimization & Online Reinforcement Learning89

We evaluate pre-trained representations’ capability as pure visual reward functions by using them90

to directly synthesize a sequence of actions using a standard trajectory optimization algorithm. We91

also evaluate online RL, which provides improved exploration but comes with the added challenge of92

demanding the pre-trained representation to provide both the visual reward and representation for93

learning a closed-loop policy. In Figure 2, we report each representation’s cumulative success rate94

averaged over task configurations and random seeds (3 seeds * 3 cameras * 12 tasks = 108 runs).95

Examining the MPPI results, we see that VIP is substantially better than all baselines in both Easy96

and Hard settings, and is the only representation that makes non-trivial progress on the Hard setting.97

These results demonstrate that VIP has superior capability as a pure visual reward function. In98

Fig. 3, we couple VIP and the strongest baselines (R3M, Resnet)’s with increasingly powerful MPPI99

optimizers (i.e., more trajectories per optimization step). As shown, while VIP steadily benefits from100

stronger optimizers and can reach an average success rate of 44%, baselines often do worse when101

MPPI becomes more powerful, suggesting that their reward landscapes are filled with local minima102

that do not correlate with task progress and are easily exploited by (stronger) optimizers.103

Switching gear to online RL, VIP again achieves consistently superior performance, demonstrating104

its joint effectiveness as visual reward and representation. VIP (Sparse)’s inability to solve any105
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Table 1: Real-robot offline RL results (success rate % averaged over 10 rollouts with standard deviation reported).
Pre-Trained In-Domain

Environment VIP-RWR VIP-BC R3M-RWR R3M-BC Scratch-BC VIP-RWR VIP-BC

CloseDrawer 100 ± 0 50 ± 50 80 ± 40 10 ± 30 30 ± 46 0 ± 0 0∗ ± 0

PushBottle 90 ± 30 50 ± 50 70 ± 46 50 ± 50 40± 48 0∗ ± 0 0∗ ± 0

PlaceMelon 60 ± 48 10 ± 30 0 ± 0 0 ± 0 0 ± 0 0∗ ± 0 0∗ ± 0

FoldTowel 90 ± 30 20 ± 40 0 ± 0 0 ± 0 0 ± 0 0∗ ± 0 0∗ ± 0

task indicates the necessity of dense reward in solving these challenging visual manipulation tasks.106

Whereas sparse reward still requires human engineering via installing additional sensors (Rajeswar107

et al., 2021; Singh et al., 2019) and faces exploration challenges (Nair et al., 2018), with VIP, the108

end-user has to provide only a goal image, and, without any additional state or reward instrumentation,109

can expect a significant improvement in performance.110

2.2 Real-World Few-Shot Offline Reinforcement Learning111

Figure 3: VIP benefits from scaling compute
for downstream trajectory optimization.

Finally, we demonstrate how VIP’s reward and representa-112

tion can power a simple and practical system for real-world113

robot learning in the form of few-shot offline reinforcement114

learning, making offline RL simple, sample-efficient, and115

more effective than BC with almost no added complexity.116

To this end, we consider a simple reward-weighted regres-117

sion (RWR) (Peters & Schaal, 2007; Peng et al., 2019)118

approach, in which the reward and the encoder are pro-119

vided by the pre-trained model ϕ:120

L(π) = −EDtask
[exp(τ ·R(o, o′;ϕ, g)) log π(a | ϕ(o))] ,

(3)
where R is defined via (4) and τ is the temperature scale. Compared to BC, which would be (3)121

with uniform weights to all transitions, RWR can focus policy learning on transitions that have high122

rewards (i.e., high task progress) under the deployed representation.123

We introduce 4 tabletop manipulation tasks (see Figure 1 and Figure 10) requiring a real 7-DOF124

Franka robot to manipulate objects drawn from distinct categories of objects. For each task, we collect125

in-domain, task-specific offline data Dtask of ∼ 20 demonstrations with randomized object initial126

placements for policy learning; we provide detailed task and experiment descriptions in Appendix H.127

The average success rate (%) and standard deviation across 10 test rollouts are reported in Table 1.128

As shown, VIP-RWR improves upon VIP-BC on all tasks and provides substantial benefit in the129

harder tasks that are multi-stage in nature. In contrast, R3M-RWR, while able to improve R3M-BC130

on the simpler two tasks involving pushing an object, fails to make any progress on the harder tasks.131

The low performance of BC-based methods on the harder PickPlaceMelon and FoldTowel tasks132

indicates that in this low-data regime, regardless of the quality of visual representation, good reward133

information is necessary for task success. Finally, in-domain methods all fail in this low-data regime.134

Altogether, these results corroborate the necessity of pre-training in achieving real-world few-shot135

offline RL and highlight the unique effectiveness of VIP in realizing this goal.136

3 Conclusion137

We have proposed Value-Implicit Pre-training (VIP), a self-supervised value-based pre-training138

objective that is highly effective in providing both the visual reward and representation for downstream139

unseen robotics tasks. VIP is derived from first principles of dual reinforcement learning and admits an140

appealing connection to an implicit and more powerful formulation of time contrastive learning, which141

captures long-range temporal dependency and injects local temporal smoothness in the representation142

to make for effective zero-shot reward specification. Trained entirely on diverse, in-the-wild human143

videos, VIP demonstrates significant gains over state-of-art pre-trained representations on an extensive144

set of policy learning settings. Notably, VIP can enable simple and sample-efficient real-world offline145

RL with just handful of trajectories. Altogether, we believe that VIP makes an important contribution146

in both the algorithmic frontier of visual pre-training for RL and practical real-world robot learning.147
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A Problem Setting and Background330

In this section, we describe our problem setting of out-of-domain pre-training and provide formalism331

for downstream representation evaluation. Additional background on goal-conditioned reinforcement332

learning and contrastive learning is included in Appendix B.333

A.1 Out-of-Domain Pre-Training Visual Representation334

We consider the problem setting of pre-training a frozen visual encoder for downstream control335

tasks (Shah & Kumar, 2021; Parisi et al., 2022; Nair et al., 2022). More specifically, we have access336

to a training set of video data D = {vi := (oi1, ..., o
i
ih
)}Ni=1, where each o ∈ RH×W×3 is a raw RGB337

image; note that this formalism also captures standard image datasets (e.g., ImageNet), if we take338

ih = 1 for all vi. Like prior works, we assume D to be out-of-domain and does not include any robot339

task or domain-specific data. A learning algorithm A ingests this training data and outputs a visual340

encoder ϕ := A(D) : RH×W×3 → K, where K is the embedding dimension.341

A.2 Representation Evaluation342

Given a choice of representation ϕ, every evaluation task can be instantiated as a Markov decision343

process M(ϕ) := (ϕ(O), A,R(ot, ot+1;ϕ, g), T, γ, g), in which the state space is the induced space344

of observation embeddings, and the task is specified via a (set of) goal image(s) g. Specifically,345

for a given transition tuple (ot, ot+1), we define the reward to be the goal-embedding distance346

difference (Lee et al., 2021; Li et al., 2022):347

R(ot, ot+1;ϕ, {g}) := Sϕ(ot+1; g)−Sϕ(ot; g) := (1−γ)Sϕ(ot+1; g)+(γSϕ(ot+1; g)− Sϕ(ot; g)) ,
(4)

where Sϕ is a choice of distance function in the ϕ-representation space; in this work, we set348

