
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BIGFIX: BIDIRECTIONAL IMAGE GENERATION WITH
TOKEN FIXING

Anonymous authors
Paper under double-blind review

Figure 1: Self-correction: After the first 6 unmasking steps to create the overall structure, we pro-
ceed with two generations: without correction (top) and ours with correction (bottom). Correction
solves structural errors such as supernumerary or missing elements.

ABSTRACT

Recent advances in image and video generation have raised significant interest
from both academia and industry. A key challenge in this field is improving in-
ference efficiency, as model size and the number of inference steps directly im-
pact the commercial viability of generative models while also posing fundamental
scientific challenges. A promising direction involves combining auto-regressive
sequential token modeling with multi-token prediction per step, reducing infer-
ence time by up to an order of magnitude. However, predicting multiple tokens in
parallel can introduce structural inconsistencies due to token incompatibilities, as
capturing complex joint dependencies during training remains challenging. Tradi-
tionally, once tokens are sampled, there is no mechanism to backtrack and refine
erroneous predictions. We propose a method for self-correcting image genera-
tion by iteratively refining sampled tokens. We achieve this with a novel training
scheme that injects random tokens in the context, improving robustness and en-
abling token fixing during sampling. Our method preserves the efficiency benefits
of parallel token prediction while significantly enhancing generation quality. We
evaluate our approach on image generation using the ImageNet-256 and CIFAR-
10 datasets, as well as on video generation with UCF-101 and NuScenes, demon-
strating substantial improvements across both modalities.

1 INTRODUCTION

Surrounded by the aroma of freshly brewed coffee, casual chat in the office shifts from everyday
topics to the latest breakthroughs in image generation. As usual, the discussion quickly shifts to-
wards the constant push for state-of-the-art models in computer vision, reflecting the rapid evolution
in the field and the drive to refine its techniques.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Eritos1: “Have you seen the news from BlackForest (Labs, 2024)? The quality is mesmerizing,
indistinguishable from reality! Far superior to those chicken images you’ve been generating for
months.”

Theoros2: “Indeed, I saw it! They used flow matching, scaling it across many images, parameters,
and GPUs. It’s impressive how they managed to push the boundaries. But, for the record, my
generated chickens are also quite remarkable! (Figure 9b)”

E: “Flow matching? Again a new framework? Is it related to diffusion model?”

T: “Flow matching (Lipman et al., 2023) is a method that teaches the model to transform a simple
distribution, like a Gaussian, into a complex one, such as an image, by following smooth, continuous
paths. Flow matching and diffusion (Ho et al., 2020) currently lead image generation, surpassing
traditional methods like GAN (Goodfellow et al., 2014) or VAE (Kingma & Welling, 2014).”

E: “I thought that auto-regressive model, like GPT (Radford et al., 2019), was SOTA for data
generation. I know text is discrete but an image is also a collection of discrete pixel values from 0
to 255, right? Why can’t you just generate a pixel like you generate a word?”

T: “Technically, you can (Chen et al., 2020), but only for very small images. And for a 256× 256
image, you’d need 65,536 iterations to generate just one sample... and that’s assuming a single RGB
value per pixel. Then you have three color channels, so the vocabulary size is 2563. Imagine the
number of parameters and the compute power needed for training and inference. It’s a nightmare.”

E: “Indeed. But scaling usually works (Hoffmann et al., 2022), right?”

T: “Sure, but that’s not all. Images are inherently 2D structures, yet auto-regressive methods (Sun
et al., 2024) often enforce a 1D sequential representation that ignores spatial organization. The
notion of geometric neighborhood is very meaningful for pixels. And this is different in text, where
semantics and positional distance are much less correlated (Tian et al., 2024).

E: “Okay, but what about compressing both the image resolution and its range of values?”

T: “Well, yes. Techniques using vector quantization (Esser et al., 2020) tokenize images, reducing
their resolution and converting them into a discrete set of tokens (Mentzer et al., 2024; Yu et al.,
2024). But synthesizing images token-by-token remains computationally expensive even when pre-
dicting in the latent space. Moreover, causal attention, which works well for text, is not ideal for
images, as a basic raster-scan order fails to capture the conditional structure of images.”

E: “So, what’s the alternative? Can’t we generate tokens in a different order?”

T: “This brings us to Masked Generative Image Transformer (Chang et al., 2022; 2023)! These
models are trained with a reconstruction objective to predict all tokens at once. During inference,
the model progressively fills a fully-masked image by predicting multiple tokens in parallel without
fixing the order. This framework accelerates the image generation process, producing results in just
a few steps.”

E: “Amazing! Then why isn’t everyone using this?”

T: “There are couple of challenges. MaskGIT iteratively reveals image tokens, which can
lead to sampling discrepancies when incompatible tokens are independently sampled simultane-
ously (Lezama et al., 2022). Moreover, unlike diffusion models, MaskGIT cannot correct previous
mistakes, once a sample is generated, it stays forever. Unless someone finds a way to fix this ... ”

T: “Interesting. Sounds like a problem worth solving, right?!”

Contributions. In this paper, we propose a novel training scheme for image and video generation.
Based on a multi-token prediction framework, we unlock self-correction during sampling as follows:
(1) During training, we inject random tokens, sampled from the image distribution, into the context
tokens. The network is then trained to predict both the next token in the sequence and to correct the
randomly injected tokens in the context. (2) During sampling, the model iteratively predicts multiple

1fictive name (from erōtáō, “to ask”)
2fictive name (from theōrein, “to seek”)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Schematics. During training (top, in blue), we perturb the input tokens by replacing a
fraction α of the unmasked context tokens with randomly sampled ground-truth tokens from the
same image. The random tokens originate from the correct image distribution but are arranged in
an incorrect position. This augmentation not only enhances the model’s robustness to such errors
during sampling but also enables the identification and correction of incompatible tokens during
inference (bottom, in orange). While baseline methods must assume the input tokens are correct and
unchangeable, BIGFix allows to refine its predictions iteratively.

tokens in parallel. No random tokens are injected into the context; instead, the model is allowed to
‘backtrack’ and refine previously sampled tokens that exhibit structural inconsistencies Figure 2.

