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ABSTRACT

To relieve the massive computation cost in the field of deep learning, models with
more compact architectures have been proposed for comparable performance. How-
ever, it is not only the cumbersome model architectures but also the massiveness of
the training data that adds up to the expensive computational burdens. This problem
is particularly accentuated in the graph learning field: on one hand, Graph Neural
Networks (GNNs) trained upon non-Euclidean graph data often encounter rela-
tively higher time costs, due to their irregular density properties; on the other hand,
the natural class-imbalance property accompanied by graphs cannot be alleviated
by the massiveness of data, therefore hindering GNNs’ ability in generalization.
To fully tackle the above issues, (i) theoretically, we introduce a hypothesis on to
what extent a subset of the training data can approximate the full dataset’s learning
effectiveness, which is further guaranteed by the gradients’ distance between the
subset and the full set; (ii) empirically, we discover that during the learning process
of a GNN, some samples in the training dataset are informative in providing gradi-
ents for model parameters update. Moreover, the informative subset evolves as the
training process proceeds. We refer to this observation as dynamic data sparsity.
We also notice that a pruned sparse contrastive GNN model sometimes “forgets”
the information provided by the informative subset, reflected in their large loss in
magnitudes. Motivated by the above findings, we develop a unified data-model
dynamic sparsity framework named Graph Decantation (GraphDec) to address the
above challenges. The key idea of GraphDec is to identify the informative subset
dynamically during the training process by adopting the sparse graph contrastive
learning. Extensive experiments on multiple benchmark datasets demonstrate
that GraphDec outperforms state-of-the-art baselines for the class-imbalanced
graph/node classification tasks, with respect to classification accuracy and data
usage efficiency.

1 INTRODUCTION

Graph representation learning (GRL) (Kipf & Welling, 2017) has shown remarkable power in dealing
with non-Euclidean structure data (e.g., social networks, biochemical molecules, knowledge graphs).
Graph neural networks (GNNs) (Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al., 2018),
as the current state-of-the-art of GRL, have become essential in various graph mining applications.

However, in many real-world scenarios, training on graph data often encounters two difficulties: class
imbalance (Park et al., 2022) and massive data usage (Thakoor et al., 2021; Hu et al., 2020). Firstly,
class imbalance naturally exists in datasets from diverse practical domains, such as bioinformatics
and social networks. GNNs are sensitive to this property and can be biased toward the dominant
classes. This bias may mislead GNNs’ learning process, resulting in underfitting samples that are
of real importance to the downstream tasks, and poor test performance at last. Secondly, massive
data usage requires GNN to perform message-passing over nodes of high degrees bringing about
heavy computation burdens. Some calculations are redundant in that not all neighbors are informa-
tive regarding learning task-related embeddings. Unlike regular data such as images or texts, the
connectivity of irregular graph data invokes random memory access, which further slows down the
efficiency of data readout.
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Accordingly, recent studies (Chen et al., 2021; Zhao et al., 2021; Park et al., 2022) arise to address the
issues of class imbalance or massive data usage in graph data: (i) On one hand, to deal with the class
imbalance issue in node classification on graphs, GraphSMOTE (Zhao et al., 2021) tries to generate
new nodes for the minority classes to balance the training data. Improved upon GraphSMOTE,
GraphENS (Park et al., 2022) further proposes a new augmentation method by constructing an ego
network to learn the representations of the minority classes. (ii) On the other hand, to alleviate the
massive data usage, (Eden et al., 2018; Chen et al., 2018) explore efficient data sampling policies to
reduce the computational cost from the data perspective. From the model improvement perspective,
some approaches design the quantization-aware training and low-precision inference method to
reduce GNNs’ operating costs on data. For example, GLT (Chen et al., 2021) applies the lottery ticket
pruning technique (Frankle & Carbin, 2019) to simplify graph data and the GNN model concurrently.

Figure 1: The principle of graph decantation. It decants
data samples based on rankings of their gradient scores,
and then uses them as the training set in the next epoch.

Despite progress made so far, existing meth-
ods fail to address the class imbalance and
computational burden altogether. Dealing
with one may even exacerbate the condi-
tion of the other: when tackling the data
imbalance, the newly synthetic nodes in
GraphSMOTE and GraphENS bring along
extra computational burdens for the next-
coming training process. While a compact
model reduces the computational burden
to some extent, we interestingly found that
the pruned model easily “forgets” the mi-
norities in class-imbalanced data, reflected
in its worse performance than the original
model’s. To investigate this observation, we
study how each graph sample affects the GNN training by taking a closer look at the gradients each of
them exerts. Specifically, (i) in the early phases of training, we identify a small subset that provides
the most informative supervisory signals, as measured by the gradient norms’ magnitudes (shown in
later Figure 5); (ii) the informative subset evolves dynamically as the training process proceeds (as
depicted in later Figure 3). Both the phenomenons prompt the hypothesize that the full training set’s
training effectiveness can be approximated, to some extent, by that of the dynamic subset. We further
show that the effectiveness of the approximation is guaranteed by the distance between the gradients
of the subset and the full training set, as stated in Theorem 1.

Based on the above, we propose a novel method called Graph Decantation (GraphDec) to guide
dynamic sparsity training from both the model and data aspects. The principle behind GraphDec
is shown in Figure 1. Since the disadvantaged but informative samples tend to bring about higher
gradient magnitudes, GraphDec relies on the gradients directed by dynamic sparse graph contrastive
learning loss to identify the informative subsets that approximate the full set’s training effectiveness.
This mechanism not only does not require supervised labels, but also allows for the training of
the primary GNN, and the pruning of the sparse one. Specifically, for each epoch, our proposed
framework scores samples from the current training set and keep only k most informative samples for
the next epoch. Additionally, the framework incorporates a data recycling process, which randomly
recycles prior discarded samples (i.e., samples that are considered unimportant in the previous training
epochs) by re-involving them in the current training process. As a result, the dynamically updated
subset (i) supports the sparse GNN to learn relatively unbiased representations and (ii) approximates
the full training set through the lens of Theorem 1. To summarize, our contributions in this work are:

• We develop a novel framework, Graph Decantation, which leverages dynamic sparse graph con-
trastive learning on class-imbalanced graph data for efficient data usage. To our best knowledge,
this is the first study to explore the dynamic sparsity property for class-imbalanced graphs.

• We introduce cosine annealing to dynamically control the sizes of the sparse GNN model and the
graph data subset to smooth the training process. Meanwhile, we introduce data recycling to refresh
the current data subset and avoid overfitting.

• Comprehensive experiments on multiple benchmark datasets demonstrate that GraphDec out-
performs state-of-the-art methods for both the class-imbalanced graph classification and class-
imbalanced node classification tasks. Additional results show that GraphDec dynamically finds an
informative subset across the training epochs effectively.
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2 RELATED WORK

Graph Contrastive Learning. Contrastive learning is first established for image tasks and then
receives considerable attention in the field of graph representation learning (Chen et al., 2020).
Contrastive learning is based on utilizing instance-level identity as supervision and maximizing
agreement between positive pairs in hidden space by contrast mode (Velickovic et al., 2019; Hassani
& Khasahmadi, 2020; You et al., 2020). Recent research in this area seeks to improve the efficacy
of graph contrastive learning by uncovering more difficult views (Xu et al., 2021; You et al., 2021).
However, the majority of available approaches utilize a great deal of data. By identifying important
subset from the entire dataset, our model avoids this issue.

Training deep model with sparsity. Parameter pruning aiming at decreasing computational cost has
been a popular topic and many parameter-pruning strategies are proposed to balance the trade-off
between model performance and learning efficiency (Deng et al., 2020; Liu et al., 2019). Some of
them belong to the static pruning category and deep neural networks are pruned either by neurons (Han
et al., 2015b; 2016) or architectures (layer and filter) (He et al., 2017; Dong et al., 2017). In contrast,
recent works propose dynamic pruning strategies where different compact subnets will be dynamically
activated at each training iteration (Mocanu et al., 2018; Mostafa & Wang, 2019; Raihan & Aamodt,
2020). The other line of computation cost reduction lies in the dataset sparsity (Karnin & Liberty,
2019; Mirzasoleiman et al., 2020; Paul et al., 2021). Recently, the property of sparsity is also used to
improve model robustness (Chen et al., 2022; Fu et al., 2021). In this work, we attempt to accomplish
dynamic sparsity from both the GNN model and the graph dataset simultaneously.