Sϕ(ot; g) := −∥ϕ(ot)− ϕ(g)∥2. This reward function can be interpreted as a raw embedding349

distance reward with a reward shaping (Ng et al., 1999) term that encourages making progress350

towards the goal. This preserves optimal policy but enables more efficient and robust policy learning.351

Under this formalism, parameters of ϕ are frozen during policy learning (it is considered a part of the352

MDP), and we want to learn a policy π : RK → A that outputs an action based on the embedded353

observation a ∼ π(ϕ(o)).354

B Additional Background355

B.1 Goal-Conditioned Reinforcement Learning356

This section is adapted from Ma et al. (2022b). We consider a goal-conditioned Markov decision357

process from visual state space: M = (O,A,G, r, T, µ0, γ) with state space O, action space A,358

reward r(o, g), transition function o′ ∼ T (o, a), the goal distribution p(g), and the goal-conditioned359

initial state distribution µ0(o; g), and discount factor γ ∈ (0, 1]. We assume the state space O and360

the goal space G to be defined over RGB images. The objective of goal-conditioned RL is to find a361

goal-conditioned policy π : O ×G → ∆(A) that maximizes the discounted cumulative return:362

J(π) := Ep(g),µ0(o;g),π(at|st,g),T (ot+1,|ot,at)

[ ∞∑
t=0

γtr(ot; g)

]
(5)

The goal-conditioned state-action occupancy distribution dπ(o, a; g) : O ×A×G → [0, 1] of π is363

dπ(o, a; g) := (1− γ)

∞∑
t=0

γtPr(ot = o, at = a | o0 ∼ µ0(o; g), at ∼ π(ot; g), ot+1 ∼ T (ot, at))

(6)

which captures the goal-conditioned visitation frequency of state-action pairs for policy π. The364

state-occupancy distribution then marginalizes over actions: dπ(o; g) =
∑

a d
π(o, a; g). Then, it365
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follows that π(a | o, g) = dπ(o,a;g)
dπ(o;g) . A state-action occupancy distribution must satisfy the Bellman366

flow constraint in order for it to be an occupancy distribution for some stationary policy π:367 ∑
a

d(o, a; g) = (1− γ)µ0(o; g) + γ
∑
õ,ã

T (s | õ, ã)d(õ, ã; g), ∀o ∈ O, g ∈ G (7)

We write dπ(o, g) = p(g)dπ(o; g) as the joint goal-state density induced by p(g) and the policy π.368

Finally, given dπ , we can express the objective function (5) as J(π) = 1
1−γE(o,g)∼dπ(o,g)[r(o, g)].369

B.2 InfoNCE & Time Contrastive Learning.370

As VIP can be understood as a implicit and smooth time contrastive learning objective, we provide ad-371

ditional background on the InfoNCE Oord et al. (2018) and time contrastive learning (TCN) (Sermanet372

et al., 2018) objective to aid comparison in Section D.2.373

InfoNCE is an unsupervised contrastive learning objective built on the noise contrastive estima-374

tion (Gutmann & Hyvärinen, 2010) principle. In particular, given an “anchor” datum x (otherwise375

known as context), and distribution of positives xpos and negatives xneg, the InfoNCE objective376

optimizes377

min
ϕ

Expos

[
− log

Sϕ(x, xpos)

Exneg
Sϕ(x, xneg)

]
, (8)

where Exneg
is often approximated with a fixed number of negatives in practice.378

It is shown in Oord et al. (2018) that optimizing (8) is maximizing a lower bound on the mutual379

information I(x, xpos), where, with slight abuse of notation, x and xpos are interpreted as random380

variables.381

TCN is a contrastive learning objective that learns a representation that in timeseries data (e.g., video382

trajectories). The original work (Sermanet et al., 2018) considers multi-view videos and perform383

contrastive learning over frames in separate videos; in this work, we consider the single-view variant.384

At a high level, TCN attracts representations of frames that are temporally close, while pushing apart385

those of frames that are farther apart in time. More precisely, given three frames sampled from a386

video sequence (ot1 , ot2 , ot3), where t1 < t2 < t3, TCN would attract the representations of ot1387

and ot2 and repel the representation of ot3 from ot1 . This idea can be formally expressed via the388

following objective:389

min
ϕ

E(ot1 ,ot2>t1 )∼D

[
− log

Sϕ(ot1 ; ot2)

Eot3 |t3>t2∼D [Sϕ(ot1 ; ot3)]

]
(9)

Given a “positive” window of K steps and a uniform distribution among valid positive samples, we390

can write (9) as391

min
ϕ

1

K

K∑
k=1

E(ot1 ,ot1+k)∼D

[
− log

Sϕ(ot1 ; ot1+k)

Eot3 |t3>t1+k∼D [Sϕ(ot1 ; ot3)]

]
, (10)

in which each term inside the expectation is a standalone InfoNCE objective tailored to observation392

sequence data.393

C Related Work394

We review relevant literature on (1) Out-of-Domain Representation Pre-Training for Control, (2)395

Perceptual Reward Learning from Human Videos, and (3) Goal-Conditioned RL as Representation396

Learning.397

Out-of-Domain Representation Pre-Training for Control. Bootstrapping visual control using398

frozen representations learned pre-trained on out-of-domain non-robot data is a nascent field that has399

seen fast progress over the past year. Shah & Kumar (2021) demonstrates that pre-trained ResNet (He400

et al., 2016) representation on ImageNet (Deng et al., 2009) serves as effective visual backbone401
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for simulated dexterous manipulation RL tasks. Parisi et al. (2022) finds ResNet models trained402

with unsupervised objectives, such as momentum contrastive learning (MOCO) (He et al., 2020), to403

surpass supervised objectives (e.g, image classification) for both visual navigation and control tasks.404

Xiao et al. (2022) pre-trains visual representation on human video data (Goyal et al., 2017; Shan405

et al., 2020) using masked-autoencoding (He et al., 2022). Along this axis, the closest work to ours is406

Nair et al. (2022), which is also pre-trained on the Ego4D dataset and attempts to capture temporal407

information in the videos by using time-contrastive learning (Sermanet et al., 2018); it additionally408

leverages textual descriptions associated with the videos to encode semantic information. In contrast,409

our objective is fully self-supervised without dependence on textual annotations. Furthermore, VIP410

is the first to propose using a RL-based objective for out-of-domain pre-training and is capable of411

producing generalizable dense reward signals.412

Perceptual Reward Learning from Human Videos. Human videos provide a rich natural source413

of reward and representation learning for robotic learning. Most prior works exploit the idea of414

learning an invariant representation between human and robot domains to transfer the demonstrated415

skills (Sermanet et al., 2016, 2018; Schmeckpeper et al., 2020; Chen et al., 2021; Xiong et al., 2021;416

Zakka et al., 2022; Bahl et al., 2022). However, training these representations require task-specific417

human demonstration videos paired with robot videos solving the same task, and cannot leverage the418

large amount of “in-the-wild” human videos readily available. As such, these methods require robot419

data for training, and learn rewards that are task-specific and do not generalize beyond the tasks they420

are trained on. In contrast, VIP do not make any assumption on the quality or the task-specificity of421

human videos and instead pre-trains an (implicit) value function that aims to capture task-agnostic422

goal-oriented progress, which can generalize to completely unseen robot domains and tasks.423

