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Abstract

Realistic audio synthesis that captures accurate acoustic phenomena is essential for
creating immersive experiences in virtual and augmented reality. Synthesizing the
sound received at any position relies on the estimation of impulse response (IR),
which characterizes how sound propagates in one scene along different paths
before arriving at the listener’s position. In this paper, we present Acoustic Volume
Rendering (AVR), a novel approach that adapts volume rendering techniques to
model acoustic impulse responses. While volume rendering has been successful in
modeling radiance fields for images and neural scene representations, IRs present
unique challenges as time-series signals. To address these challenges, we introduce
frequency-domain volume rendering and use spherical integration to fit the IR
measurements. Our method constructs an impulse response field that inherently
encodes wave propagation principles and achieves state-of-the-art performance
in synthesizing impulse responses for novel poses. Experiments show that AVR
surpasses current leading methods by a substantial margin. Additionally, we
develop an acoustic simulation platform, AcoustiX, which provides more accurate
and realistic IR simulations than existing simulators. Code for AVR and AcoustiX
are available at https://zitonglan.github.io/avr.

1 Introduction

Our acoustic environment shapes every sound we hear – from the crisp echoes bouncing through
hallways to the layered resonance of a symphony filling a concert hall. These spatial characteristics
not only define our daily auditory experiences but also prove crucial for creating convincing virtual
worlds [15, 60]. At the core of these spatial characteristics is the impulse response (IR), which
captures the complex relationship between an emitted sound and what we hear. Like a unique
acoustic fingerprint, the impulse response varies across different positions, encoding how sound
waves interact with the environment through reflection, diffraction, and absorption [22, 41]. We
can recreate the acoustic experience at any position by convolving the corresponding impulse
response with any desired sound sources (e.g., music, speech). Given its foundational role in
spatial audio synthesis, understanding and modeling the spatial variation of impulse responses
in acoustic environments has emerged as a critical challenge and attracted increasing research
attention [2, 26, 27, 29, 35, 36, 44, 49, 53].

Current approaches construct a neural impulse response field – a learned mapping that generates
impulse responses given the emitter and listener poses. To model the high spatial variation of impulse
responses, existing methods either fit a neural network to directly learn the field [29, 44] or rely
on audio-visual correspondences to learn mappings from vision [26, 27]. While these methods can
approximate the general energy trend, they struggle to capture the detailed characteristics of impulse
responses, leading to incorrect spatial variation of impulse responses (Fig. 1).

We argue that a key barrier to achieving better performance is the absence of physical constraints that
inherently enforce consistency across multiple poses. Without such physical constraints, the network
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Figure 1: Left: From observations of the sound emitted by a speaker, our model constructs an impulse response
field that can synthesize observations at novel listener positions. Right: Visualization of spatial variation of
impulse responses on MeshRIR[20]. The synthesized impulse responses at different locations are transformed
into the frequency domain, where we visualize phase and amplitude distributions at a specific wavelength (1m).

tends to overfit the training data and show poor generalizability. The received impulse response
fundamentally arises from sound waves propagating through space, combining direct transmission
with environmental reflections. This physical insight motivates us to develop a framework that
inherently encodes wave propagation principles into the modeling of impulse response fields.

In this paper, we introduce Acoustic Volume Rendering (AVR) to model the field of acoustic impulse
responses. Our approach draws inspiration from Neural Radiance Fields [33], which has demonstrated
remarkable success in modeling 3D scenes by representing light transport through volume rendering.
However, acoustic waves present several fundamental challenges that require adaptations to the
volume rendering framework: First, acoustic impulse responses, unlike light transmission, are
inherently time-series signals, with acoustic waves from different locations reaching the listener
at varying delays. The issue is further compounded when dealing with discrete impulse responses
sampled in the real world. Second, impulse responses exhibit high spatial variation, in contrast
to images where neighboring pixels show strong correlations. This characteristic makes network
optimization particularly challenging [43, 45]. Finally, unlike cameras that capture light with precise
directional information (i.e., pixels), microphones capture combined signals from all directions.

To address these challenges, we convert impulse responses from the time domain to the frequency
domain with Fourier transforms and perform volume rendering in the frequency domain. We apply
phase shifts to the frequency-domain impulse responses to account for time delays, bypassing
the limits of finite time domain sampling. The frequency-domain representation also exhibits
lower spatial variation, facilitating network optimization. To account for signals from all possible
directions, we cast rays uniformly across a sphere and use spherical integration to synthesize the
impulse response measurements. Additionally, this design enables personalized audio experience
by integrating individual head-related transfer functions (HRTFs) [57] into spherical integration at
inference time. Our evaluation results show that AVR outperforms existing methods by a large margin
in both simulated and real-world datasets [10, 20] and can zero-shot render binaural audio (Sec. 4.3).
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Figure 2: AcoustiX for improved acoustic simulation.
Time-of-flight indicates how long it takes for an emitted
sound to reach a listener. With sound traveling at a con-
stant speed, the time-of-arrival should be proportional
to the emitter-listener distance. While SoundSpace 2.0
simulations show significant time-of-flight errors, par-
ticularly at short emitter-listener distances, AcoustiX
produces more accurate arrival times. All simulations are
performed in the Gibson Montreal room [56] with direct
line-of-sight between emitter and listener.

