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ABSTRACT

Zero-shot composed image/video retrieval is a challenging task that involves using
a combination of a reference visual input and a relative caption as a query to search
for target visual data. Earlier studies have treated composed image retrieval and
composed video retrieval methods separately, potentially neglecting the benefits of
integrating image-video-text representation learning. In this paper, we consolidate
these tasks into a single Composed Visual Retrieval (CVR) task, which requires
the composition of image and video samples with textual modifications using a
unified retrieval model. Our principal insight is that the video modality can be
effectively added to existing vision-language pretrained models. When integrated
with the Spherical Linear Interpolation (Slerp) method previously proposed for
Composed Image Retrieval (ColR), we found that it results in an effective approach
for solving the CVR task, which we called Slerp™. Extensive experiments demon-
strate Slerp™’s superiority across various composed image and video retrieval
benchmarks, including our newly proposed video benchmark. Notably, Slerp™
mutually enhances image and video retrieval performance over single-modality
models, underscoring its potential to transform the field of compositional visual
retrieval.

1 INTRODUCTION

Composed Image Retrieval (ColR) and composed Video Retrieval (CoVR) tasks take visual data and
user-provided textual instructions as queries to retrieve relevant data samples from the gallery. Given
that certain characteristics are more accurately described through language while others are more
effectively conveyed visually, the multi-modality of the query enhances the quality of search results.
For example, a customer may combine text descriptions with images to find specific products, such
as searching for “white shirts similar to this red one”. The potential of composed retrieval in a wide
range of practical applications has led to a significant rise in the level of interest within the retrieval
community.

In the supervised setting, the task of composed retrieval requires expensive annotations of triplets
for model training, each of which consists of a reference visual input, a relative caption, and target
data |Liu et al.| (2021)); Baldrati et al.| (2022); [Ventura et al.| (2023)); Xu et al.| (2024). As a result,
zero-shot learning-based methods [Saito et al.| (2023); Baldrati et al.| (2023)); (Gu et al.| (2023); Du
et al.[(2024) as well as pseudo-triplet based methods, as proposed in Jang et al.| (2024b); [Ventura
et al.|(2023), have gained popularity in recent years. However, both approaches require a complex
additional layer in their designs, complicating the process and restricting their applicability to specific
contexts. For instance, zero-shot methods require an additional projection module to transform
images into pseudo-word tokens. In the case of pseudo-triplet methods, the generation of pseudo-
triplets necessitates costly tuning of a Large Language Model (LLM), and potentially suffers from
the inherent hallucinations that LLMs are especially prone to. Lastly, it is important to note that the
ColR and CoVR tasks have so far been isolated from each other, potentially overlooking the overall
effectiveness that a unified retrieval system could offer.

In this paper, we propose an extension of the Spherical Linear Interpolation (Slerp)|Jang et al.|(2024al)-
based ColR method for the unified image-video-text Composed Visual Retrieval (CVR) task, which
we call Slerp™. Our method provides a simple yet effective solution that integrates image and video
representations with text, improving both image and video composed retrieval performances. As
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Figure 1: Expanding on the current composed retrieval task, which typically considers only dual
modalities of either video-text or image-text, we propose a new task where a query, composed of
either an image or video accompanied by user modification text, can retrieve corresponding images
and/or videos. To address this task, we introduce a novel method: Slerp+. Our model is trained in a
unified manner, utilizing both video-caption and image-caption pairs. Like other zero-shot composed
retrieval methods, Slerp™ is designed to be trained without compositional supervision of modification
text, relying solely on the captions corresponding to the image or video samples.

shown in Figure[I] our objective is to construct a single retrieval system that can compose both image
and video samples with modification text in a zero-shot manner. We find that existing vision-language
pretraining objectives (e.g., BLIP’s image-text contrastive learning and image-text
matching), when applied to image, video, and text samples in a unified manner, are sufficient for
enabling CVR with Slerp, eliminating the need for complicated design choices.

Specifically, Slerp™ employs a ViT vision encoder Dosovitskiy et al.| (2020), and a BERT-style text
encoder that includes cross-attention layers for vision-language understanding [Devlin et al.| (2018));
Li & et al| (2022); [Li et al| (2023)), as our baseline. These attention layers process textual queries
to attend to visual keys and values, facilitating the learning of a seamless understanding between
image-text or video-text. During the training phase, a dataset configured with ima§e-capti0n and
video-caption pairs is utilized to train the image-video-text-unified model of Slerp™. Vision-Text
Contrastive learning (VTC) and Vision-Text Matching (VTM), where ‘Vision’ refers to both images
and videos, losses are incorporated to foster alignment between the representations of the images,
videos, and their corresponding captions.