2 RELATED WORK

Continuous Visual Generative Modeling. Generative image modeling has long intrigued re-
searchers, and Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Kang et al.,
2023) have pioneered this effort, but suffer from mode collapse issues, which prevent them from
covering the full distribution of the data (Liu et al., 2023). Diffusion Models have emerged as lead-
ing approach in generative modeling (Song et al., 2021; Dhariwal & Nichol, 2021). They are trained
in two phases: noise is progressively added to images, and a model is learned to reverse this process
via denoising. Since their introduction, diffusion models have achieved strong results in both text-to-
image (Ramesh et al., 2022; Rombach et al., 2022) and text-to-video (Ho et al., 2022; Singer et al.,
2022) generation. Building on Diffusion, Flow matching (Lipman et al., 2023) offers an alternative
formulation. Using continuous normalizing flows, it efficiently transforms noise into data distribu-
tions. It has since been successfully applied to both videos (Jin et al., 2024) and images (Esser et al.,
2024).

Auto-Regressive Visual Modeling. Inspired by advances in natural language processing (Radford
et al., 2019; Devlin et al., 2019), auto-regressive and masked generative methods have been adapted
for image and video synthesis. iGPT (Chen et al., 2020) modeled images as pixel sequences auto-
regressively, though quadratic scaling of Transformers limited its use to small images only. To
overcome this issue, VQ-GAN (Esser et al., 2020) employs a vector-quantized variational auto-
encoder(Van Den Oord et al., 2017) with perceptual and adversarial losses, compressing images
into a grid of discrete tokens for realistic reconstruction. ViT-VQGAN(Yu et al., 2022a) increases
scalability with Vision Transformers, while VideoGPT (Yan et al., 2021) extends the approach to
video generation. DALL-E, Parti and LlamaGen (Ramesh et al., 2021; Yu et al., 2022b; Sun et al.,
2024) proposed further adaptations for the text-to-image synthesis.

Masked Visual Modeling. Inspired by BERT (Devlin et al., 2019), MaskGIT (Chang et al., 2022;
2023) introduced an alternative to auto-regressive modeling. Challenging the slow, row-wise to-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ken generation of auto-regressive methods, MaskGIT adopts bidirectional prediction. Trained to
uncover randomly masked image tokens, it begins inference with a fully masked image, iteratively
unmasking tokens to produce a full image. At each step, MaskGIT predicts all tokens but retains
only the most confident ones while the remaining stay masked. MaskGIT demonstrates decent
quality of generated images and up to an order of magnitude faster inference over auto-regressive
models (Villegas et al., 2022; Yu et al., 2023; 2024). However, parallel token sampling overlooks
inter-token dependencies, potentially yielding suboptimal results, prompting alternative sampling
techniques (Lezama et al., 2022; Lee et al., 2023; Besnier et al., 2025) to address this limitation.

Multi-token Auto-regressive Methods. To address the limitations of auto-regressive and masked
generative modeling, Visual AutoRegressive Modeling (VAR) (Tian et al., 2024) introduces a
coarse-to-fine next-scale prediction strategy, auto-regressively modeling multi-scale token maps
from low to high detail, while still leveraging parallel token prediction at each scale.

Auxiliary Training Strategies. In this study, we exclude auxiliary losses such as REPA (Yu et al.,
2025a), or reinforcement learning finetuning (Wallace et al., 2024) which improve the quality of the
generator. Same for model distillation training (Salimans & Ho, 2022) which reduces the number
of steps. While effective, and applicable in tandem with our method, they typically require either
additional pre-trained networks during inference or a separate fine-tuning stage on top of the vanilla
approach.

Here, we want to keep the advantage of fast inference time and to combine multi-token and auto-
regressive approaches. Therefore our baseline method is Besnier et al. (2025). In contrast to the
above mentioned methods, we equip the model with the ability to recover from erroneous token
predictions at each prediction step. Our random token injection at training time and ability to fix
errors at inference time is well suited for any multi-token prediction technique and may be easily
incorporated into these frameworks.

3 METHOD

3.1 PRELIMINARIES: MULTI-TOKEN PREDICTION

Tokenizing Images. We represent each image x ∈ RH×W×3 as a set of discrete tokens Z =
{z0, z1, . . . , zn} using a pre-trained tokenizer encoder Enc:

Z = Enc(x), Z ∈ Ch×w

where C denotes the token vocabulary, i.e., the possible values each zi can take, and h×w represents
the spatial dimensions of the token grid. The main objective in image synthesis is to learn how to
sample from the data distribution P (Z). For convenience, we can be factorize P (Z) as the joint
distribution over all tokens:

P (Z) = P (z0, . . . , zn). (1)

Auto-regressive Modeling. A powerful tool to learn the data distribution, heavily used to train
LLMs, is to represent the data as a sequence and learn the probability of the next token given the
previous ones (the context). Auto-regressive approaches estimate the conditional probability of each
token based on the previously generated tokens:

Pθ(zi | z0, z1, . . . , zi−1), (2)

where θ represents the model parameters. During generation, auto-regressive methods sequentially
sample each token by leveraging the product of these probabilities:

P (z0, . . . , zn) =

n∏
i=0

P (zi | z0, z1, . . . , zi−1). (3)

Here, n = h×w is the total number of tokens. By construction, auto-regressive models enforce se-
quential token generation, preventing the simultaneous sampling of multiple tokens. This constraint
results in a computational bottleneck, requiring n forward passes, which is prohibitively expensive

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

for images (e.g., 1024 steps for a small 32 × 32 image). Furthermore, this approach forces to flat-
ten the 2D spatial structure of image tokens into a 1D sequence, typically following a raster scan
ordering. This transformation corrupts the inherent spatial relationships of tokens (See Appendix B).

