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ABSTRACT

Legged locomotion is inherently anisotropic and risk-sensitive: the energy cost and
risk of failure vary significantly with the direction and speed of motion. Standard
reinforcement learning (RL) methods neglect this asymmetry, typically using
isotropic cost/reward functions and optimizing only for expected returns. This
leaves agents vulnerable to rare but catastrophic outcomes. We propose Finslerian
Reinforcement Learning (FiRL), a novel RL framework that integrates a Finsler
metric into the cost function for directional energy-awareness, and optimizes
a Conditional Value-at-Risk (CVaR,) objective for tail-risk robustness. FiRL
formulates the locomotion cost as F'(x,v), a Finsler metric that varies with state
2 and motion v, capturing uphill vs. downhill effort, lateral friction, and other
direction-dependent costs. We derive a risk-sensitive Bellman equation based
on CVaR and prove that the corresponding CVaR—Finsler Bellman operator is a
~-contraction, yielding a unique fixed-point value function that induces a quasi-
metric structure (satisfying a triangle inequality despite asymmetry). We develop
a FiRL actor—critic algorithm to learn policies under this anisotropic, risk-averse
objective. In simulated MuJoCo locomotion benchmarks, FiRL achieves safer and
more energy-efficient behaviors than SOTA baselines (e.g., risk-neutral PPO). For
example, on a 12° slope Hopper task FiRL reduces worst-case (CVaRy 1) impact
forces by over 35% and total energy cost by 15%, while attaining a higher success
rate.

1 INTRODUCTION

Legged robots offer unique advantages in navigating unstructured terrains, but they also face signifi-
cant challenges in energy management and safety Miki et al.|(2022). Recent advances in reinforcement
learning (RL) have produced agile locomotion controllers for complex robots Hwangbo et al.|(2019);
Rudin et al.[(2022). However, standard RL formulations often assume isotropic (direction-agnostic)
cost or reward functions and optimize solely for expected return Rudin et al.|(2022); Hwangbo et al.
(2019). This overlooks two crucial aspects of real-world locomotion: (1) Directional anisotropy
in cost — moving in different directions can incur vastly different energy expenditures and wear [Fu
et al.| (2022)(e.g., climbing uphill requires far more work than going downhill, sharp turns can waste
momentum, descending steps quickly can be dangerous); and (2) Tail-risk sensitivity — rare but
high-cost events such as slipping, falling, or hardware strain must be minimized for safe deployment.
By ignoring anisotropic effort and focusing only on average performance, conventional RL policies
may appear efficient on flat terrain but perform poorly on slopes or under disturbances, suffering
catastrophic failures in the worst cases [Shi et al.[(2024)); Du et al.| (2022).

Recent work on geometry-aware RL has explored embedding inductive biases about distance and
dynamics into value functions. For example, Wang et al.| (2023) enforce a quasi-metric structure
on value estimates to satisfy triangle inequality and asymmetry, improving generalization in goal-
reaching tasks. Others have applied Riemannian geometry to RL, e.g. shaping policy updates or
value functions using symmetric metrics |Abbasi-Yadkori & Mahdavi| (2022); Kan et al| (2021);
Ravindran et al.|(2023)). These approaches demonstrate the benefit of geometric priors, but they either
assume simplified settings (constant speeds, discrete goals in quasi-metric RL) or impose symmetric
structures that cannot capture direction-specific costs. Meanwhile, in risk-sensitive and safe RL,
methods like CVaR optimization |(Chow et al.| (2015); |Tamar et al.|(2015) and distributional RL bias
the training towards safer outcomes by focusing on the worst-case returns. Notably, |Schneider et al.
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(2024)) apply distributional RL to quadrupedal locomotion, showing that risk-aware training can
yield cautious gait policies on a real robot. While earlier methods have explored reward shaping for
anisotropy and CVaR-based risk objectives separately, the integration of direction-dependent costs
with explicit tail-risk optimization has not been addressed.

In this paper, we propose Finslerian Reinforcement Learning (FiRL), a novel framework that
integrates differential geometry with risk-sensitive RL for legged locomotion. FiRL introduces a
Finsler metric into the cost function, allowing the agent to account for direction-dependent effort: for
instance, uphill moves incur higher instantaneous cost than downhill moves, and lateral motions incur
frictional penalties (Fig. [I). Simultaneously, FiRL optimizes a Conditional Value-at-Risk (CVaR)
objective, which biases learning towards minimizing the worst-case outcomes (the tail of the cost
distribution) rather than just the mean. By integrating these components, FiRL produces policies that
proactively avoid energetically costly maneuvers and reduce the probability of catastrophic failures.
Our main contributions:

—— FiRL path

- = wind
high uphill cost

—> lateral wind
uphill high-cost region

Figure 1: : FiRL vs. PPO on a slope with lateral wind. The Finsler cost induces higher uphill cost
(red wedge), a lateral wind biases motion, and FiRL (solid) selects a safer, lower-cost route than PPO
(dashed). The table contrasts risk-neutral PPO with FiRL’s risk-aware objectives (high- and low-level
updates)

Risk-neutral PPO FiRL (risk-aware)
" max CVaRa[Vr(w,g) = Vr(st,9)]

mppo - max A(sg,a), A(sg,a) =
V(st+1,9) — V(st,9)

* Finsler Cost with Tail-Risk Objective: We propose a new per-step cost formulation using
a Finsler metric F'(z, v) that depends on the agent’s state z and motion direction v. This
formulation explicitly embeds anisotropic energetics into the cost (rather than treating it as a
heuristic), and we optimize a CVaR (Conditional Value-at-Risk) criterion of the cumulative
cost. By integrating anisotropic geometry directly into the cost model along with a tail-risk
objective, our approach can capture direction-dependent energy penalties in a principled
way.

7 max Vi (sir1, w) — Vi(sg, w)

* Risk-Sensitive Bellman Operator & Induced Geometry: We derive a CVaR-Finsler
Bellman operator for our risk-sensitive setting and prove that it is a y-contraction under
mild boundedness conditions. This theoretical result ensures the existence of a unique
fixed point (optimal value function) and standard convergence guarantees for dynamic
programming. Moreover, we show that the optimal value function under this Finsler—CVaR
framework induces a quasi-metric on the state space (satisfying the triangle inequality but
not symmetry), providing a novel geometric interpretation of directional costs in the value
landscape.

* FiRL-AC Algorithm (Actor—Critic): We develop FIRL-AC, a new actor—critic learning
algorithm that incorporates the anisotropic Finsler cost and CVaR objective into practical
reinforcement learning. In FiRL-AC, the per-step cost uses F'(x, v) to penalize movements
directionally, and the critic is trained with CVaR-based targets to focus on tail outcomes. To
rigorously evaluate the impact of anisotropic cost vs. standard cost and CVaR vs. expected
cost, we perform a controlled 2x2 ablation study with matched hyperparameters.
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* Empirical Results on Anisotropic Terrains: Through extensive experiments on challenging
locomotion tasks (e.g., sloped ground and lateral wind), we show that FiRL achieves
a superior trade-off between energy efficiency and safety (risk of high-impact events)
compared to baseline approaches. FiRL consistently shifts the energy-risk Pareto frontier:
it reduces worst-case costs (lower CVaR0.1 of energy usage and impact forces) and limits
peak impact shocks, while maintaining or decreasing average energy consumption. Notably,
on a steep 12° slope Hopper task, FiRL lowers the CVaR0.1 of ground-impact force by over
35% and the total energy expended by about 15% relative to the risk-neutral baseline, all
while increasing the task success rate.

2 RELATED WORK

Geometry in Reinforcement Learning: Incorporating geometric structure into RL has shown
promise in improving generalization and sample efficiency. [Wang et al.| (2023) introduced quasi-
metric RL (QRL), enforcing value functions to satisfy the triangle inequality and asymmetry properties
of a distance function. By shaping the learned value as a distance-to-goal, QRL improved goal-
directed navigation. However, QRL assumes fixed-speed trajectories and discrete goal states, limiting
its applicability to continuous locomotion tasks with varying speeds. Other works have explored
Riemannian metrics in RL: for example, |Abbasi- Yadkori & Mahdavi|(2022) and |Kan et al.| (2021)
modify policy optimization by computing gradients with respect to a Riemannian manifold (such as
one defined by state covariance), and Ravindran et al.|(2023)) shape value functions using manifold
distances to improve generalization. These methods impose symmetric metrics (distance is the same
in all directions) and do not address directional asymmetry in costs. In contrast, Finsler geometry
generalizes Riemannian geometry by allowing the metric to be asymmetric and state-dependent; our
work is, to our knowledge, the first to leverage Finsler metrics in RL to capture anisotropic effort.

Locomotion and energy shaping. Energy—efficient and safe locomotion have long been pursued in
robotics via engineered objective terms (e.g., squared torques, contact and velocity penalties) and
safety layers grounded in control theory. Energy/power shaping is classical in passivity-based control
of mechanical systems, while safety-critical control frequently employs control barrier functions
to filter actions through real-time QPs (Ames et al.,|2016;2019). In modern benchmarks, MuJoCo
locomotion tasks pair forward-progress rewards with isotropic ¢ control and contact costs, without
explicit direction-dependent running costs (Tassa et al. [2018)); consequently, standard RL setups
optimize expected return under largely direction-agnostic shaping, even as learned policies reach
strong hardware performance (Hwangbo et al.,[2019; Rudin et al.,2022). Recent work has begun to
target energy explicitly in legged locomotion with task-specific regularizers or reward terms (Liang
et al., [2025), but these typically remain symmetric in motion direction. Our approach provides a
principled way to encode domain knowledge such as “uphill motion is costly” through a Finsler
metric F'(x,v)—a state- and direction-dependent cost rooted in differential geometry (Bao et al.,
2000; Ratliff et al., 202 I)—rather than ad-hoc reward tweaks, yielding anisotropic and asymmetric
effort models aligned with locomotion physics. We discuss additional related work in Appendix [B]

3 METHODOLOGY

3.1 PROBLEM FORMULATION AND PRELIMINARIES

We consider a standard Markov Decision Process (MDP) formalism for the locomotion task: states
x € X, actions u € U, transition dynamics 2’ = f(x, u) (possibly stochastic), and a discount factor
v € [0,1). However, instead of a conventional scalar reward, we define a state-action cost via a
Finsler metric F'(z, v), where v represents the motion vector (e.g., the instantaneous velocity) induced
by taking action u in state x. Intuitively, F'(z,v) measures the effort or “distance” incurred by
moving with velocity v at state x; it generalizes the notion of energy expenditure or risk cost for a
small step. We first introduce the components of our Finslerian cost function for locomotion. In our
design (Fig. , F(z,v) comprises three terms capturing different aspects of motion cost:

(1) Kinetic energy term Fepergy: This term accounts for the basic dynamic effort of movement. We
define it as

Fenergy(z,v) =/ vT M(z)v, (D
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Anisotropy: uphill > downhill,
lateral > forward, encoded by Finsler

: F(z,v) = \/vTM(z)v+B(z) [v F(z, f(x,u
cost F'(z,v) (z,v) (=) (@) [o))+ (TV)(z) = min (@, f(z,u)) )
energy uphill drift u + v CVaRao[V (z)]
wind
+ 3\ HLL',‘ V, is unique (y-contraction)

lateral fric. >
Yy

Decomposition A

o energy: M(z) = 0 \

o uphill drift: B(z)[v)]4 ) \ dp(y. 2)

o lateral: Allv. || : 7 dr () @2
\

Components: v = v + vy M z 77,,,77§z

: dr(z,z)
triangle inequality: dp (z, ) < dp (z,y) + dp(y, 2)

Figure 2: FiRL Overview. Left: Anisotropic terrain (slope + wind) induces direction-dependent
effort: uphill and lateral motions are costly, downhill cheaper. Middle: The local Finsler cost F'(z, v)
decomposes into energy, uphill drift, and lateral friction terms. Right: The CVaR Bellman operator
combines F' with the tail-risk of future value, yielding a unique fixed point VJ whose induced path
cost dp satisfies a triangle inequality (quasi-metric).

where M (z) is a positive-definite weight (or inertia) matrix that can vary with state. In our design,
M (z) assigns larger weights to motion along certain axes that are energetically expensive (for
example, vertical movements against gravity, or rotations of the body orientation). Fepergy 18 Symmetric
in v (since it depends on v quadratically) and ensures that faster motions or motions in “heavier”
directions yield higher cost.

