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ABSTRACT

Optimization layers within neural network architectures have become increasingly
popular for their ability to solve a wide range of machine learning tasks and
to model domain-specific knowledge. However, designing optimization layers
requires careful consideration as the underlying optimization problems might be
infeasible during training. Motivated by applications in learning, control and
robotics, this work focuses on convex quadratic programming (QP) layers. The
specific structure of this type of optimization layer can be efficiently exploited for
faster computations while still allowing rich modeling capabilities. We leverage
primal-dual augmented Lagrangian techniques for computing derivatives of both
feasible and infeasible QP solutions. More precisely, we propose a unified approach
that tackles the differentiability of the closest feasible QP solutions in a classical
ℓ2 sense. We then harness this approach to enrich the expressive capabilities of
existing QP layers. More precisely, we show how differentiating through infeasible
QPs during training enables to drive towards feasibility at test time a new range of
QP layers. These layers notably demonstrate superior predictive performance in
some conventional learning tasks. Additionally, we present alternative formulations
that enhance numerical robustness, speed, and accuracy for training such layers.
Along with these contributions, we provide an open-source C++ software package
called QPLayer for differentiating feasible and infeasible convex QPs and which
can be interfaced with modern learning frameworks.

1 INTRODUCTION

Incorporating differentiable optimization problems as layers within neural networks has recently
become practical and effective for solving certain machine learning tasks, see, for instance (Geng
et al., 2020; Amos & Kolter, 2017; Lee et al., 2019; Le Lidec et al., 2021; Donti et al., 2017;
de Avila Belbute-Peres et al., 2018; Amos et al., 2018; Bounou et al., 2021; Donti et al., 2021b;a).
Such layers allow capturing useful domain-specific knowledge or priors. Unlike conventional neural
networks, where the output of each layer is provided by a simple (explicit) function of its input,
the input of an optimization layer is the parameter of an optimization problem, and its output is a
solution to this problem. Figure 1 and Figure 2 provide two illustrative examples of a neural network
and a QP layer. Both layers have potentially fixed (in blue) and trained (in red) parameters. The
main difference is that the output (i.e., y⋆ in Figure 1) of the feed-forward neural network has a
closed-form expression, whereas the output of the QP layer is the solution of a constrained QP (i.e.,
y⋆ in Figure 2). Finally, note that extra parameters (i.e., zt and ht in red in Figure 2) are trained to
ensure the quadratic program is always well-posed during training.
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Neural network

Parameters:
● trained: wt

● fixed: b

INPUT

x y*=tanh(wtx-b)

FORWARD 
PASS

y*

OUTPUT

LOSS TO MINIMIZE

L(y*)=||y*-ydesired||2

BACKWARD 
PASS

PARAMETER UPDATE

wt+1=wt-α

𝜕w 𝜕y* 𝜕w 
 𝜕L                  𝜕y* 𝜕L                  𝜕w 

 𝜕L                  

=

Figure 1: Example of a feed-forward neural network.

 

QP layer

Parameters:
● trained: Ct,zt,ht

● fixed: D

INPUT

x y*= argmin ||Dy-x||2
   y   

  s.t., Cty≤Ctzt+exp(ht) FORWARD 
PASS

y*

OUTPUT

LOSS TO MINIMIZE

L(y*)=||y*-ydesired||2

BACKWARD 
PASS

PARAMETERS UPDATE

zt+1=zt-α

ht+1=ht-α

Ct+1=Ct-α𝜕C 𝜕y* 𝜕C 
 𝜕L                  𝜕y* 𝜕L                  

=

𝜕z 𝜕y* 𝜕z 
 𝜕L                  𝜕y* 𝜕L                  

=

𝜕h 𝜕y* 𝜕h 
𝜕y* 𝜕L                  

=

𝜕C 
 𝜕L                  

𝜕z 
 𝜕L                  

𝜕h 
 𝜕L                   𝜕L                  

Figure 2: Example of a Quadratic Programming layer (with D nonsingular).

In this work, we focus on convex Quadratic Programming (QP) layers, a specific type of optimiza-
tion layer that offers a rich modeling power (Amos & Kolter, 2017, Section 3.2). A convex QP
parameterized by θ is defined as follows

x⋆(θ) 2 argmin
x2Rn

�
f(x; θ) :=

1

2
x>H(θ)x + x>g(θ)

�
s.t. C(θ)x 6 u(θ),

(QP(θ))

where H(θ) 2 Sn+(R) is a real symmetric positive semi-definite matrix of Rn�n, g(θ) 2 Rn,
C(θ) 2 Rni�n and u(θ) 2 Rni . n is the problem dimension, while ni is the number of inequality
constraints. We will abusively denote H , g, C, and u without explicit dependence on θ when this
dependence is clear from the context or does not generate any ambiguity. In order to use QP(θ)
as a learning tool that can be trained with standard optimization techniques, we need to be able to
differentiate x⋆(θ) w.r.t. θ, which is challenging for a few reasons. First, there is usually no practical
way to compute a closed-form for x⋆(θ), even when QP(θ) is well-defined. Second, even when
such an x⋆(θ) exists, there is no guarantee for it to be unique nor differentiable w.r.t. θ (see, e.g., the
assumptions of the implicit function theorem (Dontchev & Rockafellar, 2009, Theorem 1B.1)). As
a consequence, concurrent approaches are generally based on architectures enforcing satisfaction
of some strong assumptions. In particular, to the best of our knowledge, previous approaches
specialized for differentiating through QP(θ) enforce primal feasibility of the layer during training,
which generally requires additional learning variables and limits the modeling power of those layers.
For instance, as in (Amos & Kolter, 2017), learning QP(θ) requires imposing its feasible set to be
non-empty. For imposing this while learning C, the authors also learn z 2 Rn and h 2 Rni and u of
the form u = Cz + exp(h) (similarly to Figure 2), thereby preventing, among others, u from being
fixed independently of the learning.

This work makes the following contributions:

• We propose a unified approach to tackle the differentiability of both feasible and infeasible
QPs. The main idea consists in extending the definition of x⋆(θ) to be either a solution
to QP(θ) when it is feasible or a solution of the closest feasible QP (in the least-square sense)
when it is not. By relying on the notion of conservative Jacobian by (Bolte et al., 2021;
Bolte & Pauwels, 2020), we notably show that the KKT map G of this extended problem
is path differentiable w.r.t. θ and x⋆ (Section 3.2). In this context, the Jacobian ∂x?(θ)

∂θ is
defined as the least-square solution of the linear system formed by applying the implicit
function theorem to G Section 3.3. We show that this definition consistently covers the
differentiability of feasible QPs as with the traditional implicit differentiation (Amos &
Kolter, 2017) when it is valid and with the least-square estimate proposed by (Agrawal et al.,
2019, Appendix B) otherwise.
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• In Section 3.4 we provide ef�cient ways to compute the Jacobian@x? ( � )
@� in forward and

backward automatic differentiation modes.

• In Section 4 we demonstrate how the approach enables dealing with possibly infeasi-
ble QP(� ) during training, while converging for test time to a feasible layer. We illustrate
how it allows to train a broader range of QP layers (e.g., learning QPs that are not generically
feasible). More precisely, we will show how to drive towards feasibility at test time the QP
layer provided in Figure 3. LearningA t (in red) is not obvious since nothing guarantees a
priori that the �xed equality constraint vector (of ones) lies in the range space ofA t . We
will see that learning such layer notably provides better predictive power for some classic
learning tasks.

Figure 3: A Linear Programming layer. Nothing guarantees during training that the constrained
vector of1 lies in the range space of the trained matrixA t . Our approach enables to trainA t such
that at test time the LP is feasible.

Based on these developments, we provide QPLayer, an open-source implementation with ef�cient for-
ward and backward passes, freely available athttps://github.com/Simple-Robotics/
proxsuite . It takes advantage, among others, of recent advances in solving of QP problems to
output in the forward pass the closest feasible QP solution in`2-sense as soon as the program is primal
infeasible (Chiche & Gilbert, 2016). Section 4 highlights for different learning tasks the numerical
robustness, accuracy, and speed of our approach against other state-of-the-art methods. Moreover,
Appendix C.1 provides different simple experiments with parametric QPs to illustrate the solutions
provided by QPLayer in different cases (e.g., LP case, primal infeasible QP case etc.). Appendix C.2
contains additional timing experiments. Appendix C.3 illustrates through several experiments that
QPLayer is numerically more robust and can thereby be trained with large learning rates.

2 RELATED WORK

Differentiation for optimization layers. Under certain regularity conditions, it is possible to
implicitly differentiate the optimality conditions of convex optimization problems. (Gould et al.,
2016; Gilbert, 2021; Fiacco & McCormick, 1968; Robinson, 1980) present general conditions and
techniques under which it is possible to differentiate through constrained optimization problems
using the implicit function theorem. (Bolte et al., 2021; Bolte & Pauwels, 2020) present exten-
sions to nonsmooth (not necessarily differentiable) functions for machine learning and optimization
applications. (Amos & Kolter, 2017) treats the speci�c case of QPs with a dedicated network ar-
chitecture, OptNet, and a specialized batched interior-point solver, Qpth, which allows for ef�cient
backpropagation. More recently, (Butler & Kwon, 2023) proposed an alternative approach based on
the differentiation of ADMM steps, yet dealing only with equality and box inequality constraints1.
For more general convex optimization, (Amos et al., 2018) proposed CvxpyLayer that differentiates
through "Disciplined Convex Programs" using an LSQR (Paige & Saunders, 1982) solver to speed
up the differentiation procedure. (Sun et al., 2022) has recently proposed an ADMM-type method,
called Alt-Diff, to alternatively solving a constrained convex optimization program and obtaining
approximate Jacobians at the current approximate solutions.(Blondel et al., 2022) also proposed a
generic solver, JaxOpt, based on an implicit automatic differentiation mechanism leveraging the Jax
framework. Finally, let us mention the work (Sharma et al., 2022), which provided a Julia library,

1The associated R solver is not yet publicly available.
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DiffOpt.jl, for differentiable QP and conic optimization (or any model that can be reformulated into
these standard forms).

Unrolling methods. Argmin and Argmax operations can be approximated by �rst-order methods,
which can be unrolled (Domke, 2012; Monga et al., 2021). These architectures typically introduce an
optimization procedure such as gradient descent into the inference procedure (Belanger & McCallum,
2016; Belanger et al., 2017; Amos et al., 2017; Metz et al., 2019), which is usually truncated to a
prede�ned number of iterations. Recently, (Scieur et al., 2022) highlighted the "curse of unrolling" by
showing that for unconstrained quadratic optimization, there is a tradeoff between the convergence
speed of the iterates and that of the Jacobian. Although unrolling methods are easy to implement,
most of their applications are limited to unconstrained problems. Indeed, if constraints are added,
the unrolling solutions have to be projected into the feasible region, signi�cantly increasing the
computational burdens.