Goal-Conditioned RL as Representation Learning. Our pre-training method is also related to the424

idea of treating goal-conditioned RL as representation learning. Chebotar et al. (2021) shows that a425

goal-conditioned Q-function trained with offline in-domain multi-task robot data learns an useful426

visual representation that can accelerate learning for a new downstream task in the same domain.427

Eysenbach et al. (2022) shows that goal-conditioned Q-learning with a particular choice of reward428

function can be understood as performing contrastive learning. In contrast, our theory introduces429

a new implicit time contrastive learning, and states that for any choice of reward function, the dual430

formulation of a regularized offline GCRL objective can be cast as implicit time contrast. This431

conceptual bridge also explains why VIP’s learned embedding distance is temporally smooth and can432

be used as an universal reward mechanism. Finally, whereas these two works are limited to training433

on in-domain data with robot action labels, VIP is able to leverage diverse out-of-domain human data434

for visual representation pre-training, overcoming the inherent limitation of robot data scarcity for435

in-domain training.436

Our work is also closely related to Ma et al. (2022b), which first introduced the dual offline GCRL437

objective based on Fenchel duality (Rockafellar, 1970; Nachum & Dai, 2020; Ma et al., 2022a).438

Whereas Ma et al. (2022b) assumes access to the true state information and focuses on the offline439

GCRL setting using in-domain offline data with robot action labels, we extend the dual objective440

to enable out-of-domain, action-free pre-training from human videos. Our particular dual objective441

also admits a novel implicit time contrastive learning interpretation, which simplifies VIP’s practical442

implementation by letting the value function be implicitly defined instead of a deep neural network443

as in Ma et al. (2022b).444

D Value-Implicit Pre-Training (Full-Version)445

In this section, we demonstrate how a self-supervised value-function objective can be derived from446

computing the dual of an offline RL objective on passive human videos (Section D.1). Then, we447

show how this objective amounts to a novel implicit formulation of temporal contrastive learning448

(Section D.2), which naturally lends a temporally and locally smooth embedding favorable for449

downstream visual reward specification. Finally, we leverage this contrastive interpretation to450

instantiate a simple implementation (<10 lines of PyTorch code) of our dual value objective that does451
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not explicitly learn a value network (Section D.3), culminating in our final algorithm, Value-Implicit452

Pre-training (VIP).453

D.1 Foundation: Self-Supervised Value Learning from Human Videos454

While human videos are out-of-domain data for robots, they are in-domain for learning a goal-455

conditioned policy πH over human actions, aH ∼ πH(ϕ(o) | ϕ(g)), for some human action space456

AH . Therefore, given that human videos naturally contain goal-directed behavior, one reasonable idea457

of utilizing offline human videos for representation learning is to solve an offline goal-conditioned458

RL problem over the space of human policies and then extract the learned visual representation. To459

this end, we consider the following KL-regularized offline RL objective (Nachum et al., 2019) for460

some to-be-specified reward r(o, g):461

max
πH ,ϕ

EπH

[∑
t

γtr(o; g)

]
− (dπH (o, aH ; g)∥dD(o, ãH ; g)), (11)

where dπH (o, aH ; g) is the distribution over observations and actions πH visits conditioned on g.462

Observe that a “dummy” action ã is added to every transition (oih, ã
i
h, o

i
h+1) in the dataset D so that463

the KL regularization is well-defined, and ãhi can be thought of as the unobserved true human action464

taken to transition from observation oih to oih+1. While this objective is mathematically sound and465

encourages learning a conservative πH , it is seemingly implausible because the offline dataset DH466

does not come with any action labels nor can AH be concretely defined in practice. However, what467

this objective does provide is an elegant dual objective over a value function that does not depend on468

any action label in the offline dataset. In particular, leveraging the idea of Fenchel duality (Rockafellar,469

1970) from convex optimization, we have the following result:470

Proposition D.1. Under assumption of deterministic transition dynamics, the dual optimization471

problem of (11) is472

maxϕ minV Ep(g)

[
(1− γ)Eµ0(o;g)[V (ϕ(o);ϕ(g))] + logE(o,o′;g)∼D [exp (r(o, g) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g)))]

]
, (12)473

where µ0(o; g) is the goal-conditioned initial observation distribution, and D(o, o′; g) is the goal-474

conditioned distribution of two consecutive observations in dataset D.475

As shown, actions do not appear in the objective. Furthermore, since all expectations in (12) can be476

sampled using the offline dataset, this dual value-function objective can be self-supervised with an477

appropriate choice of reward function. In particular, since our goal is to acquire a value function that478

extracts a general notion of goal-directed task progress from passive offline human videos, we set479

r(o, g) = I(o == g)− 1, which we refer to as δ̃g(o) in shorthand. This reward provides a constant480

negative reward when o is not the provided goal g, and does not require any task-specific engineering.481

The resulting value function V (ϕ(o);ϕ(g)) captures the discounted total number of steps required to482

reach goal g from observation o. Consequently, the overall objective will encourage learning visual483

features ϕ that are amenable to predicting the discounted temporal distance between two frames in a484

human video sequence. With enough size and diversity in the training dataset, we hypothesize that485

this value function can generalize to completely unseen (robot) domains and tasks.486

D.2 Analysis: Implicit Time Contrastive Learning487

While (12) will learn some useful visual representation via temporal value function optimization,488

in this section, we show that it can be understood as a novel implicit temporal contrastive learning489

objective that acquires temporally smooth embedding distance over video sequences, underpinning490

VIP’s efficacy jointly as a visual representation and reward for downstream control.491

We begin by simplifying the expression in (12) by first assuming that the optimal V ∗ is found:492

minϕ Ep(g)

[
(1− γ)Eµ0(o;g)[−V ∗(ϕ(o);ϕ(g))] + logED(o,o′;g)

[
exp

(
δ̃g(o) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g))

)]−1
]
, (13)493

where we have also re-written the maximization problem as a minimization problem. Now, after494

few algebraic manipulation steps (see App. E for a derivation), if we think of V ∗(ϕ(o);ϕ(g)) as a495
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similarity metric in the embedding space, then we can massage (13) into an expression that resembles496

the InfoNCE (Oord et al., 2018) time contrastive learning (Sermanet et al., 2018) (see App. B.2 for a497

definition and additional background) objective:498

minϕ(1− γ)Ep(g),µ0(o;g)

[
− log eV

∗(ϕ(o);ϕ(g))

ED(o,o′;g)[exp(δ̃g(o)+γV ∗(ϕ(o′);ϕ(g))−V ∗(ϕ(o),ϕ(g)))]
−1

(1−γ)

]
(14)499

In particular, p(g) can be thought of the distribution of “anchor” observations, µ0(s; g) the distribution500

of “positive” samples, and D(o, o′; g) the distribution of “negative” samples. Counter-intuitively and501

in contrast to standard single-view time contrastive learning (TCN), in which the positive observations502

are temporally closer to the anchor observation than the negatives, (14) has the positives to be as503

temporally far away as possible, namely the initial frame in the the same video sequence, and the504

negatives to be middle frames sampled in between. This departure is accompanied by the equally505

intriguing deviation of the lack of explicit repulsion of the negatives from the anchor; instead, they506

are simply encouraged to minimize the (exponentiated) one-step temporal-difference error in the507

representation space (the denominator in (14)); see Fig. 1. Now, since the value function encodes508

negative discounted temporal distance, due to the recursive nature of value temporal-difference (TD),509

in order for the one-step TD error to be globally minimized along a video sequence, observations that510

are temporally farther away from the goal will naturally be repelled farther away in the representation511

space compared to observations that are nearby in time; in App. E.3, we formalize this intuition and512

show that this repulsion always holds for optimal paths. Therefore, the repulsion of the negative513

observations is an implicit, emergent property from the optimization of (14), instead of an explicit514

constraint as in standard (time) contrastive learning.515

Figure 4: Learned 2D representation of a held-out task
demonstration by VIP and TCN trained on task-specific
in-domain data. The color gradient indicates trajectory
time progression (purple for beginning, red for end). The
inset plots are embedding distances to last frame.