Class-imbalanced learning on graphs. Excepting conventional node re-balanced methods, like
reweighting samples (Zhao et al., 2021; Park et al., 2022) and oversampling (Zhao et al., 2021;
Park et al., 2022), an early work (Zhou et al., 2018) characterizes rare classes through a curriculum
strategy, while other previous works (Shi et al., 2020; Zhao et al., 2021; Park et al., 2022) tackles
the class-imbalanced issue by generating synthetic samples to re-balance the dataset. Compared to
the node-level task, graph-level re-balancing is under-explored. A recent work (Wang et al., 2021)
proposes to utilize neighboring signals to alleviate graph-level class-imbalance. To the best of our
knowledge, our proposed GraphDec is the first work to solve the class-imbalanced for both the
node-level and graph-level tasks.

3 METHODOLOGY

In this section, we first theoretically illustrate our graph sparse subset approximation hypothesis,
which guides the design of GraphDec to continuously refine the compact training subset via the
dynamic graph contrastive learning method. The presentation is organized by the importance ranking
procedure of each sample, refine smoothing, and overfitting regularization. Relevant preliminaries of
GNNs, graph contrastive learning, and network pruning are provided in Appendix B.

3.1 GRAPH SPARSE SUBSET APPROXIMATION HYPOTHESIS

We first introduce the key notations used in the method. Specifically, we denote the full graph
dataset as GF , the graph data subset used to train the model as GS , the learning rate as α, and the
graph learning model parameters as θ (the optimal model parameters as θ˚). Meanwhile, we add a
superscript to represent the model’s parameters and the graph data subset at epoch t, i.e., θptq and Gptq

S .
Besides, we use LGptq

S ;θptq to indicate the loss of model θptq over the graph dataset Gptq
S . Thus, the

gradient error at the training epoch t can be computed as Errptq
“

›

›

›
∇θptqLGptq

S ;θptq ´ ∇θptqLGF ;θptq

›

›

›
.

The sparse graph subset approximation hypothesis states that the model effectiveness trained on G
can be approximated by the one trained on GS . We introduce the hypothesis as follows:
Theorem 1 Assume the model’s parameters at epoch t satisfies

›

›θptq
›

›

2
ď d2, where d is a constant,

and the loss function Lp¨q is convex, we can have the following guarantee:
If training loss LGS

is Lipschitz continuous, ∇θptqLGS
is upper-bounded by σ, and α “ d

σ
?
T

, then

mintpLGptq

S ;θptq ´ Lθ˚ q ď dσ?
T

`
řT´1

t“1
d
T Errptq.

The detailed proof of Theorem 1 is provided in Appendix A. According to Theorem 1, it is straight-
forward that we can minimize the gap between the models trained on the full graph dataset and
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Figure 2: The overall framework of GraphDec: (i) The dynamic sparse graph contrastive learning
model computes gradients for graph/node samples; (ii) The input samples are sorted according to
their gradients; (iii) Part of the samples with the smallest gradients are thrown into the recycling bin;
(iv) Part of the samples with the largest gradients in the current epoch and some sampled randomly
from the recycling bin are jointly used as training input in the next epoch.

graph data subset, i.e., LGS ;θptq ´ Lθ˚ , by reducing the distance between the gradients of the full

graph dataset and the graph subset, i.e., Errptq. In other words, the optimized graph subset Gptq
S is

expected to approximate the gradients of the full graph dataset, and thereby exerts minimal affects
on parameters’ update. In contrast to GraphDec, data diet (Paul et al., 2021) is designed to identify
the most influential data samples GS (those with largest gradients during the training phase) only
at the early training stage and have them involved in further training processes, while excluding
samples from ḠS “ GF ´ GS with smaller gradients (i.e., ∇θptqLGptq

S ;θptq " ∇θptqL ¯Gptq

S ;θptq
) eternally.

This one-shot selection, however, as we will show in the experiments (Section 4.5), does not always
capture the most important samples across all epochs during the training. Specifically, the rankings
of elements within a specific GS might be relatively static, but those within the full graph dataset, i.e.,
G, are usually more dynamic, which implies the gradients of the one-shot subset ∇θptqLGptq

S ;θptq is
unable to constantly approximate that of the full graph dataset ∇θptqLGF ;θptq during training.

3.2 GRAPH DECANTATION

Inspired by Theorem 1 and to solve the massive data usage in class-imbalance graphs, we propose
GraphDec for achieving competitive performance as well as efficient data usage simultaneously by
dynamically filtering out the most influential data subset. The overall framework of GraphDec is
illustrated in Figure 2. The training processes are summarized into four steps: (i) First, compute
the gradients of the samples in Gptq

S with respect to the contrastive learning loss; (ii) Normalize
the gradients and rank the corresponding graph/node samples in a descending order based on their
gradient magnitudes; (iii) Decay the number of samples from |Gptq

S | to |Gpt`1q

S | with cosine annealing,
where we only keep the top p1 ´ ϵq|Gpt`1q

S | samples (ϵ is the exploration rate which controls the ratio
of the randomly re-sampled samples from the recycle bin. The rest samples will hold in the recycle
bin temporarily; (iv) Finally, randomly re-sample ϵ|Gpt`1q

S | samples from the recycled bin. The union
of these samples and the ones selected in step (iii) will be used for model training in the (t ` 1)-th
epoch. Each of the four steps is described in detail in the following content.

Compute gradients by dynamic sparse graph contrastive learning model. We adopt the mech-
anism of dynamic sparse graph contrastive learning in computing the gradients. The reason is
two-folded: (a) it scores the graph samples without the supervision of any label; (b) this pruning
process is more sensitive in selecting informative samples, verified in Appendix D. We omit the
superscript ptq for the dataset and model parameters for simplicity in the explanation of this step.
Specifically, given a graph training set G “ tGiu

N
i“1 as input, for each training sample Gi, we

randomly generate two augmented graph views, G1
i and G2

i , and feed them into the original GCN
model fθp¨q, and the sparse model fθpp¨q pruned dynamically by the dynamic sparse pruner, respec-
tively. The gradients are computed based on the outputs of the two GNN branches, directed by the
contrastive learning loss signals. To obtain the pruned GNN model, the pruner only keeps neural
connections with the top-k largest weight magnitudes. Specifically, the pruned parameters of l-th
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GNN layer (i.e., θl) are selected following the formula below:

θlp “ TopKpθl, kq; k “ βptq ˆ |θl|, (1)

where TopKpθl, kq refers to the operation of selecting the top-k largest elements of θl, and βptq is
the fraction of the remaining neural connections, controlled by the cosine annealing formulated as
follows:

βptq “
βp0q

2

"

1 ` cosp
πt

T
q

*

, t P r1, T s , (2)

where βp0q is initialized as 1. In addition, we refresh θlp every few epochs to reactivate neurons based
on their gradients, following the formula below:

Iθl
g

“ argTopKp∇θlLDS ;θ, kq; k “ βptq ˆ |θl|, (3)

where argTopK returns the indices of the top-k largest elements Iθl
g

of the corresponding neurons
θlg. To further elaborate, we refresh θlp every few epochs by θlp Ð θlp Y θlg, as the updated pruned
parameters to be involved in the next iteration. After we obtain the pruned model, gradients are
computed based on the contrastive learning loss between fθpG1

iq and fθppG2
i q, which are then saved

for the further ranking process.

Rank graph samples according to their gradients’ L2 norms. In order to find the relative
importance of the samples, we rank the samples based on the gradients each of them brings about,
saved in the previous training epoch by the last step. Specifically, at each of the t-th training epoch,
we score each sample by the L2 norm of its gradient:

gpGiq “
›

›∇θL
`

fθpG1
iq, fθppG2

i q
˘
›

›

2
, (4)

where L is the popular InfoNCE (Van den Oord et al., 2018) loss in contrastive learning, taking the
outputs of the two GNN branches as inputs. Therefore, the gradient is calculated as follows:

∇θLpfθpG1
iq, fθppG2

i qq “ pθpG1q ´ pθppG2
i q, (5)

where pθpG1
iq and pθppG2

i q are the normalized model’s predictions, i.e., pp¨q “ Spfp¨qq and Sp¨q is
the softmax function or sigmoid function. The samples are ranked based on the values calculated by
Eq. 4.