Implicit models. Implicit models replace explicit expressions in neural networks with layers de�ned
by implicit functions (Zhang et al., 2020). As for optimization layers, the backward pass requires
solving nonlinear Jacobian-based equations arising from the implicit function theorem. Recently,
there have been a growing number of applications using them, such as neural ODE (Chen et al., 2018),
deep equilibrium models (Bai et al., 2019), logical reasoning in deep neural network (using MAXSAT
SDP relaxation) (Wang et al., 2019), implicit surface representation (Michalkiewicz et al., 2019),
attention mechanisms (Geng et al., 2021a), graph neural networks (Gu et al., 2020). However, this
method is not suitable for optimization layers with complicated constraints. Recently, (Fung et al.,
2022) proposes a matrix-free approach to decrease computational costs, and (Geng et al., 2021b)
proposes a phantom gradient that relies on �xed-point unrolling and a Neumann series for faster
computations of approximate update directions.

3 THE EXTENDED CONSERVATIVEJACOBIAN FOR CONVEX QPS

This section introduces the main contribution of this work: an extended conservative Jacobian for
the solutions to QP(� ) allowing to simultaneously deal with feasible and infeasible QPs, as provided
in Section 3.2 and Section 3.3. Section 3.4 proposes ef�cient algorithms for computing them in
forward and backward modes. For exposition purposes, Appendix C.1 illustrates the concepts on a
few simple examples.

3.1 PROBLEM FORMULATION

For differentiating QPs, we solve a hierarchic problem QP-H(� ) which is equivalent to QP(� )
when QP(� ) is primal feasible (i.e., there existsx s.t.C(� )x 6 u(� ))

s?(� ) = arg min
s2 Rn i

1
2 ksk2

2

s.t. x?(� ); z?(� ) 2 arg min
x 2 Rn

max
z2 Rn i

+

L(x; z; s; � ); (QP-H(� ))

with L(x; z; s; � ) := 1
2 x> H (� ) x + x> g(� ) + z> (C(� )x � u(� ) � s) (namely the Lagrangian

of QP(� ) augmented with a slack variables). The following assumption is necessary and suf�cient
for guaranteeing QP-H(� ) to have a solution. In this situation, QP-H(� ) is therefore well-posed and
s? is referred to as the optimal shift. It provides a measure of the distance of QP(� ) to be primal
infeasible iǹ 2-sense (hences? = 0 iff QP(� ) is feasible).

Assumption 1. H (� ) is symmetric positive de�nite in the direction ofg(� ) or g(� ) is orthogonal to
the recession cone of QP(� ), i.e.,g(� ) ? C1 (� ) := f y 2 Rn jC(� )[x + �y ] 6 u(� ) s.t. C(� )x 6
u(� ); � > 0g.

The existence of a solution(x?(� ); z?(� ); s?(� )) is also equivalent to the dual of QP(� ) having a
non-empty domain (i.e., being proper), see (Chiche & Gilbert, 2016, Assumption 2.6 and Proposition
2.5)). So, the approach proposed here allows differentiating through dual feasible convex QPs.
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3.2 THE CLOSEST FEASIBLEQP

In what follows, we deal with QP-H(� ) via a nonlinear mapG:

G(x; z; t ; � ) :=

2

6
4

H (� )x + g(� ) + C(� )> z
C(� )x � u(� ) � t
[[t]� + z]+ � z

C(� )> [t]+

3

7
5 ; (G)

where[:]+ and[:]� respectively correspond to component-wise projections on the non-negative and
non-positive orthants. The following lemma guarantees solutions to QP-H(� ) to be zeros ofG (see
proof in Appendix A).

Remark 1. The mapG is found via a change of variable of the KKT conditions for QP-H(� ).

Lemma 1. Let H (� ) 2 S n
+ (R), g(� ) 2 Rn , C(� ) 2 Rn i � n andu(� ) 2 Rn i be satisfying Assump-

tion 1. It holds that(x?; z?; s?) solves QP-H(� ) iff there existst? 2 Rn i s.t.G(x?; z?; t?; � ) = 0
ands? = [ t?]+ .

3.3 THE EXTENDED CONSERVATIVEJACOBIAN

For differentiating throughG, we rely on the notion of extended conservative Jacobian (ECJ). As
provided by the following lemma, the nonlinear mapG(x; z; t ; � ) is path differentiable (see (Bolte
& Pauwels, 2020, De�nition 3)) w.r.t.x, z, t and also w.r.t.� under the assumption thatH (� ), g(� ),
C(� ) andu(� ) are differentiable w.r.t.� . This lemma is proved in Appendix B.

Lemma 2. G is path differentiable w.r.t.x?, z? andt?. Furthermore, ifH (� ), g(� ), C(� ) andu(� )
are differentiable w.r.t.� , thenG is path differentiable w.r.t.� .

De�nition 1. LetH (� ), g(� ), C(� ) andu(� ) be differentiable w.r.t.� and satisfying Assumption 1.
Let v? = ( x?; z?; t?) 2 Rn � Rn i

+ � Rn i s.t.G(x?; z?; t?; � ) = 0 . We refer to the ECJs ofx?, z?

andt?, respectively denoted by@x?

@� ,@z?

@� and @t?

@� , as solutions of the following problem
�

@x?

@�
;

@z?

@�
;

@t?

@�

�
2 arg min

w






@G(x?; z?; t?; � )
@v?

w +
@G(x?; z?; t?; � )

@�






2

2
: (1)

Furthermore, we refer to an ECJ ofs? = [ t?]+ , denoted by@s?

@� , any element satisfying� @t?

@� 2 @s?

@� ,
with � 2 @([:]+ )( t?) a subgradient of the positive orthant evaluated int?.

As shown in the next section the ECJs match the de�nitions of standard Jacobians under standard
assumptions guaranteeing differentiability (when the QP is feasible), as provided by (Amos & Kolter,
2017; Dontchev & Rockafellar, 2009). When the QP is feasible but not differentiable, the ECJ
corresponds to a least-square approximation specialized for QPs. A similar practical least-square
estimate was proposed in (Agrawal et al., 2019, Appendix B) for differentiating primal solutions of
second-order cones (SOCs)2. (Blondel et al., 2022, Section 2.1) proposed a similar estimate.

Remark 2. As introduced in Bolte & Pauwels (2020), conservative Jacobians are generalized forms
of Jacobians well suited for automatic differentiation. A locally Lipschitz function is called path
differentiable if it has a conservative Jacobian. Importantly, path differentiability is equivalent to
having a chain rule for the Clarke subdifferential.

3.4 DERIVING AN EXTENDED CONSERVATIVEJACOBIAN

This section derives an ECJ and incorporates it in a backpropagation algorithm. It also shows how to
ef�ciently compute this ECJ under primal feasibility.

3.4.1 GENERAL CASE: DEALING WITH BOTH FEASIBLE AND INFEASIBLE QPS

In the following, we provide forward and backward pass algorithms to compute ECJs for both feasible
and infeasible QPs.

2More precisely, (Agrawal et al., 2019, Appendix B) relies on a series of assumptions allowing to simplify
the computations. In particular, they assume that@z?

@� = 0 and @t?

@� = 0 , wheret? is a slack variable.

5



Published as a conference paper at ICLR 2024

Forward pass: Let H (� ), g(� ), C(� ) andu(� ) be differentiable w.r.t.� and satisfying Assump-
tion 1, andx?; z?; t? s.t. G(x?; z?; t?; � ) = 0 . We show in Appendix B.2.1.1 that we can ef�ciently
derive ECJs ofx?, z? andt? by solving the following QP using an augmented Lagrangian-based
algorithm (Rockafellar, 1976)

@x?

@�
;

@z?

@�
;

@t?

@�
2 arg min

@x
@� ; @z

@� ; @t
@�










2

6
4

H C > 0
C 0 � I
0 � 1 � I � 1� 2

0 0 C> (I � � 2)

3

7
5

2

4
@x
@�
@z
@�
@t
@�

3

5 +

2

6
6
4

@H
@� x

? + @g
@� + @C

@�
>

z?

@C
@� x

? � @u
@�

0
@C>

@� [t?]+

3

7
7
5










2

2

;

(2)
where� 1 and� 2 are binary diagonal matrices respectively corresponding to the subdifferentials
@([:]+ )([ t?]� + z?) and@([:]� )( t?), with the following speci�c choices in zeros

(� 1) i = 1 when[t?
i ]� + z?

i = 0 ; (� 2) i = 1 whent?
i = 0 : (3)

Furthermore, an ECJ ofs? can be obtained via(1 � � 2) @t?

@� 2 @s?

@� . As s? is a direct output of an
augmented Lagrangian-based algorithm (Chiche & Gilbert, 2016), in what follows, we work withs?

instead oft?.

Backward pass: Let h : Rn � (Rn i )2 ! R be a differentiable function, and letH (� ),
g(� ), C(� ) andu(� ) be differentiable w.r.t.� and satisfying Assumption 1 and denoteL (� ) :=
h(x?(� ); z?(� ); s?(� )) . The following assumption is suf�cient for ensuring a conservative Jacobian
@L
@� can be obtained from the usual chain rule:
Assumption 2. x?, z? andt? are path differentiable w.r.t.� .

More precisely, under Assumption 2, one can compute:

@L
@�

=
@L
@x?

> @x?

@�
+

@L
@z?

> @z?

@�
+

@L
@s?

> @s?

@�
: (4)

Following the methodology provided in (Amos & Kolter, 2017, Section 3), we also show in Ap-
pendix B.2.1.2 that a conservative Jacobian@L

@� can be obtained via the following expression, which
is computationally more attractive:

@L
@�

= ( b?
1)> @H

@�
x? + ( b?

1)> @g
@�

+ ( b?
2)> @C

@�
x? + ( z?)> @C

@�
b?

1 + ( s?)> @C
@�

b?
4 � (b?

2)> @u
@�

; (5)

whereb?
1, b?

2, b?
3 andb?

4 are solutions of the linear system
2

4
H C > 0 0
C 0 (I � � 1) 0
0 � I � � 1� 2 (1 � � 2)C

3

5

2

6
4

b?
1

b?
2

b?
3

b?
4

3

7
5 = �

2

4
@L
@x?
@L
@z?
@L
@s?

3

5 : (6)

Assumption 3 provides non degeneracy assumptions which ensure equation 6 has solutions:
Assumption 3. C(� ) is full column rank,s? > 0 (i.e., all constraints are primal infeasible) and
@L
@z? = 0 (e.g., the lossL does not depend ofz?).

3.4.2 EXPLOITING PRIMAL FEASIBILITY OF THE QP

In this section, we exploit feasibility of the QP for simplifying the computations. First, for the forward
pass, the QP needs only be feasible for the value of� under consideration. For the backward pass, we
exploit the standard assumption (see (Amos & Kolter, 2017)) of the QP being constructively feasible
for all values of� (which is of course restrictive, but which can be exploited for ef�ciency).

Forward pass: When QP(� ) is feasible andH (� ), g(� ), C(� ) andu(� ) are differentiable w.r.t.�
and satisfy Assumption 1, we show in Appendix B.2.2.1 that ECJs can be obtained as a solution to
the simpler:

@x?

@�
;

@z?

@�
2 arg min

@x
@� ; @z

@�







�
H C >

� 1p
1+� 1

C � 1 � I

� �
@x
@�
@z
@�

�
+

"
@H
@� x

? + @g
@� + @C

@�
>

z?

� 1p
1+� 1

�
@C
@� x

? � @u
@�

�

#





2

2

; (7)

@t?

@�
= ( I + � 1) � 1

�
C

@x?