Multi-token prediction. To mitigate the inefficiency of auto-regressive methods, we redefine the
image representation as an ordered sequence of groups of tokens S = {Z0,Z1, . . . ,Zm}, where
each subset Zi is a non-empty set of tokens selected from {zi}ni=0. All subsets Zs form a non-
overlapping and complete partitioning of {zi}ni=0 . Instead of predicting one token at a time, we
model the conditional probability of entire token groups Pθ(Zs | Z0,Z1, . . . ,Zs−1) resulting in the
factorized probability distribution P (S):

P (Z0,Z1, . . . ,Zm) =

m∏
s=0

P (Zs | Z0,Z1, . . . ,Zs−1). (4)

Setting m ≪ n, i.e., reducing the number of sampling steps, significantly accelerates the generation
process. Each step s predicts a set of next tokens Zs. Moreover, the model can still be trained using
the standard cross-entropy loss.

3.2 TOWARD SELF-CORRECTING TOKEN GENERATION

On token dependencies. However, a major drawback of sampling multiple tokens simultaneously
is its sensitivity to errors. Specifically, when sampling multiple tokens in parallel, the network
estimates their joint distribution under the assumption of independence (due to the cross-entropy
loss):

P (za, zb) ≈ P (za)P (zb),

where P (za, zb) represents the true joint probability of tokens {za, zb}, and P (za)P (zb) is the
product of their independent probabilities for any a, b ∈ {0, . . . , n}. In reality, token dependencies
in images often cause situations where individual tokens may have high probabilities, yet their joint
probability is significantly lower, leading to unrealistic or inconsistent generations3.

In reality, the model outputs a probability distribution for each token, and those are not independent.
However, conditioned on the context tokens, sampling the next tokens is done independently. This
assumption is sufficient to create compositional problems, which we demonstrate quantitatively and
qualitatively in the next section.

Random token injection. To mitigate this issue and allow the network to correct mistakes arising
from incompatible tokens, we inject random tokens zi (sampled from the current image distribu-
tion) in the context during training. This enables the model to learn that some context tokens may
contain errors and, consequently, develop the ability to correct them. Among all context tokens in
{z0, z1, . . . , zi−1}, we randomly replace some of them with random tokens sampled from the clean
image distribution P (Z), thereby producing a second corrupted token representation Z ′, which,
similarly to Z , is a set of tokens taken from {zi}ni=0 with the difference that some zi may be sam-
pled multiple times, creating the corruption. Then, Z ′ is a set of zj tokens sampled accordingly:

∀j ∈ {0, . . . , i− 1} , z′j =
{
zj , if u ∼ U(0, 1) > α,

z∗ ∼ P (Z), otherwise,
(5)

where z∗ is a random token sampled from the distribution of the same clean tokenized image Z .

Model Training. We inject random token and train our model to correct them by maximizing the
likelihood of Pθ(Z0, . . . ,Zk | Z ′

0, . . . ,Z ′
k) which corresponds to minimizing :

Lcontext(θ) = −E
Z,Z′

[
s−1∑
k=0

logPθ(Z0, . . . ,Zk | Z ′
0, . . . ,Z ′

k)

]
. (6)

3For example, in a picture, a person’s head might appear in two different locations. While each position may
have a high likelihood for the token corresponding to the ‘head’ independently, selecting both simultaneously
could result in a person with two heads—an improbable and unrealistic outcome. Such errors may propagate
through the sampling process, leading to inconsistencies in predictions.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where k < s ensures that we inject random tokens only in the context.

Moreover, we train the model to predict the next clean token group Zs given a sequence of noisy
token groups {Z ′

0, . . . ,Z ′
s−1}, thereby making it a generative model. We minimize the expected

negative log-likelihood with respect to θ:

Lnext(θ) = −E
Z,Z′

[
m∑
s=0

logPθ(Zs | Z ′
0,Z ′

1, . . . ,Z ′
s−1)

]
. (7)

In practice, we train the model to minimize the sum L(θ) = Lnext(θ) + Lcontext(θ). During
sampling, no injections are made into the context; instead, we allow the model to iteratively correct
its previous steps.

Bidirectional Halton ordering Building on prior work (Besnier et al., 2025), which serves as
our main baseline method, we construct the set S = {Z0,Z1, . . . ,Zm} using the Halton sequence
to determine the prediction order of each token zi. The Halton sequence, a low-discrepancy se-
quence, ensures uniform token coverage across the 2D spatial structure of the image while reducing
the mutual information shared within each set. Consequently, we retain the bidirectional attention
mechanism, which leverages the 2D nature of images to facilitate global contextual understanding,
akin to Transformer encoder-style models. Finally, we adopt an arccos scheduling scheme to pro-
gressively increase the number of tokens within each group Zs, thereby balancing uniform token
distribution with efficient sampling dynamics.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Model Architecture. Our models are based on the same repository as (Besnier et al., 2025) with
minimal changes for tokenizer, modality and loss adaptation. We use AdaLN for class conditioning
similar to the DiT Peebles & Xie (2023). The complete hyper-parameter details are in Appendix C.

Evaluation Metrics. To assess image generation quality, we use Fréchet Inception Distance
(FID) (Heusel et al., 2017), Inception Score (IS) and the Precision and Recall. For video gener-
ation, we rely on Fréchet Video Distance (FVD) (Unterthiner et al., 2019).