Decay the size of GS by cosine annealing. For decreasing the size of the subset, we use cosine
annealing when the training process proceeds. As we will show in Figure 3 for the experiments, some
graph samples showing low scores of importance at the early training stage may be highly-scored
again if given more patience in the later training epochs. Therefore, chunking the size of the sparse
subset radically in one shot deprives the chances of the potential samples informing the models at a
later stage. To tackle this issue, we employ cosine annealing to gradually decrease the size of the
subset:

|Gptq
S | “

|G|

2

"

1 ` cosp
πptq

T
q

*

, t P r1, T s . (6)

Note that this process not only automatically decreases the size of GS smoothly, but also avoids the
manual one-shot selection as in the data diet (Paul et al., 2021).

Recycle removed graph samples for the next training epoch. We aim to update the elements
in Gptq

S obtained in the last step. Since current low-scored samples may still have the potential to be
highly-scored in the later training epochs, we randomly recycle a proportion of the removed samples
and re-involve them in the training process again. Specifically, the exploration rate ϵ controls the
proportion of data that substitutes a number of ϵ|Gt`1

S | samples with the lowest scores with the same
amount of randomly selected samples in Gpt`1q

S . At the t-th epoch, the update rule is formulated as
follows:

Gpt`1q

S “ TopKpGptq
S , p1 ´ ϵq|Gpt`1q

S |q
ď

SampleKpḠS
pt´1q

, ϵ|Gpt`1q

S |q, (7)

where SampleKpḠS
pt´1q

, ϵ|Gpt`1q

S |q returns randomly sampled ϵ|Gpt`1q

S | samples from ḠS
pt´1q,

saved in the last epoch. We utilize the compact sparse subset Gpt`1q

S for the training purposes at
(t ` 1)-th epoch, and repeat the previous pipelines until T epochs.
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4 EXPERIMENTS

In this section, we conduct extensive experiments to validate the effectiveness of our proposed model
for both the graph and node classification tasks under imbalanced datasets. We also conduct ablation
study and informative subset evolution analysis to further prove the effectiveness. Due to space limit,
more analysis validating GraphDec’s properties and resource cost are provided in Appendix D and E.

4.1 EXPERIMENTAL SETUP

Datasets. We validate our model on various graph benchmark datasets for the two classification
tasks under the class-imbalnced data scenario. For the class-imbalanced graph classification task, we
choose the seven validation datasets in G2GNN paper (Wang et al., 2021), i.e., MUTAG, PROTEINS,
D&D, NCI1, PTC-MR, DHFR, and REDDIT-B in (Morris et al., 2020). For the class-imbalanced
node classification task, we choose the five datasets in the GraphENS paper (Park et al., 2022),
i.e., Cora-LT, CiteSeer-LT, PubMed-LT (Sen et al., 2008), Amazon-Photo, and Amazon-Computers.
Detailed descriptions of these datasets are provided in the Appendix C.1.

Baselines. We compare our model with a variety of baselines methods with different rebalance
methods. For class-imbalanced graph classification, we consider three rebalance methods, i.e.,
vanilla (without re-balancing when training), up-sampling (Wang et al., 2021), and re-weight (Wang
et al., 2021). For each rebalance method, we run three baseline methods including GIN (Xu et al.,
2019), InfoGraph (Sun et al., 2019), and GraphCL (You et al., 2020). In addition, we adopt two
versions of G2GNN (i.e., remove-edge and mask-node) (Wang et al., 2021) for in-depth comparison.
For class-imbalanced node classification, we consider nine baseline methods including vanilla,
SynFlow (Tanaka et al., 2020), BGRL (Thakoor et al., 2021), GRACE (Zhu et al., 2020), re-
weight (Japkowicz & Stephen, 2002), oversampling (Park et al., 2022), cRT (Kang et al., 2020), PC
Softmax (Hong et al., 2021), DR-GCN (Shi et al., 2020), GraphSMOTE (Zhao et al., 2021), and
GraphENS (Park et al., 2022). We adopt Graph Convolutional Network (GCN) (Kipf & Welling,
2017) as the default architecture for all rebalance methods. Further details about the baselines are
illustrated in Appendix C.2.

Evaluation Metrics. To evaluate model performance, we choose F1-micro (F1-mi.) and F1-macro
(F1-ma.) scores as the metrics for the class-imbalanced graph classification task, and accuracy (Acc.),
balanced accuracy (bAcc.), and F1-macro (F1-ma.) score for the node classification task.

Experimental Settings. We adopt GCN (Kipf & Welling, 2017) as the GNN backbone of GraphDec
for both the tasks. In particular, we concatenate a two-layers GCN and a one-layer fully-connected
layer for node classification, and add one extra average pooling operator as the readout layer for graph
classification. We follow (Wang et al., 2021) and (Park et al., 2022) varying the imbalance ratios for
graph and node classification tasks, respectively. In addition, we take GraphCL (You et al., 2020) as
the graph contrastive learning framework, and cosine annealing to dynamically control the sparsity
rate in the GNN model and the dataset. The target pruning ratio for the model is set to 0.75, and the
one for the dataset is set to 1.0. After the contrastive pre-training, we take the GCN output logits as
the input to the Support Vector Machine for fine-tuning. GraphDec is implemented in PyTorch and
trained on NVIDIA V100 GPU.

4.2 CLASS-IMBALANCED GRAPH CLASSIFICATION PERFORMANCE

The evaluated results for the graph classification task on class-imbalanced graph datasets are reported
in Table 1, with the best performance and runner-ups bold and underlined, respectively. From the
table, we find that GraphDec outperforms baseline methods on both the metrics across different
datasets, while only uses an average of 50% data and 50% model weights per round. Although a
slight F1-micro difference has been detected on D&D when comparing GraphDec to the best baseline
G2GNN, it is understandable due to the fact that the graphs in D&D are significantly larger than
those in other datasets, necessitating specialized designs for graph augmentations (e.g., the average
graph size in terms of node number is 284.32 for D&D, but 39.02 and 17.93 for PROTEINS and
MUTAG, respectively). However, in the same dataset, G2GNN only achieves 43.93 on F1-macro
while GraphDec reaches to 44.01, which complements the 2% difference on F1-micro and further
demonstrates GraphDec’s ability to learn effectively even on large graph datasets. Specifically,
models trained under the vanilla setting perform the worst due to the ignorance of the class-imbalance.
Up-sampling strategy improves the performance, but it introduces additional unnecessary data usage
by sampling the minorities multiple times. Similarly, re-weight strategy tries to address the class-
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Table 1: Class-imbalanced graph classification results. Numbers after each dataset name indicate
imbalance ratios of minority to majority categories. Best/second-best results are in bold/underline.

Rebalance Basis MUTAG (5:45) PROTEINS (30:270) D&D (30:270) NCI1 (100:900) Sparsity (%)

Method F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi. data model

vanilla
GIN 52.50 56.77 25.33 28.50 9.99 11.88 18.24 18.94 100 100

InfoGraph 69.11 69.68 35.91 36.81 21.41 27.68 33.09 34.03 100 100
GraphCL 66.82 67.77 40.86 41.24 21.02 26.80 31.02 31.62 100 100

up-sampling
GIN 78.03 78.77 65.64 71.55 41.15 70.56 59.19 71.80 ą100 100

InfoGraph 78.62 79.09 62.68 66.02 41.55 71.34 53.38 62.20 ą100 100
GraphCL 80.06 80.45 64.21 65.76 38.96 64.23 49.92 58.29 ą100 100

re-weight
GIN 77.00 77.68 54.54 55.77 28.49 40.79 36.84 39.19 100 100

InfoGraph 80.85 81.68 65.73 69.60 41.92 72.43 53.05 62.45 100 100
GraphCL 80.20 80.84 63.46 64.97 40.29 67.96 50.05 58.18 100 100

G2GNN remove edge 80.37 81.25 67.70 73.10 43.25 77.03 63.60 72.97 100 100
mask node 83.01 83.59 67.39 73.30 43.93 79.03 64.78 74.91 100 100

GraphDec dynamic sparsity 85.71 85.71 68.32 75.84 44.01 77.02 65.73 76.02 50 50

Rebalance Basis PTC-MR (9:81) DHFR (12:108) REDDIT-B (50:450) Avg. Rank Sparsity (%)