Without additional fine-tuning for the CVR task, in the retrieval phase, we apply Slerp[Shoemake|
(1985)); Jang et al.| (20244a) to the visual and textual embeddings produced by the model to create a
composed embedding efficiently. Comprehensive experiments with these embeddings on existing
ColIR and CoVR datasets |Liu et al|(2021); |Wu et al.| (2021); Ventura et al.| (2023) provide strong
evidence on the superiority of our proposed unified method.

Finally, despite the growing significance of zero-shot composed retrieval, the field of CoVR remains
largely under-explored. To encourage more robust research discoveries, we introduce a new video
evaluation benchmark based on Activitynet-captions [Krishna et al.| (2017) dataset that incorporates
more complex textual modifications to increase the task’s complexity. The robustness and adaptability
of our Slerp™, as demonstrated on this dataset, underscores its potential to significantly advance the
field of compositional vision-language retrieval.

Our contributions can be summarized as:

* To the best of our knowledge, we are the first to attempt to build a unified composed retrieval
system that integrates image, video, and text modalities, marking a new and significant area
yet to be explored.

+ We propose Slerp™, which despite its simplicity, is an extremely effective method. Trained
solely with image-caption and video-caption pairs, Slerp™ comprehends images, videos,
and text to produce aligned embeddings for composed retrieval.
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* By leveraging Slerp, Slerp™ achieves strong results on existing composed image and video
retrieval tasks, as well as our newly introduced video benchmark, demonstrating the effec-
tiveness of the proposed method.

2 RELATED WORK

Composed Retrieval with Supervised Triplets Supervised learning-based methods for Composed
Image Retrieval (ColR) Liu et al|(2021); Baldrati et al.| (2022); Kim et al.| (2021); |Goenka et al.
(2022); |Delmas et al.[(2022); Xu et al.| (2024) have garnered significant interest due to their decent
performance and domain-specific applicability. These methods utilize human-annotated triplets,
comprising reference images, textual descriptions of desired modifications, and target images, to train
ColR models for natural images |Liu et al.|(2021) and fashion images |Wu et al.|(2021)); Goenka et al.
(2022)). An intriguing approach to compose triplets follows a semi-supervised paradigm. Here, Visual
Delta Generation (VDG) Jang et al.|(2024b)) uses both supervised triplets and unlabeled data samples
to enhance the performance of the ColR model. [Ventura et al.|(2023) further expanded the composed
retrieval task to the video modality, proposing the CoVR task. They construct triplets using videos
instead of images, after which they train a CoVR model that shows promising performance. However,
approaches utilizing supervised triplets face significant challenges when there is a need to scale up
the training set due to the high labeling cost. Additionally, domain-specific supervised triplets often
result in low generalization capability. In this work, we propose a unified method for both images
and videos that doesn’t rely on any human-annotated triplets, thereby reducing domain-specific bias
and offering flexibility for various composed retrieval use cases.

Zero-shot Composed Retrieval Zero-shot ColR models, which use large-scale image-caption
pairs instead of annotated triplets, have also been proposed [Saito et al.|(2023); |Cohen et al.| (2022);
Baldrati et al.| (2023); |Du et al.| (2024); (Gu et al.|(2023); Jang et al.| (20244a). These zero-shot methods
leverage vision-language pretraining models [Radford et al.| (2021); [Li & et al.| (2022); |Li et al.
(2023)) to provide image-text joint representation. The ease of large scale data collection through
web-crawling has accelerated the development of these vision-language pretrained models, and in
turn more generalized zero-shot ColR models. However, zero-shot learning has not yet been extended
to the video modality. This is primarily due to the greater difficulty in gathering video-caption pairs
compared to image-caption pairs and the increased computational cost. Additionally, the complexity
of video data may require more data samples to achieve satisfactory zero-shot composed retrieval
performance. To address these challenges, we propose a simple and effective unified CVR method,
Slerp™, that utilizes both image-caption and video-caption pairs for training. This approach not only
allows both modalities to complement each other, it is also more practical due to its capability to
perform image or video composed retrieval with an unique integrated model.