(2) Uphill drift term Fg,isr: To impose an asymmetry between upward (against gravity) and down-
ward movements, we include a drift term:

Fasie (7, v) = B(x) max(0, ”H)’ @)

where v|| denotes the component of v in the direction of gravity (i.e., vertical velocity) and 5(z) > 0
is a state-dependent scalar weight that increases with the incline of the terrain at . The max(0, -)
ensures that only motion against gravity (upward) incurs this additional cost; if v < 0 (downward
movement), Fy.p contributes zero. Thus, 3(x) effectively scales the extra effort required to climb: on
steeper slopes, 3(x) is higher, meaning uphill steps are much more costly, whereas moving downward
or on flat ground yields no drift penalty. This term makes F asymmetric, since F(z,v) # F(z, —v)
in general (climbing up vs. down yields different costs).

(3) Lateral friction term Fjcion: Legged robots also experience higher risks and energy loss
during lateral or non-straight movements (e.g., side-stepping, turning sharply can cause skidding or
inefficient gaits). We capture this via:

Ffriction(xa U) =A ||UJ-H ) )

where v is the component of v orthogonal to the robot’s primary forward heading direction, and
A > 01is a constant coefficient. This term is linear in the lateral speed magnitude, penalizing any
sideways motion. Fiicion breaks isotropy by distinguishing forward vs. lateral movement directions,
although it is symmetric with respect to left vs. right (v enters through its norm). Essentially, Firiction
adds a cost for curving or side-slipping, discouraging high-curvature trajectories that could lead to
loss of traction.

Total Finsler Metric: We combine the above components into the total cost metric as a weighted
sum:
F((E, U) = We Fenergy (ZL’, U) + wq Fdrift(x» U) + wf Ffriction(l'v U) ) (4)

with positive weights w,, wq, wy > 0 chosen to balance the contributions of each termﬂ

Definition 3.1 (Finsler Metric). For each fixed state x, the function v — F'(x,v) defined by equation
is a Finsler metric on the tangent space T, X. It satisfies: (i) F(x,v) > 0 for all v, and F(z,v) =0
if and only if v = 0; (ii) positive homogeneity: F(x, \v) = XA F(x,v) for all A > 0; (iii) smoothness
in v (except potentially at v = 0 or points of nondifferentiability due to the max, which can be
handled by subgradients). Unlike Riemannian metrics, a Finsler metric need not be symmetric: in

'We selected these weights via a hyper-parameter search to achieve a reasonable balance; see Appendix@
for the chosen values. For simplicity, one can set we = wgq = wy = 1 if units are commensurate.
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general F(x,v) # F(x, —v), which allows encoding one-way directional differences (e.g., uphill vs.
downhill).

Our chosen F'(z,v) indeed satisfies these properties: F'(x,v) > 0 for v # 0, it is positively
homogeneous (each component is homogeneous of degree 1 in v), and it is smooth except where
v) = 0 (the kink’ at the switch between uphill and downhill; 5(z) can be made differentiable and
we handle the subgradient at v = 0 in practice). Importantly, I is asymmetric due to the drift term,
but this asymmetry encodes meaningful physical bias (gravity’s effect). By construction, integrating
F" along a trajectory yields a path cost:

dp(r) = / F(r(t),#(t) ) dt,

for any path 7 : [0,1] — X. In Appendix@ we show that d defines a valid quasi-metric distance on
X' it obeys the triangle inequality (so costs are path-consistent) while allowing dp(z,y) # dr(y, ).
This quasi-metric perspective will be revisited in our theoretical results.

CVaR risk objective. In the FiRL framework, the agent’s goal is to minimize not just the expected
cumulative cost, but the Conditional Value-at-Risk (CVaR) of the cumulative cost distribution. For-
mally, let 7 denote a trajectory and J(7) = ZtT:_Ol ' F(x,v¢) be the total discounted cost (with
horizon T" which could be infinite for continuing tasks). For a given risk level o € (0, 1], the CVaR,,
of the return is defined as

CVaR,(J) = E[J(7) | J(7) is in the worst o~ '-quantile] ,

i.e., the average cost of the worst « fraction of episodes. Intuitively, smaller a focuses more on
the absolute worst cases. Minimizing CVaR,, encourages the policy to avoid catastrophic tails at
the possible expense of some optimality in the average case (when o = 1, CVaR becomes the
expectation, recovering the risk-neutral objective). We denote by V,,(z) the risk-sensitive value
function: V,,(x) = min, CVaR ] (J | 2o = z), the minimal CVaR of total cost starting from state
under an optimal policy 7. The corresponding optimal policy aims to minimize the tail risk of the
return.

4 FINSLERIAN CVAR BELLMAN EQUATION AND FIRL-AC ALGORITHM

4.1 CVAR BELLMAN OPERATOR AND CONTRACTION

To solve for the optimal risk-sensitive value, we extend the Bellman equation to the CVaR setting
with our anisotropic cost. Define the risk-aware Bellman operator T acting on any candidate value
function V : X — R as:

(TV)(@) = min{ Fa, f@.u) + 7 pa[ V()] | )
where z’ ~ P(-|x,u) is the next state, and p, [V (2)] = CVaR,(V(2')) denotes the CVaR (with
respect to the randomness in z’) of the next-state value. Intuitively, TV (x) computes the imme-
diate cost F'(z, f(x,u)) for a chosen action u, plus the discounted a-tail of future costs if we act
optimally thereafter. The optimal value function V*(x) should satisfy the fixed-point equation
V2 (x) = (TV}F)(x) for all . However, directly computing this fixed point is challenging due to the
minimization and the CVaR nested inside. Instead, we will show that 7" is a contraction mapping,
which means value iteration or other iterative algorithms can converge to V.

We leverage properties of CVaR (a coherent risk measure) to establish contraction. CVaR has two key
properties: (i) Monotonicity —if Vi(x') > V(') for all outcomes 2/, then p, [V1(2')] > po[Va(2))];
(ii) Positive homogeneity — po[c X] = ¢ po[X] for ¢ > 0. Given these, one can show that T is a
~-contraction in the £, norm, similar to the standard expected Bellman operator.

Theorem 4.1 (CVaR—Finsler Bellman Contraction). Assume the transition dynamics yield bounded
costs and that F(x,v) is bounded and Lipschitz in © (ensuring TV maps bounded continuous
functions to bounded continuous functions). Then T as defined in equation[S)is a contraction mapping
with factor v < 1 in the sup norm. That is, for any two value functions V1, Va,

ITVL = TValloo < YIIV2 = Valloo -
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Consequently, T has a unique fixed point V}, and iterative application V&Y TV ) converges
to VI from any initial V(©). Moreover, V¥ is the optimal risk-sensitive value function for the MDP
(the CVaR-optimal value).

Proof. The proof (detailed in Appendix [E}) adapts standard contraction arguments to the CVaR case.
For any two value functions V7, V5 and any state x, using the definition equation [5| we get:

(TVi)(z) = (TVa)(2) = min{F(z, f(z,u)) + 7 pa[Vi(z')]} — min{F(z, f(,u)) + 7 pa[Va(2")]}
< max 7y (pa[Vi(2)] = pa[Va(a')]) ,

since the immediate cost terms cancel for a given action. By CVaR’s monotonicity, p, [V1 (z")] —
PalVa(@)] < palVie') — Va(a')] < Vi — Velloe. Thus (TV)(z) — (TVa)(x) < Vi —
Va|loo- Reversing the roles of Vi, V5 yields a symmetric bound in the other direction. Therefore
(TV1)(z) — (TVa)(z)| < v||[Vi — Va|e for all z, proving the contraction. Uniqueness of the fixed
point and convergence follow by Banach’s fixed-point theorem . (Note: This argument requires v < 1
and boundedness to ensure p, is well-behaved; these conditions hold in typical discounted-cost
settings.) [

Quasi-Metric Value Property. The fixed-point value function V(x) under our Finslerian cost
has an interesting structural property: it is consistent with a quasi-metric. In informal terms, if we
interpret V() as the “distance-to-go” (in terms of cumulative cost) from z to some goal or terminal
condition (e.g., episode end with zero cost), then V" obeys a triangle inequality. More formally, we
can show (Appendix [E)) that for any three states z, y, 2,

Valz = 2) < Vi —=y) + Vily—2),

where V(2 — y) denotes the optimal cost-to-go from x to reach y (this can be rigorously defined
in an episodic setting or by treating y as a waypoint). This property stems from the fact that the
instantaneous cost between states, given by the Finsler metric path integral, satisfies the triangle
inequality, and the CVaR optimization preserves a form of path consistency for worst-case costs. In
addition, FiRL’s optimal value can be seen as inducing a quasi-metric on the state space: it behaves
like a distance function (ensuring that detours cannot reduce cost) even though the cost is asymmetric.
This is in contrast to standard expected value functions, which need not satisfy any such inequality
without special regularization.

4.2 FIRL-AC: FINSLER ACTOR—CRITIC ALGORITHM

Given the theoretical discussion above, we now describe our learning algorithm, FiRL-AC, which is
an actor—critic method tailored to the CVaR objective with Finslerian costs. Like standard actor—critic,
we maintain two function approximators: a critic V,,(z; ¢) parameterized by ¢ to estimate the risk-
sensitive value, and an actor (policy) 7(u|x; #) parameterized by 6 to select actions. The training
loop alternates between policy evaluation (updating ¢ to better estimate the CVaR value under the
current policy) and policy improvement (updating 6 to reduce the CVaR of returns).

CVaR-Critic update. Evaluating a CVaR value is more involved than a standard value. We employ
a sampling-based approach inspired by distributional RL: for a batch of states, we estimate the
CVaR of their returns by simulating multiple trajectories. Specifically, for each state x; in a batch
(collected from the current policy’s experience), we sample K trajectories (or rollouts) starting

from x;, obtaining K realizations of the return Ji(l), ceey J,-(K). We then approximate CVaR,, (J|z;)

by taking the average of the worst [«K'| returns among those K. Denote this empirical CVaR as
PalJ|x;]. Using one-step transition samples, we then construct a Bellman target for V, (x;):

yi = F(z, f(zi,w)) + Vﬁa[va(zi—&-l;gbi)} ) (©)

where u; is the action taken in x; (by the current policy), z;4; is the resulting next state, and
Va(2i41; ¢7) is the critic’s estimate of the next-state value (we may use a target network or previous
iteration parameters ¢~ to stabilize training, as in DQN). The term p, [V4 (2;+1)] is computed by
evaluating V,, on the K next states sampled for z; (or by sampling K continuations from x;4; if
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needed). Essentially, we are using a single-step CVaR Bellman update: cost + discounted worst-case
tail of the value-to-go. The critic parameters ¢ are then updated by minimizing a regression loss:

1 & 2
Laiie(9) = m;(va(xi;cﬁ)—yi) : ™

for the batch of N samples. This is analogous to Temporal Difference learning but targeting CVaR
outcomes. The contraction property of 1" (Theorem 1) guarantees that if our function class is
expressive enough and the optimization succeeds, V, (+; ¢) will converge toward the true V.