Method F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi. data model

vanilla
GIN 17.74 20.30 35.96 49.46 33.19 36.02 12.00 12.00 100 100

InfoGraph 25.85 26.71 50.62 56.28 57.67 67.10 11.00 11.14 100 100
GraphCL 24.22 25.16 50.55 56.31 53.40 62.19 10.71 10.57 100 100

up-sampling
GIN 44.78 55.43 55.96 59.39 66.71 83.00 6.00 5.43 ą100 100

InfoGraph 44.29 48.91 59.49 61.62 67.01 78.68 6.00 6.00 ą100 100
GraphCL 45.12 53.50 60.29 61.71 62.01 75.84 6.29 6.43 ą100 100

re-weight
GIN 36.96 43.09 55.16 57.78 45.17 51.92 9.86 9.86 100 100

InfoGraph 44.09 49.17 58.67 60.24 65.79 77.35 5.43 5.29 100 100
GraphCL 44.75 52.22 60.87 61.93 62.79 76.15 6.00 6.29 100 100

G2GNN remove edge 46.40 56.61 61.63 63.61 68.39 86.35 2.71 2.86 100 100
mask node 46.61 56.70 59.72 61.27 67.52 85.43 2.71 2.71 100 100

GraphDec dynamic sparsity 47.07 58.15 62.25 63.61 69.70 87.00 1.00 1.14 50 50

imbalanced issue by assigning different weights to different samples. However, it requires the labels
for weight calculation and thus may not generalize well when labels are missing. G2GNN, as the best
baseline, obtains decent performance by considering the usage of rich supervisory signals from both
globally and locally neighboring graphs. Finally, the proposed model, GraphDec, achieves the best
performance due to its ability in capturing dynamic data sparsity on from both the model and data
perspectives. In addition, we rank the performance of GraphDec with regard to baseline methods on
each dataset. GraphDec ranks 1.00 and 1.14 on average, which further demonstrates the superiority
of GraphDec. Notice that all existing methods utilize the entire datasets and the model weights while
GraphDec only uses half of the data and weights to achieve superior performance.

4.3 CLASS-IMBALANCED NODE CLASSIFICATION PERFORMANCE

For the class-imbalanced node classification task, we first evaluate GraphDec on three long-tailed
citation graphs (i.e., Cora-LT, CiteSeer-LT, PubMed-LT) and report the results on Table 2. We find
that GraphDec obtains the best performance compared to baseline methods for different metrics.
GraphSMOTE and GraphENS achieve satisfactory performance by generating virtual nodes to enrich
the involvement of the minorities. In comparison, GraphDec does not rely on synthetic virtual nodes
to learn balanced representations, thereby avoiding the unnecessary computational costs. Similarly
to the class-imbalanced graph classification task in Section 4.2, GraphDec leverages only half of
the data and weights to achieve the best performance, whereas all baselines perform worse even
with the full dataset and weights. To validate the efficacy of the proposed model on the real-world
data, we evaluate GraphDec on naturally class-imbalanced benchmark datasets (i.e., Amazon-Photo
and Amazon-Computers). We see that GraphDec has the best performance on both datasets, which
demonstrates our model’s effectiveness with data sourced from different practical scenes.

4.4 ABLATION STUDY

Since GraphDec is a unified learning framework relying on multiple components (steps) to employ
dynamic sparsity training from both the model and dataset perspectives, we conduct ablation study to
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Table 2: Class-imbalanced node classification results. Best/second-best results are in bold/underline.

Method Cora-LT CiteSeer-LT PubMed-LT A.P. (ρ “82) A.C. (ρ “244) Sparsity (%)

Acc. bAcc. F1-ma. Acc. bAcc. F1-ma. Acc. bAcc. F1-ma. (b)Acc. F1-ma. (b)Acc. F1-ma. data model

vanilla 73.66 62.72 63.70 53.90 47.32 43.00 70.76 57.56 51.88 82.86 78.72 68.47 64.01 100 100
SynFlow 72.98 60.62 63.29 52.85 46.23 42.19 69.63 56.75 50.99 81.57 76.93 68.10 62.97 100 -
GRACE 74.72 63.95 65.26 54.94 50.87 46.90 72.37 63.22 58.18 83.57 83.61 73.02 64.52 100 100
BGRL 73.81 64.95 64.87 56.84 50.83 47.04 74.17 62.21 59.07 83.49 82.37 75.88 63.15 100 100
Re-Weight 75.20 68.79 69.27 62.56 55.80 53.74 77.44 72.80 73.66 92.94 92.95 90.04 90.11 100 100
Oversampling 77.44 70.73 72.40 62.78 56.01 53.99 76.70 68.49 69.50 92.46 92.47 89.79 89.85 ą100 100
cRT 76.54 69.26 70.95 60.60 54.05 52.36 75.10 67.52 68.08 91.24 91.17 86.02 86.00 100 100
PC Softmax 76.42 71.30 71.24 65.70 61.54 61.49 76.92 75.82 74.19 93.32 93.32 86.59 86.62 100 100
DR-GCN 73.90 64.30 63.10 56.18 49.57 44.98 72.38 58.86 53.05 N/A N/A N/A N/A 100 100
GraphSmote 76.76 69.31 70.21 62.58 55.94 54.09 75.98 70.96 71.85 92.65 92.61 89.31 89.39 ą100 100
GraphENS 77.76 72.94 73.13 66.92 60.19 58.67 78.12 74.13 74.58 93.82 93.81 91.94 91.94 ą100 100

GraphDec 78.29 73.94 74.25 66.90 61.56 61.85 78.20 76.05 76.32 93.85 94.02 92.19 92.16 50 50

Table 3: Ablation study results for both tasks. Four rows of red represent removing four individual
components from data sparsity perspective. Four rows of blue represent removing four individual
components from model sparsity perspective. Best results are in bold.

Class-imbalanced Graph Classification (F1-ma.) Class-imbalanced Node Classification (Acc.)

Variant MUTAG PROTEINS D&D NCI1 PTC-MR DHFR REDDIT-B Cora-LT CiteSeer-LT PubMed-LT A. Photos A. Computer

GraphDec 85.71 68.32 44.01 65.73 47.07 62.25 69.70 78.29 66.90 78.20 93.85 92.19
w/o GS 80.10 63.42 36.61 61.80 42.12 48.57 61.40 68.96 60.33 56.22 73.22 67.84
w/o SS 80.95 63.55 42.19 62.30 45.21 61.99 70.61 77.15 64.67 76.15 79.09 91.33
w/o CAD 78.41 57.99 40.23 60.61 44.96 50.00 67.15 74.87 62.62 75.35 90.71 83.23
w/o RS 83.21 59.32 41.65 60.51 35.21 60.99 67.61 73.27 61.32 72.02 87.11 90.38

w/o RM 44.37 40.42 38.45 34.39 32.14 43.75 64.82 70.97 54.58 70.16 79.01 65.38
w/o SG 82.63 65.96 42.50 69.10 35.19 61.42 69.16 77.54 67.43 72.43 91.25 90.05
w/o CAG 83.50 54.04 40.21 51.82 34.20 62.41 64.14 75.78 63.43 73.07 92.77 87.40
w/o RW 79.25 56.33 38.34 63.00 38.00 61.53 63.16 76.46 65.36 75.54 90.54 89.10

w/o S.S. 80.07 63.90 39.77 57.22 38.60 62.30 65.67 74.82 65.28 74.00 86.14 86.40

prove the validity of each component. Specifically, GraphDec relies on four components to address
data sparsity and imbalance, including pruning samples by ranking gradients (GS), training with
sparse dataset (SS), using cosine annealing to reduce dataset size (CAD), and recycling removed
samples (RS), and the other four to address model sparsity and data imbalance, including pruning
weights by ranking magnitudes (RM), using sparse GNN (SG), using cosine annealing to progressively
reduce sparse GNN’s size (CAG), and reactivate removed weights (RW). In addition, GraphDec
employs self-supervision to calculate the gradient score. The details of model variants are provided
in Appendix C.3. We analyze the contributions of different components by removing each of them
independently. Experiments for both tasks are conducted comprehensively for effective inspection.
The results are shown in Table 3.