3 METHOD

In this section, we detail our unique, unified Slerp™ framework for the Composed Visual Retrieval
(CVR) task. Similar to zero-shot ColR methods |Saito et al. (2023)); |(Cohen et al.| (2022); |Baldrati
et al.| (2023)); Levy et al.|(2023)); Du et al.| (2024)); Jang et al.| (2024a)), Slerp+ utilizes image-caption
pairs for training while also incorporating video-caption pairs to achieve a seamless understanding of
image, video, and text modalities. We first discuss the embedding-based learning scheme that trains
a transformer-based vision-language encoders. Subsequently, we describe the retrieval inference
process, which employs linear interpolation between visual and textual embeddings to generate a
composed embedding.

3.1 PRELIMINARIES

To generate cross-modal aligned embeddings from image-text pairs, vision-language pretraining,
such as CLIP Radford et al.| (2021})), are trained on a large dataset D(I,t) = {zn, tn}ﬁf:l, where each
pair consists of an image (z) and its corresponding caption (¢). These models are equipped with a
trainable vision encoder E,, and a text encoder F;, which produce image embedding v = E, () and
text embedding w = E,(t), respectively. Both v and w are [2-normalized d-dimensional vectors,
ie., v,w e R
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Then, contrastive loss Lo+, is applied on these embeddings as:

min  Leont. = Lvor + L1av, (D
{08,985, }

where the parameters of the vision encoder 0, and the text encoder 6, are trained using two terms
of normalized temperature-scaled cross entropy loss|Oord et al.| (2018)) which are defined as:

1 exp( WZ/T)
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Here, I3 denotes a training batch sub-sampled from D, and 7 is the temperature for scaling similarity.

In another vision-language pretraining, BLIP|Li & et al.[(2022), the learning process is improved with
the introduction of cross-attention layers to the text encoder, where the vision encoder output tokens
from image patches are attended with a cross-attention layer to learn a joint representation between
image and text. Moreover, an additional binary classification loss known as image-text matching loss
is employed. This loss function is designed to capture the fine-grained alignment between vision and
language, which is formulated as:

Lonat. = ~ 11 Z yilog(ps) + (1 — yi) log(1 — pi)], )
i€B

where y; is the true label denoting if the i-th image-text pair in the batch is matched (1) or not (0),

and p; is the predicted probability of the i-th pair being a match. This probability is computed by

passing the combined image and text embeddings through a matching head, represented by a linear

layer, parameterized as 6,,

min
{08,,98,,0m}

The contrastive learning scheme aligns an image with its corresponding text caption, effectively dis-
tinguishing it from unpaired ones. This process is further refined through image-text matching, which
promotes a detailed comprehension of the relationship between visual and textual data. Ultimately,
both the image and text encoders are optimized to generate embeddings that capture the semantic
alignment between images and their corresponding text captions.

3.2 UNIFIED TRAINING OF IMAGE-VIDEO-TEXT

In this work, we extend the concept of zero-shot composed retrieval to encompass images, videos,
and text within a unified SlerpJr framework. To accomplish this, we utilize a vision encoder F,, and a
text encoder F; from BLIP L1 & et al.|(2022), instead of from CLIP Radford et al.|(2021). Unlike
CLIP, the text encoder in BLIP incorporates cross-attention layers, enabling it to attend to the entire
tokens of vision and text simultaneously. This design is especially advantageous for understanding
the complex relationship between visual data and text, such as compositional reasoning. As a result,
we establish our baseline based on the BLIP model, and fine-tune only the text encoder while freezing
the vision encoder. This ensures that the vision encoder produces consistent outputs from both images
and videos, and allows the text encoder to learn how to effectively integrate visual inputs.

For a given datasets of image-text paired D(, ;) = = {z,, n}n 1> and a video-text paired D, ;) =

{zn, tn } 21 where z represents video of M-frames (images) as z = [1, ..., 23/, e train Slerp™
model in a image-video-text holistic manner as shown in Figure 2} Note that, the vision [CLS] token
and text [CLS] token are input into the vision and text encoder respectively for each sample, and the
output embedding from these [CLS] tokens is used to represent each data sample.