Modalities. For class-to-image generation on ImageNet, we use a pre-trained LlamaGen tok-
enizer (Sun et al., 2024), with a downscale spatial factor of 16 and a codebook of 16,384 codes.
On Cifar10 (Krizhevsky et al., 2009), we do not use any learnable tokenizer. Instead, images are
quantized, mapping each RGB pixel to a single token using the formula: R+G·q+B·q2 with a code-
book size of q3. We set q = 16, yielding a codebook size of 4,096. For class-to-video generation
on UCF-101 (Soomro et al., 2012), we use OmniTokenizer (Wang et al., 2024a) to encode 17-frame
videos with a codebook of 8,192 codes. Finally, for NuScenes (Caesar et al., 2020), each frame is
tokenized independently using LlamaGen. We use a single frame as conditioning (image-to-video)
and generate the following 16 frames auto-regressively, with a maximum context of 8 frames.

4.2 TOKEN FIXING

Random Token Injection α. We analyze the impact of varying our main hyper-parameter α ∈
{0, 0.1, 0.2, 0.3} during training, as presented in Table 1. This parameter plays two key roles in
the network’s behavior. During training, it controls the amount of randomly injected tokens in the
context, influencing the model’s ability to handle noisy inputs. When α > 0, the model learns to be
robust against perturbations. During sampling, setting α > 0 enables the model to detect erroneous
samples from previous iterations and refine predictions by better estimating the distribution over
the input tokens. Analysis shows that increasing α up to 0.2 consistently improves all metrics, on
all datasets modalities, and resolutions; the benefit plateaus for higher values. This suggests that a
controlled level of token injection at training time helps to improve the quality of the samples.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Dataset ImageNet ImageNet CIFAR-10 UCF-101 NuScenes
Model Small Base Small Base Base

Tokenizer LlamaGen LlamaGen – OmniTok LlamaGen

α FID50k↓ IS↑ FID50k↓ IS↑ FID10k↓ IS↑ FVD↓ FVD↓
0.0 46.86 23.40 25.30 48.12 26.53 10.69 558.19 529.5
0.1 36.03 30.56 20.65 54.98 20.78 11.87 327.61 502.7
0.2 32.47 34.87 19.83 59.49 22.26 11.62 270.15 476.9
0.3 33.57 35.42 21.03 63.17 23.23 11.61 316.30 515.7

Table 1: Random token injection: Effect of varying random token injection α after 410k training
steps. Across cls-to-img datasets (ImageNettrain, CIFAR-10val), cls-to-video (UCF-101test), and
img-to-video (NuScenestrain+val), our framework consistently improves performance when α > 0,
which enables self-correction during sampling. Best results are highlighted in bold.

(a) Prediction Accuracy and rFID using only 37%
tokens from a real image in context. Each available
token is then replace by a random tokens based on α.
Fixing corrupted tokens is as challenging as predicting
next tokens.

(b) Prediction Accuracy and rFID using constant
α = 0.2. We track the accuracy of one-step recon-
structions as the proportion of the context increase.
Most errors occur in the early stages, when only a few
tokens are available in the context.

Figure 3: One-step reconstruction on ImageNet 256×256 validation set. Evaluation of model
accuracy and fidelity under corrupted token contexts.

Model Accuracy. We evaluate in Figure 3 whether our model can accurately correct corrupted
tokens and predict the next tokens among the 16,384 codebook entries. In Figure 3a, we keep only
37% tokens in the context, in which n × α random tokens are injected. We then perform a single
prediction step and measure whether the true label is among the top 1% of predicted probabilities,
reporting the metrics as Top-1% accuracy. Specifically, we compute: (i) Accnext, for predicting the
next tokens; (ii) Accfull context, for all tokens in the context; and (iii) Acccorrupted tokens, computed only
over the perturbed tokens in the context. Our best model with α = 0.2 shows strong performance
even under high perturbation. Moreover, it shows that the model handles unchanged tokens well,
while fixing corrupted ones is as challenging as predicting next tokens, see discrepancy between
green and yellow curve. In Figure 3b, most errors occur early, while later predictions improve,
highlighting the need for a correction mechanism.

Self-Correction. Here we keep all tokens in the context and demonstrate Figure 4 the model’s
ability to correct randomly injected tokens in the image. The model successfully recovers tokens in
a single step even when α is set higher than the values used during training. We test the model’s
ability to correct corrupted latent codes by copying a crop of GT tokens from one region and pasting
them into a different location within the latent space. The modified latent code is passed through
BIGFix, which fixes the token values in a single step. The model effectively corrects artifacts and
local inconsistencies, such as missing fingers or duplicate eyes, as illustrated in Figure 5.

Visualization in Figure 1 showcases the model’s capacity to self-correct during sampling from
scratch. For instance, it successfully prevents the generation of an extra mouth for the shark. On
average, the model corrects 58 tokens per image over 32 sampling steps, corresponding to approxi-
mately 10% of the final 576 tokens.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Random token correction: Top rows:
random token injected at different values of α,
with no other tokens masked. Bottom rows: the
model’s prediction in a single step. The figure il-
lustrates the model’s ability to accurately correct
tokens even when α exceeds the training range
(i.e., α > 0.2). Better visible when zoomed in.

Figure 5: Patch tokens correction: Tokens from
the green dotted square are copied and pasted
into the solid green square, creating a corrupted
image (second row). Only the tokens in the solid
green square are altered, while all other tokens
remain unchanged. BIGFix is able to correct
these tokens in a single step (third row), demon-
strating its ability to perform correction under
out-of-distribution latent manipulations. Better
visible when zoomed in.

4.3 IMAGE SYNTHESIS COMPARISONS

We evaluate across different model sizes to assess their impact on performance, as shown in Table 2.
Our model demonstrates faster convergence compared to Diffusion (Peebles & Xie, 2023), Flow
Matching (Ma et al., 2024), and auto-regressive approaches (Sun et al., 2024) without the need of
representation alignment (Yu et al., 2025b). Using only 16 steps, we outperform them consistently,
given comparable training steps and parameter counts.