From the table, we find that the performance drops after removing any component, demonstrating
the effectiveness of each component. In general, both mechanisms for addressing data and model
sparsity contribute significantly to the overall performance, demonstrating the necessity of these
two mechanisms in solving sparsity problem. Self-supervision contributes similarly to the dynamic
sparsity mechanisms, in that it enables the identification of informative data samples without label
supervision. In the dataset dynamic sparsity mechanism, GS and CAD contribute the most as sparse
GNN’s discriminability identifies hidden dynamic sparse subsets accurately and efficiently. Regarding
the model dynamic sparsity mechanism, removing RM and SG leads to a significant performance
drop, which demonstrates that they are the key components in training the dynamic sparse GNN
from the full GNN model. In particular, CAG enables the performance stability after the model
pruning and helps capture informative samples during decantation by assigning greater gradient
norms. Among these variants, the full model GraphDec achieves the best result in most cases.
indicating the importance of the combination of the dynamic sparsity mechanisms from the two
perspectives, and the self-supervision strategy.

4.5 ANALYZING EVOLUTION OF SPARSE SUBSET BY SCORING ALL SAMPLES

To show GraphDec’s capability in dynamically identifying informative samples, we show the visual-
ization of sparse subset evolution of data diet and GraphDec on class-imbalanced NCI1 dataset in
Figure 3. Specifically, we compute 1000 graph samples with their importance scores. These samples
are then ranked according to their scores and marked with sample indexes. From the upper figures
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Figure 3: Evolution of data samples’ gradients computed by data diet (Paul et al., 2021) (upper
figures) and our GraphDec (lower figures) on NCI1 data.

in Figure 3, we find that data diet is unable to accurately identify the dynamic informative nodes.
Once a data sample has been removed from the training list due to the low score, the model forever
disregards it. However, the fact that a sample is currently unimportant does not imply that it will
remain unimportant indefinitely, especially in the early training stage when the model cannot detect
the true importance of each sample, resulting in premature elimination of vital nodes. Similarly, if
a data sample is considered important at early epochs (i.e., marked with higher sample index), it
cannot be removed during subsequent epochs. Therefore, we observe that data diet can only increase
the scores of samples within the high index range (i.e., 500–1000), while ignoring samples within
the low index range (i.e., ă 500). However, GraphDec (Figure 3 (bottom)) can capture the dynamic
importance of each sample regardless of the initial importance score. We see that samples with
different indexes all have the opportunities to be considered important and therefore be included in
the training list. Correspondingly, GraphDec takes into account a broader range of data samples when
shrinking the training list, meanwhile maintaining flexibility towards the previous importance scores.

5 FINDING INFORMATIVE SAMPLES BY SPARSE GNN

Figure 4: Results of data samples’ gradients computed by full
GNN model and our dynamic sparse GNN model on NCI1 data.
Red dashed line: on the left side, points on the x-axis [0, 900]
are majority class; on the right side, points on the x-axis [900,
1000] are minority class.

Compared with the full GNN, our
dynamic sparse GNN is more sen-
sitive in recognizing informative
data samples which can be empiri-
cally verified by Figure 4. Our dy-
namic pruned model assigns larger
gradients to the minorities than the
majorities during the contrastive
training, while the full model gen-
erally assigns relatively uniform
gradients for both of them. Thus,
the proposed dynamically pruned
model demonstrates its discrimina-
tory ability on the minority class.
This ability in our GraphDec framework is capable of resolving the class-imbalance issue.

6 CONCLUSION

In this paper, to take up the graph data imbalance challenge, we propose an efficient and effective
method named Graph Decantation (GraphDec), by leveraging the dynamic sparse graph contrastive
learning to dynamically identified a sparse-but-informative subset for model training, in which the
sparse GNN encoder is dynamically sampled from a dense GNN, and its capability of identifying
informative samples is used to rank and update the training data in each epoch. Extensive experiments
demonstrate that GraphDec outperforms state-of-the-art baseline methods for both node classification
and graph classification tasks in the class-imbalanced scenario. The analysis of the sparse informative
samples’ evolution further explains the superiority of GraphDec in identifying the informative subset
among the training periods effectively.
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A PROOF OF THEOREM 1

We denote the full graph dataset as GF , the graph data subset used to train the model as GS , the
learning rate as α, and the graph learning model parameters as θ (the optimal model parameters
as θ˚). Meanwhile, we add a superscript to represent the model’s parameters and the graph data
subset at epoch t, i.e., θptq and Gptq

S . Besides, we use LGptq

S ;θptq to indicate the loss of model θptq

over the graph dataset Gptq
S . Thus, the gradient error at the training epoch t can be computed as

Errptq
“

›

›

›
∇θptqLGptq

S ;θptq ´ ∇θptqLGF ;θptq

›

›

›
. The sparse graph subset approximation hypothesis states

that the model effectiveness trained on G can be approximated by the one trained on GS . We introduce
the hypothesis as follows:

Theorem 1. Assume the model’s parameters at epoch t satisfies
›

›θptq
›

›

2
ď d2, where d is a constant,

and the loss function Lp¨q is convex, we can have the following guarantee:

If training loss LGS
is Lipschitz continuous, ∇θptqLGS

is upper-bounded by σ, and α “ d
σ

?
T

, then

mintpLGptq

S ;θptq ´ Lθ˚ q ď dσ?
T

`
řT´1

t“1
d
T Errptq.

Proof 1 The gradients of training loss LGptq

S ;θptq at epoch t are supposed to be σ-bounded by σ.
According to gradient descent, we have:

∇θLGptq

S ;θptq pθptqq
T

pθptq ´ θ˚q “
1

αptq
pθptq ´ θpt`1qq

T
pθptq ´ θ˚q, (8)

∇θLGptq

S ;θptq pθptqq
T

pθptq ´ θ˚q “
1

2αptq

ˆ

›

›

›
θptq ´ θpt`1q

›

›

›

2

`

›

›

›
θptq ´ θ˚

›

›

›

2

´

›

›

›
θpt`1q ´ θ˚

›

›

›

2
˙

.

(9)
Since one update step θptq ´ θpt`1q can be optimized by gradient multiplying with learning rate
αptq∇θLGptq

S ;θptq pθptqq, we have:

∇θLGptq

S ;θptq pθptqq
T

pθptq ´ θ˚q “
1

2αptq

ˆ

›

›

›
αptq∇θLGptq

S ;θptq pθptqq

›

›

›

2

`

›

›

›
θptq ´ θ˚

›

›

›

2

´

›

›

›
θpt`1q ´ θ˚

›

›

›

2
˙

.

(10)
Since ∇θLGptq

S ;θptq pθptqq
T

pθptq ´ θ˚q can be represented as follows:

∇θLGptq

S ;θptq pθptqq
T

pθptq ´ θ˚q “ ∇θLGptq

S ;θptq pθptqq
T

pθptq ´ θ˚q

´∇θLGptq

S ;θptq

T
pθptq ´ θ˚q ` ∇θLGptq

S ;θptq

T
pθptq ´ θ˚q,

(11)

then based on the combination of the Equation equation 10 and Equation equation 11, we have:

∇θLGptq

S ;θptq pθptqq
T

pθptq ´ θ˚q ´ ∇θLGptq

S ;θptq

T
pθptq ´ θ˚q ` ∇θLGptq

S ;θptq

T
pθptq ´ θ˚q “

1

2αptq

ˆ

›

›

›
αptq∇θLGptq

S ;θptq pθptqq

›

›

›

2

`

›

›

›
θptq ´ θ˚

›

›

›

2

´

›

›

›
θpt`1q ´ θ˚

›

›

›

2
˙ (12)

∇θLGptq

S ;θptq

T
pθptq ´ θ˚q “

1

2αptq

ˆ

›

›

›
αptq∇θLGptq

S ;θptq pθptqq

›

›

›

2

`

›

›

›
θptq ´ θ˚

›

›

›

2

´

›

›

›
θpt`1q ´ θ˚

›

›

›

2
˙

´

´

∇θLGptq

S ;θptq pθptqq ´ ∇θLGptq

S ;θptq

¯T

pθptq ´ θ˚q.