Specifically for contrastive learning, we first forward image samples x from a training batch B, where
B ~ D(z,t) UD(z,t), to the vision encoder to obtain the image embedding v, where v, = E,(z).
We also forward frames of video in B to obtain the video embedding v, where v, = E,...[F,(z)]
and [E denotes expectation (averaging). Next, we obtain the text embedding using the captions from
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Figure 2: Overview of Slerp™’s learning process. Avg. is an abbreviation for average, and Cross-Att.
stands for cross-attention. We forward image-caption and video-caption pairs to generate embeddings
using [CLS] token. All images and video frames are processed using the same frozen vision encoder,
and their output patch-wise tokens are forwarded to the text encoder to compute cross-attention with
the corresponding text. The text encoder is then updated using VTC and VTM losses.

images and videos, denoted as w, where w = F;(t). Finally, to achieve comprehensive representation
learning that integrates image, video, and text, we concatenate the image and video embeddings.
Separately, we also concatenate the embeddings of image captions and video captions within a batch.
Using these, we compute the Vision-Text Contrastive (VTC) loss using Equation [T}

To enable the text encoder to better understand visual inputs and identify fine-grained alignment
between visual and text elements, we introduce the Vision-Text Matching (VTM) loss using Equation
M From the image perspective, we process the image with the vision encoder to obtain the last hidden
state tokens (patch-wise tokens). These tokens are then forwarded to the text encoder to compute
cross-attention with text tokens from the image caption. We calculate the binary classification
prediction p, using a trainable matching head from the text [CLS] embedding.

For video, we process frames with the vision encoder to obtain the last hidden state tokens separately,
then concatenate them in a temporally sequential manner. The text encoder calculates cross-attention
between these tokens with the video caption text tokens, and the matching head predicts the score
p, from text [CLS] embedding. Additionally, we employ the hard negative mining strategy |Li et al.
(2021) to identify more informative negatives, and we involve all of image, video, text embeddings
in this process. Consequently, by learning to discriminate whether the matched pairs are positive or
negative regardless of the data modality, the model is able to comprehend a holistic representation of
image-video and text.

3.3 INFERENCE

After training the model, it can be utilized to process images, videos, and text, generating embeddings
for retrieval. However, executing composed retrieval requires a method to combine visual and text
embeddings. One such approach is the early-fusion strategy. This strategy simultaneously feeds the
text encoder of the model with visual patch tokens and text modifications, using the output [CLS]
token as the composed embedding. However, this approach may not be entirely accurate. The model,
trained to handle multi-modal inputs with VTM - a system designed to classify whether visual data
and text match, is not intended to compose visual and text elements to project a composed output.

In light of this, an alternative late-fusion approach that utilizes interpolation between visual and
text embeddings, also known as Slerp Shoemake| (1985)); Jang et al.| (2024a), can be considered.
This strategy employs individual modality encoders to generate separate visual and text embeddings,
which are then linearly interpolated to obtain a composed embedding c as:

c: Slerp(v, w;t) = (sin((1 — t)a) - v, +sin(ter) - w) /sin(«) 5)

where ¢ is balancing scalar value and « is the angle between embeddings which is computed as
a = cos~ (v - w). This process can be seamlessly applied to the model trained in Section The
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reason lies in the contribution of both VTC and VTM losses to the discovery of a fine-grained semantic
alignment among the embeddings of images, videos, and text simultaneously. Such alignment leads to
densely distributed embeddings, covering the intermediate compositional representation successfully.

Finally, we can construct a image-video-text unified retrieval system using the Slerp process, which
we call Slerp™. The retrieval gallery is established using visual embeddings v obtained from image
and video samples. Users can input a query image or video, along with a text modification, to create a
composed embedding c using the Slerp method. The system then searches relevant images or videos
from the gallery by calculating the cosine similarity between the composed query embedding and
each individual image or video embedding.

4 EXPERIMENTS

In this section, we first outline the experimental settings including the datasets, evaluation metrics,
and implementation details (Section[d.T]). Following this, we present the results of composed video
retrieval on existing benchmark as well as our newly introduced one (Section and composed
image retrieval (Section.3). Finally, we provide further analysis with ablation study (Section 4.4).

4.1 SETUP

Datasets. To train the Slerp™ model, we utilize two types of datasets: (1) image-caption pairs and
(2) video-caption pairs. Specifically for image-caption pairs, we use CC3M dataset Sharma et al.
(2018), which was collected through web crawling. This is a common dataset for training zero-shot
composed IR methods [Saito et al.| (2023));|/Gu et al.|(2023); |Du et al.[(2024), and we use a subset of
2.3M pairs that was accessible to us to train the model.