@�
+

@C
@�

x? �
@u
@�

�
; (8)
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where� 1 is a binary diagonal matrices representing the subdifferential@[:]+ (Cx? � u + z?) with
the following speci�c choice:

(� 1) i = 1 whenCi x? � ui + z?
i = 0 : (9)

The following lemma (see proof in Appendix B.2.1.2) guarantees that, under standard assumptions,
solutions to equation 7 correspond to standard Jacobians (see, e.g., (Amos & Kolter, 2017)).

Lemma 3. If QP(� ) is feasible andH (� ), g(� ), C(� ) and u(� ) are differentiable w.r.t.� and
satisfy Assumption 1, and if the KKT matrix of active constraints is nonsingular andx?, z? satisfy
strict complementarity, then the ECJs matches the standard Jacobian, i.e.,@x? ( � )

@� = r x?(� ) and
@z? ( � )

@� = r z?(� ).

Backward pass: If QP(� ) is by construction primal feasible for any� , then for any� , s?(� ) = 0 .
We can exploit this result for considering simpler losses not depending anymore ofs?(� ). More
precisely, leth : Rn � (Rn i ) ! R be a differentiable function, and letH (� ), g(� ), C(� ) andu(� )
be differentiable w.r.t.� and satisfying Assumption 1. Then, denotingL (� ) := h(x?(� ); z?(� )) ,
we show in Appendix B.2.2.2 that when assumptions of Lemma 3 hold the backward pass can be
evaluated by solving the following linear system

�
H C >

J
CJ 0

� �
b?

x
b?

zJ

�
= �

"
@L
@x?
@L
@z?J

#

; b?
zJ c =

@L
@z?J c

; (10)

whereJ is the set of constraints for which(� 1) i = 1 andJ c the one for which(� 1) i = 0 . @L
@� is

then retrieved from the chain rule
@L
@�

= ( b?
x )> @H

@�
x? + ( b?

x )> @g
@�

+ (� 1b?
z )> @C

@�
x? + ( z?)> @C

@�
b?

x � (� 1b?
z )> @u

@�
: (11)

Note that the assumptions of Lemma 3 are not necessarily met. Such infeasibility can be detected
easily using iterative re�nement (Parikh & Boyd, 2014, Section 4.1.2)) as it converges to the least-
square solution of equation 10 in the infeasible case (see (Güler, 1991, Theorem 2.3)).

3.4.3 FUTURE WORK AND POTENTIAL IMPROVEMENTS

Before moving to the experiments, let us mention a few potential directions for future work and
improvements in our approach. There remain a few gaps in the theoretical foundations of our
methodology, which we believe should be handled in the future. Indeed, we have not proved that
we could apply the chain rule to ECJs in the general case in the spirit of CJs (see (Bolte et al.,
2021)). Also, it should be con�rmed that ECJ indeed reduces to CJ. From what we can tell, one major
unresolved gap is the scope of applicability of the Implicit function Theorem (IFT). Indeed, standard
IFT requires at some point nonsingular matrices, which is not compatible with conditions when QP(� )
is primal infeasible (since primal infeasibility is provoked by degeneracy conditions). Nevertheless,
there are known examples (see e.g., the discussion in (Krantz & Parks, 2002, Section 5.4)) when
the IFT can still be applied, even when dealing with degenerate matrices. We leave for future work,
extension of these techniques for formulating a IFT adapted for our use-case. While those problems
are present in most frameworks (Agrawal et al., 2019, Section B), (Blondel et al., 2022, Section 2.1),
using the least-square estimate provides good practical results when non-differentiability occurs.

4 EXPERIMENTAL RESULTS

Our backward mode differentiation of convex QP layers has been implemented in C++. We refer to
it as QPLayer in what follows. Our code leverages the primal-dual augmented Lagrangian solver
ProxQP (Bambade et al., 2022), also written in C++ as its internal QP solver. This section illustrates
through a classic Sudoku learning tasks that QPLayer allows relaxing primal feasibility constraints,
thereby enabling the training of simpli�ed layers.

Benchmark setup. QPLayer is compared to OptNet and CvxpyLayer. The experiments were
conducted using all threads of an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz. The benchmark API
is available athttps://github.com/Bambade/qplayer_benchmark .
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(a) Test and training MSE losses of QPLayer,
CvxpyLayer and OptNet layers.

(b) Test and training prediction errors of QPLayer,
CvxpyLayer, and OptNet over 1000 and 9000 puzzles.

Figure 4: Sudoku training and test plots using QPLayer, OptNet, and CvxpyLayer. QPLayer can
learn LPs (which appear more appropriate), whereas OptNet is restricted to strictly convex QPs.

4.1 LEARNING CAPABILITIES

Differentiable optimization for neural network layers has shown great representational power for
learning problems that are fundamentally rooted in optimization. The Sudoku problem is one such
problem, which can naturally be cast as a mixed integer linear program (MILP). For the Sudoku,
OptNet recently showed better robustness and prediction accuracy results than traditional neural
networks (Amos & Kolter, 2017, Section 4.4). This section shows that QPLayer generalizes even
better by exploiting the fact that it allows learning LPs (and not only QPs). Further, the ability of
QPLayer to deal with possibly primal infeasible problems during the learning process appears to be
key.

4.1.1 LEARNING LINEAR PROGRAMS

The Sudoku problem is detailed in (Amos & Kolter, 2017, Section 4.4). We reproduce those
experiments with OptNet and CvxpyLayer, while letting QPLayer learn linear programs (LPs) instead
of strictly convex QPs (the layer model is detailed in Figure 12 of the appendix). In this experiment,
the parameters learned in the layer are the equality constraint matrix and the associated equality
constraint vector (through extra variables ensuring the structural feasibility of the layer at training
and test time, see Figure 12 of the appendix). OptNet, CvxpyLayer, and QPLayer were trained using
Adam with a batch of size 150 and a learning rate of 0.05 to minimize an MSE loss on the dataset
created by (Amos & Kolter, 2017). The dataset contains 9000 training puzzles and 1000 held-out
puzzles for testing. First, Figure 4a shows that QPLayer manages to reach better local miniminum
for the training and test loss (i.e., about an order of magnitude at the 10th iteration). It ends as well
over-�tting to the training data, similarly to OptNet and CvxpyLayer. Yet, Figure 4b shows that
QPLayer makes at the end of the training process far less prediction errors (i.e., 33 errors for QPLayer
over the last 5 epochs, versus 162 for OptNet and 1531 for CvxpyLayer). This advocates that learning
a LP instead of a QP enables more accurate and robust training for solving Sudokus.

4.1.2 HANDLING PRIMAL INFEASIBILITY

As outlined in Section 4.1.1, forcing primal feasibility while learning is a common algorithmic
strategy. For the Sudoku problems, those techniques enforcing primal feasibility typically involve
neglecting a linear equality constraintAx = 1 (we learnA) which corresponds to Sudoku rules. As
shown in Figure 5b, this means that the learning procedures do not respect the Sudoku rule constraint
(see green and orange dashed lines—labeled "QPLayer;Ax = 1 violation" and "OptNet;Ax = 1
violation"). In the end, neglecting this constraint ultimately leads to learning a constraint matrix
that is inconsistent with the Sudoku rules. Relaxing the primal feasibility imposed by differentiation
procedures of previous solvers thereby appears to be key.

By incorporating a potential optimal shifts? in its formulation (as exposed in Section 3.1), QPLayer
allows dealing with infeasible problems during training. In order to drive towards feasibility the layer
at test time (i.e., such thatA forms a feasible constraintAx = 1 ), we consider penalizing the optimal
shift s? in the learning loss function (see the layer architecture in Figure 13). The backward pass
takes then into account the ECJ derivatives introduced in Section 3.4.1. Numerical performances are
reported in Figure 5a and Figure 5b. It is apparent that the dark green curve labeled "QPLayer-learn
A; Ax = 1 violation" converges after the end of the �rst epoch towards a model satisfying Sudoku
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(a) Test MSE loss of QPLayer, OptNet,
QPLayer-learn A, and OptNet-learn A specialized
for learning A. It includes SudokuAx = 1 violation.

(b) Test prediction errors over 1000 puzzles of OptNet,
QPLayer, QPLayer-learn A and OptNet-learn A special-
ized for learning A.

Figure 5: Sudoku training and test plots using QPLayer and OptNet layers. QPLayer can learn LPs,
whereas OptNet is restricted to strictly convex QPs, which limits its representational power. Contrary
to OptNet, QPLayer can be specialized to learn models satisfying speci�c linear constraints.

rules. The respective yellow prediction and loss curves also converges slightly faster towards a regime
without any prediction errors. The steeper slope observed in the graph suggests that it might be
worthwhile to train a layer that more accurately adheres to the Sudoku rules, as this could potentially
lead to faster puzzle-solving and more interpretable outcomes.

For comparison with OptNet, we have considered reformulating QP-H(� ) as a convex QP (see
Figure 14 in the appendix). The resulting problem considers more variables and constitutes thus a
potentially harder problem to solve. As OptNet can only learn strictly convex QPs, we have also
added a small quadratics over the primal variables (similarly to the structural feasible case described
in Section 4.1.1). The grey curve "OptNet learn A; test loss" shows the result. It can be seen that it
decreases slower and saturates at an earlier level, which is consistent with the fact that the problem
is harder to solve. Furthermore, as expected, it displays a worse prediction error. Indeed, the dark
dashed curves "OptNet-learn A;Ax = 1 violation" outputs the primal feasibility violation. It can be
seen that it quickly decreases over the �rst epochs. Yet, at some point it does not manage to decrease
further3 and saturates at some local minimum around10� 3.

Finally, let us mention that the formulation developed in Section 3.4 enables a considerable speed-up
over the QP reformulation of equation QP-H(� ). Indeed, the forward and backward pass using
QPLayer account for about0:45� 0:07seconds per batch, whereas OptNet takes over8:99� 0:91
seconds per batch.

4.2 ADDITIONAL EXPERIMENTS

Appendix C.1 provides different simple experiments with parametric QPs to illustrate ECJs concept.
Appendix C.2 contains additional timing experiments. Appendix C.3 illustrates through several
experiments that QPLayer is numerically more robust and can thereby be trained with large learning
rates.

5 CONCLUSION

In this work, we introduced an approach for differentiating both feasible and infeasible convex
quadratic programs in a uni�ed fashion. This approach is particularly relevant for learning with
optimization layers through differentiable optimization. In particular, by leveraging augmented
Lagrangian techniques for solving QP layers that are potentially infeasible, we propose an extended
conservative Jacobian formulation for differentiating convex QPs, covering both feasible and infeasi-
ble problems. For feasible problems, and when the solution is differentiable, this reduces to standard
Jacobians. We further provide an open-source C++ framework, referred to as “QPLayer”, which
implements the approach. Through a classic learning example we have shown that differentiating over
infeasible QP enables more structured learning with better predicting power. We have additionally
proposed in the appendix more extensive benchmarks and experiments, to evaluate QPLayer speed
and numerical robustness against other alternative state-of-the-art optimization layers. As for future
plans, we will extend QPLayer to deal with a broader range of optimization layers that include
second-order cones.