(13)
We assume learning rate αptq, t P r0, T ´ 1s is a constant value, then we have:
T´1
ÿ

t“0

∇θLGptq

S ;θptq

T
pθptq ´ θ˚q “

1

2α

›

›

›
θp0q ´ θ˚

›

›

›

2

´

›

›

›
θptq ´ θ˚

›

›

›

2

`

T´1
ÿ

t“0

p
1

2α

›

›

›
α∇θLGptq

S ;θptq pθptqq

›

›

›

2

q

`

T´1
ÿ

t“0

ˆ

´

∇θLGptq

S ;θptq pθptqq ´ ∇θLGptq

S ;θptq

¯T

pθptq ´ θ˚q

˙

.
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Since we assume
›

›θptq ´ θ˚
›

›

2
ě 0, then we have:

T´1
ÿ

t“0

∇θLGptq

S ;θptq

T
pθptq ´ θ˚q ď

1

2α

›

›

›
θp0q ´ θ˚

›

›

›

2

`

T´1
ÿ

t“0

p
1

2α

›

›

›
α∇θLGptq

S ;θptq pθptqq

›

›

›

2

q

`

T´1
ÿ

t“0

ˆ

´

∇θLGptq

S ;θptq pθptqq ´ ∇θLGptq

S ;θptq

¯T

pθptq ´ θ˚q

˙

.

(14)

We assume loss L is convex and training loss LGptq

S ;θptq is lipschitz continuous with parameter σ.

Then for convex function Lpθq, we have LGptq

S ;θptq ´ Lθ˚ ď ∇θLGptq

S ;θptq

T
pθptq ´ θ˚q. By combining

this result with Equation 14, we get:
T´1
ÿ

t“0

LGptq

S ;θptq ´ Lθ˚ ď
1

2α

›

›

›
θp0q ´ θ˚

›

›

›

2

`

T´1
ÿ

t“0

p
1

2α

›

›

›
α∇θLGptq

S ;θptq pθptqq

›

›

›

2

q

`

T´1
ÿ

t“0

ˆ

´

∇θLGptq

S ;θptq pθptqq ´ ∇θLGptq

S ;θptq

¯T

pθptq ´ θ˚q

˙

.

(15)

Since
›

›

›
LGptq

S ;θptq pθq

›

›

›
ď σ,

›

›

›
α∇θLGptq

S ;θptq pθptqq

›

›

›
ď σ, and we assume }θ ´ θ˚} ď d, then we have:

T´1
ÿ

t“0

LGptq

S ;θptq ´ Lθ˚ ď
d2

2α
`

Tασ2

2
`

T´1
ÿ

t“0

d
´

›

›

›
∇θLGptq

S ;θptq pθptqq ´ ∇θLGptq

S ;θptq

›

›

›

¯

, (16)

1

T

T´1
ÿ

t“0

LGptq

S ;θptq ´ Lθ˚ ď
d2

2αT
`

ασ2

2
`

T´1
ÿ

t“0

d

T

´
›

›

›
∇θLGptq

S ;θptq pθptqq ´ ∇θLGptq

S ;θptq

›

›

›

¯

. (17)

Since min pLGptq

S ;θptq ´ Lθ˚ q ď 1
T

řT´1
t“0 LGptq

S ;θptq ´ Lθ˚ , based on Equation 17, we have:

min pLGptq

S ;θptq ´ Lθ˚ q ď
d2

2αT
`

ασ2

2
`

T´1
ÿ

t“0

d

T

´
›

›

›
∇θLGptq

S ;θptq pθptqq ´ ∇θLGptq

S ;θptq

›

›

›

¯

. (18)

We set learning rate α “ d
σ

?
T

and then have:

min pLGptq

S ;θptq ´ Lθ˚ q ď
dσ
?
T

`

T´1
ÿ

t“0

d

T

´
›

›

›
∇θLGptq

S ;θptq pθptqq ´ ∇θLGptq

S ;θptq

›

›

›

¯

. (19)

B PRELIMINARIES: GNNS, GRAPH CONTRASTIVE LEARNING, NETWORK
PRUNING

In this work, we denote graph as G “ pV,E,Xq, where V is the set of nodes, E is the set of edges,
and X P Rd represents the node (and edge) attributes of dimension d. In addition, we represent the
neighbor set of node v P V as Nv .

Graph Neural Networks. GNNs (Wu et al., 2020) learn node representations from the graph
structure and node attributes. This process can be formulated as:

hplq
v “ COMBINEplq

´

hpl´1q
v ,AGGREGATEplq

´!

hpl´1q
u ,@u P Nv

)¯¯

, (20)

where hplq
v denotes representation of node v at l-th GNN layer; AGGREGATEp¨q and COMBINEp¨q

are neighbor aggregation and combination functions, respectively; h
p0q
v is initialized with node

attribute Xv . We obtain the output representation of each node after repeating the process in Equation
(20) for L rounds. The representation of the whole graph, denoted as hG P Rd, can be obtained by
using a READOUT function to combine the final node representations learned above:

hG “ READOUT
!

hpLq
v | @v P V

)

, (21)
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Table 4: Original dataset details for imbalanced graph classification and imbalanced node classifica-
tion tasks.

Task Dataset # Graphs # Nodes # Edges # Features # Classes

Graph

MUTAG 188 „17.93 „19.79 - 2
PROTEINS 1,113 „39.06 „72.82 - 2
D&D 1,178 „284.32 „715.66 - 2
NCI1 4,110 „29.87 „32.30 - 2
PTC-MR 344 „14.29 „14.69 - 2
DHFR 756 „42.43 „44.54 - 2
REDDIT-B 2,000 „429.63 „497.75 - 2

Node

Cora - 2,485 5,069 1,433 7
Citeseer - 2,110 3,668 3,703 6
Pubmed - 19,717 44,324 500 3
A-photo - 7,650 238,162 745 8
A-computers - 13,381 245,778 767 10

where the READOUT function can be any permutation invariant, like summation, averaging, etc.
Graph Contrastive Learning. Given a graph dataset D “ tGiu

N
i“1, Graph Contrastive Learning

(GCL) methods firstly implement proper transformations on each graph Gi to generate two views
G1

i and G2
i . The goal of GCL is to map samples within positive pairs closer in the hidden space,

while those of the negative pairs are further. GCL methods are usually optimized by a contrastive
loss. Taking the most popular InfoNCE loss (Oord et al., 2018) as an example, the contrastive loss is
defined as:

LCLpG1
i, G

2
i q “ ´ log

exp psim pzi,1, zi,2qq
řN

j“1,j‰i exp psim pzi,1, zj,2qq
, (22)

where zi,1 “ fθ pG1
iq, zi,2 “ fθ pG2

i q, and sim denotes the similarity function.
Network Pruning. Given an over-parameterized deep neural network fθp¨q with weights θ, the
network pruning is usually performed layer-by-layer. The pruning process of the lth layer in fθp¨q

can be formulated as follows:

θlthpruned “ TopKpθlth , kq, k “ α ˆ |θlth |, (23)

where θlth is the parameters in the lth layer of fθp¨q and TopKp¨, kq refers to the operation to choose
the top-k largest elements of θlth . We use a pre-defined sparse rate α to control the fraction of
parameters kept in the pruned network θlthpruned. Finally, only the top k “ α ˆ |θlth | largest weights
will be kept in the pruned layer. The pruning process will be implemented iteratively to prune the
parameters in each layer of deep neural network (Han et al., 2015a).

C EXPERIMENTAL DETAILS

C.1 DATASETS DETAILS

In this work, seven graph classification datasets and five node classification datasets are used to
evaluate the effectiveness of our proposed model, we provided their detailed statistics in Table 4. For
graph classification datasets, we follow the imbalance setting of (Wang et al., 2021) to set the train-
validation split as 25%/25% and change the imbalance ratio from 5:5 (balanced) to 1:9 (imbalanced).
The rest of the dataset is used as the test set. The specified imbalance ratio of each dataset is clarified
after its name in Table 5. For node classification datasets, we follow (Sen et al., 2008) to set the
imbalance ratio of Cora, CiteSeer and PubMed as 10. Besides, the setting of Amazon-Photo and
Amazon-Computers are borrowed from (Park et al., 2022), where the imbalance ratio ρ is set as 82
and 244, respectively.

C.2 BASELINE DETAILS

We compare our model with a variety of baseline methods using different rebalance methods:
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I. For imbalanced graph classification (Wang et al., 2021), four models are included as baselines in
our work, we list these baselines as follow:

(1) GIN (Xu et al., 2019), a popular supervised GNN backbone for graph tasks due to its powerful
expressiveness on graph structure;

(2) InfoGraph (Sun et al., 2019), an unsupervised graph learning framework by maximizing the
mutual information between the whole graph and its local topology of different levels;

(3) GraphCL (You et al., 2020), learning unsupervised graph representations via maximizing the
mutual information between the original graph and corresponding augmented views;

(4) G2GNN (Wang et al., 2021), a re-balanced GNN proposed to utilize additional supervisory signals
from both neighboring graphs and graphs themselves to alleviate the imbalance issue of graph.