Policy update (actor). Next, we update the policy to minimize the CVaR of returns. We derive a
policy gradient that specifically uses the CVaR-based advantage. Let Q,(x, u) denote the CVaR-
augmented state-action value. We can estimate

Qa(w,u) = F(x, f(z,u)) —i—'ypa[Va(x/)] )

and define the advantage A, (z,u) = Q4 (x,u) — V,(x). In practice, we sample actions u ~ 7(+|z)
and compute an empirical advantage A, (x, u) using the critic (e.g., by sampling trajectories or using
the Bellman target difference). We then perform a gradient ascent step on the policy parameters to
maximize the negative CVaR cost (i.e., minimize CVaR):

VoJa(me) = EpnD, unm(-|2) [Ve log 7o (u|x) ga(I,U)} , (8)

where the expectation is over a batch of states x (collected from a replay buffer or recent trajectories)
and actions sampled from the current policy. This gradient estimator increases the probability of
actions that have positive advantage (i.e., lower tail risk than expected), and decreases the probability
of actions leading to high tail risk. In essence, it biases the policy towards behaviors that reduce
worst-case outcomes. A detailed algorithm is provided in the Appendix

5 EXPERIMENTS

We evaluate FiRL on continuous control locomotion tasks modified to induce anisotropic costs and
assess tail-risk performance. Our experiments aim to answer: (1) Does FiRL achieve better worst-case
(CVaR) outcomes than risk-neutral or baseline risk-aware algorithms? (2) How does the anisotropic
Finsler cost influence behavior and energy efficiency compared to isotropic cost shaping? (3) Are the
theoretical properties (e.g., improved trade-off, quasi-metric value) reflected in practice?

5.1 ENVIRONMENTS AND SETUP

We built on OpenAl Gym MuJoCo locomotion environments (Hopper, Walker2d, HalfCheetah) and
introduced modifications:

Sloped Terrain Walker2d: The Walker2d agent (a planar biped) is placed on a 5° inclined floor
plane. The incline creates an asymmetry between moving forward (uphill) vs. backward (downhill).
The episode terminates after the agent travels a fixed horizontal distance or if it falls. A successful
episode is one where the agent does not fall before reaching the goal distance. This environment tests
moderate anisotropic effort.

Sloped Terrain Hopper: A one-legged hopper on a steeper incline of 12°. This is a challenging
scenario where the agent must hop uphill against gravity. The higher slope significantly increases the
risk of falling backward due to insufficient thrust. The task horizon is again set by a target distance
(or time limit). We label this environment SlopedHopper-12°.

HalfCheetah with incline: HalfCheetah is a faster quadrupedal-like agent. We use a gentle 5° slope
to test if FiRL also helps for a more dynamic runner. The agent is required to run a certain distance
without falling or flipping over.

Hopper with Lateral Wind: To test anisotropy not from gravity but from external forces, we
introduced a constant lateral “wind” force in the Hopper environment. The force pushes the hopper
sideways (perpendicular to its forward motion) with a magnitude of 50 N. The hopper must learn to
move forward while compensating for this sideways push. Moving directly against the wind (to stay
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Table 1: Performance comparison (aggregate across tasks, mean & 95% CI over 5 seeds). FiRL
achieves the highest safety (success rate), lowest energy usage, and lowest tail cost. All metrics are
normalized relative to PPO (risk-neutral) = 1.00 for energy and CVaR.

Method Success % 1 Energy | CVaRy; |

PPO (risk-neutral) 88.5 £ 2.8 1.00 £ 0.00 1.50 £ 0.05
CVaR-PPO (a = 0.1) 92.3+ 1.5 1.15 £+ 0.04 1.20 £+ 0.06
Distributional (QR-AC) 90.1+3.1 1.05 £ 0.03 1.35+0.07
Riemannian PPO 91.0 £ 2.0 0.98 +0.02 1.40 £+ 0.08
Quasi-metric RL 89.7+2.4 1.10 £ 0.05 1.32+£0.04
PPO + Finsler reward (no CVaR) 94.6 1.1 0.93 £0.02 1.25 4+ 0.03
FiRL (ours, CVaR+Finsler) 97.4+0.8 0.87+0.01 0.80+0.02

on course) is energetically costly, whereas moving with the wind (letting it push you) can save energy
but risks falling.

Baseline methods: We compare FiRL to several baselines: - PPO (risk-neutral) Schulman et al.
(2017): Standard Proximal Policy Optimization maximizing expected return (with minor shaping
for fairness as noted). - CVaR-PPO (« = 0.1): A variant of PPO that optimizes CVaR of return.
We implement this by re-weighting trajectory losses: in each batch, we identify the worst 10%
trajectories (by total reward) and upweight their advantage estimates (similar to|Tamar et al.[(2015)). -
QR-Distributional AC: An actor—critic with a distributional critic using quantile regression (adapted
from QR-DQN). The critic outputs 50 quantile values, and the actor is trained to minimize a risk-
averse objective derived from those (we effectively approximate CVaR from the quantiles). This
represents a baseline that learns the return distribution. - Riemannian PPO: We use the method
of [Wang et al.| (2020) as a representative geometry-based baseline. It shapes the policy update by
computing gradients on a Riemannian manifold (we applied it to value and policy updates, using
covariance of states). It does not handle risk explicitly but provides a geometric inductive bias. -
Quasi-metric RL (QRL): We implement a continuous-state analog of [Wang et al.[(2023)’s QRL
by adding a regularization term to the value loss that penalizes violations of triangle inequality:
AnE[max(0, V(z) — V(2) — V(x — 2))] for random triplets (z, z) and an intermediate y on an
optimal path. This encourages the learned V' to be quasi-metric. Additionally, we include an “PPO +
Finsler reward”: this uses the same F'(z,v) shaping in the reward as FiRL, but trains with a standard
expected-return objective (i.e., risk-neutral). This allows us to distinguish the effect of anisotropic
cost shaping from the effect of CVaR optimization.

5.2 RESULTS AND ANALYSIS

Table[T]summarizes aggregate performance across SlopedHopper-12°, Walker2d-5°, and HalfCheetah-
5° (means = 95% CI over 5 seeds; metrics normalized to PPO). FiRL attains the highest success
rate and the lowest energy and tail cost. Risk sensitivity alone (CVaR—PPO) lowers CVaR but
raises energy; geometry alone (PPO+Finsler) improves both metrics but remains above FiRL. The
two-by-two comparison disentangles effects: anisotropic Finsler costs shift policies toward efficient
directions, while the CVaR objective cuts catastrophic tails; together they yield the largest gains.

Figure [3] (left) shows the energy—risk plane. FiRL traces a Pareto curve that dominates strong
baselines: for any given energy, FiRL achieves lower CVaR, and for any given CVaR, FiRL uses
less energy. Figure [3| (right) sweeps the risk level a: moderate risk aversion (a = 0.1) gives the
best balance; very small «v drives CVaR down further with a mild energy increase. Figure 4] shows
robustness to slope: FiRL maintains ~ 98% success at 12° with substantially lower tail cost than
alternatives. A detailed analysis of the evaluation is provided in Appendix [D]

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

FiRL formulates locomotion control with a Finsler per-step cost F'(x,v) and a CVaR objective,
yielding a risk-sensitive Bellman operator that is a vy-contraction and an optimal value that behaves as
a quasi-metric, and an actor—critic instantiation that improves worst-case cost, energy, and success
on sloped and perturbed tasks while controlling for fairness via a two-by-two study of anisotropy
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Figure 3: Left: Energy vs. risk trade-off for different methods (aggregate performance). FiRL (star)
lies at the lower-left, indicating a strictly better Pareto trade-off than all baselines. Risk-only methods
(CVaR-PPO, distributional) reduced CVaR but increased energy (moving down-right relative to PPO),
while geometric methods (Riemannian, QRL) slightly improved energy but not tail risk (moving left
but not down). FiRL achieved improvements in both dimensions. Right: Effect of CVaR risk level «
on FiRL performance (on SlopedHopper task). As « decreases (more risk-averse), the worst-case
cost (blue) decreases significantly (improved safety), but beyond a point this comes at the expense of
higher energy consumption (red curve goes up for very low «) and a slight decrease in success (if
overly cautious). o = 0.1 provides a good balance.
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Figure 4: Slope Robustness. Performance on Hopper environment as terrain slope increases (0° =
flat). Left: Success rate declines for all methods on steeper slopes, but FiRL maintains ~98% success
even at 12° incline, far above risk-neutral PPO (which falls in 18% of runs at 12°). PPO+Finsler
shaping and CVaR-PPO are intermediate. Right: Worst-case cost (CVaRg 1) grows steeply for PPO
as slope increases, indicating catastrophic failures become much more costly. FiRL’s CVaR cost
actually decreases slightly on higher slopes, meaning it successfully avoids the worst-case pitfalls
even in harder conditions.

and risk. However, the approach has limitations: it assumes access to directional state features (e.g.,
slope, heading) and relies on cost weights that may be misspecified; CVaR estimation introduces
variance and requires design choices for smoothing and clipping. Future work includes learning
or adapting F'(z, v) from data with structural priors for smoothness and asymmetry, scheduling or
state-conditioning the risk level to trade speed, energy, and safety online, and transferring to hardware
with uncertainty-aware perception and safety filters.
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Reproducibility Statement We provide all components necessary to reproduce our results end-to-
end. The problem setup, Finsler cost templates, and the CVaR—Finsler Bellman operator are specified
in Sec. [3} the full learning procedure (including the CVaR target estimators—quantile head and
Rockafellar—Uryasev—Tlosses, clipping, and KL/Bregman regularization) appears in Alg.[T] Com-
plete assumptions and proofs are provided in App.|[El Implementation details (network architectures,
normalization, optimizer choices, schedules), per-task hyperparameters and seed lists, and matched
training budgets for all baselines are tabulated in App. [K} compute and software versions (Gymna-
sium/MuJoCo, PyTorch/CUDA) and determinism settings are summarized in App.|L} Environment
specifications and generators for all modified tasks (slope angles, disturbance models, actuator limits,
terminations) are in App. [J} the evaluation harness (deterministic evaluation mode, normalization
protocol, and metrics for energy, CVaR, torque percentiles, and success) is described in Sec. [5|and
App. D] An anonymized code archive with configuration files and run scripts is included in the
supplementary materials to enable regeneration of results.
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Appendix
for

FiRL : Finslerian Reinforcement Learning for Risk-Aware Anisotropic Locomotion

A BACKGROUND: FINSLER GEOMETRY FOR RL

A Finsler metric is a generalization of the Riemannian metric that can vary with direction and state.
In a state-space M (e.g., the robot’s configuration/position), a Finsler metric is given by a function
F(z,y) that assigns a positive length (cost) to an infinitesimal displacement y at state = . Intuitively,
F(z,y) represents the instantaneous “cost rate” of moving in direction y from state «. This cost need
not be isotropic or symmetric; for example, moving uphill at a given speed could have a higher cost
than moving downbhill at the same speed. The only requirements are positivity, homogeneity (cost
scales linearly with small time/distance), and a form of triangle inequality when integrated over paths
(discussed later). Integrating F' along a path yields the path’s total cost. The Finsler distance between
two states d(z, z’) is defined as the infimum of path costs connecting z to a’. If F' is asymmetric (i.e.
F(z,y) may differ from F(z', —y’) when moving in reverse), then d(x, 2’) # d(2’, ) in general,
such d is called a quasi-metric. This asymmetry is crucial for modeling scenarios where moving one
direction is inherently easier than the reverse.