In parallel with AVR, we develop AcoustiX,
an acoustic simulation platform that generates
more physically accurate impulse responses
compared to existing simulators. While current
simulators often introduce significant errors
in signal phases and arrival times, AcoustiX
produces impulse responses that better match
the physical properties of real-world acoustics.
Fig. 2 demonstrates the inaccuracies in impulse
responses generated by SoundSpaces 2.0 [9].
Some existing simulators assign random phases
when generating impulse responses [9, 40],
which fails to reflect real-world acoustic be-
havior [4]. Since current research in impulse
response synthesis heavily relies on simulated
datasets [10, 29, 44], these simulation inaccu-
racies can impede progress in the field. To
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address these limitations, we develop a new simulation platform based on the Sionna ray tracing
engine [16] and incorporate acoustic propagation equations to resolve the aforementioned issues.
Similar to SoundSpaces 2.0, AcoustiX supports acoustic simulation in both user-provided 3D scenes
and a variety of existing 3D scene datasets [24, 56].

In summary, this work makes the following contributions:

• We introduce acoustic volume rendering (AVR) for the neural impulse response field to inherently
enforce acoustic multi-view consistency. We introduce a frequency-domain rendering method with
spherical integration to address the challenges associated with acoustic impulse response modeling.

• We demonstrate that AVR outperforms existing methods by a large margin in both real and simulated
datasets. AVR also supports zero-shot and personalized binaural audio synthesis.

• We develop AcoustiX, an open-source and physics-based impulse response simulator that provides
accurate time delays and phase relationships through rigorous acoustic propagation modeling.

2 Related Work

Impulse Response Modeling. Traditional impulse response modeling [2, 32, 49] relies on audio
encoding, which encodes collected data and spatially interpolates the impulse response for unseen
positions [2, 32]. However, this approach comes with large memory costs [29] and struggles to
generate impulse responses with high fidelity [10]. Machine learning techniques have been integrated
in recent years to enhance the quality of synthesized impulse responses [35, 36, 37]. For instance,
generative adversarial networks (GANs) have been utilized for more realistic acoustic synthesis [36,
37]. As implicit representations have become more popular, several works [26, 27, 29, 44] in recent
years proposed neural implicit acoustic fields and achieved state-of-the-art performance. However,
these learning-based methods still produce unsatisfying waveform shapes and show weakness in
novel impulse response synthesis [10]. To this end, our learning-based approach further integrates
wave propagation principles [22], synthesizing high-fidelity impulse responses.

Neural Fields. Since the success of NeRF [33], the concept of neural fields has been expanded
comprehensively. Initially, incorporating depth supervision [12, 38, 51] into radiance fields proves
helpful for novel view synthesis. Some following studies adopt occupancy [59] or signed distance
functions [11, 54, 62], instead of density, to represent scenes. Later, integrating volume rendering with
measurements from sensors of other modalities, such as time-of-flight sensors [3], LiDAR [18, 31, 55],
and structured light imaging [42], has achieved great performance. Extensions [28, 61] have further
modified volume rendering to model radio-frequency signals.

Acoustic Simulation. Acoustic simulation primarily relies on either wave-based or geometric
approaches to approximate sound propagation in indoor environments. While wave-based meth-
ods [7, 14, 46, 47, 52] are generally more precise for low-frequency sound, they require significant
computation for high-frequency signal simulation. For faster acoustic simulation, geometric ap-
proaches have gained considerable attention. These methods, such as image source [1, 5, 39] and ray
tracing [8, 9, 21, 41, 46], are often used in practical applications like virtual reality. However, some
commonly-used simulation platforms [8, 9] suffer from inaccuracies in time-of-flight calculation
and phase simulation for sound propagation. AcoustiX ensures physics-based accuracy, facilitating
further research on acoustic-related topics.

3 Method

Our objective is to learn an impulse response field for one scene to synthesize impulse responses
for the unseen emitter and listener poses. The impulse response h(t) quantifies the received signal
at a specified listener location pl oriented by ωl, resulting from an impulse emitted from pe with
orientation ωe. It encompasses how sound propagates within a specific scene. We begin by revisiting
fundamental principles of acoustic wave propagation. We then introduce our impulse response field
and our frequency-domain acoustic rendering. Lastly, we discuss the implementation specifics. In
addition, we summarize the key features of our simulator AcoustiX.
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3.1 Acoustic Wave Propagation Primer

We first explain the simplest form of acoustic propagation to highlight two basic properties of sound
propagation: time delay and energy decay. Assuming an omnidirectional emitter at pe transmits a
Dirac delta pulse δ(t) at time t = 0 uniformly into open space, the resulting signal at listener pl is
given by [22]:

h(t) =
1

∥pl − pe∥2
δ (t− τ) , where τ =

∥pl − pe∥2
v

, (1)

and v denotes the velocity of sound. The orientations of both the emitter ωe and the listener ωl are
ignored under the omnidirectionality assumption. We note that the listener captures a time-delayed
emitted signal, with an amplitude decay inversely proportional to the distance traveled. Additionally,
the phenomenon can be alternately represented in the frequency domain with the Fourier Transform:

H(f) = F{h(t)} =

∫ ∞

−∞
h(t)e−j2πftdt =

1

∥pl − pe∥2
e−j2πfτ . (2)

With this representation, the time delay observed in the time domain manifests as a phase shift
(e−j2πfτ ) in the frequency domain.