II. For imbalanced node classification, we consider nine baseline methods in our work, including

(1) vanilla, denoting that we train GCN normally without any extra rebalancing tricks;

(2) re-weight (Japkowicz & Stephen, 2002), denoting we use cost-sensitive loss and re-weight the
penalty of nodes in different classes;

(3) oversampling (Park et al., 2022), denoting that we sample nodes of each class to make the data’s
number of each class reach the maximum number of corresponding class’s data;

(4) cRT (Kang et al., 2020), a post-hoc correction method for decoupling output representations;

(5) PC Softmax (Hong et al., 2021), a post-hoc correction method for decoupling output representa-
tions, too;

(6) DR-GCN (Shi et al., 2020), building virtual minority nodes and forces their features to be close
to the neighbors of a source minority node;

(7) GraphSMOTE (Zhao et al., 2021), a pre-processing method that focuses on the input data and
investigates the possibility of re-creating new nodes with minority features to balance the training
data.

(8) GraphENS (Park et al., 2022), proposing a new augmentation method to construct an ego network
from all nodes for learning minority representation.

(9) SynFlow (Tanaka et al., 2020), a one-shot model pruning method with less reliance on data.

(10) BGRL (Thakoor et al., 2021), a graph contrastive learning method using only simple augmen-
tations and avoids the requirements for contrasting with negative examples, and thus makes itself
scalable.

(11) GRACE (Zhu et al., 2020), a graph contrastive learning method generating two views by
corrupting a graph and learning node embeddings by minimizing the distance of node embeddings in
these two views.

We use Graph Convolutional Network (GCN) (Kipf & Welling, 2017) as the default architecture for
all rebalance methods.

C.3 DETAILS OF GRAPHDEC VARIANTS

The details of model variants are provided as follows:

I. Specifically, GraphDec contains four components to address data sparsity and imbalance: (1) GS is
sampling informative subset data according to ranking gradients; (2) SS is training model with the
sparse dataset, correspondingly; (3) CAD is using cosine annealing to reduce dataset size; (4) RS is
recycling removed samples, correspondingly. To investigate their corresponding effectiveness, we
remove them correspondingly as:

(1) w/o GS is that we randomly sample subset from the full set;

(2) w/o SS is that we train GNN with the full set;

(3) w/o CAD is that we directly reduce dataset size to target dataset size and it is same as data diet;
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Table 5: Imbalanced graph classification results. The numbers after each dataset name indicate the
imbalance ratios of minority to majority categories. We report the macro F1-score and micro F1-score
with the standard errors as Results are reported as mean ˘ std for 3 repetitions on each dataset. We
bold the best performance.

Rebalance Basis MUTAG (5:45) PROTEINS (30:270) D&D (30:270) NCI1 (100:900)

Method F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi.

vanilla
GIN (Xu et al., 2019) 52.50 ˘ 18.70 56.77 ˘ 14.14 25.33 ˘ 7.53 28.50 ˘ 5.82 9.99 ˘ 7.44 11.88 ˘ 9.49 18.24 ˘ 7.58 18.94 ˘ 7.12

InfoGraph (Sun et al., 2019) 69.11 ˘ 9.03 69.68 ˘ 7.77 35.91 ˘ 7.58 36.81 ˘ 6.51 21.41 ˘ 4.51 27.68 ˘ 7.52 33.09 ˘ 3.30 34.03 ˘ 3.68
GraphCL (You et al., 2020) 66.82 ˘ 11.56 67.77 ˘ 9.78 40.86 ˘ 6.94 41.24 ˘ 6.38 21.02 ˘ 3.05 26.80 ˘ 4.95 31.02 ˘ 2.69 31.62 ˘ 3.05

up-sampling
GIN (Xu et al., 2019) 78.03 ˘ 7.62 78.77 ˘ 7.67 65.64 ˘ 2.67 71.55 ˘ 3.19 41.15 ˘ 3.74 70.56 ˘ 10.28 59.19 ˘ 4.39 71.80 ˘ 7.02

InfoGraph (Sun et al., 2019) 78.62 ˘ 6.84 79.09 ˘ 6.86 62.68 ˘ 2.70 66.02 ˘ 3.18 41.55 ˘ 2.32 71.34 ˘ 6.76 53.38 ˘ 1.88 62.20 ˘ 2.63
GraphCL (You et al., 2020) 80.06 ˘ 7.79 80.45 ˘ 7.86 64.21 ˘ 2.53 65.76 ˘ 2.61 38.96 ˘ 3.01 64.23 ˘ 8.10 49.92 ˘ 2.15 58.29 ˘ 3.30

re-weight
GIN (Xu et al., 2019) 77.00 ˘ 9.59 77.68 ˘ 9.30 54.54 ˘ 6.29 55.77 ˘ 7.11 28.49 ˘ 5.92 40.79 ˘ 11.84 36.84 ˘ 8.46 39.19 ˘ 10.05

InfoGraph (Sun et al., 2019) 80.85 ˘ 7.75 81.68 ˘ 7.83 65.73 ˘ 3.10 69.60 ˘ 3.68 41.92 ˘ 2.28 72.43 ˘ 6.63 53.05 ˘ 1.12 62.45 ˘ 1.89
GraphCL (You et al., 2020) 80.20 ˘ 7.27 80.84 ˘ 7.43 63.46 ˘ 2.42 64.97 ˘ 2.41 40.29 ˘ 3.31 67.96 ˘ 8.98 50.05 ˘ 2.09 58.18 ˘ 3.08

G2GNN (Wang et al., 2021) remove edge 80.37 ˘ 6.73 81.25 ˘ 6.87 67.70 ˘ 2.96 73.10 ˘ 4.05 43.25 ˘ 3.91 77.03 ˘ 9.98 63.60 ˘ 1.57 72.97 ˘ 1.81
mask node 83.01 ˘ 7.01 83.59 ˘ 7.14 67.39 ˘ 2.99 73.30 ˘ 4.19 43.93 ˘ 3.46 79.03 ˘ 10.78 64.78 ˘ 2.86 74.91 ˘ 2.14

GraphDec dynamic sparsity 85.71˘10.20 85.71˘11.10 68.31˘4.23 75.84˘6.80 44.01˘5.01 77.02˘6.26 65.73˘4.7 76.02˘6.27

Rebalance Basis PTC-MR (9:81) DHFR (12:108) REDDIT-B (50:450)

Method F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi.

vanilla
GIN (Xu et al., 2019) 17.74 ˘ 6.49 20.30 ˘ 6.06 35.96 ˘ 8.87 49.46 ˘ 4.90 33.19 ˘ 14.26 36.02 ˘ 17.38

InfoGraph (Sun et al., 2019) 25.85 ˘ 6.14 26.71 ˘ 6.50 50.62 ˘ 8.33 56.28 ˘ 4.58 57.67 ˘ 3.80 67.10 ˘ 4.91
GraphCL (You et al., 2020) 24.22 ˘ 6.21 25.16 ˘ 5.25 50.55 ˘ 10.01 56.31 ˘ 6.12 53.40 ˘ 4.06 62.19 ˘ 5.68

up-sampling
GIN (Xu et al., 2019) 44.78 ˘ 8.01 55.43 ˘ 14.25 55.96 ˘ 10.06 59.39 ˘ 6.52 66.71 ˘ 3.92 83.00 ˘ 5.18

InfoGraph (Sun et al., 2019) 44.29 ˘ 4.69 48.91 ˘ 7.49 59.49 ˘ 5.20 61.62 ˘ 4.18 67.01 ˘ 3.34 78.68 ˘ 3.71
GraphCL (You et al., 2020) 45.12 ˘ 7.33 53.50 ˘ 13.31 60.29 ˘ 9.04 61.71 ˘ 6.75 62.01 ˘ 3.97 75.84 ˘ 3.98

re-weight
GIN (Xu et al., 2019) 36.96 ˘ 14.08 43.09 ˘ 20.01 55.16 ˘ 9.47 57.78 ˘ 6.69 45.17 ˘ 8.46 51.92 ˘ 12.29

InfoGraph (Sun et al., 2019) 44.09 ˘ 5.62 49.17 ˘ 8.78 58.67 ˘ 5.82 60.24 ˘ 4.80 65.79 ˘ 3.38 77.35 ˘ 3.96
GraphCL (You et al., 2020) 44.75 ˘ 7.62 52.22 ˘ 13.24 60.87 ˘ 6.33 61.93 ˘ 5.15 62.79 ˘ 6.93 76.15 ˘ 9.15

G2GNN (Wang et al., 2021) remove edge 46.40 ˘ 7.73 56.61 ˘ 13.72 61.63 ˘ 10.02 63.61 ˘ 6.05 68.39 ˘ 2.97 86.35 ˘ 2.27
mask node 46.61 ˘ 8.27 56.70 ˘ 14.81 59.72 ˘ 6.83 61.27 ˘ 5.40 67.52 ˘ 2.60 85.43 ˘ 1.80

GraphDec dynamic sparsity 47.07˘8.22 58.15˘10.24 62.25˘9.54 63.61˘7.10 69.70˘7.20 87.00˘9.36

Table 6: Imbalanced node classification results. We report the accuracy, balanced accuracy, and
macro F1-score with the standard errors as mean˘ std for 3 repetitions on each dataset (Due to time
limitation, we will update GRACE, BGRL, and SynFlow’s results with standard deviations in next
manuscript). We bold the best performance.