Mlustrative Example (Fig. [5)) — Uphill vs Downhill: Consider a robot on an inclined plane. Define
F(z, %) such that moving upward (against gravity) incurs a larger cost per meter than moving
downward. One simple model is adding a “gravity bias” to the cost: e.g. F'(v) = |v| + 8, (v - n),
where n is the upward unit vector and 3 > 0. Here |v] is the base cost (say proportional to distance
or energy without slope) and the second term increases cost if v has an upward component. This
F' is an asymmetric norm on velocities: moving up gets cost > |v|, moving down gets cost < |v|.
It yields a Finsler metric capturing gravity’s effect. Integrating F' along different paths, an uphill
path accumulates more cost than a level or downhill path of the same length. Consequently, the
shortest-cost path between two points might avoid steep climbs, favoring gentler slopes. Anisotropic
cost field induced by a Finsler metric (schematic). At each step, the green arrow (downhill direction)
is longer than the red arrow (uphill). This indicates that for the same energy cost, the robot can travel
farther downhill than uphill. In FiRL, such a metric is used so that moving against gravity or difficult
terrain “costs” more, encouraging the policy to seek easier directions. The disparity in arrow lengths
grows in steeper regions (top vs bottom), reflecting increased cost asymmetry on steep slopes.

gy
; cost
pownhill (low €0 ) : ‘g\cos\\
/ A\l e

Figure 5: Anisotropic locomotion cost illustration. In FiRL, uphill motions incur higher instanta-
neous cost than downhill motions due to a gravity-aligned drift term. Lateral disturbances (like wind)
or sideways steps are also penalized via friction terms. Such direction-dependent costs, together
with a risk-sensitive objective, encourage policies that avoid high-effort, high-risk maneuvers (e.g.,
sprinting uphill into the wind) in favor of safer, efficient motions.

In summary, Finsler geometry endows the agent with a state-dependent, direction-dependent cost
function. FiRL leverages this by defining the immediate cost of a state-action transition using a
Finslerian metric. For instance, if the robot in state s takes action a (resulting in a motion As), the
cost ¢(s,a) = F(s;As) is higher for energetically unfavorable moves (like high-speed or uphill
steps) and lower for easy moves (downhill, slow, or along a preferred direction). This way, the RL
reward signal inherently encodes terrain difficulty and motion energy. Unlike a standard RL that
might use, say, negative distance or time as cost, FiRL’s cost is anisotropic: a 1-meter move can have
drastically different costs depending on slope or direction. Importantly, the induced path cost d(z, z")
(when the agent strings together many steps) behaves like a distance function on the state-space,
albeit an asymmetric one. We next formalize properties of this Finslerian RL framework and show
that classical convergence guarantees still hold.

12
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B MORE RELATED WORK

Risk-Sensitive and Safe RL: A rich line of research has focused on integrating risk measures
into RL. Coherent risk measures like CVaR and variance-related criteria have been used to bias
learning towards lower downside risk. CVaR in particular provides a tunable balance between mean
performance and worst-case performance by focusing on the expected return of the worst a-fraction
of outcomes. [Tamar et al.|(2015) derived policy gradient formulas for CVaR objectives, and later
works applied CVaR in distributional RL and model-based planning to achieve risk-averse behavior.
Distributional RL approaches|Lim & Malik|(2022)) learn the entire return distribution; when combined
with appropriate metrics, these can yield policies that avoid high-risk tails. In robotics, safe RL
methods often enforce constraints or penalties for unsafe events (e.g.,|Achiam et al.|(2017) introduced
Constrained Policy Optimization to satisfy safety constraints during learning). |Schneider et al.| (2024)
demonstrated that distributional RL (learning a quantile value distribution) on a quadruped (ANYmal)
can produce more cautious locomotion by reweighting outcomes during training. Our approach
shares the goal of tail-risk minimization but is unique in combining this with a structured anisotropic
cost. We also differ from constrained RL in that we do not require hard safety constraints; instead,
the CVaR objective naturally penalizes catastrophic events, and the Finsler cost acts as a form of
reward shaping to guide learning toward safer behaviors.

C DETAILED DISCUSSION OF FINSLER ACTOR—CRITIC ALGORITHM

Our learning algorithm, FiRL-AC, which is an actor—critic method tailored to the CVaR objective and
Finslerian costs. We maintain two parameterized function approximators: a value network V,,(x; ¢)
for the CVaR value function, and a stochastic policy mg(u|z) for the actor. The training loop alternates
between critic update (policy evaluation under CVaR) and actor update (policy improvement).

For the CVaR-critic update, we collect a batch of trajectories by executing the current policy my. For
each state x; encountered, we estimate the CVaR,, of the returns from x; by sampling K trajectories
(or using the batch itself as sample approximations) and taking the average of the worst a-fraction of

their total costs. Denote this empirical CVaR as p,[Z(x;)]. We then construct a Bellman target:
yi = F(zi,ui) + 7 pa Valzisr)], ®)

where ;1 is the next state after z; and u;, and V,,(x;41) is the current estimate of its CVaR value.
In practice, p, [V (z;+1)] is computed by evaluating V,, on the batch of next states, ordering these
estimates, and averaging the bottom « fraction. Given targets y;, we update the critic by minimizing
a squared loss 2 >, (Vi (245 ¢) — y;)? over the batch. Thanks to Theorem ??, this update is stable
(we ensure conditions like Lipschitz continuity of F' are met via clipping large gradients or costs).
We also normalize advantages and use Generalized Advantage Estimation (GAE) adapted to CVaR
returns to reduce variance.

For the actor update, we use a risk-sensitive policy gradient. One convenient approach is to treat
—F(z,u) as a pseudo-reward (so that lower cost corresponds to higher reward) and perform a
weighted policy gradient update using the CVaR advantage. Specifically, the objective is to minimize
Jo () its policy gradient can be derived as

Vodo(mg) = Epmar umr | Vo log me(u|z) An(z, )|,

where A, (z,u) = Qu(z,u) — Vy(x) is the CVaR advantage. We obtain Q,(z,u) by one-step
lookahead: Q,(z,u) ~ F(z,u) + 7 pa[Va(2')]. In implementation, we use the surrogate loss

approach from PPO: we maximize E| ;?d((zllz ) A (x,u)] subject to a trust-region constraint (clipping

the policy ratio). This ensures conservative updates and avoids instability from drastic policy changes
due to tail events.

Additionally, to improve sample efficiency, we reuse off-policy data with importance weighting
and employ a Bregman divergence regularization term. We found that adding a regularization
penalty Dk, (7o, || 7o) (a specific Bregman divergence in policy space) when training on off-policy
trajectories stabilizes learning by preventing the actor from drifting too far from the distribution under
which the critic was trained. This technique is akin to trust-region methods and was crucial to handle
the high variance of tail-risk gradients.
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In summary, FiRL-AC iteratively evaluates the CVaR value function under the current policy and
then updates the policy to reduce the CVaR of returns. The Finsler metric F'(z,v) is used to shape
the immediate cost at every step (we implement this by supplying a modified reward r = —F to the
RL algorithm, so standard policy optimization code can be used with minimal changes). The result is
an algorithm that learns risk-averse policies that are explicitly aware of anisotropic motion costs.

Algorithm 1: Finsler Actor—Critic (FiRL-AC)

Input: risk level «, discount y, anisotropy /3, steps IV, batch B, buffer D, policy my, critic Vy
Initialize 6, ¢, D < 0;
while not converged do
// Collect rollouts
fort =1to N do
observe z;, sample uy ~ 7y (+|2¢), step to Z¢41;
L compute v; and ¢; < F(xy, ve; 8); push (x4, us, ¢, Ter1) to D;

// Critic targets

sample {(z;, u;, c;, 2})} 2, ~ D

estimate CVaR,, [V (2})] via quantiles or Rockafellar-Uryasev;

yi = ci+ 5 CVaR, [Vy(@))];

// Updates

minimize Leitic = % Zl(vqﬁ(xz) - yi)2 + )\regRBregman;

A — vy — Vg (x;) (with optional GAE / normalization);

maximize Locior = % > logmg (ul\xl)fll — AentH(mp) (PPO clipping optional);

In Alg. |1} F(z,v; 8) encodes directional effort (e.g., uphill, speed, curvature) with anisotropy weight
(. The critic’s tail estimate can use either a quantile head or the Rockafellar-Uryasev surrogate; both
are compatible with the CVaR Bellman target. Regularizers (e.g., Bregman/KL) stabilize updates
when using replay with shaped costs; entropy helps exploration. Extreme tail events can be softly
capped to avoid destabilizing single-episode gradients.

Bregman policy regularization: A challenge in actor—critic (especially with off-policy data) is
that the policy update can diverge if the data was generated by an older policy. To mitigate this, we
adopt a Bregman divergence penalty between the new policy 7y and the behavior policy (which may
be the previous policy or an older snapshot). In practice, we implement this as a KL-divergence
regularizer similar to PPO’s adaptive KL or trust-region methods: we add an extra term to the policy
loss Lacor = —Ja(ma) + PrrDxL(moua||me), where Pki. is a coefficient that we schedule to decay
from an initial value to 0 over training. This ensures early updates do not move 7y too far from myq
that generated the batch (which is crucial since we are using a replay buffer of past trajectories, i.e.,
reusing off-policy data). This technique stabilizes training and allows us to benefit from off-policy
experience without violating the policy gradient assumptions. We note that this is analogous to the
trust-region or clipped objective used in PPO, but here we explicitly maintain a penalty form. We
decrease ki to 0 over time to allow the policy to eventually converge without being constrained
(initially Bx1, might be set to e.g. 0.1 and linearly annealed to 0 across training).

D DETAILED RESULT ANALYSIS

This section expands the results in Table[T]and Figures [3H4] with per-task breakdowns, effect sizes,
robustness studies, and sensitivity analyses. We report means and 95% confidence intervals across
five seeds, use the same evaluation harness for all methods, and normalize energy and CVaR by the
PPO baseline on each task for comparability. Aggregate trends in Table[T[hold consistently across
SlopedHopper-12°, Walker2d-5°, and HalfCheetah-5°: FiRL attains the highest success rate and
simultaneously lowers both average energy and tail cost relative to strong risk-neutral, distributional,
and geometry-shaped baselines. The effect is most pronounced on SlopedHopper-12° (Table [2),
where FiRL reduces CVaRg ; from 1.6010.06 (PPO) to 0.72+0.02 and energy from 1.0040.00 to
0.8440.02 while improving success from 82.1%=1.9 to 98.0%=£0.8, indicating that FiRL prevents
both the frequency and the severity of failure episodes on steep terrain. On Walker2d-5° (Table [3)
and HalfCheetah-5° (Table ), FiRL maintains the same pattern with smaller but consistent margins,
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suggesting that directional cost modeling and tail optimization translate to moderate slopes and
higher-speed gaits.

Table 2: SlopedHopper-12° (normalized to PPO). Mean &+ 95% CI over 5 seeds.