3.2 Acoustic Volume Rendering

In a real scenario, sound emitted by a source undergoes complex interactions with the geometric
structures of the environment. Each location in the scene may absorb some energy from the incoming
wave, resulting in signal absorption; it may also reflect and scatter the wave, leading to signal
re-transmission. To model these complex effects, AVR represents scene as a field: given an emitter
location pe and its orientation ωe, the network FΘ outputs two key acoustic properties for any point
p in space given a direction ω:

FΘ : (p, ω, pe, ωe) 7→ (σ, s(t)), (3)

where σ represents acoustic volume density and the time-varying parameter s(t) models the acoustic
signal transmitted out from the location p in direction −ω, including both initial emission and
subsequent re-transmission.

With this parameterization, we now render the signal hω(t) received at a listener position p from
direction ω, assuming the emitter is fixed and the impulse is emitted at time t=0. Similar to volume
rendering for light, our process adopts volume rendering to accumulate the signals emitted from all
locations along the ray p(u) = p+ u · ω, with predefined near and far bounds un and uf . Differently,
our approach also accounts for time delay and energy decay in acoustic signal propagation and
performs alpha composition for time signals, resulting in our acoustic volume rendering equation:

hω(t) =
1

tv

∫ uf

un

L(u)σ(p(u))s(t− u

v
; p(u), ω)du, where L(x) = exp

(
−
∫ x

un

σ(p(x))dx

)
.

(4)
Note that each emitted signal s(t− u

v ; p(u), ω) is associated with a time delay u
v . This delay accounts

for the non-negligible sound propagation time, ensuring that the signal received by the listener at
time t originates from location p(u) at the earlier time t− u

v . To account for energy decay, We apply
a factor 1

tv to all the signals along the ray, independent of their emission time. Since all signals
originate from the impulse transmitted at time 0, the traveled distance of any signal received at time t
is tv, whether it’s from the original emission or a re-transmitted signal.

Listener receives signals from all directions, influenced by its gain pattern. The signal obtained from
a single ray can not represent the whole received impulse response. To account for this, the final
impulse response captured by the listener is a combination of signals from all directions:

h(t) =

∫
Ω

G(ω)hω(t)dω, (5)

where G(·) represents the listener gain pattern that characterizes the directivity of the listener, and
Ω denotes the complete sphere of directions from which the listener receives signals. The whole
acoustic rendering process is also shown in 3.
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Figure 3: Acoustic Rendering pipeline. We sample points along the ray that is shot from the microphone
and query the network to obtain signals s(t) and density σ. Time delay ( d

v
) is applied to account for the wave

propagation. After that, we combine signals and densities to perform acoustic volume rendering for each ray to
get the directional signal (hdir(t)). We integrate along the sphere to combine signals from all possible directions
with gain pattern G(ω) to obtain the final rendered impulse response h(t).

3.3 Acoustic Volume Rendering in the Frequency Domain

While the above method renders a continuous impulse response, the actual signal collected in the
real world is discrete, sampled with a fixed interval T . This discretization converts the target impulse
response from h(t) to h[n], where h[n] = h(nT ). Accordingly, we train neural networks to output
s[n] at these discrete timestamps. However, this discrete sampling presents a fundamental challenge
in acoustic volume rendering. To capture the signal from one direction, hω[n], we need to evaluate
the time-delayed signal s(nT − u

v ). The key issue arises when u
v is not a multiple of the sampling

interval T , i.e., the required timestamps for delayed signals fall between our discrete samples, making
accurate rendering difficult in the time domain. While one could add timestamp as an additional
network input to interpolate between samples, this would require multiple network queries for each
point, severely impacting rendering efficiency.

We address this challenge by reformulating the problem in the frequency domain. A key insight
is that time delays in the signal correspond to phase shifts in the frequency domain (Eq. 2). This
allows us to achieve arbitrary time delays u

v by transforming the predicted signal s[nT ; p(u), ω] into
frequency domain F {s[nT ; p(u), ω]} and applying the corresponding phase shift, regardless of
whether u

v aligns with the sampling grid. Specifically, the delayed signal in the frequency domain
can be obtained via:

F
{
s(nT − u

v
; p(u), ω)

}
= F {s[nT ; p(u), ω]} · e−j2πfu/v. (6)

The linearity of the Fourier Transform F allows us to extend acoustic volume rendering to the
frequency domain with the same alpha composition (i.e., integration) process:

Hω[f ] = F

{
1

tv

}
∗
∫ uf

un

L(u)σ(p(u))F
{
s(nT − u

v
; p(u), ω)

}
du. (7)

Here, the multiplication with energy decay factor 1
tv in Eq. 4 becomes the convolution with F

{
1
tv

}
in the frequency domain. Eq. 7 can be regarded as Eq. 4 in the frequency domain by applying discrete
Fourier Transform on both sides of the equation. Similarly, the final impulse response in the frequency
domain can be formulated analogously to Eq. 5:

H[f ] =

∫
Ω

G(ω)Hω[f ]dω. (8)

Finally, time-domain impulse response h[n] can be obtained through inverse Fourier Transform.