For video-caption pairs, we use a subset of the WebVid dataset Bain et al.| (2021). Following the
setup proposed in CoVR |Ventura et al.|(2023)), we select its training split, which consists of a total of
130K video-caption pairs, ensuring no overlap between the training and test sets. Furthermore, we
clean up the dataset by removing noisy samples with too few frames or exceptionally long videos,
resulting in 94K video-caption pairs for the training set of the Slerp™ model.

To evaluate composed retrieval performance, we utilize two image-based benchmarks and two video-
based benchmarks. For images, first, we utilize CIRR [Liu et al.| (2021)), which deals with natural
images, where the test split consists of 503 subgroups of 2,178 images. Second, we utilize FashionIQ
‘Wu et al.| (2021)), which focuses on fashion domain images of three categories: Dress, Shirt, and
Toptee. Following the literature, we employ the validation split for evaluation, which consists of
15,415 images.

For videos, first, we utilize the CoVR test splits named WebVid-CoVR-Test set. A high-quality set
of 2,556 triplets is carefully selected and curated to form the separate corpus of the WebVid dataset.
Second, to further evaluate the performance of models on composed VR tasks, we establish a new
experimental protocol of more complex text modifications, Activitynet-CoVR, based on the validation
split of the Activitynet-captions dataset Krishna et al.|(2017). This dataset labels each video with
corresponding sentences (captions) and timestamps. We create reference and target video pairs using
two methods: (1) Intra-pair, selecting two video clips from the same video, with the earliest caption
and the corresponding video clip as the reference and the last clip as the target, and (2) Inter-pair,
selecting two video clips from different videos by calculating the similarity between all possible
video clips and choosing the closest two with cosine similarity scores over 0.8, measured with the
VideoMAE-Large model [Tong et al.| (2022). This results in a total of 1,260 pairs. Similar to the
annotation steps for the CoVR test set, we use the instruction-tuned LLM, LLaMA3 [LLal (2024)).
We prompt it directly with [Please give an imperative that makes video A to video B], including
the caption of each video clip. Finally, annotators carefully filter out noisy triplets, resulting in 800
composed VR triplets for evaluation.

Evaluation Metrics. In line with the protocols adopted in benchmarks |Saito et al.|(2023); [Ventura
et al. (2023), we evaluate the model’s performance using recall scores at the top K retrieval results
(R@K) for ranks 1, 5, 10, and 50. The metric Recall at rank k (R @k) measures the frequency at
which the correct image or video appears among the top k results. A higher recall score indicates
superior performance.



Under review as a conference paper at ICLR 2025

Table 1: Retrieval results on WebVid-CoVR-Test set.

Type Method Query Modality ~ Fusion | R@1 R@5 R@10 R@50
BLIP'|Li & et al. (2022) Text - 21.17 4178 5047 70.42

BLIP' |Li & et al. (2022) Video Avg 39.44 6299 7230 89.71

BLIP'|Li & et al. (2022) Video + Text Avg 45.62 70.55 79.67 93.40

Zero-shot X-CLIPT|Ni et al.|(2022) Video + Text Slerp | 42.09 66.19 7472  89.39
Slerp™ Text - 21.95 4292 51.88 71.67

Slerp™ Video Avg 41.82 63.26 7234  89.87

Slerp+ Video + Text Slerp | 57.82 80.16 86.38 96.60

CoVR* |Ventura et al. (2023) Text - 23.67 4589 55.13 77.03

Fine-tuned on  CoVR*|Ventura et al.|[(2023) Video Avg | 38.89 6498 74.02 92.06
WebVid-CoVR  CoVR [Ventura et al.[(2023) ~ Video+ Text  Slerp | 44.44 6620 7531 91.98
CoVR* |Ventura et al. (2023) Video + Text CA 53.13 79.93 86.85 97.69

Implementation Details. As a baseline for the Sleerr model, we utilize the BLIP model |[Li & et al.
(2022), configured with a ViT-L/16 vision encoder [Dosovitskiy et al.[(2020) and a Bert-based text
encoder [Devlin et al.| (2018). We use a fine-tuned version of the BLIP model on the MS COCO
dataset|Lin et al.|(2014). The pretrained weights provided by HuggingFac Wolf et al.|(2020) are
applied to this baseline model under the identifier: Salesforce/blip-itm-large-coco.