3Such behavior could be explained by the fact that the problem is harder to solve, and OptNet fails outputting
accurate solutions. Furthermore, as it learns a strictly convex QP instead of a LP, the approximation of the model
learned is less accurate for solving Sudoku, which are fundamentally formulated as MILP.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This work was supported in part by the French government under the management of Agence
Nationale de la Recherche through the NIMBLE project (ANR-22-CE33-0008) and as part of the
"Investissements d'avenir" program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute). This
work was also supported by the European Union through the AGIMUS project (GA no.101070165),
Louis Vuitton. This work has also been supported by the Paris Île-de-France Région in the framework
of DIM AI4IDF. Views and opinions expressed are those of the author(s) only and do not necessarily
re�ect those of the European Union or the European Commission. Neither the European Union nor
the European Commission can be held responsible for them.

BIBLIOGRAPHY

Akshay Agrawal, Brandon Amos, Shane T. Barratt, Stephen P. Boyd, Steven Diamond, and J. Zico
Kolter. Differentiable convex optimization layers. InNeurIPS, pp. 9558–9570, 2019. URL
https://dblp.org/rec/conf/nips/AgrawalABBDK19 .

Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In ICML, volume 70 ofProceedings of Machine Learning Research, pp. 136–145. PMLR, 2017.
URL https://dblp.org/rec/conf/icml/AmosK17 .

Brandon Amos, Lei Xu, and J. Zico Kolter. Input convex neural networks. InICML, volume 70 of
Proceedings of Machine Learning Research, pp. 146–155. PMLR, 2017. URLhttps://dblp.
org/rec/conf/icml/AmosXK17 .

Brandon Amos, Ivan Dario Jimenez Rodriguez, Jacob Sacks, Byron Boots, and J. Zico Kolter.
Differentiable MPC for end-to-end planning and control. InNeurIPS, pp. 8299–8310, 2018. URL
https://dblp.org/rec/conf/nips/AmosRSBK18 .

C.W. Anderson. Learning to control an inverted pendulum using neural networks.IEEE Control
Systems Magazine, 9(3):31–37, 1989. doi: 10.1109/37.24809. URLhttps://ieeexplore.
ieee.org/abstract/document/24809 .

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. InNeurIPS, pp. 688–699,
2019. URLhttps://dblp.org/rec/conf/nips/BaiKK19 .

Antoine Bambade, Sarah El-Kazdadi, Adrien Taylor, and Justin Carpentier. PROX-QP: Yet an-
other Quadratic Programming Solver for Robotics and beyond. InRSS 2022 - Robotics: Sci-
ence and Systems, New York, United States, June 2022. URLhttps://hal.inria.fr/
hal-03683733 .

David Belanger and Andrew McCallum. Structured prediction energy networks. InICML, volume 48
of JMLR Workshop and Conference Proceedings, pp. 983–992. JMLR.org, 2016. URLhttps:
//dblp.org/rec/conf/icml/BelangerM16 .

David Belanger, Bishan Yang, and Andrew McCallum. End-to-end learning for structured prediction
energy networks. InICML, volume 70 ofProceedings of Machine Learning Research, pp. 429–439.
PMLR, 2017. URLhttps://dblp.org/rec/conf/icml/BelangerYM17 .

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López,
Fabian Pedregosa, and Jean-Philippe Vert. Ef�cient and modular implicit differentiation. In
NeurIPS, 2022. URLhttps://dblp.org/rec/conf/nips/BlondelBCFHLPV22 .

Jérôme Bolte and Edouard Pauwels. Conservative set valued �elds, automatic differentiation,
stochastic gradient method and deep learning.Mathematical Programming, 188(19-51), April
2020. doi: 10.1007/s10107-020-01501-5. URLhttps://hal.science/hal-02521848 .

Jérôme Bolte, Tam Le, Edouard Pauwels, and Antonio Silveti-Falls. Nonsmooth implicit differ-
entiation for machine-learning and optimization. InNeurIPS, pp. 13537–13549, 2021. URL
https://dblp.org/rec/conf/nips/BolteLPS21 .

10



Published as a conference paper at ICLR 2024

Oumayma Bounou, Jean Ponce, and Justin Carpentier. Online learning and control of complex
dynamical systems from sensory input. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.),Advances in Neural Information Processing Systems, 2021. URLhttps://
openreview.net/forum?id=x6tV8QhHjs1 .

Andrew Butler and Roy H. Kwon. Ef�cient differentiable quadratic programming layers: an ADMM
approach.Comput. Optim. Appl., 84(2):449–476, 2023. URLhttps://dblp.org/rec/
journals/coap/ButlerK23 .

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. InNeurIPS, pp. 6572–6583, 2018. URLhttps://dblp.org/rec/conf/nips/
ChenRBD18.

Alice Chiche and Jean Charles Gilbert. How the augmented Lagrangian algorithm can deal with an
infeasible convex quadratic optimization problem.Journal of Convex Analysis, 23(2), 2016. URL
https://hal.inria.fr/hal-01057577 .

Filipe de Avila Belbute-Peres, Kevin A. Smith an Kelsey R. Allen, Josh Tenenbaum, and J. Zico
Kolter. End-to-end differentiable physics for learning and control. InNeurIPS, pp. 7178–7189,
2018. URLhttps://dblp.org/rec/conf/nips/Belbute-PeresSA18 .

A. De Marchi. On a primal-dual Newton proximal method for convex quadratic programs.Compu-
tational Optimization and Applications, 81(2):369–395, 2022. ISSN 0926-6003, 1573-2894.
doi: 10.1007/s10589-021-00342-y. URLhttps://link.springer.com/10.1007/
s10589-021-00342-y .

Justin Domke. Generic methods for optimization-based modeling. InAISTATS, volume 22 ofJMLR
Proceedings, pp. 318–326. JMLR.org, 2012. URLhttps://dblp.org/rec/journals/
jmlr/Domke12 .

Asen L. Dontchev and R. Tyrrell Rockafellar. Implicit functions and solution mappings. 2009.

Priya Donti, Aayushya Agarwal, Neeraj Vijay Bedmutha, Larry Pileggi, and J Zico Kolter. Adversari-
ally robust learning for security-constrained optimal power �ow.Advances in Neural Information
Processing Systems, 34:28677–28689, 2021a.

Priya L. Donti, J. Zico Kolter, and Brandon Amos. Task-based end-to-end model learning in stochastic
optimization. InNIPS, pp. 5484–5494, 2017. URLhttps://dblp.org/rec/conf/nips/
DontiKA17 .

Priya L Donti, David Rolnick, and J Zico Kolter. Dc3: A learning method for optimization with hard
constraints.arXiv preprint arXiv:2104.12225, 2021b.

Anthony V. Fiacco and G. P. McCormick.Nonlinear Programming: Sequential Unconstrained
Minimization Techniques. John Wiley & Sons, New York, NY, USA, 1968. Reprinted by SIAM
Publications in 1990.

Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel McKenzie, Stanley J. Osher, and Wotao Yin.
JFB: jacobian-free backpropagation for implicit networks. InAAAI, pp. 6648–6656. AAAI Press,
2022. URLhttps://dblp.org/rec/conf/aaai/FungHLMOY22 .

Zhenglin Geng, Daniel Johnson, and Ronald Fedkiw. Coercing machine learning to output physically
accurate results.J. Comput. Phys., 406:109099, 2020. URLhttps://dblp.org/rec/
journals/jcphy/GengJF20 .

Zhengyang Geng, Meng-Hao Guo, Hongxu Chen, Xia Li, Ke Wei, and Zhouchen Lin. Is attention
better than matrix decomposition? InICLR. OpenReview.net, 2021a. URLhttps://dblp.
org/rec/conf/iclr/GengGCLWL21 .

Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training implicit
models. InNeurIPS, pp. 24247–24260, 2021b. URLhttps://dblp.org/rec/conf/
nips/GengZBWL21 .

11



Published as a conference paper at ICLR 2024

Jean Charles Gilbert. Fragments d'Optimisation Différentiable - Théories et Algorithmes. Lecture,
March 2021. URLhttps://hal.inria.fr/hal-03347060 .

Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and Edison
Guo. On differentiating parameterized argmin and argmax problems with application to bi-level
optimization.CoRR, abs/1607.05447, 2016. URLhttps://dblp.org/rec/journals/
corr/GouldFCACG16 .

Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui. Implicit graph
neural networks. InNeurIPS, 2020. URLhttps://dblp.org/rec/journals/corr/
abs-2009-06211 .

Osman Güler. On the convergence of the proximal point algorithm for convex minimization.SIAM
Journal on Control and Optimization, 29(2):403–419, 1991. doi: 10.1137/0329022. URL
https://doi.org/10.1137/0329022 .

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.CoRR,
abs/1412.6980, 2014.

Steven George Krantz and Harold R Parks.The implicit function theorem: history, theory, and
applications. Springer Science & Business Media, 2002.

Quentin Le Lidec, Igor Kalevatykh, Ivan Laptev, Cordelia Schmid, and Justin Carpentier. Differen-
tiable simulation for physical system identi�cation.IEEE Robotics and Automation Letters, 6(2):
3413–3420, 2021.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization.CoRR, abs/1904.03758, 2019. URLhttp://arxiv.org/
abs/1904.03758 .

Quentin Le Lidec, Louis Montaut, Cordelia Schmid, Ivan Laptev, and Justin Carpen-
tier. Leveraging randomized smoothing for optimal control of nonsmooth dynamical sys-
tems. CoRR, abs/2203.03986, 2022. URLhttps://dblp.org/rec/journals/corr/
abs-2203-03986 .

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, C. Daniel Freeman, and Jascha Sohl-Dickstein.
Understanding and correcting pathologies in the training of learned optimizers. InICML, volume 97
of Proceedings of Machine Learning Research, pp. 4556–4565. PMLR, 2019. URLhttps:
//dblp.org/rec/conf/icml/MetzMNFS19 .

Mateusz Michalkiewicz, Jhony Kaesemodel Pontes, Dominic Jack, Mahsa Baktashmotlagh, and
Anders P. Eriksson. Implicit surface representations as layers in neural networks. InICCV, pp. 4742–
4751. IEEE, 2019. URLhttps://dblp.org/rec/conf/iccv/MichalkiewiczPJ19 .

Vishal Monga, Yuelong Li, and Yonina C. Eldar. Algorithm unrolling: Interpretable, ef�cient deep
learning for signal and image processing.IEEE Signal Process. Mag., 38(2):18–44, 2021. URL
https://dblp.org/rec/journals/spm/MongaLE21 .

Christopher C. Paige and Michael A. Saunders. LSQR: an algorithm for sparse linear equations and
sparse least squares.ACM Trans. Math. Softw., 8(1):43–71, 1982. URLhttps://dblp.org/
rec/journals/toms/PaigeS82 .

Neal Parikh and Stephen Boyd. Proximal algorithms.Foundations and Trends® in Optimization, 1
(3):127–239, 2014. ISSN 2167-3888. doi: 10.1561/2400000003. URLhttp://dx.doi.org/
10.1561/2400000003 .

Stephen M. Robinson. Strongly regular generalized equations.Math. Oper. Res., 5(1):43–62, 1980.
URL https://dblp.org/rec/journals/mor/Robinson80 .

R. T. Rockafellar. Augmented Lagrangians and Applications of the Proximal Point Algo-
rithm in Convex Programming.Mathematics of Operations Research, 1(2):97–116, 1976.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.
6206&rep=rep1&type=pdf .