3.4 Sampling Rays and Points

To handle the integration in Eq. 7 and Eq. 8, our sampling strategy includes both ray sampling over a
sphere and point sampling along a ray. We perform ray sampling by selecting Nθ azimuthal directions
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and Nϕ elevational directions, resulting in Nθ ×Nϕ distinct orientations that uniformly cover the
sphere. For a ray along one of the directions, point sampling is conducted by evenly placing Nr

points between predefined near and far bounds, similar to [61]. Consequently, the network is queried
at Nθ ×Nϕ ×Nr points for the synthesis of an impulse response. We refer readers to Appendix A
for the details of our sampling strategy.

3.5 Optimization

We supervise the synthesized impulse responses H[f ] and h[n] alongside the ground truth H∗[f ] and
h∗[n] in both frequency and time domains. We emphasize supervision in the frequency domain since
the responses exhibit smaller local variability. In the frequency domain, Lspec measures spectral loss
by comparing the real and imaginary components.

Lspec = ∥Re(H)− Re(H∗)∥1 + ∥Im(H)− Im(H∗)∥1. (9)

We also supervise the amplitude and phase of the synthesized signals with Lamp and Lphase.

Lamp = ∥|H| − |H∗|∥1, (10)

Lphase = ∥cos(∠H)− cos(∠H∗)∥1 + ∥sin(∠H)− sin(∠H∗)∥1. (11)
For time domain signals, Ltime is employed to encourage amplitude consistency.

Ltime = ∥h− h∗∥1. (12)

Our total loss is a linear combination of the above loss with different weights, including a multi-
resolution STFT loss Lstft [58] and an energy loss Lenergy similar in [30]:

Ltotal = Lspec + λampLamp + λphaseLphase + λtimeLtime + λstftLstft + λenergyLenergy, (13)

3.6 Simulation platform

AcoustiX uses Sionna ray tracing engine [16]. We modify the ray tracing in terms of ray interactions
with the environment to support acoustic impulse response simulations. The simulator supports
various ray interactions with the environment. Each material in the scene is assigned with frequency-
dependent coefficients. This enables the tracing of cumulative frequency responses for each octave
band to accurately simulate the impulse response. Room models can be created using Blender and
exported as compatible XML files for our simulation setup. AcoustiX also supports the import of
3D room models from the iGibson dataset [24, 56]. More details can be found in Appendix D.

4 Experiments

Implementation Details. The input to our model is an emitter’s pose (position pe ∈ R3, direction
ωe ∈ R3) and a 3D query point’s pose (p ∈ R3, ω ∈ R3), The model outputs the corresponding
density σ ∈ R and discrete time signal s[n] ∈ RT at that query point. We first encode all input
vectors into high-dimensional embeddings using hash grid [34]. The encoded input embeddings are
then passed into a 6-layer MLP. The first 3 layers of MLP take as input locations (pe, p) and predict
the density σ and a 256-dimensional feature. The feature and encoded directions (ωe, ω) are then
concatenated and passed into the last 3 layers, which outputs the signal sequence s[n].

The sampling numbers used in the experiments are Nθ = 80, Nϕ = 40, and Nr = 64. We set the
weights of loss components to be λamp =λphase =0.5, λtime =100, λstft =1, λenergy =5. We train our
model for 200 epochs for each scene. We use Adam optimizer with a cosine learning rate scheduler
that starts at a learning rate 10−3 and decays to 10−4. The optimization process takes 24 hours on a
single NVIDIA L40 GPU.

Evaluation Metric. We use comprehensive metrics to assess the quality of our method. Following
[10, 29], we measure the energy decay trend by Clarity (C50), Early Decay Time (EDT), and
Reverberation Time (T60). For the measurement of the correctness of waveform shape, prior works
only consider the amplitude in the frequency domain (e.g. STFT error) to assess the performance,
which we argue only indicates part of the waveform information: the transformed frequency signal
is a complex number that is jointly defined by amplitude and phase. We therefore also include the
frequency-domain phase error in our measurement: the L1 norm of the error in the cosine and sine
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Method
MeshRIR RAF-Furnished RAF-Empty

Phase Amp. Env. T60 C50 EDT Phase Amp. Env. T60 C50 EDT Phase Amp. Env. T60 C50 EDT
AAC-nearest 1.47 0.91 1.40 8.6 2.20 58.8 1.60 1.09 4.83 13.0 3.41 73.5 1.60 1.09 4.83 13.0 3.41 73.3
AAC-linear 1.44 0.89 1.42 8.2 2.29 58.9 1.60 0.99 3.81 12.4 3.65 90.2 1.59 1.10 5.22 13.1 3.25 71.5
Opus-nearest 1.45 0.72 1.37 5.2 1.26 35.7 1.60 1.19 5.35 14.4 3.78 80.3 1.59 1.16 4.58 13.3 4.25 100.6
Opus-linear 1.43 0.69 1.37 6.9 1.83 49.3 1.60 1.47 5.74 13.1 3.55 77.8 1.59 0.95 4.26 12.7 3.94 95.5