Model #Para. Training Steps FID50k↓ IS↑
DiT-S/2 (Peebles & Xie, 2023) 33M 400k 250 68.40 -
SiT-S/2 (Ma et al., 2024) 33M 400k 250 57.60 -
BIGFix-Small (our) 50M 410k 16 31.27 37.79
DiT-B/2 (Peebles & Xie, 2023) 130M 400k 250 43.47 -
SiT-B/2 (Ma et al., 2024) 130M 400k 250 33.50 -
LlamaGen-B (Sun et al., 2024) 111M 530k 256 33.44 37.53
BIGFix-Base (our) 143M 410k 16 19.83 59.49
DiT-L/2 (Peebles & Xie, 2023) 458M 400k 250 23.30 -
SiT-L/2 (Ma et al., 2024) 458M 400k 250 18.80 -
LlamaGen-L (Sun et al., 2024) 343M 530k 256 19.07 64.35
BIGFix-Large (our) 480M 410k 16 11.36 95.17
DiT-XL/2 (Peebles & Xie, 2023) 675M 400k 250 19.50 -
SiT-XL/2 (Ma et al., 2024) 675M 400k 250 17.20 -
LlamaGen-XL (Sun et al., 2024) 775M 530k 256 18.04 69.88
BIGFix-XLarge (our) 693M 410k 16 9.25 103.60

Table 2: Scaling law on class-conditional ImageNet 256×256 benchmark. Analysis of model
sizes, without classifier-free guidance. Our method converges faster than other competitive methods.

We compare our method against SOTA in Table 3. We use LlamaGEN to encode images in 24× 24
visual tokens, producing an initial resolution of 384, which we downsampled to 256 following Sun
et al. (2024). We train our model with α = 0.2, 32 steps, the Halton sequence, and the arccos
scheduling. The full ablation is available in see Appendix A. When we prevent our model from
correcting during sampling, we achieve an FID of 3.36, 0.38 better than the comparable Halton-
MaskGIT baseline. Random token injection acts as data augmentation, enhancing robustness. Self-
correction improves the FID by 0.87, reaching 2.49. Our approach is among the fastest sampling
methods, as we require only 32 steps. Compared to VAR, we better cover the diversity of the real
data (Recall). Additional results for UCF-101 and NuScenes are available in Appendix E.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

We present qualitative results in Figure 1, Figure 6, and Appendix F. BIGFix shows strong visual
fidelity, effective error correction, and high diversity, highlighting the effectiveness of our approach.

Type Model #Para. Step Training FID↓ IS↑ Prec.↑ Rec.↑
Conti. LDM-4 (Rombach et al., 2022) 400M 250 0.2M 3.60 247.7 − −

DiT-XL/2 (Peebles & Xie, 2023) 675M 250 7.0M 2.27 278.2 0.83 0.57
SiT-XL/2 (Ma et al., 2024) 675M 250 7.0M 2.06 270.3 0.82 0.59

AR Open-MAGVIT2-L Luo et al. (2024) 804M 256 2.0M 2.51 271.7 0.84 0.54
LlamaGen-XL (Sun et al., 2024) 775M 576 1.6M 2.62 244.1 0.80 0.57
VAR (Tian et al., 2024) 600M 10 2.0M 2.57 302.6 0.83 0.56

MIM MaskGIT (Chang et al., 2022) 227M 12 1.6M 6.18 182.1 0.80 0.51
TokenCritics (Lezama et al., 2022) 454M 36 3.2M 4.69 174.5 0.76 0.53

Baseline → Halton MaskGIT (Besnier et al., 2025) 705M 32 2.0M 3.74 279.5 0.81 0.60

Ours BIGFix-XLarge - No cfg 693M 32 2.0M 6.06 145.9 0.75 0.65
BIGFix-XLarge - No Correction 693M 32 2.0M 3.36 246.3 0.80 0.61
BIGFix-XLarge 693M 32 2.0M 2.49 252.5 0.83 0.63

Table 3: SOTA table on class-conditional ImageNet 256×256 benchmark. We only include
models with sizes below 1B. BIGFix-XLarge improves over MIM methods.

Figure 6: Qualitative Results: The first two rows showcase selected samples from our largest
model on ImageNet 256×256, while the last two rows feature generated videos from UCF-101.
Both modalities demonstrate strong visual fidelity and coherence.

5 CONCLUSION

After Theoros built his new image synthesis framework, Eritos asks him if his idea worked.

T: “Absolutely! We introduced BIGFix a bidirectional image generation framework with token
correction, addressing key limitations of existing multi-token prediction methods. During training,
we inject random tokens to enhance the model’s robustness to errors. The model learns to detect in-
consistencies in the context, fix them, and predict the next tokens of the sequence. When sampling,
rather than simply generating new tokens at each step, our method actively refines the context, pro-
gressively fixing errors introduced in earlier stages. Our method achieves consistent improvements
in image synthesis on ImageNet and CIFAR-10, as well as in video generation on UCF-101 and
NuScenes. BIGFix method provides a better balance of speed and quality for visual synthesis.

E: “Amazing, I guess this means I’ll be seeing more chicken images from you soon with this?”