In the training of the Slerp™ model (Section , we aim to retain the baseline’s knowledge acquired
from large-scale pretraining. To achieve this, we employ the parameter-efficient fine-tuning technique,
LoRA Hu et al.|(2021), to the text encoder. This technique allows us to keep the original parameters
intact while introducing small adaptation weights for tuning. The additional LoORA parameters are
configured as: LoRA, = 16, rank = 16, and dropout = 0.1. Throughout the training process, we
maintain the entire set of parameters for F, and F} as fixed. Only the parameters for LoRA, the
text projection linear layer, and the matching head 6,,, are updated. The models are trained using
8 x A100-80GB GPUs. For video training, we use a batch size of 4, sampling 8 equally-spaced
frames per video, resulting in a total of 32 frames. For image training, we use a batch size of 32.
Therefore, each GPU processes a total of 64 samples (frames + images). The initial temperature
7 for scaling is set to 1/0.07 and is continuously updated during training. We employ the AdamW
optimizer |Loshchilov & Hutter| (2018) with a fixed learning rate of 3e-5 and a weight decay of 0.01.
The training is conducted for single epoch, with the trainable parameters constituting less than 0.32%
of the total parameters, ensuring efficiency.

During the evaluation, we adopt the same frame sampling strategy as in the training stage, sampling
8 equally-spaced frames per video for both query and gallery videos. To compose the visual and text
embeddings with late-fusion (Slerp), we set ¢ to 0.6 for videos and 0.7 for images by default. For
comparison, we also utilize the X-CLIP|N1 et al.| (2022) model, a CLIP-style video-text pretraining,
with the same Slerp inference. Additionally, in line with the experiments conducted in CoVR |Ventura
et al.[(2023) that evaluate the performance of image-text models in a video-text scenario, we input the
selected frames separately into the vision encoder of BLIP. We then either average (Avg) the image em-
beddings or apply an early-fusion strategy with the pretrained Cross-Attention (CA) as used in CoVR.
We use the pretrained checkpoint from Huggingface: microsoft/xclip-large—-patchli,
and the pretrained checkpoint provided by the official implementation of the CoVR model.

4.2 COMPOSED VIDEO RETRIEVAL RESULTS

In the subsequent sections, we compare our Slerp* method with existing zero-shot CoIR, supervised
CoVR, and video-text pretraining methods Saito et al.[|(2023); Baldrati et al.| (2023); |Gu et al.| (2023));
Du et al.[(2024); Jang et al |(2024a); Ventura et al. (2023); |Ni et al.| (2022)). The symbol T indicates
that we conducted experiments using provided checkpoints on our setup, while * denotes that the
results were directly obtained from the best scores reported by each method. The best scores are
marked in bold, while the second best are underlined.

"https://huggingface.co/models
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Table 2: Retrieval results on Activitynet-CoVR set.

Type Method Query Modality ~ Fusion | R@1 R@5 R@10 R@50
BLIP'|Li & et al.|(2022) Text - 2387 5225 6275 8338

BLIP' |[Li & et al.|(2022) Video Avg | 3450 46.00 4887 57.25

BLIP' |Li & et al.|(2022) Video + Text Avg | 3560 4732 49.12 59.10

Zero-shot X-CLIPT|Ni et al.|(2022) Video + Text Slerp | 33.00 50.25 5450 67.50
Slerp™ Text - 2462 5213 65.62 84.00

Slerp™ Video Avg | 38.12 4650 49.12 57.63

Slerp™ Video + Text  Slerp | 43.00 60.62 68.37 84.50

CoVR'|Ventura et al.|(2023) Text - 23.67 4589 5513  77.03

Fine-tuned on  CoVR' [Ventura et al.|[(2023) Video Avg | 36.62 46.12 4937 57.37
WebVid-CoVR  coVR [Ventura et al.[(2023) ~ Video + Text  Slerp | 37.38 47.87 5175 61.50
CoVR' |Ventura et al. (2023) Video + Text CA 35.12 60.25 67.87 83.25

Table 3: Zero-shot ColR results on CIRR test set.