NAF 1.61 0.64 1.59 4.2 1.25 39.0 1.62 0.93 5.34 7.1 0.98 20.6 1.62 0.85 4.67 8.0 1.22 26.3
INRAS 1.61 0.77 1.85 3.4 1.47 40.7 1.62 0.96 6.43 6.9 1.08 21.4 1.62 0.88 4.72 7.6 1.21 25.8
AVR (Ours) 0.85 0.54 1.15 3.9 0.92 35.1 1.58 0.75 4.52 5.0 0.95 17.9 1.58 0.67 3.96 5.5 1.04 23.3
Table 1: Quantitative results on real datasets (0.1s IR duration). We report comprehensive metrics (lower is
better) including phase error, amplitude error, envelop error(%), T60 reverberation time (%), clarity C50 (dB),
and Early Decay Time (millisecond). AVR outperforms existing methods by a substantial margin. We note that
the random phase error is 1.62, which means all learning-based methods except ours fail to learn valid phase
information.

INRAS

NAF

AVR

(Ours)

Ground

truth

Phase Amplitude Phase Amplitude Phase Amplitude

MeshRIR Room 3D Room 2D

Figure 4: Visualization of spatial signal distributions. We compare the spatial signal distributions between
ground truth and various methods on the MeshRIR dataset and two simulated environments. While NAF
and INRAS fail to capture the signal distributions, our model can estimate amplitude and phase distributions
accurately.

components of the phase. Besides the frequency domain, we also measure the time-domain impulse
response signal accuracy by calculating the L1 error in the envelope, denoted as envelop error. Please
refer to Appendix B for the detailed definition of each metric.

Baselines. We compare with both learning-based methods using neural implicit representations
and traditional methods. NAF[29] is the first method that uses neural implicit representation to
model the impulse response field. It uses an MLP to predict the spectrogram of the impulse response
signals. Another method INRAS [44] disentangles the sound transmission process into three different
learnable modules. Different from NAF, INRAS models the impulse response in the raw time domain.
We also implement traditional audio encoding methods AAC [6] and Opus [50] and adopt the same
setting as [29].

4.1 Results on Real World Datasets

We evaluate our model’s performance on the datasets collected from real scenes. We adopt two
commonly used room impulse response datasets: MeshRIR [20] and Real Acoustic Field [10].
MeshRIR collects monaural impulse response in a cuboidal room. We use S1-M3969 dataset split
featuring a fixed single speaker for evaluation and the impulse responses are resampled to 24 KHz
sampling rate. Real Acoustic Field (RAF) recorded monaural impulse responses in a real office space,
with scenarios of the office being empty and the office being furnished. Different from MeshRIR, the
speaker is directional and varies its position at different data points. The impulse responses in RAF
are resampled to 16 KHz. All the impulse responses in these two datasets are cut to 0.1s. We use 90%
of the data to train and the rest 10% for testing (Refer to Appendix C.2 for 0.32s on RAF dataset).
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Figure 6: Examples of synthesized impulse response with different methods. We visualize the synthesized
impulse responses as time signals (x-axis) on both real and simulated datasets. Orange lines represent model
predictions and Blue lines represent ground truth. All plots share a common y-axis for easier comparison.

Quiet

Loud

Ground truthAVR (Ours)

NAF INRAS

Figure 5: Top-down view of loudness map
on MeshRIR. AVR predicts an accurate loud-
ness map, while NAF and INRAS have inac-
curate patterns.

The results of all methods are shown in Tab. 1. We find that
our method significantly outperforms the existing state-
of-the-art baselines in all the datasets. We note that no
existing learning-based method but ours performs better
than chance in the phase error metric. In Fig.4 and Fig. 5,
we show visualizations of the learned impulse response
field for the entire scene. Our method captures much more
spatial signal distribution than prior works. We also show
an example of individual time-domain impulse response
in Fig. 6. Although prior methods can capture the general
decaying trend of the impulse responses, the waveforms
(e.g. the peaks) are misaligned with the ground truth. In
contrast, our method captures the waveforms much better.
We especially point the readers to the time that the signal
arrives for every impulse response, which indicates time-
of-arrival. Our method has much smaller errors in terms
of time-of-arrival due to our physics-based rendering.

4.2 Results on Simulation Dataset

Due to the high cost of equipment required to collect large-scale impulse responses in a real scene,
MeshRIR and Real Acoustic Field are the only real-world impulse response datasets that are collected
densely in an enclosed space. Researchers typically use simulated impulse response data in virtual
3D environments to complement the real-world datasets [26, 29, 44].

We use our simulation platform to simulate monaural impulse responses in three rooms and evaluate
all methods’ performance (Tab. 2). The simple 2D room is a 2D rectangular-shaped enclosed
space with only one wall in the middle of the room, serving as a toy example. We also include
two complicated 3D rooms from iGibson dataset [24, 56]. All rooms are equipped with a single
omnidirectional speaker, with listeners placed randomly in the rooms. All the impulse responses are
sampled at a 16 KHz sampling rate with 0.1s duration time. We follow the same split strategy used in
real-world datasets.
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Method
2D Room 3D scene Avonia 3D scene Montreal