12



Published as a conference paper at ICLR 2024

Damien Scieur, Gauthier Gidel, Quentin Bertrand, and Fabian Pedregosa. The curse of unrolling:
Rate of differentiating through optimization. InNeurIPS, 2022. URLhttps://dblp.org/
rec/conf/nips/ScieurGBP22 .

Akshay Sharma, Mathieu Besançon, Joaquim Dias Garcia, and Benoît Legat. Flexible differentiable
optimization via model transformations.CoRR, abs/2206.06135, 2022. URLhttps://dblp.
org/rec/journals/corr/abs-2206-06135 .

H. J. Terry Suh, Tao Pang, and Russ Tedrake. Bundled gradients through contact via randomized
smoothing. CoRR, abs/2109.05143, 2021. URLhttps://dblp.org/rec/journals/
corr/abs-2109-05143 .

Defeng Sun and Liqun Qi. On ncp-functions.Comput. Optim. Appl., 13(1-3):201–220, 1999. URL
https://dblp.org/rec/journals/coap/SunQ99 .

Haixiang Sun, Ye Shi, Jingya Wang, Hoang Duong Tuan, H. Vincent Poor, and Dacheng Tao.
Alternating differentiation for optimization layers.CoRR, abs/2210.01802, 2022. URLhttps:
//dblp.org/rec/journals/corr/abs-2210-01802 .

Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico Kolter. Satnet: Bridging deep learning and
logical reasoning using a differentiable satis�ability solver. InICML, volume 97 ofProceedings of
Machine Learning Research, pp. 6545–6554. PMLR, 2019. URLhttps://dblp.org/rec/
conf/icml/WangDWK19 .

Qianggong Zhang, Yanyang Gu, Mateusz Michalkiewicz, Mahsa Baktashmotlagh, and Anders P.
Eriksson. Implicitly de�ned layers in neural networks.CoRR, abs/2003.01822, 2020. URL
https://dblp.org/rec/journals/corr/abs-2003-01822 .

13



Published as a conference paper at ICLR 2024

ORGANIZATION OF THE APPENDIX

Section Content

Appendix A Lemma 1: solutions to QP-H(� ).

Appendix B
ECJs and automatic
differentiation.

Lemma 2: path differentiability ofG (Appendix B.1).
Forward AD (general case, Appendix B.2.1.1).
Backward AD (general case, Appendix B.2.1.2).
Forward AD (feasible QPs, Appendix B.2.2.1).
Backward AD (structurally feasible QPs, Appendix B.2.2.2).
Lemma 3: when do ECJs reduce to Jacobians? (Appendix B.3).

Appendix C.1
Pedagogical examples.

Strictly convex QP (parameterized constraints) (Appendix C.1.1).
Strictly convex QP (parameterized objective) (Appendix C.1.2).
Parameterized linear program (Appendix C.1.3).

Appendix C.2 Additional benchmarks (timing).

Appendix C.3 Training with large learning rates experiments.

Appendix D
Experimental setups.

Layer architecture for the Sudoku problem (Appendix D.1).
Description of the cart-pole problem (Appendix D.2).

Table 1: Organization of the appendix. QP stands for “quadratic programming”, AD stands for
“automatic differentiation”, and (E)CJ stands for (extended) conservative Jacobian.

A PROOF OFLEMMA 1

For proving Lemma 1, we �rst show that solutions to QP-H(� ) are zeros of the mapG:

G(x; z; � ) :=

2

4
H (� )x + g(� ) + C(� )> z

[[C(� )x � u(� )] � + z]+ � z
C(� )> [C(� )x � u(� )]+

3

5 : (12)

Then, a suitable change of variable shows that �nding a zero ofG is equivalent to �nding a zero of
mapG.

Lemma 1. Let H (� ) 2 S n
+ (R), g(� ) 2 Rn , C(� ) 2 Rn i � n andu(� ) 2 Rn i be satisfying Assump-

tion 1. It holds that(x?; z?; s?) solves QP-H(� ) iff there existst? 2 Rn i s.t.G(x?; z?; t?; � ) = 0
ands? = [ t?]+ .

Proof. We �rst show that(x?; z?; [Cx? � u]+ ) solves equation QP-H(� ) if and only if G(x?; z?; � ) =
0.

The optimal shifts? (that corresponds to the closest feasible QP) is equal to[Cx? � u]+ and is
characterized by thè2 optimality condition (Chiche & Gilbert, 2016, Lemma 2.13):

C> [Cx? � u]+ = 0 :

Furthermore, for a feasible problem, the KKT conditions using nonlinear complementarity formula-
tion (Sun & Qi, 1999) reads (De Marchi, 2022, Section 2.1):

Hx ? + g + C> z? = 0 ;
[Cx? � u + z?]+ � z? = 0 :

(13)

For showing equivalence, it is thereby suf�cient to show that the second line of equation 13 corre-
sponds to:

[[Cx? � u]� + z?]+ � z? = 0 : (14)
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This equivalence is straightforward when equation QP(� ) is feasible, it therefore follows that we only
need to handle the infeasible case. When equation QP(� ) is primal infeasible, thent? = Cx? � u has
a set of componentsI @[1; ni ] strictly positive, hences?

I = [ t?
I ]+ = t?

I > 0. For these components,
a solutionx? of the closest feasible QP lies on the borderCI x? = uI + t?

I . The complementarity
condition (De Marchi, 2022, Section 2.1) for these components reads:

[Cx? � uI � t?
I| {z }

=0

+ z?
I ]+ � z?

I = 0 ;

and we thus have[z?
I ]+ = z?

I . For the other set of components, which we denote byI c, we have that
s?

I c = 0 , and hencex? follows the complementary conditions as in the feasible case

[Cx? � uc
I + z?

I c ]+ � z?
I c = 0 :

Therefore, it follows that equation 14 captures the two cases (that is, both feasible and infeasible
QPs), which concludes the �rst part of the proof.

Finally, introducing the slack variablet? = C(� )x? � u(� ), we have

G(x?; z?; � ) = 0 (15)

,

2

4
H (� )x? + g(� ) + C(� )> z?

[[C(� )x? � u(� )] � + z?]+ � z?

C(� )> [C(� )x? � u(� )]+

3

5 = 0 (16)

,

2

6
4

H (� )x? + g(� ) + C(� )> z?

C(� )x? � u(� ) � t?

[[t?]� + z?]+ � z?

C(� )> [t?]+

3

7
5 = 0 (17)

G(x?; z?; t?; � ) = 0 : (18)

HenceG(x?; z?; t?) = 0 iff (x?; z?; [t?]+ ) solves QP-H(� ), which concludes.

B ECJS AND AUTOMATIC DIFFERENTIATION

This section provides the proofs of the different results used in Section 3. In particular, we de�ne
ECJs and provide algorithms for computing them (both in forward and backward AD modes).

B.1 PROOF OFLEMMA 2

Lemma 2. G is path differentiable w.r.t.x?, z? andt?. Furthermore, ifH (� ), g(� ), C(� ) andu(� )
are differentiable w.r.t.� , thenG is path differentiable w.r.t.� .

Proof. We start with the �rst claim of the lemma. The non-negative projector[:]+ is (component-wise)
convex, and hence path differentiable (Bolte & Pauwels, 2020, Proposition 2(i)). Thus, it remains to
show that the third component ofG is path differentiable for reaching the desired conclusion.

To do so, we show that the third component is Lipschitz continuous and real semialgebraic (Bolte &
Pauwels, 2020, Proposition 2(iv)). Without loss of generality, we restrict ourselves to the case with 2
components (one for the dual variables, and one for the slack variables) using the following function
h : R2 ! R, s.t. h(z; s) := [[ s]� + z]+ � z. Then, the following Lipschitzness argument applies
component-wise.
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Let (s1; z1) 2 R2 and(s2; z2) 2 R2:

jh(z1; s1) � h(z2; s2)j 6 j[[s1]� + z1]+ � [[s2]� + z2]+ j + jz1 � z2j
6 j[s1]� + z1 � [s2]� � z2j + jz1 � z2j by monotonicity of[:]+
6 j[s1]� � [s2]� j + 2 jz1 � z2j
= js1 � [s1]+ � (s2 � [s2]+ )j + 2 jz1 � z2j
6 js1 � s2j + j[s1]+ � [s2]+ j + 2 jz1 � z2j
6 2js1 � s2j + 2 jz1 � z2j by monotonicity of[:]+

6 2
p

2k
�
s1
z1

�
�

�
s2
z2

�
k2:

Therefore,h is Lipschitz continuous. For showing that the third componentG describes a semi-
algebraic set, we explicitly formulate the graph ofh as a �nite union of base semi-algebraic sets, as
follows:

gph(h) = f (z; s; y) 2 R3jy = [ s]� and[s]� + z > 0g

[ f (z; s; y) 2 R3jy = � z and[s]� + z = 0g

[ f (z; s; y) 2 R3jy = � z and[s]� + z < 0g

= f (z; s; y) 2 R3jy = s ands + z > 0 ands < 0g

[ f (z; s; y) 2 R3jy = s ands = 0g

[ f (z; s; y) 2 R3jy = 0 andz > 0 ands > 0g

[ f (z; s; y) 2 R3jy = � z ands + z = 0 ands < 0g

[ f (z; s; y) 2 R3jy = � z andz = 0 ands = 0g

[ f (z; s; y) 2 R3jy = � z andz = 0 ands > 0g

[ f (z; s; y) 2 R3jy = � z ands + z < 0 ands < 0g

[ f (z; s; y) 2 R3jy = � z andz < 0 ands = 0g

[ f (z; s; y) 2 R3jy = � z andz < 0 ands > 0g:

Hence,gph(h) is real and semi-algebraic as it is a �nite union of sets de�ned by polynomial equalities
and inequalities. Henceh is Lipschitz continuous and real semi-algebraic, thereby reaching the target
conclusion for the �rst part of Lemma 2.

As for the second part of Lemma 2.G is linear, and hence differentiable, w.r.t.H (� ), g(� ), C(� )
andu(� ). Furthermore, by assumptionH (� ), g(� ), C(� ) andu(� ) are differentiable w.r.t.� . As
differentiability implies path-differentiability (Bolte & Pauwels, 2020, Remark 3b), we arrive at
the desired claim by the conservativity of the chain rule for path-differentiable functions (Bolte &
Pauwels, 2020, Proposition 2).

B.2 FORWARD AND BACKWARD AD FOR COMPUTINGECJS

This section provides technical details for the computation of ECJs in forward and backward modes
for both primal feasible and infeasible problems. We further include the proofs of??and Lemma 3.

B.2.1 GENERAL CASE

B.2.1.1 Forward pass. Let H (� ), g(� ), C(� ) andu(� ) be differentiable w.r.t.� and satisfying As-
sumption 1, andx?; z?; t? s.t. G(x?; z?; t?; � ) = 0 .

As G is path-differentiable w.r.t.v? := ( x?; z?; t?) (see Lemma 2), we have
2

6
4

H C > 0
C 0 � I
0 � 1 � I � 1� 2

0 0 C> � 3

3

7
5 2

@G(x?; z?; t?; � )
@v?

;

for some� 1 2 @[:]+ ([t?]� + z?), � 2 2 @[:]� (t?) and� 3 2 @[:]+ (t?).
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Furthermore, asG is linear w.r.t.H (� ), g(� ), C(� ) andu(� ) andH (� ), g(� ), C(� ) andu(� ) are
differentiable w.r.t.� , the usual chain rule dictates that

@G(x?; z?; t?; � )
@�

=

2

6
6
4

@H
@� x

? + @g
@� + @C

@�
>

z?