Method | Recall@K | Recallgpset @K

| K=1 | K=5 | K=10 | K=50 | K=l | K=2 | K=3
Pic2Word? [Saito et al.|(2023) 23.90 | 51.70 | 65.30 | 87.80 - - -
SEARLE! Baldrati et al. (2023) 2422 | 5241 | 66.29 | 88.63 | 53.71 | 74.63 | 87.61
LinCIR¥ |Gu et al. (2023) 25.04 | 53.25 | 66.68 57.11 | 77.37 | 88.89

Image2Sentence* Du et al.|(2024) | 30.84 | 61.06 | 73.57 | 92.43 -
Slerp + TAT? Jang et al.[(2024a) 3398 | 61.74 | 72.70 | 88.94 | 68.55 | 85.11 | 93.21
CoVR¥ |Ventura et al.[(2023) 38.48 | 66.70 | 77.25 | 91.47 | 69.28 | 83.76 | 91.11
Slerp™ 39.74 | 67.74 | 77.40 | 91.55 | 70.65 | 86.72 | 94.36

WebVid-CoVR-Test. The retrieval results on the CoVR-test set are shown in Table [T} We divide
the methods into two categories: zero-shot, which does not use supervised composed VR triplets
used in CoVR |Ventura et al.| (2023)), and the supervised CoVR approach, which is fine-tuned on
the WebVid-CoVR-Training set. Despite not using any supervised triplets and being trained in a
zero-shot manner, Slerp™ achieves the highest scores for R@1 and R@5. The R@1 score shows a
significant gap, while the R@ 10 and R@50 scores are not far behind the top scores. When comparing
Slerp™ in terms of query modality, it is evident that Slerp™ successfully combines video and text
queries to retrieve relevant samples from the gallery, achieving significantly better retrieval scores
than text-only or video-only. The success of Slerp™ is not solely due to the use of Slerp, as evidenced
by the results of CoVR with Slerp and X-CLIP with Slerp, which are far inferior to Slerp™ using the
same fusion approach. In this experiment, Slerp™ demonstrates the benefits of holistic representation
learning over image-caption only pretrained BLIP, video-caption only pretrained X-CLIP, and video
composed triplet supervised CoVR.

Activitynet-CoVR. The experimental results on Activitynet-CoVR with longer text modifications
are presented in Table In this setup, Slerp™ outperforms all other zero-shot methods across all
Recall ranks, even surpassing the fine-tuned CoVR. The supervised training of the CoVR model with
WebVid results in less generalization with Activitynet, leading to lower scores in R@1. Notably,
Slerp™ with only video achieves the second highest score in R@1, indicating its precision in retrieving
the most relevant result. Conversely, Slerp™ with only text secures the second highest score in R@50,
demonstrating its effectiveness in retrieving a broader set of relevant results. These scores confirm the
proficiency of the Slerp™ model in balancing precision and recall, effectively leveraging information
from both video and text modalities.

4.3 COMPOSED IMAGE RETRIEVAL RESULTS

CIRR. The retrieval results on CIRR dataset are presented in Table [3] Despite the unified training
of both image-caption and video-caption pairs, where image and video may not necessarily support
each other and could potentially degrade each other’s performance, Slerp™ still manages to achieve
outstanding performance. This holds true even when compared with text-only |Gu et al.| (2023)),
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Table 4: Zero-shot ColR results on FashionlQ validation set.

Method | Dress | Shirt | Toptee | Average

| R@10 | R@50 | R@I0 | R@50 | R@10 | R@50 | R@10 | R@50
Pic2Word! |Saito et al.|(2023) 20.00 | 40.20 | 26.20 | 43.60 | 27.90 | 47.40 | 24.70 | 43.70
SEARLE! Baldrati et al.|[(2023) 2048 | 43.13 | 26.89 | 4558 | 29.32 | 49.97 | 25.56 | 46.23
LinCIR*|Gu et al.[(2023) 20.92 | 42.44 | 29.10 | 46.81 | 28.81 | 50.18 | 26.28 | 46.49

Image2Sentence* Du et al.[(2024) | 25.33 | 46.26 | 30.03 | 48.58 | 33.45 | 53.80 | 29.60 | 49.54
Slerp + TAT* Jang et al.|(2024a) 29.15 | 50.62 | 32.14 | 51.62 | 37.02 | 57.73 | 32.77 | 53.32
CoVR? |Ventura et al.[(2023) 21.95 | 39.05 | 30.37 | 46.12 | 30.78 | 48.73 | 27.70 | 44.63
Slerp™ 31.78 | 54.04 | 37.73 | 56.82 | 41.36 | 62.37 | 36.96 | 57.74

Table 5: Ablation study results on CoVR and ColR benchmarks.