Phase Amp. Env. T60 C50 EDT Phase Amp. Env. T60 C50 EDT Phase Amp. Env. T60 C50 EDT
AAC-nearest 1.40 0.88 2.88 11.0 2.77 32.6 1.62 0.95 6.52 10.4 2.01 27.3 1.62 0.95 5.57 10.4 2.01 27.9
AAC-linear 1.39 0.86 2.64 10.3 2.54 29.8 1.61 0.90 6.13 10.1 1.86 25.4 1.61 0.90 5.19 10.1 1.86 25.1
Opus-nearest 1.38 0.69 2.73 9.4 2.22 26.8 1.61 0.85 6.74 10.4 1.94 25.0 1.61 0.85 5.74 10.4 1.94 25.2
Opus-linear 1.34 0.67 2.53 9.1 2.21 25.6 1.70 0.71 6.31 9.8 1.87 24.0 1.60 0.71 5.32 9.8 1.87 24.3

NAF 1.62 0.69 6.72 7.6 2.02 23.5 1.62 0.99 9.12 10.2 2.12 25.4 1.62 0.81 5.53 7.9 1.38 19.1
INRAS 1.61 0.94 4.16 8.4 2.45 26.7 1.62 0.87 6.86 8.8 1.56 20.0 1.62 0.87 5.75 7.6 1.44 19.7
AVR (Ours) 1.04 0.65 2.35 7.5 1.62 20.5 1.52 0.63 5.93 8.9 1.44 19.1 1.53 0.65 5.16 7.6 1.23 17.1

Table 2: Quantitative results on simulation dataset. Our method significantly outperforms existing methods
in both a 2D room with simple geometry and two 3D rooms with complex geometry.

Tab. 2 shows that our method consistently outperforms existing methods in all datasets. From the
spatial signal distributions in Fig. 4, we observe that even in the simple 2D room the prior methods
fail to accurately capture the accurate field distribution, while the field distribution generated by our
method consistently matches the ground truth in both 2D and 3D cases. Our estimated time-domain
signals at unseen poses are also closely matched with the ground truth signals, shown in Fig. 6.

4.3 Zero-Shot Binaural Audio Rendering.

AVR can generate accurate binaural audio despite being trained only on monaural audio modeling
(without any fine-tuning). The existing method for rendering binaural audio either requires training
at binaural channel spatial audio data [13] or manually creating signal delays. We render impulse
response of left and right ears separately (20cm apart) in the MeshRIR scene. We play a piece of
music 3 meters away from a listener, who turns its head from left to right and back again. We conduct
a user study comparing the spatial perception of rendered binaural audio among NAF, INRAS, and
our method. Seven users rated the similarity between expected head trajectories and their hearing
experience on a 1-5 scale. Our method achieves the highest score of 4.71, compared to NAF’s 1.42
and INRAS’s 1.86. Other methods fail to synthesize accurate binaural audio because they are trained
solely on monaural audio. Audio examples are available on our project website.

AVR is able to achieve binaural audio rendering for multiple reasons. First, our model captures accurate
phase information in the impulse response to the extent that simply rendering the impulse response
at the positions of the left and right ears can provide accurate phase differences, i.e., time delay or
interaural time differences (ITD). Second, our model can easily incorporate the head-related transfer
function for modeling the shadowing and pinna effects. Specifically, these direction-dependent
filtering effects can be integrated into Eq.8 before summing responses from all directions. By
replacing the direction-dependent weight term G(ω) with a direction-dependent HRTF function, we
can achieve a more accurate binaural sound effect and reduce directional ambiguity (e.g., front versus
back). Furthermore, explicit incorporation of HRTF allows our method to work with customizable
HRTF for different users, allowing for an accurate and personalized listening experience.

4.4 Computing Efficiency

Method 0.1s IR 0.32s IR

NAF 3.2 ms 6.4 ms
INRAS 2.1 ms 3.2 ms

AV-NeRF 4.6 ms 6.9 ms
AVR (Ours) 30.3 ms 90.7 ms

Table 3: Inference Time Comparison.

A comparison of runtime efficiency between AVR and other
methods are shown in Tab. 3. This includes the inference
time for different methods when they are trained to output
IR of 0.1s and 0.32s. Since AVR uses acoustic volume
rendering over a sphere, it is slower than the methods
that directly output IR with a network. Encouragingly,
various techniques have been proposed in recent years to
significantly improve the efficiency of volume rendering
and NeRF through efficient sampling strategies [17, 25, 48]. These approaches can be similarly
adapted for acoustic volume rendering. More analysis on computing efficiency can be found in
Appendix C.1.

4.5 Ablation Study

We ablate different choices of the sampling parameters during volume rendering, rendering domain,
and loss components (Tab. 4). All models are evaluated on the MeshRIR dataset.
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Study Objectives Variation Phase. Amp. Env. T60 C50 EDT

Sampling Parameters

64 × 32 rays, 64 points 0.956 0.547 1.17 4.07 1.20 47.6
48 × 24 rays, 64 points 1.356 0.607 1.37 4.57 1.73 67.6
80 × 40 rays, 64 points 0.847 0.535 1.15 3.86 0.92 35.1
80 × 40 rays, 80 points 0.857 0.529 1.14 3.79 0.95 34.9
80 × 40 rays, 40 points 0.869 0.543 1.17 4.66 1.30 52.9

Rendering Domain time-domain 1.181 0.642 1.43 4.28 1.23 39.6
frequency-domain 0.847 0.535 1.15 3.86 0.92 35.1

Loss Component
w/o raw signal loss 0.722 0.558 1.16 3.89 1.74 46.4

w/o angle & spec loss 1.453 0.567 1.36 4.52 2.65 64.5
w/ all loss components 0.847 0.535 1.15 3.86 0.92 35.1

Table 4: Model ablations. Performance for the model variants on MeshRIR dataset.