Now, we dive into why this implicit time con-516

trastive learning is desirable. First, the explicit517

attraction of the initial and goal frames enables518

capturing long-range semantic temporal depen-519

dency as two frames that meaningfully indicate520

the beginning and end of a task are made close521

in the embedding space. This closeness is also522

well-defined due to the one-step TD backup that523

makes every embedding distance recursively de-524

fined to be the discounted number of timesteps525

to the goal frame. Combined with the implicit526

yet structured repulsion of intermediate frames,527

this push-and-pull mechanism helps inducing a temporally smooth and consistent representation. In528

particular, as we pass a video sequence in the training set through the trained representation, the em-529

bedding should be structured such that two trends emerge: (1) neighboring frames are close-by in the530

embedding space, (2) their distances to the last (goal) frame smoothly decrease due to the recursively531

defined embedding distances. To validate this intuition, in Fig. 4, we provide a simple toy example532

comparing implicit vs. standard time contrastive learning when trained on in-domain, task-specific533

demonstrations; details are included in App. G.2. As shown, standard time contrastive learning only534

enforces a coarse notion of temporal consistency and learns a non-locally smooth representation535

that exhibits many local minima. In contrast, VIP learns a much better structured embedding that is536

indeed temporally consistent and locally smooth. As we will show, the prevalence of sharp “bumps”537

in the embedding distance as in TCN can be easily exploited by the control algorithm, and VIP’s538

ability to generate long-range temporally smooth embedding is the key ingredient for its effective539

downstream zero-shot reward-specification.540

D.3 Algorithm: Value-Implicit Pre-Training (VIP)541

The theoretical development in the previous two sections culminates in Value Implicit Pre-Training542

(VIP), a simple value-based self-supervised pre-training objective, in which the value function is543

implicitly represented via the learned embedding distance.544
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Recall that V ∗ is assumed to be known for the derivation in Section D.2, but in practice, its analytical545

form is rarely known. Now, given that V ∗ plays the role of a distance measure in our implicit time546

contrastive learning framework, a simple and practical way to approximate V ∗ is to simply set it to547

be a choice of similarity metric, bypassing having to explicitly parameterize it as a neural network. In548

this work, we choose the common choice of the negative L2 distance used in prior work Sermanet549

et al. (2018); Nair et al. (2022): V ∗(ϕ(o), ϕ(g)) := −∥ϕ(o)− ϕ(g)∥2. Given this choice, our final550

representation learning objective is as follows:551

L(ϕ) = Ep(g)

[
(1− γ)Eµ0(o;g) [∥ϕ(o)− ϕ(g)∥2] + logE(o,o′;g)∼D

[
exp

(
∥ϕ(o)− ϕ(g)∥2 − δ̃g(o)− γ ∥ϕ(o′)− ϕ(g)∥2

)]]
, (15)552

in which we also absorb the exponent of the log-sum-exp term in 13 into the inner exp(·) term via553

an Jensen’s inequality; we found this upper bound to be numerically more stable. To sample video554

trajectories from D, because any sub-trajectory of a video is also a valid video sequence, VIP samples555

these sub-trajectories and treats their initial and last frames as samples from the goal and initial-state556

distributions (Step 3 in Alg. 2). Altogether, VIP training is illustrated in Alg. 2; it is simple and its557

core training loop can be implemented in fewer than 10 lines of PyTorch code (Alg. 3 in App. F.3).558

Algorithm 2 Value-Implicit Pre-Training (VIP)

1: Require: Offline (human) videos D = {(oi1, ..., oihi
)}Ni=1, visual architecture ϕ

2: for number of training iterations do
3: Sample sub-trajectories {oit, ..., oik, oik+1, ..., o

i
T }Bi=1 ∼ D, t ∈ [1, hi − 1], t ≤ k < T, T ∈ (t, hi], ∀i

4: L(ϕ) := 1−γ
B

∑B
i=1

[∥∥ϕ(oit)− ϕ(oiT )
∥∥
2

]
+ log 1

B

∑B
i=1

[
exp

(∥∥ϕ(oik)− ϕ(oiT )
∥∥
2
− δ̃oi

T
(oik)− γ

∥∥ϕ(oik+1)− ϕ(oiT )
∥∥
2

)]
5: Update ϕ using SGD: ϕ← ϕ− αϕ∇L(ϕ)

E Technical Derivations and Proofs559

E.1 Proof of Proposition D.1560

We first reproduce Proposition D.1 for ease of reference:561

Proposition E.1. Under assumption of deterministic transition dynamics, the dual optimization562

problem of563

max
πH ,ϕ

EπH

[∑
t

γtr(o; g)

]
− (dπH (o, aH ; g)∥dD(o, ãH ; g)), (16)

is564

max
ϕ

min
V

Ep(g)

[
(1− γ)Eµ0(o;g)[V (ϕ(o);ϕ(g))] + logED(o,o′;g) [exp (r(o, g) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g)))]

]
,

(17)
where µ0(o; g) is the goal-conditioned initial observation distribution, and D(o, o′; g) is the goal-565

conditioned distribution of two consecutive observations in dataset D.566

Proof. We begin by rewriting (16) as an optimization problem over valid state-occupancy distribu-567

tions. To this end, we have1568

max
ϕ

max
d(ϕ(o),a;ϕ(g))≥0

Ed(ϕ(o),ϕ(g)) [r(o; g)]− (d(ϕ(o), a;ϕ(g))∥dD(ϕ(o), ã;ϕ(g)))

(P) s.t.
∑
a

d(ϕ(o), a;ϕ(g)) = (1− γ)µ0(o; g) + γ
∑
õ,ã

T (o | õ, ã)d(ϕ(õ), ã;ϕ(g)),∀o ∈ O, g ∈ G

(18)
Fixing a choice of ϕ, the inner optimization problem operates over a ϕ-induced state and goal space,569

giving us (18). Then, applying Proposition 4.2 of Ma et al. (2022b) to the inner optimization problem,570

1We omit the human action superscript H in this derivation.
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we immediately obtain571

max
ϕ

min
V

Ep(g)

[
(1− γ)Eµ0(o;g)[V (ϕ(o);ϕ(g))]

(D) + logEdD(ϕ(o),a;ϕ(g))

[
exp

(
r(o, g) + γET (o′|o,a)[V (ϕ(o′);ϕ(g))]− V (ϕ(o), ϕ(g))

)]]
(19)

Now, given our assumption that the transition dynamics is deterministic, we can replace the inner572

expectation ET (o′|o,a) with just the observed sample in the offline dataset and obtain:573

max
ϕ

min
V

Ep(g)