@C
@� x

? � @u
@�

0
@C
@�

>
[t?]+

3

7
7
5 :

Finally, as@[:]+ (0) = @[:]� (0) = [0 ; 1], we make the following arbitrary choices in zeros

� 1 = I when[t?]� + z? = 0 ;
� 2 = I whent? = 0 ;
� 3 = 0 whent? = 0 ;

(19)

so that� 3 = I � � 2. ECJs are thus retrieved as solutions to:

@x?

@�
;

@z?

@�
;

@t?

@�
2 arg min

@x
@� ; @z

@� ; @t
@�










2

6
4

H C > 0
C 0 � I
0 � 1 � I � 1� 2

0 0 C> (I � � 2)

3

7
5

2

4
@x
@�
@z
@�
@t
@�

3

5 +

2

6
6
4

@H
@� x

? + @g
@� + @C

@�
>

z?

@C
@� x

? � @u
@�

0
@C>

@� [t?]+

3

7
7
5










2

2

: (20)

In practice, solving this problem can be done via an augmented Lagrangian-based solver for the
problem:

@x?

@�
;

@z?

@�
;

@t?

@�
2 arg min

@x
@� ; @z

@� ; @t
@�

0

s.t.

2

6
4

H C > 0
C 0 � I
0 � 1 � I � 1� 2

0 0 C> (I � � 2)

3

7
5

2

4
@x
@�
@z
@�
@t
@�

3

5 = �

2

6
6
4

@H
@� x

? + @g
@� + @C

@�
>

z?

@C
@� x

? � @u
@�

0
@C
@�

>
[t?]+

3

7
7
5

(21)

when this problem is feasible. When it is not feasible, the augmented Lagrangian naturally converges
to the solution of the more general equation 20, see (Chiche & Gilbert, 2016, Proposition 4.2). In
comparison to equation 20, a notable advantage of the formulation equation 21 is that it is naturally
numerically more stable and sparse–by avoiding square matrix products from the objective.

B.2.1.2 Backward pass. The following lemma formally details the results from Section 3.4.1.

Lemma 4. Leth : Rn � (Rn i )2 ! R be a differentiable function, and letH (� ), g(� ), C(� ) andu(� )
be differentiable w.r.t.� and satisfying Assumption 1. Then, denotingL (� ) := h(x?(� ); z?(� ); s?(� ))
and under assumptions of Assumption 2 and Assumption 3, we have that@L

@� can be derived as follows

@L
@�

= ( b?
1)> @H

@�
x? + ( b?

1)> @g
@�

+ ( b?
2)> @C

@�
x? + ( z?)> @C

@�
b?

1 + ( s?)> @C
@�

b?
4 � (b?

2)> @u
@�

;

whereb?
1, b?

2, b?
3 andb?

4 are the solutions of the linear system

2

4
H C > 0 0
C 0 (I � � 1) 0
0 � I � � 1� 2 (1 � � 2)C

3

5

2

6
4

b?
1

b?
2

b?
3

b?
4

3

7
5 = �

2

4
� L
�x ?
� L
�z ?
� L
�s ?

3

5 :

Proof. Under the assumption of Assumption 2, it holds that

2

4
@x?

@�
@z?

@�
@s?

@�

3

5 is a CJ as

2

4
@x?

@�
@z?

@�
@t?

@�

3

5 and(1 �

� 2) @t?

@� 2 @s?

@� are CJs ((Bolte & Pauwels, 2020, Proposition 2)). Furthermore, asL is differentiable
w.r.t. x?, z? ands?, it is path-differentiable (Bolte & Pauwels, 2020, Remark 3b) w.r.t.x?; z?; s?, so
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we can apply chain rule ((Bolte & Pauwels, 2020, Proposition 2)):

@L
@�

=
@L
@x?

> @x?

@�
+

@L
@z?

> @z?

@�
+

@L
@s?

> @s?

@�

= � (�

2

4
� L
�x ?
� L
�z ?
� L
�s ?

3

5)>

2

4
@x?

@�
@z?

@�
@s?

@�

3

5

= � (

2

4
H C > 0 0
C 0 (I � � 1) 0
0 � I � � 1� 2 (1 � � 2)C

3

5

2

6
4

b?
1

b?
2

b?
3

b?
4

3

7
5)>

2

4
@x?

@�
@z?

@�
@s?

@�

3

5

= �

2

6
4

b?
1

b?
2

b?
3

b?
4

3

7
5

>

(�

2

6
6
4

@H
@� x

? + @g
@� + @C

@�
>

z?

@C
@� x

? � @u
@�

0
@C
@�

>
[t?]+

3

7
7
5)

= ( b?
1)> (

@H
@�

x? +
@g
@�

+
@C
@�

>

z?)

+ ( b?
2)> (

@C
@�

x? �
@u
@�

)

+ ( b?
4)> (

@C
@�

>

[t?]+ )

= ( b?
1)> @H

@�
x? + (

@C
@�

b?
1)> z? + ( b1)> @g

@�

+ ( b?
2)> (

@C
@�

x? �
@u
@�

)

+ (
@C
@�

b?
4)> [t?]+ ):

To conclude, we show there always exist solutionb?
1; b?

2, b?
4 of the system:

2

4
H C > 0 0
C 0 (I � � 1) 0
0 � I � � 1� 2 (1 � � 2)C

3

5

2

6
4

b?
1

b?
2

b?
3

b?
4

3

7
5 = �

2

4
� L
�x ?
� L
�z ?
� L
�s ?

3

5 ; (22)

Under Assumption 3,� 1 = I and� 2 = 0 (sinces? = [ t?]+ > 0). Furthermore, since� L
�z ? = 0 ,

equation 22 is thus equivalent to solving

2

4
H C > 0 0
C 0 0 0
0 � I 0 C

3

5

2

6
4

b?
1

b?
2

b?
3

b?
4

3

7
5 = �

2

4
� L
�x ?

0
� L
�s ?

3

5 :

The latter system can be reformulated as

C> Cb?
4 =

� L
�x ? � C> � L

�s ? ; (23)

b?
2 =

� L
�s ? + Cb?

4; (24)

Cb?
1 = 0 ; (25)

which has always solutions sinceC is supposed to be full row rank.

B.2.2 SIMPLIFICATION OF WHEN QP IS FEASIBLE

B.2.2.1 Simpli�cation of the forward pass When QP(� ) is feasible andH (� ), g(� ), C(� ) and
u(� ) are differentiable w.r.t.� and satisfy Assumption 1, then[t?]+ = 0 . Further, our choices of
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subgradients at zero (see equation 19) imply that� 2 = I and hence the following simpli�cations
2

6
4

H C > 0
C 0 � I
0 � 1 � I � 1
0 0 0

3

7
5 2

@G(x?; z?; t?; � )
@v?

;

2

6
6
4

@H
@� x

? + @g
@� + @C

@�
>

z?

@C
@� x

? � @u
@�

0
0

3

7
7
5 =

@G(x?; z?; t?; � )
@�

:

Moreover, the optimality conditions of

@x?

@�
;

@z?

@�
;

@t?

@�
2 arg min

@x
@� ; @z

@� ; @t
@�










2

6
4

H C > 0
C 0 � I
0 � 1 � I � 1
0 0 0

3

7
5

2

4
@x
@�
@z
@�
@t
@�

3

5 +

2

6
6
4

@H
@� x

? + @g
@� + @C

@�
>

z?

@C
@� x

? � @u
@�

0
0

3

7
7
5










2

2

;

write down

(H 2 + C> C)
@x?

@�
+ HC > @z?

@�
� C> @t?

@�
+ [ H (

@H
@�

x? +
@g
@�

+
@C
@�

>

z?) + C> (
@C
@�

x? �
@u
@�

)] = 0 ;

CH
@x?

@�
+ ( C> C + I � � 1)

@z?

@�
+ C(

@H
@�

x? +
@g
@�

+
@C
@�

>

z?) = 0 ;

� C
@x?

@�
+ ( I + � 1)

@t?

@�
� (

@C
@�

x? �
@u
@�

) = 0 :

(26)

Third equation of equation 26 leads to
@t?

@�
=

1
1 + � 1

(C
@x?

@�
+ (

@C
@�

x? �
@u
@�

)) :

Hence, optimality conditions without variable@t?

@� reduce to

(H 2 + C> � 1

1 + � 1
C)

@x?

@�
+ HC > @z?

@�
+ C> � 1

1 + � 1
(
@C
@�

x? �
@u
@�

) + H (
@H
@�

x? +
@g
@�

+
@C
@�

>

z?) = 0 ;

CH
@x?

@�
+ ( C> C + I � � 1)

@z?

@�
+ C(

@H
@�

x? +
@g
@�

+
@C
@�

>

z?) = 0 :

(27)

Furthermore, the following problem

min
@x
@� ; @z

�







�
H C >

� 1p
1+� 1

C � 1 � I

� �
@x
@�
@z
@�

�
+

"
@H
@� x

? + @g
@� + @C

@�
>

z?

� 1p
1+� 1

( @C
@� x

? � @u
@�)

#





2

2

;

have the same KKT conditions as equation 27, thereby allowing to simplify the problem as follows:

min
@x
@� ; @z

@� ; @t
@�








@G(x?; z?; s?; � )
@̂v?

2

4
@x
@�
@z
@�
@t
@�

3

5 +
@G(x?; z?; s?; � )

@�








2

2

= min
@x
@� ; @z

@�







�
H C >

� 1p
I +� 1

C � 1 � I

� �
@x
@�
@z
@�

�
+

"
@H
@� x

? + @g
@� + @C

@�
>

z?

� 1p
I +� 1

( @C
@� x

? � @u
@�)

#





2

2

;

(28)

Hence

@x?

@�
;
@z?

@�
;

@t?

@�
2 arg min

@x
@� ; @z

@� ; @t
@�








@G(x?; z?; s?; � )
@̂v?

2

4
@x
@�
@z
@�
@t
@�

3

5 +
@G(x?; z?; s?; � )

@�








2

2

is equivalent to

@x?

@�
;

@z?

@�
2 arg min

@x
@� ; @z

@�







�
H C >

� 1p
1+� 1

C � 1 � I

� �
@x
@�
@z
@�

�
+

"
@H
@� x

? + @g
@� + @C

@�
>

z?

� 1p
1+� 1

( @C
@� x

? � @u
@�)

#





2

2

;

�t ?

��
= ( I + � 1) � 1(C

�x ?

��
+

@C
@�

x? �
@u
@�

):
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B.2.2.2 Simpli�cation of the backward pass. This sections details the results from Section 3.4.2.

Lemma 5. Let h : Rn � (Rn i ) ! R be a differentiable function, and letH (� ), g(� ), C(� ) andu(� )
be differentiable w.r.t.� and satisfying Assumption 1. Then, denotingL (� ) := h(x?(� ); z?(� )) , we
have under assumptions of Lemma 3 that@L

@� can be derived as follows

@L
@�

= ( b?
x )> @H

@�
x? + ( b?

x )> @g
@�

+ (� 1b?
z )> @C

@�
x? + ( z?)> @C

@�
b?

x � (� 1b?
z )> @u

@�
;

with b?
x , b?

z , the solution of the following linear system
�
H C > � 1
C � (I � � 1)

� �
bx
bz

�
= �

�
� L
�x ?
� L
�z ?