Sampling Parameters. We study the sensitivity of our model to sampling parameters Nθ, Nϕ,
Nr. We find that both increasing the ray numbers and the sampling points will both enhance the
performance, but come with the cost of low training speed and high memory consumption.

Rendering Domain. We train our model using both time-domain volume rendering and frequency-
domain volume rendering. Frequency-domain rendering effectively avoids issues associated with
fractional time delays, aligning more accurately with the actual phenomenon of acoustic signal
propagation. Consequently, this approach yields better results, confirming our argument in Sec. 3.3.

Loss Component. We also ablate loss components. We find that reducing any of the loss components
results in decreased performance. However, it is noteworthy that all model variants, except for the
one trained without the angle and spectral loss, outperform the baselines discussed in Sec. 4.1.

5 Discussion

Limitations and Future Work. Our rendering involves both spherically sampling rays and sampling
points along each ray, which can lead to large memory consumption and longer inference time.
Recently, many research works have been proposed to improve the efficiency of volume rendering
and NeRF through efficient sampling strategies. We envision that similar methods could also be
applied to acoustic volume rendering to speed up the rendering. Besides, AVR needs to train a new
model for a novel scene, which requires effort to collect impulse response samples in the new scene.
Future work could explore generalization to novel scenes by incorporating multi-modal inputs, aiming
to synthesize an impulse response field using only a few visual or acoustic samples.

Conclusion. This paper proposes acoustic volume rendering to reconstruct impulse response fields
that inherently encode wave propagation principles. We introduce frequency-domain signal rendering
and spherical signal integration to address the unique challenges in impulse response modeling. Ex-
perimental results demonstrate that AVR significantly outperforms existing approaches. Additionally,
we develop AcoustiX, an open-source simulation platform that provides accurate time-of-arrival
measurements. Our work advances immersive auditory experiences in AR/VR, spatial audio in
gaming and virtual environments, teleconferencing, and acoustic modeling in architectural design.
Our realistic auditory simulations also benefit autonomous navigation, acoustic monitoring, and
assistive hearing technologies where accurate acoustic modeling is essential.
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A Sampling Rays and Points

The direction of a ray can be represented by two measures: azimuth θ and elevation ϕ. We handle
ray sampling by performing both azimuth and elevation sampling. For azimuth sampling, we apply
stratified sampling between 0 and 2π to obtain another Nθ rays, where i is the index:

θi ∼ U
[
2π

i− 1

Nθ
, 2π

i

Nθ

]
. (14)

For elevation sampling, we evenly distribute Nϕ rays, with ϕj = arccos(2 j
Nϕ

− 1), where j is the
index. By combining all azimuth and elevation angles, we obtain Nθ ×Nϕ directions in 3D Cartesian
coordinates, each represented as follows:

ωij = [cos θi sinϕj , sin θi sinϕj , cosϕj ]. (15)

For each sampled ray, we uniformly sample Nr points on it. Given a ray p(u) = pl + u · ω, starting
from the point pl in direction ω, the position of the mth point is given by:

p(um) = pl + ((uf − un)
m

Nr
+ un)ω. (16)

With this sampling, we approximate the integral in Eq. 7 using quadrature as follows:

Hω[f ] = F

{
1

tv

}
∗

Nr∑
m=1

Tm(1− exp(−σm∆u)F
{
s(nT − u

v
; p(um), ω)

}
,

where Tm = exp

(
−

m−1∑
x=1

σx∆u

)
, and ∆u =

uf − un

Nr
.

(17)

Combing our ray sampling strategy, we rewrite the Eq.8 and as follows:

H[f ] =

Nθ∑
i=1

Nϕ∑
j=1

G(ωij)Hωij
[f ]. (18)

B Evaluation Metric

Envelope Error. Given the time domain ground truth impulse response h∗[n] and our prediction h[n],
we can compute the envelope error by first obtaining the envelope using the Hilbert transform to get
the analytic signal and then applying the absolute value, as follows:

Env∗ = |Hilbert (h∗)| (19)

The normalized envelope error is defined as follows (we multiply it by 100 to avoid small numbers):

Envelope error = 100 ∗ Mean(
|Env∗ − Env|
max (Env∗)

) (20)

Phase and Amplitude Error. Given the frequency domain ground truth impulse response H∗[f ] and
our prediction H[f ], we use a cosine and sine function encoded function to quantify the phase error:

Phase error = Mean(| cos(∠H∗)− cos(∠H)|+ | sin(∠H∗)− sin(∠H)|). (21)

The amplitude error is defined as follow:

Amplitude error = Mean(
|abs(H∗)− abs(H)|

abs(H∗)
). (22)

C More Evaluation Results

C.1 Computing Efficiency

We further examine the relationship between inference speed and the number of rays as well as
the number of points sampled along each ray. As illustrated in Fig 7, the inference speed scales
approximately linearly with both the number of rays and the number of points along each ray.
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Figure 7: Impact of ray and point counts on inference speed.