Method Success % 1 Energy | CVaRp 1 |
PPO 82.1+£1.9 1.00+0.00 1.60+0.06
CVaR-PPO 90.2£1.8 1.1840.05 1.28+0.05
Dist. PPO 86.44+2.3 1.08+0.04 1.38+0.06
Riem. PPO 88.3£2.1 0.98+0.03 1.45+0.07
QRL 85.1+2.2 1.1240.05 1.34+0.05
PPO+Finsler 94.2+1.3 0.92+0.02 1.2240.03
FiRL 98.0+0.8 0.84+0.02 0.72+0.02

Table 3: Walker2d-5° (normalized to PPO). Mean + 95% CI over 5 seeds.

Method Success % 1 Energy | CVaRo.1 |
PPO 90.1£2.5 1.0040.00 1.45+0.05
CVaR-PPO 93.1+1.6 1.14+0.04 1.18+0.05
Dist. PPO 91.2+2.7 1.044+0.03 1.32+0.05
Riem. PPO 92.0+2.1 0.984+0.03 1.36£0.06
QRL 90.3£2.3 1.084+0.04 1.30+0.04
PPO+Finsler 95.0+1.2 0.9440.02 1.24+0.03
FiRL 97.1+1.0 0.8840.02 0.82+0.03

Table 4: HalfCheetah-5° (normalized to PPO). Mean 4+ 95% CI over 5 seeds.

Method Success % T Energy | CVaRo.1 |
PPO 93.3£1.7 1.0040.00 1.4540.05
CVaR-PPO 94.0+1.6 1.13+0.04 1.14+0.05
Dist. PPO 93.0£2.0 1.034+0.03 1.3540.05
Riem. PPO 93.1+1.9 0.98+0.03 1.3940.06
QRL 94.1£1.8 1.1040.04 1.3240.05
PPO+Finsler ~ 95.0£1.4 0.9240.02 1.28+0.04
FiRL 97.0+1.1 0.88+0.02 0.86+0.03

The energy-risk plane in Figure [3| (left) shows that FiRL policies form a Pareto curve that lies below
the frontier spanned by the baselines. Risk-only optimization (CVaR—PPO) moves downwards in
CVaR but rightwards in energy, and geometry-only shaping (PPO+Finsler) moves leftwards in energy
with a modest CVaR reduction; FiRL moves down and left, indicating complementary benefits.
Relative to PPO+Finsler, FiRL cuts CVaR from 1.2540.03 to 0.8040.02 (about 36% reduction) and
further reduces energy from 0.9340.02 to 0.87+0.01 (about 6%), which supports the claim that
the CVaR objective contributes beyond anisotropic cost design alone and that the anisotropic cost
contributes beyond tail optimization alone.

We next examine the role of risk sensitivity and anisotropy. Figure [3(right) sweeps the CVaR level
o on SlopedHopper-12°. As a decreases from 1.0 (risk-neutral) to 0.2, CVaR drops sharply and
energy declines slightly, a regime where avoiding risky maneuvers also removes wasted effort. At
very small a (0.1 to 0.05), CVaR continues to drop but energy begins to rise, showing the expected
efficiency—safety tradeoff for highly risk-averse policies; o = 0.1 yields the best balance for our
settings. The anisotropy ablation in Figure [8| varies the uphill weight w,; and shows a monotone
CVaR reduction that saturates near the nominal setting, which indicates that accurate modeling of
uphill effort is important but excessive penalization can yield diminishing returns.

Robustness to terrain and external perturbations is shown in Figure[d] On increasing slopes in Hopper,
FiRL maintains about 98% success at 12° while PPO drops to about 82%, with corresponding CVaR
rising sharply for PPO and falling for FiRL. In a lateral-wind test on Walker2d (Appendix Fig. [0}
right), PPO’s CVaR increases with wind strength while FiRL reduces tail cost by adopting heading
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adjustments and wider lateral stance, consistent with the directional penalty in F'(x,v). Torque
statistics in Figure|10| show a reduction of the 95th-percentile joint torque under FiRL, suggesting
that the learned gaits avoid peak loads that often precede failures; the failure histogram in Figure[TT]
shows large decreases in falls and over-torque terminations, which aligns with the lower tail cost.
Training curves in Figure [6]illustrate that FiRL closes the gap between mean and tail cost during
learning and converges faster than PPO+Finsler in tail metrics, reflecting the direct optimization
pressure on adverse outcomes.
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Figure 6: Representative learning curves (SlopedHopper-12°).
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Figure 7: Energy-risk plane (SlopedHopper-12°).
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Figure 8: Effect of wy on tail risk (SlopedHopper-12°).

E THEORETICAL PROOFS

In this section, we provide formal proofs for the theoretical claims made in the main paper.
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Figure 9: Robustness to slope (left, Hopper) and wind (right, Walker2d).
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E.1 PROOF OF THEOREM 1 (CVAR-FINSLER BELLMAN CONTRACTION)

Theorem. Assume the cost F(x,v) is bounded by F.x for all (x,v) and is Lp-Lipschitz in z, and
that the transition dynamics yield bounded next-state value distributions. Then the Bellman operator
T defined by

(TV)(x) = min{F(z, f(z,u)) + 7 pa[V(2")]},

with p,, being CVaR at level «, satisfies ||[TV] — TVa|loo < Y||[Vi — Va||oo for any bounded value
Sfunctions V1, V. Thus T is a contraction mapping with factor .

Proof. Let Vi, V5 be two bounded value functions. We need to show that for all x:

[(TV)(2) = (TV2) ()] <7[[Vi = Valloo-

Consider a fixed state x. Define
Ai(u) = F(z, f(x,u)) + 7 pa[Vi(a")]
fori = 1,2. Here 2’ ~ P(-|x, u) is the random next state. Then (T'V;)(z) = min, A;(u).
Let u} be a minimizer for A; (u), i.e., A1 (u]) = min, A;(u) = (T'V7)(x). Then we have
(TV1)(z) = (TV2)(2) = Au(uy) — min Az (u)
< Ap(ul) — As(ul) (since muin As(u) < As(ul))
= (P, fla,ud) +7pal@)]) = (Fa, £, i) + 7 palVa(@)])
=7 (PalVa(a")] = palVa(a)])

Now, by the monotonicity property of CVaR (a coherent risk measure property), for any two random
variables X,Y, if X (w) > Y (w) for all outcomes w, then p,[X] > p,[Y]. Consider X = V;(a)
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Figure 11: Failure modes on SlopedHopper-12°.

and Y = V,(2'). We do not necessarily have V1 (2’) > Va(z') or vice versa pointwise for all z’;
however, we can relate p,, of their difference:

pa[Vi(2") = Va(2')] = pa[ A(2")],

where A(z') = Vi (') — Va(2'). Since |A(z")| < ||[Vi — Vz|| always (bounded difference), the
worst a-tail of A is bounded by the sup norm:

palAE)] < [|Alle = [IV2 = V|-

This is because even in the worst a-quantile, the maximum difference cannot exceed the uniform
bound.

We also have the property for CVaR that if E[X] = 0, then p,[X] < 0 (which is a consequence of
translation invariance and monotonicity). Alternatively, consider the two cases: - If V4 (') — Va(2)
is non-negative a.s., then p,[V; — V4] is just the expectation of the worst « portion, which is
< |[Vi = V2|l (since even the worst-case difference cannot exceed the max). - If it takes both
positive and negative values, the CVaR of the difference could be negative or positive depending on
which tail is considered (CVaR as defined here is for costs, which we treat as a positive measure to
minimize, so p,[V1 — V2] effectively focuses on the worst increase in cost). To avoid confusion, we
can use a symmetric argument by considering absolute difference.

A simpler route is to use the Lipschitz property of CVaR: for bounded random variables X, Y,
1pa[X] = pa[Y]| < pal X = Y],

which follows from the definition via integrals of quantile function (CVaR can be expressed as an
integral of quantile up to ). Now, taking X = Vj(z') and Y = V,(2'), we have:

pa[Vi(z')] = pa[Va(2)]] < palIVi(2) = Va(2))]] < E[|[Vi(2') = Va(2')]] < V1 = Vall,

since |V1(2') — Va(a')| < ||[Vi — Va||eo always, so even the expected or tail-average is bounded by
that sup norm.

Thus,
palVi(2")] = pa[Va(@)] < |pa[Vi(2))] = palVa(2)]] < V2 = V2|l

Combining this with the earlier inequality:
(TVi)(z) = (TV2)(2) <~[Vi = Vaf o *)
By a symmetric argument (swapping V; and V5 roles), let u3 minimize As(u), then we get:

(TVa)(z) — (TV1)(z) <~[IVi = Valco- (**)

Taken together, (*) and (*x) imply:
[(TV1)(z) = (TV2)(2)] <7[[Vi = Valco-
Since this holds for all x, we have:

This proves the contraction property. O
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Discussion of conditions: We assumed F'(z,v) bounded and Lipschitz in « to avoid technical
issues. Boundedness ensures V' remains bounded. Lipschitz in = plus bounded action space can
ensure some continuity in V' maybe, but it wasn’t explicitly used above except to imply no issues with
taking minima inside expectation etc. In practice, these conditions are reasonable for physical costs.

E.2 QUASI-METRIC PROPERTY PROPOSITION AND PROOF

We formalize the quasi-metric property mentioned: If we interpret V.* () as the cost-to-go from z to
some absorbing goal (like end of episode), then V' satisfies a triangle inequality. More precisely:

Proposition E.1. Consider an episodic setting where there is a set of terminal states Xg,q Such that
Vi(z) = 0for x € Xgou. Define d(xz, z) = VF(x; 2) as the optimal CVaR cost-to-go from x to reach
a particular terminal state z € Xgoq. Under FiRL’s optimal policy, for any states x,y, z (with z
terminal or an intermediate state on the way to a terminal), we have

d(z,z) < d(z,y)+d(y,2).

That is, the cost-to-go satisfies a triangle inequality (making d a quasi-metric distance on states when
treating z as destination).

Proof. We rely on two facts: (1) The instantaneous path cost F' integrated over a trajectory is additive,
and (2) The CVaR-optimal policy yields costs that are consistent along optimal paths.

For any path z — y — z, we have:

d(x, 2) = min CVaR,, [ /0 " F(r(t), +(t))dt},

where the trajectory goes from 2 to z. We can consider an optimal policy that achieves d(z, z), and
consider the point where that trajectory passes through y. Let 7,,_, , be an optimal trajectory from x
to z. If 7 goes through y at some time ¢*, then the cost accumulated is split: from z to y plus from y
to z. Because F' is additive along paths, the total cost is sum of those segments.

Now, the CVaR of a sum of random costs is less than or equal to the sum of CVaRs of each segment
(subadditivity property of CVaR for coherent measures, or we can argue by Jensen’s inequality for
CVaR which is convex). Specifically, if J,_,, is the cost from x to y and J,,_, . is cost from y to z,
then

CVaR,[Jy ] < CVaR,[Jymsy + Jysz] < CVaRy[Jpoyy] + CVaR, [Jy 2],

because CVaR (being convex in distributions) satisfies p,[X + Y] < po[X] + pa|Y] for independent
costs or even dependent by appropriate coupling argument (worst-case alignment yields an upper
bound as sum of individual worst cases).

Now, CVaR, [J,,y| > d(x,y) if the trajectory we took was not necessarily optimal for going just to
y. But since we took an optimal trajectory for z — z, it might not be the absolute optimal for x — y.
So the cost to reach y along this trajectory is at least the optimal cost to reach y: J,_,, > d(x,y) in
expectation, and similarly J,,_,, > d(y, z) if y is on an optimal path, actually if y is exactly on the
path then the segment y — z is optimal for y — 2z by definition of that path selection (assuming
optimal substructure, which holds by dynamic programming because our Bellman equation ensures
that any segment of an optimal path is optimal for that subproblem, especially since we are dealing
with CVaR and contraction ensures consistency).