[
(1− γ)Eµ0(o;g)[V (ϕ(o);ϕ(g))]

+ logEdD(ϕ(o),ϕ(o′);ϕ(g))

[
exp

(
r(o, g) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g))

)]] (20)

Finally, sampling embedded states from dD(ϕ(o), ϕ(o′);ϕ(g)) is equivalent to sampling from574

D(o, o′; g), assuming there is no embedding collision (i.e., ϕ(o) ̸= ϕ(o′),∀o ̸= o′), which can575

be satisfied by simply augmenting any ϕ by concatenating the input to the end. Then, we have our576

desired expression:577

maxϕ minV Ep(g)

[
(1− γ)Eµ0(o;g)[V (ϕ(o);ϕ(g))] + logED(o,o′;g)

[
exp

(
r(o, g) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g))

)]]
(21)

578

E.2 VIP Implicit Time Contrast Learning Derivation579

This section provides all intermediate steps to go from (13) to (14). First, we have580

minϕ Ep(g)

[
(1− γ)Eµ0(o;g)[−V ∗(ϕ(o);ϕ(g))] + logED(o,o′;g)

[
exp

(
δ̃g(o) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g))

)]−1
]
.

(22)
We can equivalently write this objective as581

minϕ Ep(g)

[
(1− γ)Eµ0(o;g)[− log eV

∗(ϕ(o);ϕ(g))] + logED(o,o′;g)

[
exp

(
δ̃g(o) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g))

)]−1
]

.

(23)
Then,582

min
ϕ

Ep(g)

[
(1− γ)Eµ0(o;g)

[
− log eV

∗(ϕ(o);ϕ(g)) − logED(o,o′;g)

[
exp

(
δ̃g(o) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g))

)] −1
1−γ

]]

=min
ϕ

(1− γ)Ep(g),µ0(o;g)

log e−V ∗(ϕ(o);ϕ(g))

ED(o,o′;g)

[
exp

(
δ̃g(o) + γV (ϕ(o′);ϕ(g))− V (ϕ(o), ϕ(g))

)] −1
1−γ

 .

(24)
This is (14) in the main text.583

E.3 VIP Implicit Repulsion584

In this section, we formalize the implicit repulsion property of VIP objective ((14)); in particular, we585

prove that under certain assumptions, it always holds for optimal paths.586

Proposition E.2. Suppose V ∗(s; g) := −∥ϕ(s)− ϕ(g)∥2 for some ϕ, under the assumption of587

deterministic dynamics (as in Proposition D.1), for any pair of consecutive states reached by the588

optimal policy, (st, st+1) ∼ π∗, we have that589

∥ϕ(st)− ϕ(g)∥2 > ∥ϕ(st+1)− ϕ(g)∥2 , (25)

Proof. First, we note that590

V ∗(s; g) = max
a

Q∗(s, a; g) (26)

A proof can be found in Section 1.1.3 of Agarwal et al. (2019). Then, due to the Bellman optimality591

equation, we have that592

Q∗(s, a; g) = r(s, g) + γEs′∼T (s,a) max
a′

Q∗(s′, a′; g) (27)
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Given that the dynamics is deterministic and (26), we have that593

Q∗(s, a; g) = r(s, g) + γV ∗(s′; g) (28)

Now, for (st, at, st+1) ∼ π∗, this further simplifies to594

V ∗(st; g) = r(st, g) + γV ∗(st+1; g) (29)

Note that since V ∗ is also the optimal value function, given that r(st, g) = I(st = g)− 1, V ∗(st; g)595

is the negative discounted distance of the shortest path between st ans g. In particular, since596

V ∗(g; g) = 0 by construction, we have that V ∗(st; g) = −
∑K

k=0 γ
k (this also clearly satisfies (29)),597

where the shortest path (i.e., the path π∗ takes) between st and g are K steps long. Now, giving that598

we assume V ∗(st; g) can be expressed as −∥ϕ(st)− ϕ(g)∥2 for some ϕ, it immediately follows that599

600

∥ϕ(st)− ϕ(g)∥2 > ∥ϕ(st+1)− ϕ(g)∥2 , ∀(st, st+1) ∼ π∗ (30)

601

The implication of this result is that at least along the trajectories generated by the optimal policy, the602

representation will have monotonically decreasing and well-behaved embedding distances to the goal.603

Now, since in practice, VIP is trained on goal-directed (human video) trajectories, which are near-604

optimal for goal-reaching, we expect this smoothness result to be informative about VIP’s embedding605

practical behavior and help formalize out intuition about the mechanism of implicit time contrastive606

learning. As confirmed by our qualitative study in Section H.4, We highlight that VIP’s embedding is607

indeed much smoother than other baselines along test trajectories on both Ego4D and on our real-robot608

dataset. This smoothness along optimal paths makes it easier for the downstream control optimizer to609

discover these paths, conferring VIP representation effective zero-shot reward-specification capability610

that is not attained by any other comparison.611

F VIP Training Details612

F.1 Dataset Processing and Sampling613

We use the exact same pre-processed Ego4D dataset as in R3M, in which long raw videos are first614

processed into shorter videos consisting of 60-70 frames each. In total, there are approximately 72000615

clips and 4.3 million frames in the dataset. Within a sampled batch, we first sample a set of videos,616

and then sample a sub-trajectory from each video (Step 3 in Algorithm 2). In this formulation, each617

sub-trajectory is treated as a video segment from the algorithm’s perspective; this can viewed as a618

variant of trajectory data augmentation. As in R3M, we apply random crop at a video level within619

a batch, so all frames from the same video sub-trajectory are cropped the same way. Then, each620

raw observation is resized and center-cropped to have shape 224× 224× 3 before passed into the621

visual encoder. Finally, as in standard contrastive learning and R3M, for each sampled sub-trajectory622

{oit, ..., oik, oik+1, ..., o
i
T }, we also sample additional 3 negative samples (õj , õj+1) from separate623

video sequences to be included in the log-sum-exp term in L(ϕ).624

F.2 VIP Hyperparameters625

Hyperparameters used can be found in Table 2.626

F.3 VIP Pytorch Pseudocode627

In this section, we present a pseudocode of VIP written in PyTorch (Paszke et al., 2019), Algorithm 3.628

As shown, the main training loop can be as short as 10 lines of code.629
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Table 2: VIP Architecture & Hyperparameters.