T: “You bet. Get ready for the most photorealistic generated chicken ever! (see Figure 9b)”

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Victor Besnier, Mickael Chen, David Hurych, Eduardo Valle, and Matthieu Cord. Halton scheduler
for masked generative image transformer. In ICLR, 2025. 4, 6, 9, 15

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In CVPR, 2020. 6, 16

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative
image transformer. In CVPR, 2022. 2, 3, 9

Huiwen Chang, Han Zhang, Jarred Barber, Aaron Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan
Yang, Kevin Patrick Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image
generation via masked generative transformers. In ICML, 2023. 2, 3, 13

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In ICML, 2020. 2, 3

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019. 3

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. NeurIPS,
2021. 3

Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image
synthesis. In CVPR, 2020. 2, 3

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In ICLM, 2024. 3

Shenyuan Gao, Jiazhi Yang, Li Chen, Kashyap Chitta, Yihang Qiu, Andreas Geiger, Jun Zhang,
and Hongyang Li. Vista: A generalizable driving world model with high fidelity and versatile
controllability. NeurIPS, 37, 2024. 17

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. NeurIPS, 2014. 2, 3

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. NeurIPS,
2017. 6

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020. 2

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. NeurIPS, 2022. 3

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. In NeurIPS, 2022. 2

Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang,
Yang Song, Yadong Mu, and Zhouchen Lin. Pyramidal flow matching for efficient video genera-
tive modeling. In ICLR, 2024. 3

Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung
Park. Scaling up gans for text-to-image synthesis. In CVPR, 2023. 3

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014. 2

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images,
2009. 6

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Black Forest Labs. Flux, 2024. 2

Daesoo Lee, Erlend Aune, and Sara Malacarne. Masked generative modeling with enhanced sam-
pling scheme. arXiv: 2309.07945, 2023. 4

José Lezama, Huiwen Chang, Lu Jiang, and Irfan Essa. Improved masked image generation with
token-critic. In ECCV, 2022. 2, 4, 9

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In ICLR, 2023. 2, 3

Haozhe Liu, Bing Li, Haoqian Wu, Hanbang Liang, Yawen Huang, Yuexiang Li, Bernard Ghanem,
and Yefeng Zheng. Combating mode collapse via offline manifold entropy estimation. In AAAI,
2023. 3

Jiachen Lu, Ze Huang, Zeyu Yang, Jiahui Zhang, and Li Zhang. Wovogen: World volume-aware
diffusion for controllable multi-camera driving scene generation. In ECCV, 2024. 17

Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin Wang, and Ying Shan. Open-magvit2:
An open-source project toward democratizing auto-regressive visual generation. arXiv preprint
arXiv:2409.04410, 2024. 9

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. In ECCV, 2024. 8, 9

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantiza-
tion: Vq-vae made simple. In ICLR, 2024. 2

William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, 2023. 6,
8, 9

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 2019. 2, 3

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In ICML, 2021. 3

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv:2204.06125, 2022. 3

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022. 3, 9, 17

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
ICLR, 2022. 4

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video:
Text-to-video generation without text-video data. In ICLR, 2022. 3

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR,
2021. 3

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset of 101 human
actions classes from videos in the wild. arXiv 1212.0402, 2012. 6, 16

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv:2406.06525,
2024. 2, 3, 6, 8, 9

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. In NeurIPS, 2024. 2, 4, 9

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski,
and Sylvain Gelly. Fvd: A new metric for video generation. In ICLR, 2019. 6

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In NeurIPS,
2017. 3

Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang,
Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, and D. Erhan. Phenaki: Variable length
video generation from open domain textual description. In ICLR, 2022. 4

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization. In CVPR, 2024. 4

Hanyu Wang, Saksham Suri, Yixuan Ren, Hao Chen, and Abhinav Shrivastava. LARP: Tokenizing
videos with a learned autoregressive generative prior. In ICLR, 2025. 16

Junke Wang, Yi Jiang, Zehuan Yuan, Bingyue Peng, Zuxuan Wu, and Yu-Gang Jiang. Omnitok-
enizer: A joint image-video tokenizer for visual generation. In NeurIPS, 2024a. 6, 16

Xiaofeng Wang, Zheng Zhu, Guan Huang, Xinze Chen, Jiagang Zhu, and Jiwen Lu. Drivedreamer:
Towards real-world-drive world models for autonomous driving. In ECCV, 2024b. 17

Yuqi Wang, Jiawei He, Lue Fan, Hongxin Li, Yuntao Chen, and Zhaoxiang Zhang. Driving into the
future: Multiview visual forecasting and planning with world model for autonomous driving. In
CVPR, 2024c. 17

Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using
vq-vae and transformers. arXiv: 2104.10157, 2021. 3

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved VQ-
GAN. In ICLR, 2022a. 3

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin
Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-rich
text-to-image generation. arXiv:2206.10789, 2022b. 3

Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G.
Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, and Lu Jiang. Magvit: Masked generative
video transformer. In CVPR, 2023. 4, 16

Lijun Yu, Jose Lezama, Nitesh Bharadwaj Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen,
Yong Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, Boqing Gong, Ming-Hsuan
Yang, Irfan Essa, David A Ross, and Lu Jiang. Language model beats diffusion - tokenizer is key
to visual generation. In ICLR, 2024. 2, 4, 16

Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
than you think. In ICLR, 2025a. 4

Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
Saining Xie. Representation Alignment for Generation: Training Diffusion Transformers Is Easier
Than You Think. In ICLR, 2025b. 8

Wenzhao Zheng, Ruiqi Song, Xianda Guo, Chenming Zhang, and Long Chen. Genad: Generative
end-to-end autonomous driving. In ECCV, 2024. 17

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DESIGN CHOICES

In the following section, we investigate random token injection α in Table 4, the number of predic-
tion steps in Table 4, followed by the type of scheduling methods in Table 5, and token ordering
in Table 6. Each factor influences efficiency and accuracy, as discussed below.

Number of Steps We investigate in Table 4 the effect of the total number of steps {8, 16, 24, 32}
to predict the full images. On ImageNet, increasing the number of steps improves performance up
to step = 16, beyond which the benefits plateau. On the other hand, increasing the number of
steps to 24 leads to improved results on Cifar10, suggesting that the step count should be scaled
proportionally to the total number of tokens to be predicted.