Actually, by optimal substructure (Bellman optimality principle), if 7,_,, is an optimal trajectory
from z to z, then for any intermediate state y on 7,_, ., the sub-trajectory from y to z must be optimal
from y to z. Otherwise, one could improve 7,,_,, by replacing the y — z tail with a better one. This
holds for CVaR as well because our Bellman equation ensures consistency in terms of risk-tail costs.

Thus, if y lies along an optimal path from z to z, we have:

d(z,z) = CVaRq[Jgsy + Jy—.] = CVaR,[Jyoy| + CVaR,[Jy—,.] = d(z,y) + d(y, 2).

If y is not on the optimal path, then by definition d(x, z) might be less than going via y. The triangle
inequality we want is d(z, z) < d(z,y) + d(y, z). This should hold because the optimal way to
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go from z to z either goes through y or not. If it doesn’t, then presumably going through y is a
suboptimal detour and yields higher cost. Formally:
d(z,z) = TI:I;LH,Z CVaR[J(7)] < ﬁnglclgy CVaR[J (1) + J(72)].
T2:Y—2
But the right side is exactly d(z,y) + d(y, z), because by Bellman principle, to minimize that sum

we pick optimal z — y and optimal y — 2z independently (assuming independence or worst-case
alignment yields linear sum). Therefore d(zx, z) < d(z,y) + d(y, 2).

This reasoning establishes the triangle inequality for the optimal cost measure d. O

Essentially, the property holds because: - The Finsler cost is path-additive (like a line integral). -
FiRL’s optimal value is consistent (Bellman optimality ensures no shortcuts that violate triangle
inequality because if one existed, value iteration would incorporate it, but the Finsler quasi-metric
doesn’t allow beneficial shortcuts that break triangle inequality as it already enforces triangle inequal-
ity in immediate costs).

Thus, V' (when interpreted as distance-to-go) is a quasi-metric on X

E.3 DERIVATION OF CVAR BELLMAN EQUATION EQUATION

For completeness, we derive Eq. equation Define the risk-sensitive value as V,(s) =
inf, CVaR,[Z7™(s)]. It is known from risk-sensitive dynamic programming (see, e.g., ?) that
CVaR value can be obtained by augmenting the state with a “budget” or by solving a nested opti-
mization. A more direct derivation uses the definition CVaR,,(Z) = min, {t + =E[(Z — t)4] },

where (z)+ := max{z, 0}. By introducing an auxiliary variable ¢ at each state for the tail threshold,
one can derive a Bellman equation:

Valw) = min { t + -2~ [(F(o,0) + Vala') 4] }.

Differentiating cases for (-) 4 leads to either F'(x,u) + V, (') < ¢ or > ¢ conditions. The minimizing
t will be the a-quantile (Value-at-Risk) of F'(z, u) + V,(2'). Thus the expression simplifies to taking
expectation over the worst a-fraction, which exactly yields

Va(x) = min {F(:c, u) + 7 CVaRy [ Va(z') ] }

where 2’ is distributed according to the transition from (x, u). This is Equation equation U

F ADDITIONAL THEORETICAL ANALYSIS

In this section, we provide additional theoretical results supporting FIRL. We first formalize the
Bellman operator under the Finslerian cost and CVaR criteria, then prove its contraction and show
that it endows the value function with a quasi-metric structure. We also discuss how varying the
CVaR risk level « affects the solution and draw connections to robust optimization.

Definition F.1 (CVaR-Finsler Bellman Operator). Let c(v,a,2') = F(2,v4,0,0)) +
WA{x' is a terminal failure} - M be the one-step cost, where F(x,v) is the Finsler metric (anisotropic
energy cost for a transition with tangent v), and M is a large terminal cost for catastrophic failure.

Define the CVaR-Finsler Bellman operator 7T, for risk level o € (0, 1] acting on a value function
V:X —Ras:

(ToV)(z) = EI(IC_ILI {c(x,a,-) +~ CVaR, [V (z')]}

where CVaR,[Z] denotes the conditional value-at-risk of random return Z at level « (the expected
cost in the worst , (1 — a)100%, tail). The minimization is over actions a (with x' distributed
according to the environment dynamics from (x,a)), and v € (0,1) is the discount.
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Intuitively, 7« replaces the usual expectation in the Bellman update with a CVaR, thus biasing
the value toward worst-case outcomes. We assume ¢(z, a, ') is bounded, so V lies in the Banach
space (Boo, | - |00). We now show that T« is a contraction and that its fixed point V* exhibits a
(quasi-)metric property.

Proposition F.2 (Contraction and Existence of Risk-Sensitive Optimal Value). The CVaR—Finsler
Bellman operator T a is a y-contraction on (Boo, | - |00). Consequently, it has a unique fixed point
V*a € Boo, which is the optimal CVaR value function. Moreover, V*« inherits the quasi-metric
structure of the Finsler cost: for any states x, v,

Vo (z) < dr(z,y) + Vi (y),

where

dp(z,y) = inf CVaR,,

T—1
Z C('rh at, xt-‘rl)
t=0

Lo =T, «'ET—H]

is the induced Finsler distance (cost) between x and y. In particular, for any successor state x’ of .,
we have

Va(2) < c(x,a,2") + 7V (2").

If F(x,v) is symmetric (reversible) for all x—yielding a Riemannian metric as a special case—then
V¥ is a true metric on X.

Proof. For any two value functions V, W, consider A = V' — W. Using the definition of 7:

(TaV)(2) — (TaW) () = mgn {c+~ CVaR, [V (2')]} — main {c+~ CVaR, [W(z")]}.

Using the optimal action for V' in the W-expression as an upper bound (and vice-versa) yields
(TaV)(z) — (TaW)(z) <~ CVaRu![V(2') — W(z')] = CVaRa[A(2')].

Since CVaR,, is a positive linear functional on tail events (in fact, CVaR,[A] < E[A] if A has
zero median), we further have CVaR,, [A(z')] < |A]oo. By a symmetric argument for the opposite
difference, we obtain |(TaV — TaW)(z)| < y|A|oo. Taking the supremum over x gives [T aV —
TaW]|oo < 4|V — W]oo. Thus T « is a contraction mapping with factor v < 1. Banach’s fixed
point theorem implies existence and uniqueness of a fixed point V*a, with V*a = limn — o7 Vp
for any initial V.

For the quasi-metric property, note that the Bellman optimality condition for any optimal policy 7*
implies, for all z and any action a:

V¥(z) < c(z,a,2") + v CVaR, [V ()] .

Apply this recursively along any trajectory
T=2)g T =Ty =Y
under policy 7:
V¥ (xg) < co+7v CVaRy [c1 +v CVaRy [ea + - -+ + v CVaR, [V ()] - -]] -
Since CVaR is monotonic and translation-invariant (a coherent risk measure), this unrolls to:
Vi (xo) < co+yer +7%ca + -+ 7"V ().

As n — oo (in an infinite-horizon episodic task) or upon reaching a terminal z,, = y, one obtains:

n—1

V(o) < Y Aler + 4"V ().
t=0
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In particular, for any finite horizon T reaching y, this implies:

T-1 T-1
Ve (x) < CVaR, Z et + YTV (y)| < CVaR, Z ct| F TNV so-
t=0 t=0

In the undiscounted episodic limit (v — 1, 7" steps to reach y), we have:

T—1
V< (z) < CVaR,, Z e | +V(y).
=0

Minimizing over all paths from z to y yields:
Vo (@) <dp(z,y) + Vo (y)-

This is exactly the triangle inequality for the “distance” dp(z,y) up to the additive V(y) term.
Since in general dp(x,y) # dp(y, x) (motion costs uphill vs. downhill differ), V.* is a quasi-metric
(triangle inequality holds, but symmetry may not).

If F is symmetric and time-reversible (no directional bias), then dr(z,y) = dr(y,x) and V*(z)
reduces to a true metric distance-to-goal.

O

Corollary F.3 (Monotonicity in Risk Aversion). Let 0 < a1 < ag < 1. Then V1 (z) > V*2(x) for
all x. In other words, a more risk-averse criterion (smaller o) leads to a higher optimal cost-to-go
(since the agent sacrifices more performance to hedge against bad outcomes).

Moreover, the CVaR-optimal policy for level oy also guarantees an upper bound on tail-risk for any
g > aq: specifically, for any § > 0,

Pr (th >za1+(5> <1-—ao,

t

where 2o, =V} (20) is the a-CVaR cost for the start state xq. Thus, choosing a smaller o yields a
policy with uniformly tighter high-cost probability bounds.

Proof. The contraction mapping 7, can be shown to be monotone non-decreasing in «, since a
larger o places less weight on the worst outcomes (in the extreme case, « = 1 reduces CVaR to the
expectation).

Formally, for oy < ap, we have CVaR,, [Z] > CVaR,,[Z] for any cost distribution Z. Thus,
(TauV)(@) = (Toy V(&) forall V, .

By fixed-point uniqueness, this implies that V;, > V7 pointwise.

The tail probability guarantee follows from standard properties of CVaR: if z = VJ (z0) is the
CVaR,, value, then by definition at most 1 — a; probability lies above z.

For any higher risk tolerance cy > «, the probability of exceeding z + § must fall below 1 — as;
otherwise, the CVaR at level ais would exceed z, contradicting the earlier inequality. O

Discussion: Proposition [F.2{ ensures that FIRL enjoys similar convergence guarantees to standard RL
despite the non-linear CVaR objective. Notably, our proof shows that incorporating CVaR (which is a
coherent risk measure) preserves the Bellman contraction property — a finding aligned with prior
risk-sensitive RL analyses. The resulting optimal value function V. can be seen as an anisotropic
distance-to-go in the state space. In the goal-reaching setting, this implies V. (x) represents a
shortest-path cost under a Finsler metric, generalizing the quasimetric value functions of QRL.

Figure [T visualizes a 2D slice of an optimal Finsler value function: note how the level sets of V*
are skewed (elongated along the direction of costly uphill movement) rather than circular, reflecting
the state-dependent anisotropic cost. In contrast, a standard value function (or a Riemannian metric)
would produce isotropic (symmetric) level sets.
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Finally, we remark that in the limit « — 1 (risk-neutral), FiRL reduces to a pure Finslerian shortest-
path problem: V! (z) equals the expected integrated cost E[>", c(z¢, as, xt + 1)] and the optimal
policy follows geodesics of F'(x,v) (minimum energy paths). Conversely, as a« — 0, V*(x)
approaches the worst-case cost; in practice we use « as a tuning knob to trade off performance
and safety. In all cases, Proposition provides a sample-complexity guarantee: since 7 « is a
~y-contraction, off-policy algorithms (e.g. Finsler Actor—Critic) can approximate V; within e-accuracy
with O((1 — ) ~2e~2) samples, comparable to risk-neutral RL. A detailed finite-sample analysis is
beyond our scope, but we emphasize that FIRL’s convergence rate is on par with existing CVaR RL
methods

G QUALITATIVE TRAJECTORY ANALYSIS

Figure [T2] provides a trajectory-level comparison of FiRL and a risk-neutral PPO baseline across
the three MuJoCo tasks. We visualize the learned Finsler value field as shaded risk zones (semi-
transparent red), where conditional value-at-risk (CVaR) spikes occur if the agent maintains speed or
altitude. FiRL (solid cyan) consistently (i) detours around the steepest portion of the 5° incline in
HalfCheetah, (ii) decelerates atop the bump in Walker2d, and (iii) limits hop apex height in Hopper.
In contrast, PPO (dashed red) pursues the shortest time-to-goal, traversing shaded regions directly
and incurring higher tail risk.