Name Value

Architecture Visual Backbone ResNet50 (He et al., 2016)
FC Layer Output Dim 1024

Hyperparameters Optimizer Adam (Kingma & Ba, 2014)
Learning rate 0.0001
L1 weight penalty 0.001
L1 weight penalty 0.001
Mini-batch size 32
Discount factor γ 0.98

Algorithm 3 VIP PyTorch Pseudocode

# D: offline dataset
# phi: vision architecture

# training loop
for (o_0 , o_t1 ,o_t2 , g) in D:

phi_g = phi(o_g)
V_0 = - torch.linalg.norm(phi(o_0), phi_g)
V_t1 = - torch.linalg.norm(phi(o_t1), phi_g)
V_t2 = - torch.linalg.norm(phi(o_t2), phi_g)
VIP_loss = (1-gamma)*-V_0.mean() + torch.logsumexp(V_t1+1-gamma*V_t2)
optimizer.zero_grad ()
VIP_loss.backward ()
optimizer.step()

G Simulation Experiment Details.630

G.1 FrankaKitchen Task Descriptions631

In this section, we describe the FrankaKitchen suite for our simulation experiments. We use 12 tasks632

from the v0.1 version2 of the environment.633

We use the environment default initial state as the initial state and frame for all tasks in the Hard634

setting. In the Easy setting, we use the 20th frame of a demonstration trajectory and its corresponding635

environment state as the initial frame and state. The goal frame for both settings is chosen to be the636

last frame of the same demonstration trajectory. The initial frames and goal frame for all 12 tasks and637

3 camera views are illustrated in Figure 5-6. In the Easy setting, the horizon for all tasks is 50 steps;638

in the Hard setting, the horizon is 100 steps. Note that using the 20th frame as the initial state is a639

crude way for initializing the robot, and for some tasks, this initialization makes the task substantially640

easier, whereas for others, the task is still considerably difficult. Furthermore, some tasks become641

naturally more difficult depending on camera viewpoints. For these reasons, it is worth noting that642

our experiment’s emphasis is on the aggregate behavior of pre-trained representations, instead of643

trying to solve any particular task as well as possible.644

G.2 In-Domain Representation Probing645

In this section, we describe the experiment we performed to generate the in-domain VIP vs. TCN646

comparison in Figure 4. We fit VIP and TCN representations using 100 demonstrations from the647

FrankaKitchen sdoor_open task (center view). For TCN, we use R3M’s implementation of the648

TCN loss without any modification; this also allows our findings in Figure 4 to extend to the main649

experiment section. The visual architecture is ResNet34, and the output dimension is 2, which enables650

us to directly visualize the learned embedding. Different from the out-of-domain version of VIP, we651

also do not perform weight penalty, trajectory-level random cropping data augmentation, or additional652

2https://github.com/vikashplus/mj_envs/tree/v0.1real/mj_envs/envs/relay_kitchen
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(a) ldoor_close (left) (b) ldoor_close (center) (c) ldoor_close (right)

(d) ldoor_open (left) (e) ldoor_open (center) (f) ldoor_open (right)

(g) rdoor_close (left) (h) rdoor_close (center) (i) rdoor_close (right)

(j) rdoor_open (left) (k) rdoor_open (center) (l) rdoor_open (right)

(m) sdoor_close (left) (n) sdoor_close (center) (o) sdoor_close (right)

(p) sdoor_open (left) (q) sdoor_open (center) (r) sdoor_open (right)

Figure 5: Initial frame (Easy), initial frame (Hard), and goal frame for all 12 tasks and 3 camera views in our
FrankaKitchen suite.

negative sampling. Besides these choices, we use the same hyperparameters as in Table 2 and train653

for 2000 batches.654

G.3 Trajectory Optimization655

We use a publicly available implementation of MPPI3, and make no modification to the algorithm or656

the default hyperparameters. In particular, the planning horizon is 12 and 32 sequences of actions657

are proposed per action step. Because the embedding reward ((4)) is the goal-embedding distance658

difference, the score (i.e., sum of per-transition reward) of a proposed sequence of actions is equivalent659

to the negative embedding distance (i.e., Sϕ(ϕ(oT );ϕ(g))) at the last observation.660

G.3.1 Robot and Object Pose Error Analysis661

In this section, we visualize the per-step robot and object pose L2 error with respect to the goal-image662

poses. We report the non-cumulative curves (on the success rate as well) for more informative663

analysis.664

3https://github.com/aravindr93/trajopt/blob/master/trajopt/algos/mppi.py
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(a) micro_close (left) (b) micro_close (center) (c) micro_close (right)

(d) micro_open (left) (e) micro_open (center) (f) micro_open (right)

(g) knob1_on (left) (h) knob1_on (center) (i) knob1_on (right)

(j) knob1_off (left) (k) knob1_off (center) (l) knob1_off (right)

(m) light_on (left) (n) light_on (center) (o) light_on (right)

(p) light_off (left) (q) light_off (center) (r) light_off (right)

Figure 6: Initial frame (Easy), initial frame (Hard), and goal frame for all 12 tasks and 3 camera views in our
FrankaKitchen suite.

Figure 7: Trajectory optimization results with pose errors.
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Table 3: Real-world robotics tasks descriptions.
Environment Object Type Dataset Success Criterion

CloseDrawer Articulated Object 10 demos + 20 failures the drawer is closed enough that the spring loads.
PushBottle Transparent Object 20 demonstrations the bottle is parallel to the goal line set by the icecream cone.
PlaceMelon Soft Object 20 demonstrations the watermelon toy is fully placed in the plate.
FoldTowel Deformable Object 20 demonstrations the bottom half of the towel is cleanly covered by the top half.

Figure 8: Real-robot setup.

G.4 Reinforcement Learning665

We use a publicly available implementation of NPG4, and make no modification to the algorithm or666

the default hyperparameters. In the Easy (resp. Hard) setting, we train the policy until 500000 (resp.667

1M) real environment steps are taken. For evaluation, we report the cumulative maximum success668

rate on 50 test rollouts from each task configuration (50*108=5400 total rollouts) every 10000 step.669

H Real-World Robot Experiment Details670

H.1 Task Descriptions671

The robot learning environment is illustrated in Figure 8; a RealSense camera is mounted on the672

right edge of the table, and we only use the RGB image stream without depth information for data673

collection and policy learning.674

We collect offline data Dtask for each task via kinesthetic playback, and the object initial placement675

is randomized for each trajectory. On the simplest CloseDrawer task, we combine 10 expert676

demonstrations with 20 sub-optimal failure trajectories to increase learning difficulty. For the other677

three tasks, we collect 20 expert demonstrations, which we found are difficult enough for learning678

good policies. Each demonstration is 50-step long collected at 25Hz. The initial state for the robot is679

fixed for each demonstration and test rollout, but the object initial position is randomized. The task680

success is determined based on a visual criterion that we manually check for each test rollout. The681

full task breakdown is described in Table 3.682

Each task is specified via a set of goal images that are chosen to be the last frame of all demonstrations683

for the task. Hence, the goal embedding used to compute the embedding reward ((4)( for each task is684

the average over the embeddings of all goal frames.685

The tasks (in their initial positions) using a separate high-resolution phone camera are visualized in686

Figure 9. Sample demonstrations in the robot camera view are visualized in Figure 10.687

4https://github.com/aravindr93/mjrl/blob/master/mjrl/algos/npg_cg.py
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(a) CloseDrawer (b) PushBottle (c) PickPlaceMelon (d) FoldTowel

Figure 9: Side-view of real-robot tasks using a high-resolution smartphone camera.

(a) CloseDrawer

(b) PushBottle

(c) PickPlaceMelon

(d) FoldTowel

Figure 10: Real-robot task demonstrations (every 10th frame) in robot camera view. The first and last frames in
each row are representative of initial and final goal observaions for the respective task.