Method Cora-LT CiteSeer-LT PubMed-LT A.P. (ρ “82) A.C. (ρ “244)

Acc. bAcc. F1-ma. Acc. bAcc. F1-ma. Acc. bAcc. F1-ma. (b)Acc. F1-ma. (b)Acc. F1-ma.

vanilla 73.66˘0.28 62.72˘0.39 63.70˘0.43 53.90˘0.70 47.32˘0.61 43.00˘0.70 70.76˘0.74 57.56˘0.59 51.88˘0.53 82.86˘0.30 78.72˘0.52 68.47˘2.19 64.01˘3.18
SynFlow (Tanaka et al., 2020) 72.98 60.62 63.29 52.85 46.23 42.19 69.63 56.75 50.99 81.57 76.93 68.10 62.97
GRACE (Zhu et al., 2020) 74.72 63.95 65.26 54.94 50.87 46.90 72.37 63.22 58.18 83.57 83.61 73.02 64.52
BGRL (Thakoor et al., 2021) 73.81 64.95 64.87 56.84 50.83 47.04 74.17 62.21 59.07 83.49 82.37 75.88 63.15
Re-Weight (Park et al., 2022) 75.20˘0.19 68.79˘0.18 69.27˘0.26 62.56˘0.32 55.80˘0.28 53.74˘0.28 77.44˘0.21 72.80˘0.38 73.66˘0.27 92.94˘0.13 92.95˘0.13 90.04˘0.29 90.11˘0.28
Oversampling (Park et al., 2022) 77.44˘0.09 70.73˘0.10 72.40˘0.11 62.78˘0.37 56.01˘0.35 53.99˘0.37 76.70˘0.48 68.49˘0.28 69.50˘0.38 92.46˘0.47 92.47˘0.48 89.79˘0.16 89.85˘0.17
cRT (Kang et al., 2020) 76.54˘0.22 69.26˘0.48 70.95˘0.50 60.60˘0.25 54.05˘0.22 52.36˘0.22 75.10˘0.23 67.52˘0.72 68.08˘0.85 91.24˘0.28 91.17˘0.29 86.02˘0.55 86.00˘0.56
PC Softmax (Hong et al., 2021) 76.42˘0.34 71.30˘0.45 71.24˘0.52 65.70˘0.42 61.54˘0.45 61.49˘0.49 76.92˘0.26 75.82˘0.25 74.19˘0.25 93.32˘0.25 93.32˘0.25 86.59˘0.92 86.62˘0.91
DR-GCN (Shi et al., 2020) 73.90˘0.29 64.30˘0.39 63.10˘0.57 56.18˘1.10 49.57˘1.08 44.98˘1.29 72.38˘0.19 58.86˘0.15 53.05˘0.13 N/A N/A N/A N/A
GraphSmote (Zhao et al., 2021) 76.76˘0.31 69.31˘0.37 70.21˘0.64 62.58˘0.30 55.94˘0.34 54.09˘0.37 75.98˘0.22 70.96˘0.36 71.85˘0.32 92.65˘0.31 92.61˘0.32 89.31˘0.34 89.39˘0.35
GraphENS (Park et al., 2022) 77.76˘0.09 72.94˘0.15 73.13˘0.11 66.92˘0.21 60.19˘0.21 58.67˘0.25 78.12˘0.06 74.13˘0.22 74.58˘0.13 93.82˘0.13 93.81˘0.12 91.94˘0.17 91.94˘0.17

GraphDec 78.29˘0.40 73.94˘0.67 74.25˘0.83 66.90˘0.65 61.56˘0.72 61.85˘0.96 78.20˘0.45 76.05˘0.66 76.32˘0.66 93.85˘0.72 94.02˘0.67 92.19˘0.73 92.16˘0.75

(4) w/o RS is not recycling any removed samples.

II. Another four components to address model sparsity and data imbalance: (1) RM samples model
weights according to ranking magnitudes; (2) SG is using sparse GNN, correspondingly; (3) CAG is
using cosine annealing to progressively reduce sparse GNN’s size; (4) RW is reactivating removed
weights. To investigate their effectiveness, we remove them correspondingly as:

(1) w/o RM is that we randomly sample activated weights from full GNN model;

(2) w/o SG is that we train full GNN during forward and backward;

(3) w/o CAG is that we directly reduce the model size to target sparsity rate;

(4) w/o RW is not reactivating any removed weights during sparse training.

C.4 FULL RESULTS WITH ERROR BARS

We provide the F1-macro and F1-micro scores along with their standard deviation for our model and
other baselines across both graph classification and node classification tasks in Table 5 and Table 6.
We report their results as mean ˘ std for 3 repetitions on each metric for each dataset.
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Figure 5: Results of data samples’ gradients computed by full GNN model and our dynamic sparse
GNN model on NCI1 data. Red dashed line: on the left side, points on the x-axis [0, 900] are majority
class; on the right side, points on the x-axis [900, 1000] are minority class.

D FINDING INFORMATIVE SAMPLES BY SPARSE GNN

Compared with the full GNN model, our dynamic sparse GNN model is more sensitive in recognizing
informative data samples which can be empirically verified by Figure 5. As we can see in the figure,
our dynamic pruned model assigns larger gradients to the minorities than the majorities during the
contrastive training, while the full model generally assigns relatively uniform gradients for both of
them. Thus, the proposed dynamically pruned model demonstrates its discriminatory ability on the
minority class.

E RESOURCE COST

To evaluate the proposed GraphDec’s computational cost on a wide range of datasets, results in
Table 7 that include three different class-imbalanced node classification datasets (PubMed-LT, Cora-
LT, CiteSeer-LT), three different class-imbalanced graph classification datasets (MUTAG, PROTEINS,
PTC MR), and four baselines (vanilla GCN, re-weight, re(/over)-sample, GraphCL). We run 200
epochs for each method to measure their computational time (second) for training. On NVIDIA
GeForce RTX 3090 GPU device, we obtain the running time as reported in Table 7. All models are
implemented in PyTorch Geometric (Fey & Lenssen, 2019).

Table 7: Computational time comparisons.

Model Method PubMed-LT Cora-LT CiteSeer-LT PROTEINS PTC MR MUTAG

GCN

vanilla 2.436 2.154 2.129 12.798 4.295 2.989
re-weight 2.330 2.282 2.150 12.903 4.410 3.125
re(/over)-sample 3.241 2.860 2.794 15.996 5.734 4.022
GraphCL 3.747 3.412 3.399 14.981 5.049 3.215
GraphDec 2.243 1.995 1.952 10.614 4.212 2.090

According to the results, our GraphDec encounters less computation cost than prior methods. The
following explains why augmentation doubles the input graph without increasing overall computation
costs: (i) The augmentations we adopt (e.g, node dropping and edge dropping) reduce the size of
input graphs (i.e., node number decreases 25%, edge number decreases 25-35%); (ii) During each
epoch, our GraphDec prunes datasets so that approximately only 50% of the training data is used.
(iii) GraphDec prunes the model weights, resulting in a lighter model requiring less computational
resources. (iv) Despite the fact that augmentation doubles the number of input graphs, the additional
new views only consume forward computational resources without requiring a backward or weight
update step, thereby only marginally increases the computation.
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