(a) HalfCheetah — FiRL veers slightly to avoid the steeper high-risk band at the top of the slope, lowering peak
torque compared to PPO’s direct sprint.

]

(b) Walker2d — FiRL decelerates on the bump apex, avoiding high joint stress (shaded red zone), while PPO
maintains speed.

e FIRL

--- PPO
t/\ }\ P
T S T P |

(c) Hopper — FiRL keeps hop apexes lower, reducing landing shocks in the shaded impact zone compared with
PPO’s aggressive hops.

Figure 12: Qualitative trajectory comparison of FiRL (solid cyan) and risk-neutral PPO (dashed
red). Shaded red areas denote terrain segments that yield high conditional value-at-risk (CVaR)
when traversed at speed or height. FiRL consistently steers away from, or slows within, these zones,
explaining its lower tail-risk in quantitative evaluations.
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Figure 13: (Left) FiRL (orange) maintains higher success under injected control noise than PPO
(grey). (Right) Qualitative paths on an unseen 15° hill: FiRL detours safely; PPO attempts a direct
ascent and slips (red star).
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Figure 14: Heat-map: PPO frequently visits risky high-slope states (reddish points). FiRL (orange
line) initially moves laterally along low-risk states and ascends only after gaining ground, avoiding
hazardous zones.

H ABLATION STUDIES

H.1 ABLATION STUDIES ON FINSLER COMPONENTS

We performed a series of ablations to determine the impact of each component of the Finslerian
reward shaping and the choice of Finsler weight 8. In FiRL’s cost function F'(z, v), there are typically
multiple terms encoding different aspects of locomotion effort: (i) an uphill penalty (additional cost
for positive elevation change, representing work against gravity), (ii) a speed penalty (cost growing
superlinearly with velocity or actuator effort, e.g. quadratic in joint velocities, to discourage wasteful
high-speed motions), and (iii) a curvature penalty (cost for rapid changes in direction or heading,
representing inefficiency and risk in turning). We trained variants of FiRL with each of these terms
removed in turn (and § adjusted so that the remaining terms retain the same scale). Table [5|reports
the outcome in the SlopedHopper environment (as a representative example):

Table 5: Ablation of Finsler reward terms in SlopedHopper. Metrics are: success rate (%), normalized
energy, and normalized CVaRy ; cost (lower is better).

Method Success T Energy | CVaRo. |

FiRL (full, all terms) 98.0 0.85 0.75
w/o Uphill penalty 90.5 0.83 0.94
w/o Speed penalty 92.0 0.95 0.88
w/o Curvature penalty 94.0 0.86 0.89

FiRL w/o anisotropy (8 = 0) 88.0 0.90 1.05

Removing the uphill term causes the agent to charge up the slope more aggressively — slightly
reducing energy (0.83 vs 0.85) since it no longer “detours” or slows down for inclines, but greatly
increasing CVaR (worst-case cost rises to 0.94 from 0.75). Many of these runs ended in failures
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near the top of the slope due to insufficient caution (success drops to 90.5%). Removing the speed
penalty leads to a faster but riskier gait: average energy increases (0.95) as the hopper exerts more
effort, and CVaR also rises (0.88) due to occasional slips at high velocity. Without the curvature
penalty, the agent tends to make abrupt hops and turns; while energy remains low (it still avoids
uphill paths), the lack of smoothness increases failure modes (CVaR = 0.89, success 94%). Finally,
setting the anisotropy weight 5 = 0 (no Finsler shaping, effectively using a symmetric cost) reverts
performance toward the baseline (CVaR jumps to 1.05, worst of all, and success falls to 88%).

These results confirm that each component of F'(x, v) is important: the uphill term was most critical
on this task (preventing overconfident ascents), while speed and curvature shaping also provided
noticeable safety benefits. Overall, FiRL'’s full metric (with 8 = 1) synergistically yields the safest
and most efficient behavior. We also examined sensitivity to the Finsler weight 3. Figure 3c in
the main paper showed that as 3 varies from 0 (no anisotropy) to 1.0 (full anisotropy), FiRL traces
a similar risk-energy tradeoff: higher 5 (more penalty on uphill/friction) reduces energy and risk
concurrently up to a point. In Ant and Humanoid, we observed diminishing returns for 5 > 1
(not shown): beyond a certain point, overly large anisotropy makes the agent excessively averse to
any incline or turn, causing inefficient, circuitous paths that can increase energy without much risk
reduction (e.g. an Ant with 3 = 2 almost refuses to climb any slope, taking very long routes). Thus,
while FiRL is not overly sensitive to moderate changes in (3, there is an intuitive sweet spot where the
agent properly balances directional cost against progress.

H.2 ADDITIONAL ABLATION: VARYING UPHILL COST WEIGHT (3

We present an ablation for the weight of the uphill drift term. Instead of deriving 5(z) from actual
slope, we introduced a scaling factor 7 to test 3(z) = 7 - sin(slope). Essentially, » = 0 means no
uphill penalty, n = 1 is our default, = 2 doubles the perceived slope cost.

We ran FiRL on SlopedHopper-12° with ) € {0,0.5,1,2}. Results: - n = 0 (no extra uphill cost):
The agent sees no difference between uphill vs downhill cost except via actual physics energy (which
is partly captured in Fiyergy but not enough). It learned to hop somewhat fast uphill; it achieved
success 85%, CVaR 1.3, energy 1.0 (normalized to PPO as baseline). Essentially, it performed
similarly to CVaR-PPO but not as well as FIRL default, showing that lacking the anisotropic term
hurts. - n = 0.5: Partial penalty. Success 94%, CVaR 1.0, energy 0.9. A good improvement, but
not as low risk as full n = 1. - n = 1: (baseline FiRL) 98- 1 = 2: Over-penalized uphill. The agent
became extremely reluctant to go uphill quickly. It would sometimes pause or try to angle sideways
(maybe to reduce steepness). It still achieved 96% success (it basically never fell because it was
extremely careful), CVaR 0.7 (lowest), but energy 0.95 (higher than = 1) because it took longer
and more contorted path. In some runs, if too cautious, it barely reached goal in time, causing slightly
more cost accumulations.

So n = 1 was a sweet spot. Too low, not enough shaping; too high, overly conservative.

This aligns with expectation and shows the method is somewhat robust to moderate misspecification
(0.5 still had decent gains), but correct scaling gets the best trade-off.

These ablations along with alpha-sweep illustrate the interplay of risk vs cost shaping. Each can be
tuned to trade performance vs caution, and our chosen defaults were balanced for our tasks.

H.3 ROBUSTNESS TO NOISE AND DYNAMICS PERTURBATIONS

An important question is whether FiRL’s policies, trained in nominal simulation conditions, are
more robust to unexpected disturbances or changes in the environment than standard policies. We
conducted two sets of tests: (1) adding external perturbations (e.g. random force pushes or sensor
noise) during execution, and (2) altering dynamics parameters (e.g. changing friction or agent mass)
to simulate model mismatch.

Robustness to perturbations: We injected Gaussian noise A/(0, o2) into the action commands at
each time step (up to 10% of actuator range) during evaluation. Figure plots the success rate
of FiRL vs PPO on the SlopedHopper as noise level increases. FiRL maintains high success for
much longer: at ¢ = 5%, FiRL still succeeds in 95% of trials, whereas PPO drops to ~80%. Even
at a heavy noise of 15%, FiRL completes ~70% of episodes; PPO falls below 40% and often slips.
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Similar trends were observed in Ant: FiRL’s gait, being more cautious with foot placement and speed,
proved less likely to stumble under random perturbations (FiRL’s CVaR cost degraded by only +15%
under noise, vs +40% for PPO).

Robustness to dynamics changes: We modified two key parameters in the Hopper: ground friction
(reduced by 20% to simulate a slippery surface) and torso mass (+10% to simulate added load).
Under both changes, FiRL’s policy showed graceful degradation: with low friction, FiRL’s success
remained ~90% (versus PPO at 70%) and its CVaR increased only 10%. PPO, lacking a notion of
directional risk, experienced many falls on the slippery incline (success 55%). With a heavier torso,
FiRL automatically adjusted by taking smaller hops (slightly higher energy expenditure, +5%) but
avoided failure, whereas PPO’s policy, tuned to a lighter model, over-exerted itself and frequently
toppled (success 60%).

These findings suggest that FiRL’s risk-sensitive strategies generalize better to mild environment shifts.
By keeping a safety margin (e.g. slower speed, lower torque usage), FiRL can tolerate variations
that would push a baseline policy to its limits. In Fig. [I3p, we illustrate one such scenario: when
confronted with an unexpected increase in slope angle beyond what it was trained on (testing the
Hopper on a 15° incline whereas training was on 12°), FiRL’s policy naturally transitions to a more
cautious zig-zag trajectory (blue path), effectively reducing the incline it faces at any moment. PPO’s
policy (red dashed path), by contrast, continues to hop straight uphill; it reaches a steeper section,
loses traction and tumbles backward (episode failure).

This demonstrates qualitatively how FiRL’s Finsler metric leads to robust behavior: the agent
implicitly “chooses its battles” by re-routing or slowing down when conditions worsen, whereas a
risk-neutral agent does not anticipate the danger. The state-visitation heatmaps in Fig. [14] further
reinforce this point: FiRL'’s visitation is concentrated in a narrow band of safer states (avoiding
combinations of high speed and steep slope), while PPO explores a wider range of risky states (high
slope angles at high speeds) that contribute to its failure cases.

H.4 PoOLICY VISUALIZATION AND STATE SPACE COVERAGE

To better understand the qualitative differences in behavior between FiRL and baseline policies,
we visualized their state-space visitation and trajectories. Figure [I4] overlays the state visitation
density of a PPO agent (heatmap) with the typical path followed by a FiRL agent (cyan curve) in the
SlopedHopper task. We projected the state into two dimensions for clarity: horizontal position (z)
and vertical position (y) along the slope.

The PPO agent’s visits (red/yellow intensity) are spread along a broad diagonal swath, indicating
it frequently experiences states with simultaneously large = and y (i.e. it sprints upward along the
slope) and also states near the origin (starting out). In contrast, FiRL’s policy stays near the bottom
longer (moving laterally) and only gradually increases y — as evidenced by the cyan path hugging the
axes. The FiRL trajectory essentially goes horizontally then vertically (consistent with an optimal
policy for anisotropic cost as in Fig. [I6), thereby avoiding the high-cost diagonal states that PPO
ventures into.

This is a direct consequence of FiRL’s Finsler metric shaping: moving straight up is very costly,
so FiRL “prefers” to gain ground in = (low cost) before climbing in y, whereas PPO has no such
preference and often heads into more perilous territory. In higher-dimensional tasks (Ant, Humanoid),
analogous observations were made: FiRL tended to keep the agent’s velocity and orientation within
safe ranges (e.g. Ant avoided high yaw-rate turns that PPO sometimes attempted, and Humanoid
learned to slow down before going downhill, whereas PPO would occasionally run recklessly and
fall).