H.2 Training and Evaluation Details688

The policy network is implemented as a 2-layer MLP with hidden sizes [256, 256]. As in R3M’s689

real-world robot experiment setup, the policy takes in concatenated visual embedding of current690

observation and robot’s proprioceptive state and outputs robot action. The policy is trained with a691

learning rate of 0.001, and a batch size of 32 for 20000 steps.692

For RWR’s temperature scale, we use τ = 0.1 for all tasks, except CloseDrawer where we find693

τ = 1 more effective for both VIP and R3M.694

For policy evaluation, we use 10 test rollouts with objects randomly initialized to reflect the object695

distribution in the expert demonstrations. The rollout horizon is 100 steps.696

H.3 Additional Analysis & Context697

Offline RL vs. imitation learning for real-world robot learning. Offline RL, though known698

as the data-driven paradigm of RL (Levine et al., 2020), is not necessarily data efficient (Agarwal699

et al., 2021), requiring hundreds of thousands of samples even in low-dimensional simulated tasks,700

and requires a dense reward to operate most effectively (Mandlekar et al., 2021; Yu et al., 2022).701

Furthermore, offline RL algorithms are significantly more difficult to implement and tune compared to702

BC (Kumar et al., 2021; Zhang & Jiang, 2021). As such, the dominant paradigm of real-world robot703

learning is still learning from demonstrations (Jang et al., 2022; Mandlekar et al., 2018; Ebert et al.,704
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(a) VIP-RWR (b) VIP-BC (c) REM-RWR (d) REM-RWR

Figure 11: Comparison of failure trajectories on PickPlaceMelon. VIP-RWR is still able to reach the critical
state of gripping watermelon, whereas baselines fail.

2021). With the advent of VIP-RWR, offline RL may finally be a practical approach for real-world705

robot learning at scale.706

Performance of R3M-BC. Our R3M-BC, though able to solve some of the simpler tasks, appears to707

perform relatively worse than the original R3M-BC in Nair et al. (2022) on their real-world tasks.708

To account for this discrepancy, we note that our real-world experiment uses different software-709

hardware stacks and tasks from the original R3M real-world experiments, so the results are not710

directly comparable. For instance, camera placement, an important variable for real-world robot711

learning, is chosen differently in our experiment and that of R3M; in R3M, a different camera angle is712

selected for each task, whereas in our setup, the same camera view is used for all tasks. Furthermore,713

we emphasize that our focus is not the absolute performance of R3M-BC, but rather the relative714

improvement R3M-RWR provides on top of R3M-BC.715

H.4 Qualitative Analysis716

In this section, we study several interesting policy behaviors VIP-RWR acquire. Policy videos are717

included in our supplementary video.718

Robust key action execution. VIP-RWR is able to execute key actions more robustly than the719

baselines; this suggests that its reward information helps it identify necessary actions. For example,720

as shown in Figure 11, on the PickPlaceMelon task, failed VIP-RWR rollouts at least have the721

gripper grasp onto the watermelon, whereas for other baselines, the failed rollouts do not have the722

watermelon between the gripper and often incorrectly push the watermelon to touch the plate’s outer723

edge, preventing pick-and-place behavior from being executed.724

Task re-attempt. We observe that VIP-RWR often learns more robust policies that are able to725

perform recovery actions when the task is not solved on the first attempt. For instance, in both726

CloseDrawer and FoldTowel, there are trials where VIP-RWR fails to close the drawer all the way727

or pick up the towel edge right away; in either case, VIP-RWR is able to re-attempt and solves the728

task (see our supplementary video). This is a known advantage of offline RL over BC (Kumar et al.,729

2022; Levine et al., 2020); however, we only observe this behavior in VIP-RWR and not R3M-RWR,730

indicating that this advantage of offline RL is only realized when the reward information is sufficiently731

informative.732

I Additional Results733

I.1 Value-Based Pre-Training Ablation: Least-Square Temporal-Difference734

While VIP is the first value-based pre-training approach and significantly outperforms all existing735

methods, we show that this effectiveness is also unique to VIP and not to training a value function.736

To this end, we show that a simpler value-based baseline does not perform as well. In particular,737

we consider Least-Square Temporal-Difference policy evaluation (LSTD) (Bradtke & Barto, 1996;738

Sutton & Barto, 2018) to assess the importance of the choice of value-training objective:739

min
ϕ

E(o,o′,g)∼D

[(
δ̃g(o) + γV (ϕ(o′);ϕ(g))− V (ϕ(s), ϕ(g))

)2
]
, (31)
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Figure 12: VIP vs. LSTD Trajectory Optimization Comparison.

Table 4: Visual Imitation Learning Results.
Self-Supervised Supervised

VIP (E) LSTD (E) R3M-Lang (E) MOCO (I) R3M (E) ResNet50 (I) CLIP (Internet)

Success Rate 53.6 51.5 51.2 45.0 55.9 41.8 44.3

in which we also parameterize V as the negative L2 embedding distance as in VIP. Given that human740

videos are reasonably goal-directed, the value of the human behavioral policy computed via LSTD741

should be a decent choice of reward; however, LSTD does not capture the long-range dependency742

of initial to goal frames (first term in (12)), nor can it obtain a value function that outperforms that743

of the behavioral policy. We train LSTD using the exact same setup as in VIP, differing in only the744

training objective, and compare it against VIP in our trajectory optimization settings.745

As shown in Fig. 12, interestingly, LSTD already works better than all prior baselines in the Easy746

setting, indicating that value-based pre-training is indeed favorable for reward-specification. However,747

its inability to capture long range temporal dependency as in VIP (the first term in VIP’s objective)748

makes it far less effective on the Hard setting, which require extended smoothness in the reward749

landscape to solve given the distance between the initial observation and the goal. These results750

show that VIP’s superior reward specification comes precisely from its ability to capture both long-751

range temporal dependencies and local temporal smoothness, two innate properties of its dual value752

objective and the associated implicit time contrastive learning interpretation. To corroborate these753

findings, we have also included LSTD in our qualitative reward curve and histogram analysis in754

App. I.4, I.6, and I.7 and finds that VIP generates much smoother embedding than LSTD.755

I.2 Visual Imitation Learning756

One alternative hypothesis to VIP’s smoother embedding for its superior reward-specification capabil-757

ity is that it learns a better visual representation, which then naturally enables a better visual reward758

function. To investigate this hypothesis, we compare representations’ capability as a pure visual759

encoder in a visual imitation learning setup. We follow the training and evaluation protocol of (Nair760

et al., 2022) and consider 12 tasks combined from FrankaKitchen, MetaWorld (Yu et al., 2020), and761

Adroit (Rajeswaran et al., 2017), 3 camera views for each task, and 3 demonstration dataset sizes,762

and report the aggregate average maximum success rate achieved during training. R3M-Lang is the763

publicly released R3M variant without supervised language training. The average success rates over764

all tasks are shown in Table 4; the letter inside () stands for the pre-training dataset with E referring765

to Ego4D and I Imagenet.766

These results suggest that with current pre-training methods, the performance on visual imitation767

learning may largely be a function of the pre-training dataset, as all methods trained on Ego4D, even768

our simple baseline LSTD, performs comparably and are much better than the next best baseline769
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not trained on Ego4D. Conversely, this result also suggests that despite not being designed for this770

purely supervised learning setting, value-based approaches constitute a strong baseline, and VIP is771

in fact currently the state-of-art for self-supervised methods. While these results highlight that VIP772

is effective even as a pure visual encoder, a necessary requirement for joint effectiveness for visual773

reward and representation, it fails to explain why VIP is far superior to R3M in reward-based policy774

learning. As such, we conclude that studying representations’ capability as a pure visual encoder775

may not be sufficient for distinguishing representations that can additionally perform zero-shot776

reward-specification.777

I.3 Embedding and True Rewards Correlation778

In this section, we create scatterplots of embedding reward vs. true reward on the trajectories MPPI779

have generated to assess whether the embedding reward is correlated with the ground-truth dense780

reward. More specifically, for each transition in the MPPI trajectories in Figure 2, we plot its reward781

under the representation that was used to compute the reward for MPPI versus the true human-crafted782

reward computed using ground-truth state information. The dense reward in FrankaKitchen tasks783

is a weighted sum of (1) the negative object pose error, (2) the negative robot pose error, (3) bonus784

for robot approaching the object, and (4) bonus for object pose error being small. This dense reward785

is highly tuned and captures human intuition for how these tasks ought to be best solved. As such,786

high correlation indicates that the embedding is able to capture both intuitive robot-centric and787

object-centric task progress from visual observations. We only compare VIP and R3M here as a proxy788

for comparing our implicit time contrastive mechanism to the standard time contrastive learning.789