ImageNet Cifar10
Step α FID50k↓ IS↑ FID10k↓ IS↑

8

0.0 42.84 29.17 86.58 7.57
0.1 38.70 33.38 80.30 7.82
0.2 34.93 36.68 67.14 8.43
0.3 34.98 37.6 66.52 8.64

16

0.0 43.76 26.21 39.30 9.86
0.1 35.94 32.71 26.88 11.19
0.2 31.27 37.79 25.76 11.06
0.3 32.66 39.09 27.04 11.06

24

0.0 45.15 24.68 30.50 10.85
0.1 35.82 31.75 20.66 11.77
0.2 31.96 35.77 22.07 11.44
0.3 31.98 37.81 22.85 11.46

32

0.0 46.86 23.40 26.53 10.69
0.1 36.03 30.56 20.78 11.87
0.2 32.47 34.87 22.26 11.62
0.3 33.57 35.42 23.23 11.61

Table 4: ImageNet 256 / Cifar10: Ablation on the random token injection α and the number
prediction steps, without cfg. We show that enabling token fixing, i.e., α > 0, largely improves the
metrics, while 16 steps is a good trade-off between FID/IS and compute efficiency.

Influence of Scheduling Strategy To analyze the effect of different scheduling methods we mea-
sure performance across various configurations {square, arccos, linear, root, constant}, and show the
results in Table 5. Similarly to Chang et al. (2023) finding, we find out that the arccos scheduling
performs the best while concave scheduling performs worse.

Scheduler FID50k↓ IS↑
root 39.08 32.55
linear 31.29 38.02
cosine 31.45 36.11
square 31.27 37.79
arccos 29.68 40.28

Table 5: Ablation on scheduling methods α = 0.2, Steps = 16. Results suggest that convex
schedulers, like arccos or square, perform the best.

Token Prediction Order We compare different token selection strategies
{Halton, Spiral, Raster Scan} in Table 6. We find that Halton ordering significantly outper-
forms raster scan and spiral selection in both metrics. This demonstrates the advantage of
structured, but detached, token sampling in guiding the prediction process more effectively. We

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

also compare the performance of ‘starting from the same token’ location versus ‘rolling out the
sequence’ (Halton+Roll). Specifically, we apply a circular shift to the sequence during both training
and testing, enabling the model to begin from any token location in the image. Our results indicate
that there is no significant boost in performance between those two strategies.

Sequence FID50k↓ IS↑
Halton 31.62 37.87
Halton + Roll 31.27 37.79
Raster Scan 43.60 34.29
Spiral 36.34 26.71

Table 6: Ablation on the sequence token ordering on ImageNet 256. Results show that predicting
tokens uniformly (Halton sequence) in the image yields better generation.

(a) Ablation on the random token injection α (b) Ablation on model sizes

(c) Ablation on prediction steps (d) Ablation on scheduling methods

Figure 7: ImageNet 256: FID10k evolution across model training on ImageNet-256, without cfg
and 410k iterations. The moment where learning rate decay was applied is showcased by the dash
grey line.

Summary of Findings: Our ablation study highlights key insights into the impact of different
hyper-parameters on model performance Figure 7. We find that using a moderate level of random
token injection (α = 0.2) drastically improves the performance. Setting the number of prediction
steps to between 16 and 32 provides an optimal trade-off between efficiency and quality. Addition-
ally, increasing the number of tokens following an arccos-based scheduling strategy outperforms
alternative approaches for guiding token prediction. Finally, leveraging the Halton sequence for the
token ordering leads to significantly enhanced image quality and therefore it serves as the baseline
method we compare to in the main paper.

B SAMPLING PATTERN

An important aspect of our method is the order in which tokens are predicted. In the previous
section, we show that the Halton ordering outperforms alternative approaches. Figure 8 illustrates

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

these token sequences on a 16 × 16 grid. Notably, the Raster scan method immediately reveals its
limitations when applied to a 2D grid, as it enforces a rigid left-to-right, top-to-bottom structure.
In contrast, both the Random and Halton sequences achieve a more uniform distribution across the
grid, avoiding biases toward specific regions. Compared to random ordering, the Halton sequence is
more robust to gaps; for instance, in the random ordering example below, the 17th token is sampled
early, while its neighboring tokens are selected much later, leading to a less balanced and structured
prediction process.

(a) Raster Scan in 2D (b) Spiral Sequence in 2D

(c) Random Sequence in 2D (d) Halton Sequence in 2D

Figure 8: Visualization of different sequence orderings in 2D.

C HYPER-PARAMETERS

In Table 8, we provide the hyper-parameters used for training our class-to-image and class-to-video
models on CIFAR-10, ImageNet, UCF101 and NuScenes datasets. The training process differs
primarily in the number of steps and batch sizes, reflecting the scale of each dataset. A cosine
learning rate decay is applied only for the last 10% of the iterations and we use 2,500 warmup steps to
stabilize early training. We incorporate gradient clipping (norm = 1) to prevent exploding gradients
and classifier-free guidance (CFG) dropout of 0.1 for better sample diversity. The CIFAR-10 model
applies horizontal flip augmentation, while no data augmentation is used for ImageNet. Both models
are trained using bfloat16 precision for computational efficiency. These hyper-parameters were
chosen to ensure stable training while balancing efficiency and performance across different datasets.
Finally, we sweep our model size according to Table 7.

D INFERENCE SPEED ANALYSIS

Given the low number of sampling steps (≤ 32), our method is significantly faster than auto-
regressive models that rely on long sequences, which is inherited feature from Besnier et al. (2025).
For instance, even with optimizations such as KV-cache, models like LlamaGEN-XL require 576
steps and remain slower.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Model Parameters GFLOPs Heads Hidden Dim Width
BIGFix-Tiny 24M 4.0 6 384 6
BIGFix-Small 50M 9.0 8 512 8
BIGFix-Base 143M 25.0 12 768 12
BIGFix-Large 480M 83.0 16 1024 24
BIGFix-XLarge 693M 119.0 16 1152 28

Table 7: Transformer model configurations for 16× 16 input size.