�
;

Furthermore, this latter linear system can be solved using iterative re�nement.

Proof. Under the assumptions of Lemma 3, it holds that
�

@x?

@�
@z?

@�

�
is a Jacobian. Furthermore, asL is

differentiable, the chain rule implies that:

@L
@�

=
�

@L
@x?
@L
@z?

� > �
@x?

@�
@z?

@�

�

= � (�
�

@L
@x?
@L
@z?

�
)>

�
@x?

@�
@z?

@�

�

= � (
�

H C >

� 1C � 1 � I

� > �
bx
bz

�
)>

�
@x?

@�
@z?

@�

�
as the matrix is nonsingular (see Lemma 3)

= �
�
bx
bz

� >

(�

"
@H
@� x

? + @g
@� + @C

@�
>

z?

� 1( @C
@� x

? � @u
@�)

#

)

=( bx )> (
@H
@�

x? +
@g
@�

+
@C
@�

>

z?)

+ ( bz )> (�( dCx? � du))

=[( bx )> @H
@�

x? + (
@C
@�

bx )> z? + ( bx )> @g
@�

]

+ ( bz )> (�(
@C
@�

x? �
@u
@�

)) ;

where(bx ; bz ) is a solution to
�
H C > � 1
C � (I � � 1)

� �
bx
bz

�
= �

�
� L
�x ?
� L
�z ?

�
:

As detailed in the proof of Lemma 3 (see details in Appendix B.3), one can equivalently solve

�
H C >

J
CJ 0

� �
bx
bzJ

�
= �

"
� L
�x ?
� L
�z ?

J

#

;

bzc
J

=
� L

�z ?
J c

;

with J c the index set for which the solution is strictly feasible (i.e.,i 2 [1; ni ]; (� 1) i = 0 ), andJ
the set of active constraints (i.e., for which(� 1) i = 1 ). Such linear systems can be solved e.g., via
iterative re�nement (as the matrix involved is symmetric positive semi-de�nite (Parikh & Boyd, 2014,
Section 4.1.2)).
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B.3 PROOF OFLEMMA 3

This section details the proof of Lemma 3, ensuring that, under some regularity assumptions, ECJs
reduce to standard Jacobians.

Lemma 3. If QP(� ) is feasible andH (� ), g(� ), C(� ) and u(� ) are differentiable w.r.t.� and
satisfy Assumption 1, and if the KKT matrix of active constraints is nonsingular andx?, z? satisfy
strict complementarity, then the ECJs matches the standard Jacobian, i.e.,@x? ( � )

@� = r x?(� ) and
@z? ( � )

@� = r z?(� ).

Proof. If equation QP(� ) is feasible, then the ECJs ofx? andz? w.r.t. � are provided by

@x?

@�
;

@z?

@�
2 arg min

@x
@� ; @z

@�











�
H C >

� 1p
1+� 1

C � 1 � I

�

| {z }
:=�

�
@x
@�
@z
@�

�
+

"
@H
@� x

? + @g
@� + @C

@�
>

z?

� 1p
1+� 1

( @C
@� x

? � @u
@�)

#










2

2

; (29)

where� 1 corresponds to a binary diagonal matrix of the complementarity conditionsCx? � u+ z? >
0. Denoting byJ c the index set for which the solution is strictly feasible (i.e.,i 2 [1; ni ]; (� 1) i = 0 ),
and byJ the index set of active constraints (i.e., for which(� 1) i = 1 ) then� can be reformulated as
follows (by strict complementary)

� =

2

4
H C >

J C>
J c

1p
2
CJ 0 0
0 0 � I

3

5 ;

with I being the identity matrix of appropriate dimension. Furthermore, the right-hand side of the
linear system within thè2 norm becomes

2

6
4

@H
@� x

? + @g
@� + @C

@�
>

z?

1p
2
( @CJ

@� x? � @uJ
@� )

0

3

7
5 :

�
H C >

J
CJ 0

�
corresponds to the KKT matrix of active constraints, and is nonsingular by assumption.

As it implies nonsingularity of
�

H C >
J

1p
2
CJ 0

�
, it follows that :

@z?J c

@�
= 0 ;

and the solution to equation 29 is uniquely determined as the solution of the following linear system
(as in (Amos & Kolter, 2017, Appendix A), after multiplying second row block by

p
2):

�
H C >

J
CJ 0

� �
@x?

@�
@z?

@�

�
= �

"
@H
@� x

? + @g
@� + @C

@�
>

z?

@CJ
@� x? � @uJ

@�

#

;

Hence, we arrive at the desired conclusion that ECJ coincides with the usual Jacobian in this case.

C ADDITIONAL EXPERIMENTAL RESULTS

Appendix C.1 provides a few simple experiments with parametric QPs to illustrate the concept of
ECJs. Appendix C.2 contains additional benchmarks. Appendix C.3 illustrates through several
experiments that QPLayer can be trained with large learning rates.
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C.1 PEDAGOGICAL EXAMPLES OF PARAMETRICQPS

A few numerical examples illustrate the concept of ECJ in different simple scenarios. The �rst
example corresponds to a strictly convex parametric QP which can be either feasible or infeasible. In
this example, a linear constraint depends on a parameter� . Depending on the value of this parameter,
the QP can either be feasible or infeasible.

The second example is a strictly convex QP with a parameterized linear cost. This problem is always
feasible.

The last example is a parametric LP with possibly multiple solutions. For appropriate values of the
parameters, the LP is feasible but not differentiable.

C.1.1 STRICTLY CONVEX QP (PARAMETERIZED CONSTRAINTS)

Consider the following strictly convex QP parameterized by a scalar value�

x?(� ) = arg min
x 1 ;x 2 2 R2

1
2

(x2
1 + x2

2)

s.t. � 6 x1 + x2 6 1:55;
1:5 6 2x1 + x2 6 1:55

(30)

Notice that for� > � limit := 1 :55, the QP becomes primal infeasible. We use gradient descent to
minimize two scalar lossesL 1(� ) = x?

1(� ) andL 2(� ) = x?
2(� ), starting from a prede�ned value

� 0. More precisely we have launched gradient descent for 40 steps with a learning rate5 � 10� 4

starting from� 0 = 1 :54. Figure 6a illustrates the results by showing the iterates of gradient descent
for minimizing x?

1(� ) (as well as the search direction—minus the ECJs). By doing so� increases and
eventually becomes larger than� limit .

Figure 6b reports a similar experiment for when minimizingx?
2(� ).

(a) 40 steps of gradient descent for minimizing
x?

1 (� ) starting from� 0 = 1 :54. When� > 1:55,
equation 30 is differentiated though infeasible.

(b) 40 steps of gradient descent for minimizing
x?

2 (� ) starting from� 0 = 1 :54. The QPs remain
feasible.

C.1.2 STRICTLY CONVEX QP (PARAMETERIZED OBJECTIVE)

Consider the following strictly convex QP parametrized by a scalar value�

x?(� ) = arg min
x 1 ;x 2 2 R2

1
2






�
x1
x2

�
+

�
�

� 2

� 




2

2

s.t. � 3006 x1 + x2 6 400;
� 2006 2x1 + x2 6 500

(31)

We use gradient descent to minimize the lossL 1(� ) = x?
1(� ). More precisely, we run 40 iterations of

gradient descent with learning rate5 � 10� 4 starting from� 0 = 1 :54, as reported by Figure 7. As
expected, we see thatx?

1(� ) = � � , hence increasing� decreasesx?
1(� ).
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Figure 7: Gradient descent for minimizingx?
1(� ) (solution to equation 31) starting from� 0 = � 1:5.

C.1.3 PARAMETERIZED LINEAR PROGRAM

Consider the following LP parameterized by a scalar parameter� > 0

x?(� ) 2 arg min
x 1 ;x 2 2 R2

x1 + x2

s.t. � 6 x1 + x2;
0 6 x1 6 1;
0 6 x2 6 1:

(32)

Note that this LP is always well-de�ned for any� since the linear cost is orthogonal to the recession
cone (which is empty), thereby satisfying the technical requirements from Assumption 1. We use
gradient descent for minimizing two scalar lossesL 1(� ) = x?

1(� ) andL 2(� ) = x?
2(� ).

C.1.3.1 Feasible case (� 6 2). For any� 2]0; 2], there are in�nitely many solutions to equation 32
which are de�ned by the segment equation

x?
1 + x?

2 = �;
0 6 x?

1 6 1;
0 6 x?

2 6 1:

We can see in Figure 8a and Figure 8b that the forward pass chooses as solutionx?
1 = x?

2 = �
2 . Hence,

only the constraint� 6 x1 + x2 is active. Following the formalism from Section 3.1 we have

C =

2

6
6
6
4

� 1 � 1
1 0

� 1 0
0 1
0 � 1

3

7
7
7
5

; u =

2

6
6
6
4

� �
1
0
1
0

3

7
7
7
5

:

23



Published as a conference paper at ICLR 2024

The ECJs ofL 1 andL 2 w.r.t � are the solutions to

"
(b?

x )1
(b?

x )2
b?

z

#

2 arg min
bx ;bz







"
0 0 � 1
0 0 � 1

� 1 � 1 0

# "
(bx )1
(bx )2

bz

#

+

"
1
0
0

#





2

2

;

"
(d?

x )1
(d?

x )2
d?

z

#

2 arg min
dx ;dz







"
0 0 � 1
0 0 � 1

� 1 � 1 0

# "
(dx )1
(dx )2

dz

#

+

"
0
1
0

#





2

2

:

As the corresponding linear systems involved within the`2 norm are infeasible, the least square
estimates do not correspond to solutions to the linear system. That is, the corresponding least-square
solutions are respectively the solutions of the following projected linear systems:

"
1 1 0
1 1 0
0 0 2

# "
(b?

x )1
(b?

x )2
b?

z

#

=

"
0
0
1

#

;

"
1 1 0
1 1 0
0 0 2

# "
(d?

x )1
(d?

x )2
d?

z

#

=

"
0
0
1

#

;

which leads to@L 1
@� = @L 2

@� = b?
z = d?

z = 1
2 . Figure 8a and Figure 8b show that those directions allow

minimizing L 1 andL 2 through gradient descent.

(a) 40 iterations of gradient descent for
minimizing x?

1 (� ) for the problem equation 32.
(b) 40 iterations of gradient descent for
minimizing x?

2 (� ) for the problem equation 32.

C.1.3.2 Infeasible case (� > 2). For any� > 2, the LP is infeasible. The corresponding ECJs are
the least-square solutions to

arg min
b1 ;b2 ;b3 ;b4

k

2

4
0 C> 0 0
C 0 (I � � 1) 0
0 � I � � 1� 2 (1 � � 2)C

3

5

2

6
4

b1
b2
b3
b4

3

7
5 +

2

4
� L i
�x
0
0

3

5 k2
2 for i 2 f 1; 2g;

with P1 =

2

6
6
6
4

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

3

7
7
7
5

andP2 =

2

6
6
6
4

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

3

7
7
7
5

. The linear system within thè2 norm

is feasible and QPLayer outputs as ECJs@L 1
@� = @L 2

@� = 1
3 . Figure 9a and Figure 9b show that

following such directions allows using gradient descent for minimizingL 1 andL 2.
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(a) 40 steps of gradient descent applied to
minimizex?