The scatterplots over all tasks and camera views (Easy setting) are shown in Figure 13,14, and 15.790

VIP rewards exhibit much greater correlation with the ground-truth reward on its trajectories that791

do accomplish task, indicating that when VIP does solve a task, it is solving the task in a way that792

matches human intuition. This is made possible via large-scale value pre-training on diverse human793

videos, which enables VIP to extract a human notion of task-progress that transfers to robot tasks and794

domains. These results also suggest that VIP has the potential of replacing manual reward engineering,795

providing a data-driven solution to the grand challenge of reward engineering for manipulation tasks.796

However, VIP is not yet perfect in its current form. Both methods exhibit local minima where high797

embedding distances in fact map to lower true rewards; however, this phenomenon is much severe798

for R3M. On 8 out of 12 tasks, VIP at least has one camera view in which its rewards are highly799

correlated with the ground-truth rewards on its MPPI trajectories.800

I.4 Embedding Distance Curves801

In Figure 16, we present additional embedding distance curves for all methods on Ego4D and our802

real-robot offline RL datasets. For Ego4D, we randomly sample 4 videos of 50-frame long (see803

Appendix I.5 for how these short snippets are sampled), and for our robot dataset, we compute the804

embedding distance curves for the 4 sample demonstrations in Figure 10. As shown, on all tasks in805

the real-robot dataset, VIP is distinctively more smooth than any other representation. This pattern806

is less accentuated on Ego4D. This is because a randomly sampled 50-frame snippet from Ego4D807

may not coherently represent a task solved from beginning to completion, so an embedding distance808

curve is not inherently supposed to be smoothly declining. Nevertheless, VIP still exhibits more local809

smoothness in the embedding distance curves, and for the snippets that do solve a task (the first two810

videos), it stands out as the smoothest representation.811

I.5 Embedding Distance Curve Bumps812

In this section, we compute the fraction of negative embedding rewards (equivalently, positive813

slopes in embedding embedding distance curves) for each video sequence and average over all video814

sequences in a dataset. Each sequence in our robot dataset is of 50 frames, and we use each sequence815

without any further truncation. For Ego4D, video sequences are of variable length. For each long816

sequence of more than 50 frames, we use the first 50 frames. We do not include videos shorter than817
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(a) ldoor_close (left) (b) ldoor_close (c) ldoor_close (right)

(d) ldoor_open (left) (e) ldoor_open (f) ldoor_open (right)

(g) sdoor_close (left) (h) sdoor_close (i) sdoor_close (right)

(j) sdoor_open (left) (k) sdoor_open (l) sdoor_open (right)

Figure 13: Embedding reward vs. ground-truth human-engineered reward correlation (VIP vs. R3M) part 1.
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(a) rdoor_close (left) (b) rdoor_close (c) rdoor_close (right)

(d) rdoor_open (left) (e) rdoor_open (f) rdoor_open (right)

(g) micro_close (left) (h) micro_close (i) micro_close (right)

(j) micro_open (left) (k) micro_open (l) micro_open (right)

Figure 14: Embedding reward vs. ground-truth human-engineered reward correlation (VIP vs. R3M) part 2.
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(a) knob1_on (left) (b) knob1_on (c) knob1_on (right)

(d) knob1_on (left) (e) knob1_on (f) knob1_on (right)

(g) light_on (left) (h) light_on (i) light_on (right)

(j) light_off (left) (k) light_off (l) light_off (right)

Figure 15: Embedding reward vs. ground-truth human-engineered reward correlation (VIP vs. R3M) part 3.
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(a) Ego4D

(b) Real-robot dataset
Figure 16: Additional embedding distance curves on Ego4D and real-robot videos.

Table 5: Proportion of bumps in embedding distance curves.
Dataset VIP (Ours) R3M ResNet50 MOCO CLIP

Ego4D 0.253 ± 0.117 0.309 ± 0.097 0.414 ± 0.052 0.398 ± 0.057 0.444 ± 0.047
In-House Robot Dataset 0.243 ± 0.066 0.323 ± 0.076 0.366 ± 0.046 0.380 ± 0.052 0.438 ± 0.046

50 frames, in order to make the average fraction for each representation comparable between the818

two distinct datasets. Note that for Ego4D, due to its in-the-wild nature, it is not guaranteed that a819

50-frame segment represents one task being solved from beginning to completion, so there may be820

naturally bumps in the embedding distance curve computed with respect to the last frame, as earlier821

frames may not actually be progressing towards the last frame in a goal-directed manner.The full822

results are shown in Table 5. VIP has fewest bumps in Ego4D videos, and this notion of smoothness823

transfer to the robot dataset. Furthermore, since the robot videos are in fact visually simpler and each824

video is guaranteed to be solving one task, the bump rate is actually lower despite the domain gap.825

While this observation generally also holds true for other representations, it notably does not hold for826

R3M, which is trained using standard time contrastive learning.827

I.6 Embedding Reward Histograms (Real-Robot Dataset)828

We present the reward histogram comparison against all baselines in Figure 17. The trend of VIP829

having more small, positive rewards and fewer extreme rewards in either direction is consistent across830

all comparisons.831

I.7 Embedding Reward Histograms (Ego4D)832

We present the reward histogram comparison against all baselines in Figure 18. The histograms are833

computed using the same set of 50-frame Ego4D video snippets as in Appendix I.5. The y-axis is in834

log-scale due to the large total count of Ego4D frames. As discussed, Ego4D video segments are835

less regular than those in our real-robot dataset, and this irregularity contributes to all representations836

having significantly more negative rewards compared to their histograms on the real-robot dataset.837

Nevertheless, the relative difference ratio’s pattern is consistent, showing VIP having far more838

rewards that lie in the first positive bin. Furthermore, VIP also has significantly fewer extreme839

negative rewards compared to all baselines.840

841
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(a) VIP vs. R3M (b) VIP vs. ResNet

(c) VIP vs. MoCo (d) VIP vs. CLIP

(e) VIP vs. LSTD

Figure 17: Embedding reward histogram comparison on real-robot dataset.

(a) VIP vs. R3M (b) VIP vs. ResNet

(c) VIP vs. MoCo (d) VIP vs. CLIP

(e) VIP vs. LSTD

Figure 18: Embedding reward histogram comparison on Ego4D videos.
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