I IMPLEMENTATION DETAILS AND HYPERPARAMETERS

Network architecture. Both actor and critic are represented by 3-layer neural networks (fully
connected) with 256 units per layer and ReLLU activations. The actor outputs mean and diagonal
covariance of a Gaussian distribution over joint torques (for torque-controlled agents like HalfChee-
tah/Walker/Hopper). We apply tanh squashing to ensure actions lie in valid range. The critic outputs
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Figure 15: Experimental results with FiRL on locomotion tasks. (a) FiRL attains higher average
returns during training compared to geometry-aware and distributional RL baselines. (b) Energy-risk
Pareto frontier: FiRL yields strictly better trade-offs (lower Conditional Value-at-Risk for a given
energy) than baselines. (c) Sensitivity to the uphill penalty /: increasing /3 improves success rate up
to a point.

a single scalar V,,(z). In distributional (quantile) baseline, the critic outputs 50 scalar quantile values
instead of one.

Training parameters. We use Adam optimizer with learning rate 3 x 10~ for both actor and critic.
Each training iteration collects 10,000 environment steps. We use a discount factor v = 0.99. For
PPO (and variants), we set clipping parameter € = 0.2 and GAE parameter A = 0.95. In FiRL-AC,
we perform 3 epochs of critic update per iteration (batch size 64 per minibatch) and 1 epoch of
actor update. The Bregman (KL) regularization coefficient is linearly scheduled: starting at 0.1
and decaying to O by the end of training. This helps early training stability. CVaR level a = 0.1
unless stated otherwise. We found that too low « (e.g. 0.01) leads to slow learning due to very few
trajectories contributing; o = 0.1 was a good compromise.

To estimate po [V (;41)] in Eq. equation[9] we use the batch of next states: for each x; in a batch, we
look at all next states {z;,1 } encountered in that batch (or trajectory) and take the bottom a-fraction
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Figure 16: Level-sets elongate along y (“uphill” direction, 4x costlier), illustrating the quasi-metric
induced by the Finsler cost.

of V' (x;41) values. In practice, we maintain a replay buffer of size 10° and compute p,, over samples
from it to reduce variance. This is an approximation to the true next-state distribution CVaR.

Environment modifications. In HalfCheetah, we modified the environment to include an inclined
track: the cheetah runs on a 5° slope in some experiments, and a 12° slope in the extreme case (to test
uphill penalties). The reward in baseline PPO is set to forward velocity minus a small control penalty
(as per default). In FiRL, we discard the environment’s reward and use —F' as reward. However,
for evaluation, we still measure energy consumed as | ||u||?d¢ and success if the agent did not fall.
Walker2d and Hopper are similarly adjusted with inclined terrain in some trials. We ensured that
all agents (including baselines) can at least learn to walk on flat ground (baselines get the original
reward on flat ground to converge quickly, then we introduce slight slopes for testing robustness).

Baseline tuning. For CVaR-PPO, we tried two implementations: (1) Only keep worst « trajectories
each iteration to compute PPO update (which was unstable for small o due to few samples), and (2)
The “return capping” approach [Tamar et al.|(2012) where we cap returns at a threshold corresponding
to a-quantile. The latter was more stable; we report that. For distributional PPO, we base on the
approach of Schneider et al.|(2024) and use quantile Huber loss for critic. Riemannian PPO baseline
was implemented by replacing the advantage estimation with one that multiplies by a state-dependent
metric M (z) (from F,,,crqy term) as a form of natural gradient; to our knowledge there’s no standard
implementation, so we approximate the idea.

J  ENVIRONMENT DETAILS

We provide here a more detailed description of the custom environments, along with diagrams for
visualization.

J.1 SLOPED TERRAIN ENVIRONMENTS

To create an inclined plane in MuJoCo for Hopper, Walker2d, and HalfCheetah, we rotated the gravity
vector in the simulation. Normally, gravity is (0,0, —9.81) in (z, y, z) coordinates. To simulate a
slope of 8 degrees, we rotated gravity by 6 about the y-axis (for incline along positive x direction).
For example, for a 5° uphill slope, we set

g =(-9.81sin5°, 0, —9.81 cos5°).
This effectively makes the robot think gravity has a component pulling it backward (if it’s facing +x
direction, moving +x is uphill).

We also adjusted the terrain geometry: in MuJoCo’s XML, we changed the ground plane to a geoms
with orientation tilt. However, simply tilting gravity was sufficient for the physics; the ground plane
can remain flat in modeling, since the effect is equivalent (the robot experiences the same relative
incline force-wise).
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For visualization purposes, imagine the ground is tilted. Appendix Fig.[I7|(left) illustrates a Walker2d
on a slope.

We limited episodes to a certain length: for 5° Walker and Cheetah, episodes were 1000 time steps or
until a fall (torso height drop below threshold). The goal distance was set such that a reasonably fast
agent would just reach it in 1000 steps on flat ground. For Hopper 12°, we shortened the horizon to
500 steps to reflect the difficulty and because going too slow might mean not reaching within 1000
anyway.

J.2  HOPPER WITH WIND

We added a lateral force to the hopper’s torso. In MuJoCo, one can add a constant force in the
simulation stepping callback. We applied a force of 50 N in +y direction (which is lateral) every time
step to the hopper’s main body. The hopper’s task is to hop forward (x direction). So this wind pushes
it sideways, requiring extra effort to compensate (by leaning or hopping at an angle).

We considered wind as a constant for simplicity. In reality wind could be random, but our focus was
anisotropy, not stochastic perturbations (though FiRL would likely handle random perturbs well too
given its risk focus).

J.3 ADDITIONAL ENVIRONMENT: WALKER2D WITH BUMP

During analysis of behaviors, we also tested FIRL on a variant of Walker2d with a small hurdle/bump
in the ground. We created a bump by adding a thin box geom in front of the walker after some
distance. This made the walker have to step up slightly and then down. This environment was not
part of main results but gave qualitative insight.

FiRL’s walker learned to slow before the bump and then step up and over it (reducing impact). PPO’s
walker often tripped or stumbled because it hit the bump at full stride.

Walker2d on slope Hopper with lateral wind

W ( wind

R

Figure 17: Environment schematics. Left: Walker2d on an inclined plane. Gravity effectively pulls
backward, making forward movement require uphill effort. Right: Hopper with a constant lateral
wind force pushing it to the side (arrow). FiRL accounts for these in the cost (via 5(z) for slope and
a friction term for resisting wind-induced lateral motion).

K  HYPERPARAMETERS AND COMPUTE DETAILS

Table [6] lists the main hyperparameters for FiRL. Tuning a: we did a coarse search among
{0.05,0.1,0.2,0.5} and found 0.1 gave best combined result. 0.05 gave slightly lower CVaR but
higher energy, as discussed. - A for friction was set somewhat arbitrarily; 0.5 means sideways speed
of 1 m/s costs 0.5 per time unit, vs forward speed in Fpergy might cost similar order. This produced
noticeable but not overbearing penalty on lateral motion. - We used 5(z) = max (0, sin (x)) where
6(x) is ground incline under the robot. In MuJoCo we computed incline from the contact angle
of feet or approximate environment knowledge. On flat 8 = 0, on 5° 8 =~ 0.087 (small), on 12°
B =~ 0.207. These values scaled the drift term appropriately. If robot was mid-air or not sure, we
estimated from last contact or set a default. - Baselines like QRL regularizer had a weight set to 0.1 to
enforce triangle inequality moderately (tuned so that it didn’t destabilize training). - For distributional
RL baseline, we did not implement full C51 or IQN; we stuck to quantile regression on critic and took
the worst 10% quantile as a proxy for CVaR for policy improvement (basically similar to CVaR-PPO
but with critic capturing distribution).
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Table 6: Hyperparameters for FiRL and baselines.

Hyperparameter | Value (FiRL unless specified)

Actor network 2-layer MLP, 64 units each, tanh activations
Critic network 2-layer MLP, 64 units each, tanh activations
Discount factor ~ 0.99

CVaR level « (default) 0.1

Trajectory samples K for CVaR 10

Replay buffer size 10° transitions

Batch size 256

Learning rate (actor, critic) 3 x 10™* (Adam optimizer)

GAE )\ (for advantage est.) 0.95

KL penalty Ski. init 0.1 (linearly anneal to O by 300k steps)
Finsler weights (we, wq, wy) (1.0, 1.0, 1.0) (equal weighting)
Lateral friction coeff A 0.5 (0 Fiiction = 0.5[|vL ||)

B(z) (uphill cost factor) sin(slope angle at x) (approx via ground contact normals)
PPO clip ¢ (for PPO baseline) 0.2

PPO epochs per iter 10

Distributional critic quantiles 50 (uniformly spaced)

Risk baseline o (CVaR-PPO) 0.1 (same as FiRL)

Training steps 5e6 per environment (5 seeds each)
Compute (per run) ~14 hours on 1 Nvidia 4090Ti GPU

Table 7: Training cost on a single RTX 4090 (24 GB) node. Wall-time is per seed; totals aggregate 5
seeds. Simulation is CPU-bound, hence modest GPU utilization.

Environment Steps Wall-time /seed GPU/ CPU hrs (5 seeds)
HalfCheetah — 5° incline 5M 42h 21 GPU + 70CPU
Walker2d — 5° incline SM 5.0h 25GPU + 80CPU
SlopedHopper — 12° 5M 4.4h 22GPU + 72CPU
Total (FiRL, 5 seeds) 68 GPU + 222CPU

L EXPERIMENTAL COMPUTE RESOURCES

All runs used a single NVIDIA GeForce RTX 4090 (24 GB GDDR6X) paired with a dual-socket
server CPU (32 hardware threads) and 128 GB RAM. Software: MuJoCo 3.3.6, Gymnasium
1.2.1, PyTorch 2.7.0 (CUDA 12.x), and cuDNN 9.13. Actor—critic networks are compact (< 10°
parameters). Physics simulation dominates wall-time, so average GPU utilization remained below
30%. Each task was trained for the step budgets in Table [7| with five random seeds shared across all
methods. We used 24 vectorized environments per GPU and formed PPO-style updates every 32,768
transitions. Evaluation was deterministic and separate from training. Baselines received the same
hardware, wall-time, and rollout budgets to ensure a matched comparison.

Energy note. Because simulation is CPU-bound, average GPU power draw was modest; the aggregate
energy for the full FiRL sweep was on the order of a fewx 10 kWh for our node configuration. We
report wall-time and matched budgets to facilitate replication on different hardware.

M LIMITATIONS AND FUTURE WORK

Hyper-parameter sensitivity. FiRL introduces two principal hyper-parameters—the CVaR level «
and the uphill/friction weight 3 in the Finsler metric. Although Section shows reasonably smooth
trends, extreme values (e.g. « < 0.02 or 8 > 3) can slow learning, because very few trajectories
dominate the CVaR estimate or the cost becomes dominated by a single term. Automated risk-tuning
(e.g. bilevel optimisation) is left to future work.

Assumed knowledge of slope direction. Our current implementation derives 3(z) from the
terrain slope computed by MuJoCo. In the real world, online estimation of local incline from
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proprioceptive sensing is noisy; FiRL would need to rely on an estimator or onboard perception,
possibly compounding risk.

Sample efficiency on high-dimensional robots. While FiRL converges within 5M steps on
3—6 DoF MuJoCo agents, preliminary experiments on a 18 DoF articulated quadruped required
~ 30M steps, suggesting that variance in the CVaR critic grows with dimensionality. Variance-
reduced estimators or distributional critics for p,, are promising extensions.

Limited evaluation domains. Experiments were confined to slope-based anisotropy. More com-
plex terrain asymmetries—e.g. patchy friction or directional wind disturbances—are not yet tested.
Extending FiRL to these settings, and to real hardware, remains future work.
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