Ablation Activitynet-CoVR CIRR test
R@l R@5 R@10 R@50 | R@l R@5 R@10 R@50
Baseline | 43.00 60.62 6837 8450 | 39.74 67.74 7740 91.55

(a) Number of frames =4 | 42.37 60.12 66.75 83.70 | 38.48 67.08 77.32 91.27
(b) Number of frames =16 | 43.50 60.86 68.88 84.90 | 39.81 68.07 77.52 91.68

(c) Fusion-Avg 41.87 58.13 63.62 80.37 - - - -

(d) Without VTC 41.85 57.82 66.78 8220 | 37.68 6522 75.52 90.58
(e) Without VITM 42.06 58.84 6745 83.63 | 3848 66.08 76.10 90.78
(f) Image-only 4098 5798 66.10 81.52 | 37.34 64.72 75.10 90.38
(g) Video-only 4120 58.10 66.68 81.88 | 37.08 64.37 75.02 90.11

image-caption only [Saito et al.[(2023)); |Baldrati et al.| (2023)); Du et al.| (2024)); Jang et al.| (2024a) or
video-caption-only |Ventura et al. (2023) methods. When compared with Slerp + TAT, Slerp™ proves
to be a superior model for applying Slerp-based composed retrieval, demonstrating its advantages
in the image domain. This is not only applicable to general retrieval scenarios but also effective for
subset cases, as evidenced by Slerp™ achieving the best scores for all K values.

FashionlQ. The experimental results for specific visual domain images, specifically fashion images
from the FashionlQ dataset, are presented in Table[d] Consistent with the results from the natural
image and video datasets, our Slerp™ significantly outperforms other methods across all recall scores.
This demonstrates the versatility and robustness of the Slerp™ model, as it excels not only in general
image and video retrieval tasks but also in specialized domains like fashion. The model’s ability to
effectively utilize both image, video with text modalities contributes to its superior performance,
making it a comprehensive solution for various retrieval scenarios.

4.4 ANALYSIS

Ablation Study. To validate our approach, we perform an ablation study on Slerp™ regarding training
schemes and report the results in TableE} In (a, b), we vary the number of frames extracted from
videos during training. Compared to the baseline, which uses 8 frames per video, we find that using
more frames slightly improves performance. However, the increase is marginal, so we choose to
use 8 frames per video by default for efficiency. In (c), we try averaging all frame embeddings with
text embedding instead of using the Slerp to obtain composed embedding, but this result in poorer
performance. In (d, e), we examine the impact of each training loss. We observe that both have a
decent effect on performance improvement, and they complement each other to achieve the best
performance when combined. Lastly, in (f, g), we examine the joint training of image-video-text by
excluding video in (f) and image in (g). The results show that utilizing both image and video samples
simultaneously with the proposed training scheme improves both image and video composed retrieval
accuracy.

Qualitative Results. Figures[3|and[4]show the retrieval results on CoVR and ColR tasks, respectively.
Our Slerpt model effectively combines video or image and text modifications to successfully retrieve
relevant results.
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Rank 1 Rank 2

Add frosting to the dough and assemble two cookies together

Figure 3: Retrieval results of SlerpJr on WebVid-CoVR (above) and Activitynet-CoVR (below).

Make the dog sleep

Is flowery with thicker
straps and hawaiian

Figure 4: Retrieval results of SlerpJr on CIRR (above) and FashionlQ (below).

5 DISCUSSION & CONCLUSION

Potential Impact. By combining visual data with textual modifications, our Slerp™ system addresses
the limitations of both supervised and zero-shot learning approaches, providing a unified framework
that improves retrieval accuracy without relying on costly supervised triplets. The potential societal
impact includes significantly improved search functionalities across various applications, from
e-commerce to multimedia management, by providing accurate and contextually relevant results.

Limitation. A potential limitation of Slerp™ system is its dependency on the quality and diversity
of the image-caption and video-caption pairs used during training. While the zero-shot learning
approach alleviates the need for supervised triplets, the model’s performance may still be constrained
by the representational richness and variety of the training data.

Conclusion. In this paper, we introduced the CVR task and Slerp™, a novel unified framework for
composed image and video retrieval that seamlessly integrates visual and textual modalities. By
employing a vision and text encoder which are fine-tuned with both image-caption and video-caption
pairs, Slerp™ overcomes the limitations of traditional supervised learning and zero-shot approaches.
Our method’s effectiveness is demonstrated through significant improvements on existing ColR and
CoVR benchmarks and a new and more complex video evaluation benchmark that we introduce in
this paper. The results underscore the potential of Slerp™ to advance compositional vision-language
retrieval, offering a robust and scalable solution for diverse real-world applications.
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