C.2 Additional Results on RAF Dataset

We repeated our experiments with a 0.32s RIR duration. Tab 5 shows the results on the RAF-Furnished
dataset. We also included AV-NeRF as a baseline and multi-resolution STFT as an evaluation metric.
With a 0.32s RIR duration, our method also outperforms these baselines. We provide loudness map
visualization (Fig 8) for two different speaker positions at RAF-Furnished dataset with a grid size of
0.1m. Our method can better capture sound level differences caused by geometry occlusion and has a
smoother spatial variation of loudness.

Method Phase Amp. Env. T60 C50 EDT

NAF 1.62 0.79 1.67 7.68 0.64 24.2
INRAS 1.62 0.89 1.34 5.41 0.57 22.8

AV-NeRF 1.62 0.93 1.59 6.54 0.61 25.9
AVR (Ours) 1.59 0.69 1.04 4.95 0.55 19.8

Table 5: Results on RAF dataset. Performance comparison between our method and others on the RAF dataset
with a 0.32s RIR duration.

Figure 8: Loudness map. We visualize the loudness map of various methods using the RAF-Furnished dataset,
which features the most complex structure among all the datasets we utilized. Green dots and arrows represent
the speaker positions and orientations from a top view. Gray dots represent the room structures, outlining the
geometry of walls, objects, and other elements.

D Acoustic Simulation Platform

D.1 Impulse Response Generation

AcoustiX is built based on Sionna [16] ray tracing engine that supports ray reflection, scattering,
and diffraction. We modify the ray tracing engine in terms of ray interactions with the environment
to support acoustic impulse response simulations. Each material in the scene is assigned a reflection
coefficient β and a scattering coefficient α. For each reflection, the reflected wave’s amplitude is
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E′ = (1−α)βE with E being the energy before the interaction. The scattered energy is E′′ = αβE.
With these notations, the impulse response is formulated as follows:

h(t) =

N∑
n=1

A

dn
δLP

(
t− dn

v

)
·
Kn∏
k=1

(1− αn,k)(−βn,k), (23)

where dn is the accumulated total length of nth path, v is the velocity of sound in the air, αn,k and
βn,k denote material properties of kth reflection. We use the negative reflection coefficient definition
discussed in [23]. In the equation, we assume purely specular reflection for simplicity. If scattering
or diffraction occurs along the path, we replace the reflection term with the corresponding scattering
or diffraction attenuation. δLP is a windowed sinc function defined similar to the one in [39].

In the implementation, we divide the whole frequency band into several octave bands and get their
common acoustic properties. To assign frequency-dependent reflection and scattering coefficients to
each material, we transfer Eq. 23 to the frequency domain and assign a coefficient to the amplitudes
for each frequency band. The material coefficient is retrieved from [19].

D.2 Acoustic Ray Tracing

Figure 9: Example of a simulated impulse response

In AcoustiX, users can determine the number of cast rays and maximum bouncing depth in the
simulation. AcoustiX supports different ray-geometry interactions including reflection, scattering,
and diffraction. By default, we enable all the functions above and set the maximum bouncing
depth to 30 and the number of cast rays to 1e6 to enable comprehensive path searching within the
rooms. We provide flexible API usage in AcoustiX, allowing users to adjust the acoustic ray tracing
configurations and balance between simulation quality and speed. Fig. 9 shows an example of our
simulated impulse responses.

D.3 Room Model

AcoustiX supports customized room models. We create room structures with Blender, assign
material names to all objects, and export the scene in XML formats using Mitsuba blender Add-on1.
During simulation, each object is matched with its corresponding acoustic material properties by
looking up a table mapping assigned names to properties. In addition to customizing room models,
we also support importing 3D room models from the iGibson dataset [24, 56] into our simulations,
assigning acoustic properties to each object.

E Social Impact

As our method can synthesize high-quality impulse responses, our work can potentially enhance
immersive VR/AR experiences and sound-dependent applications. AcoustiX fosters research and
innovation in acoustic topics. Potential negative social impacts include the creation of misleading
audio content, which could be used to deceive or manipulate users. For instance, high-quality
impulse response generation could be exploited to fabricate realistic but fake acoustic environments
or conversations, leading to misinformation or privacy violations.

1https://github.com/mitsuba-renderer/mitsuba-blender/tree/latest

17



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state our contributions in the abstract and introduction and conduct
extensive experiments on different datasets to support our claim.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We point out the limitations in our Discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly elaborate on our method step by step and include all parameters
needed for network building. We also provide details on how we preprocess the data and
the simulation platform details we adopt for reproducibility. The code and the simulation
platform is open-sourced in the projeact website.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code, dataset, and simulation platform are open-sourced in the project
website.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have all the training and testing details, including data splits, hyperparame-
ters, ablation studies on hyperparameters and the description of the used optimizer.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We don’t report error bars because this would be too computationally expen-
sive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have all details in the Experiment setup part.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We adhere to the NeurIPS Code of Ethics and preserve anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We mention both potential societal impacts in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our model and data do not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the corresponding paper when needed and follow the corresponding
license when using public datasets and the licensee that the Sionna ray tracing engine uses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We talk about the details of our simulation platform when we introduce it.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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