Condition Cifar10 ImageNet UCF101 NuScenes
Training steps 400k 1.5M 410k 410k

Batch size 128 256 256 8
Learning rate 1× 10−4 1× 10−4 1× 10−4 2× 10−4

Weight decay 0.03 0.03 0.03 0.03
Optimizer AdamW AdamW AdamW AdamW

Momentum β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
Lr scheduler Cosine Cosine Cosine Cosine

Warmup steps 2500 2500 2500 2500
Gradient clip norm 1 1 1 1

CFG dropout 0.1 0.1 0.1 0.1
dropout 0.1 0.1 0.1 0.1

Data aug. Horizontal Flip No No No
Precision bf16 bf16 bf16 bf16

Table 8: Hyper-parameters used in the training of class-to-image and class-to-video models.

On an NVIDIA A100 GPU, our BIGFix-Large model generates a single image with classifier-free
guidance (CFG) in 0.25 seconds, making it 2.86× faster than LlamaGEN-XL optimized with vLLM.
To the best of our knowledge, masked image modeling (MIM) approaches do not exploit KV-cache
during sampling yet.

E VIDEO SYNTHESIS

To test our method beyond image synthesis, we explore class-to-video on UCF101 (Soomro et al.,
2012) dataset and img-to-video on NuScenes (Caesar et al., 2020). As demonstrated previously in
Table 1, introducing self-correction substantially improves the quality of generated video samples,
mirroring the results of our image synthesis experiments.

In Table 9, we compare BIGFix-Large against state-of-the-art video generation models on UCF101.
Despite using a smaller model (480M parameters) and fewer training steps (32), our approach
achieves a competitive FVD of 242.16. Performance is limited by our reliance on the open-weight
OmniTokenizer, which yields a higher rFVD (42) compared to closed-source tokenizers used by
MAGVIT (rFVD 25) and MAGVIT2 (rFVD 8.62). This highlights that while our framework is
efficient, generative quality remains constrained by tokenization quality and scale. These results
demonstrate the potential of BIGFix but indicate that further improvements would require larger
models or more advanced tokenizers.

Model #Para. Train (steps) Steps FVD↓
MAGVIT Yu et al. (2023)† 306M - 12 76
MAGVIT2 (Yu et al., 2024)† 307M - 24 58
LARP (Wang et al., 2025)† 632M - 1024 57
OmniTokenizer (Wang et al., 2024a) 650M 4M 1280 191.14
OmniTokenizer (Wang et al., 2024a) 227M 4M 1280 313.14
BIGFix-Large 480M 410k 32 242.16

Table 9: UCF101 results. † use closed source tokenizer.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In Table 10, we report results on the NuScenes dataset. Despite using a relatively small model
(BIGFix-Large, 480M parameters) and limited training time (15 hours), our method achieves a com-
petitive FVD of 290.5. Compared to much larger models, such as GenAD (2.7B parameters, FVD
184.0) or Vista (2.5B parameters, FVD 89.4), BIGFix demonstrates strong efficiency and highlights
the potential for scaling to larger models and longer training to achieve a lower FVD.

Model #Para. Train (h) Steps FVD
GenAD (Zheng et al., 2024)‡ 2.7B 2 kh – 184.0
Vista (Gao et al., 2024)‡ 2.5B 1.7 kh 100 89.4

DriveDreamer (Wang et al., 2024b)† 1.45B 15 h – 452.0
WoVoGen (Lu et al., 2024) - 15 h – 417.7
Drive-WM (Wang et al., 2024c)† 1.45B 15 h 50 122.7
BIGFix-Large 480M 15 h 32+8 290.5

Table 10: NuScenes results. † use pre-trained weight from SD (Rombach et al., 2022). ‡ Zero-shot
FID.

F ADDITIONAL QUALITATIVE RESULTS

In Figure 9, Figure 10, Figure 11, Figure 12, and Figure 13, we present qualitative results from
BIGFix-Large. Without any cherry-picking, but with classifier-free guidance (CFG), we demon-
strate that our model is capable of generating realistic and diverse images. Maintaining intricate
details on both the objects and the background, using only 24 steps.

G LIMITATIONS

Like other auto-regressive approaches, BIGFix requires a fixed token unmasking schedule defined at
training and maintained at inference, which limits flexibility during prediction. While not an inherent
limitation of the method, our experiments were restricted to models below 1 billion parameters to
keep computational costs manageable. Extending BIGFix to large-scale image and video generation
remains future work.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) Tree frog 031 (b) Chicken 008

Figure 9: Random samples from our BIGFix-Large model.
α = 0.2, cfg = 4.0 and 24 steps.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) LadyBug 301 (b) Macaw 88

Figure 10: Random samples from our BIGFix-Large model.
α = 0.2, cfg = 4.0 and 24 steps.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Axolotl 29 (b) Bald Eagle 22

Figure 11: Random samples from our BIGFix-Large model.
α = 0.2, cfg = 4.0 and 24 steps.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Rock crab 119 (b) Great white shark 002

Figure 12: Random samples from our BIGFix-Large model.
α = 0.2, cfg = 4.0 and 24 steps.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) Bobsleigh 450 (b) Norwegian Elkhound 174

Figure 13: Random samples from our BIGFix-Large model.
α = 0.2, cfg = 4.0 and 24 steps.

22


	Introduction
	Related work
	Method
	Preliminaries: Multi-Token Prediction
	Toward Self-Correcting Token Generation

	Experiments
	Implementation details
	Token Fixing
	Image Synthesis comparisons

	Conclusion
	Design Choices
	Sampling pattern
	Hyper-parameters
	Inference Speed Analysis
	Video Synthesis
	Additional qualitative results
	Limitations