1 (� ) starting from� 0 = 2 :2, when
considering the infeasible LP de�ned by equation 32.

(b) 40 steps of gradient descent applied to
minimizex?

2 (� ) starting from� 0 = 2 :2, when
considering the infeasible LP de�ned by equation 32.

C.2 TIMING BENCHMARKS

In this section, we report our numerical results and compare them against state-of-the-art frameworks
on a set of standard experiments. We outline detailed timings for differentiating solutions on a
set of different QPs. First, Table 2 shows the results for a few randomly generated QPs. Second,
Table 3 reports the average time spent in the differentiation procedure on four different learning tasks.
Additional experiments are provided in Appendix C.2.

In the �rst set of experiments (see Appendix C.2.1), QPLayer is compared to OptNet, CvxpyLayer,
JaxOpt, and Alt-Diff. For all the other experiments, QPLayer is benchmarked only against approaches
available within the PyTorch framework (i.e., OptNet and CvxpyLayer4).

C.2.1 RANDOM QPS

In this �rst set of experiments, we generated random QPs with 100 variables, 50 equality, and 50
inequality constraints. We solve and backpropagate through all those QPs for different forward pass
accuracies. We then average the results over 5 trails and report the timings in the spirit of (Sun et al.,
2022).

For a batch size of 100, Table 2 shows that QPLayer is almost 4 times faster than OptNet (the second
fastest approach). We can see similar performance for a batch size of 1 (see Table 4, QPLayer is
about 4 times faster than OptNet (the second fastest approach) for all target accuracies). We observe
that the speed gain is mostly due to the forward pass speed-up, enabled by the use of ProxQP and
thread parallelization. It is also con�rmed by Table 5, which reproduces in Table 5 the serial forward
timing benchmark proposed in (Amos & Kolter, 2017, Section 4.1). It exhibits from 5 to 9 times
faster computation times.

C.2.2 LEARNING TASKS

For this second set of experiments, we report the numerical results obtained on4 traditional learning
tasks (namely MNIST classi�cation, signal denoising, Sudoku solving and cart-pole experiment).
For all experiments, we report the average (over all epochs) time spent in the forward and backward
passes. Table 3 reports that QPLayer is 3 to 10 times faster than the second fastest approach (i.e.,
3 times faster on the classi�cation task, 4 times faster on the Sudoku, about 10 times faster for the
denoising and 7 times faster for the cart-pole experiments). In all cases, the test loss incurred using
QPLayer is either similar (for the denoising and cart-pole tasks) or far better than its competitor
layers (about 2 to 3 times smaller for the classi�cation and Sudoku experiments).

More precisely, the �rst three experiments reproduce the ones originally described in (Amos &
Kolter, 2017, Sections 4.2 to 4.4). A complete description of the cart-pole swing-up task is detailed

4Alt-Diff exhibited too slow performances for a fair and reasonable comparison. Note that (Sun et al., 2022)
have not yet proposed an Alt-Diff layer deriving all QP Jacobians. Therefore, we have included in our benchmark
an open-source implementation of Alt-Diff based on their work.
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in Appendix D.2. These tasks involve learning convex feasible QPs using Adam optimizer (Kingma
& Ba, 2014). The �rst three experiments are run with the default batch sizes and the number of
epochs �xed by the original authors (i.e., batch size equals 64 for classi�cation, 150 for denoising
and Sudoku tasks; 30 epochs for classi�cation, and 20 for denoising and Sudoku tasks). We run
the cart-pole example with batch size 1 for 800 epochs. For the �rst three experiments, we use the
same QP layer models as (Amos & Kolter, 2017), except that we have changed the backends for
executing the forward and backward passes (using either Qpth, QPLayer5 or CvxpyLayer). Finally,
we have used the following learning rates for running the benchmarks:10� 3 for classi�cation,10� 5

for denoising,5 � 10� 2 for Sudoku, and10� 1 for cart-pole tasks.

Forward tolerance� 10� 1 10� 2 10� 3

Forward (ms) 72.43(� 7.28) 71.89(� 3.0) 72.12(� 4.21)
Backward (ms) 18.14 (� 1.01) 18.03 (� 0.17) 18.12 (� 0.37)
QPLayer total (ms) 90.57 89.92 90.24

Forward (ms) 340.62 (� 7.06) 348.68 (� 3.51) 349.44 (� 2.44)
Backward (ms) 6.39(� 0.16) 6.61(� 0.41) 6.66(� 0.38)
OptNet total (ms) 347.01 355.29 356.10

Forward (ms) 123.35 (� 13.70) 196.75 (� 38.13) 281.54 (� 64.18)
Backward (ms) 546.91 (� 55.58) 622.45 (� 66.63) 723.34 (� 66.26)
JaxOpt total (ms) 670.16 819.20 1004.88

Forward (ms) 1.16(� 0.038)� 103 1.19 (� 0.015)� 103 1.24 (� 0.017)� 103

Backward (ms) 187.52(� 8.59) 187.74 (� 11.54) 197.18 (� 7.99)
CvxpyLayer total (ms) 1.35� 103 1.38� 103 1.43� 103

Forward (ms) Time limit Time limit Time limit
Backward (ms) Time limit Time limit Time limit
Alt-Diff total (ms) Time limit Time limit Time limit

Table 2: Timings for deriving all Jacobians of random QPs with different forward pass accuracies
and batch size 100.

5Yet two differences should be noted: QPLayer learns LP for the Sudoku experiment. We have not imposed
zero Hessian for the CvxpyLayer even if it could learn it, as it would display worse results. Furthermore, for the
denoising experiment, QPLayer learns the lower and upper bounds simultaneously.
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Learning Tasks QPLayer OptNet CvxpyLayer

cart-pole
Forward (ms) 55.20(� 6.93) 615.84 (� 16.15) 629.70 (� 30.42)
Backward (ms) 39.27(� 2.17) 61.26 (� 2.84) 101.88 (� 1.11)
Final test loss 0.02556 0.02604 0.02566

Sudoku
Forward (ms) 87.39(� 16.69) 454.48 (� 22.22) 772.77 (� 33:89)
Backward (ms) 20.80 (� 1.70) 8.07(� 0.42) 192.99 (� 9:81)
Final test loss 6.19� 10� 4 0.0017 0.389

denoising
Forward (ms) 247.89(� 17.03) 2827.48 (� 618.78) Error
Backward (ms) 52.99 (� 2.75) 40.57(� 2.98) Error
Final test loss 3281.84 3529.2029 Error

classi�cation
Forward (ms) 26.77(� 3.63) 102.62 (� 18.23) Error
Backward (ms) 11.12(� 3:01) 16.58 (� 12.05) Error
Final test loss 0.1363 0.3264 Error

Table 3: Timings and �nal loss of 4 learning tasks. CvxpyLayer errors arise due to failures in �lling the
disciplined parametrized programming (DPP) form of the quadratic cost.

Forward tolerance� 10� 1 10� 2 10� 3

Forward (ms) 1.30(� 0:17) 1.42(� 0.19) 1.55(� 0:20)
Backward (ms) 0.77 (� 0.01) 0.70 (� 0.02) 0.71 (� 0.02)
QPLayer total (ms) 2.07 2.12 2.26

Forward (ms) 6.93 (� 0.82) 6.85 (� 0.05) 7.49 (� 0.04)
Backward (ms) 0.75(� 12) 0.70(� 0.01) 0.70(� 0.01)
OptNet total (ms) 7.68 7.55 8.19

Forward (ms) 7.99 (� 0.93) 12.82 (� 2.67) 18.82 (� 4.31)
Backward (ms) 24.71 (� 2.53) 30.47 (� 2.71) 36.43 (� 3.93)
JaxOpt total (ms) 32.70 43.29 55.25

Forward (ms) 411.20 (� 3.90) 415.94 (� 2.63) 422.28 (� 2.65)
Backward (ms) 6.13 (� 0.02) 6.34 (� 0.33) 6.26 (� 0.06)
CvxpyLayer total (ms) 417.33 422.24 428.54

Forward (ms) 6.00 (� 0.85)� 103 38.66 (� 7.11)� 103 114.20 (� 31.48)� 103

Backward (ms) 0.99 (� 0.21) 0.98 (� 0.13) 1.05 (� 0.14)
Alt-Diff total (ms) 6.00� 103 36.66� 103 114.20� 103

Table 4: Averaged timings for the forward and backward passes when computing all Jacobians of
randomly generated feasible QPs (with 100 primal variables, 50 equality constraints and 50 inequality
constraints) considering different forward pass accuracies. The batch size is 1. QPLayer has the best
total timings for all accuracies.
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QP and Batch sizes QPLayer (ms) OptNet (ms) CvxpyLayer (ms)

Batch= 1 , n = 100, ne = 0 , ni = 50 0.88(� 0.06) 8.01 (� 0.89) 334.06 (� 7.83)

Batch= 1 , n = 100, ne = 50, ni = 50 1.09(� 0.10) 8.35 (� 0.67) 406.18 (� 1.44)

Batch= 1 , n = 100, ne = 0 , ni = 100 1.22(� 0.08) 7.62 (� 0.32) 422.59 (� 4.34)

Batch= 1 , n = 100, ne = 50, ni = 100 1.75(� 0.17) 13.95 (� 2.03) 522.80 (� 3.96)

Batch= 1 , n = 100, ne = 100, ni = 50 1.26(� 0.14) 16.77 (� 3.41) 521.18 (� 16.15)

Batch= 1 , n = 100, ne = 100, ni = 100 1.45(� 0.28) 18.33 (� 5.35) 621.25 (� 9.67)

Batch= 64, n = 100, ne = 0 , ni = 50 30.16(� 5.51) 173.95 (� 12.82) 771.49 (� 59.74)

Batch= 64, n = 100, ne = 50, ni = 50 48.60(� 9.19) 183.84 (� 9.99) 818.75 (� 5.42)

Batch= 64, n = 100, ne = 0 , ni = 100 44.68(� 5.95) 176.88 (� 2.30) 820.85 (� 12.38)

Batch= 64, n = 100, ne = 50, ni = 100 55.77(� 6.38) 243.15 (� 27.86) 1126.99 (� 34.33)

Batch= 64, n = 100, ne = 100, ni = 50 51.66(� 8.51) 231.11 (� 13.75) 1177.89 (� 132.99)

Batch= 64, n = 100, ne = 100, ni = 100 62.52(� 7.84) 276.18 (� 31.29) 1314.47 (� 69.60)

Batch= 128, n = 100, ne = 0 , ni = 50 62.94(� 9.52) 620.91 (� 3.52) 1202.61 (� 88.32)

Batch= 128, n = 100, ne = 50, ni = 50 78.01(� 4.06) 667.55 (� 5.86) 1295.50 (� 24.63)

Batch= 128, n = 100, ne = 0 , ni = 100 89.48(� 7.09) 653.32 (� 5.54) 1267.83 (� 30.85)

Batch= 128, n = 100, ne = 50, ni = 100 111.01(� 8.21) 774.08 (� 20.90) 1739.41 (� 70.53)

Batch= 128, n = 100, ne = 100, ni = 50 96.23(� 9.47) 811.44 (� 25.29) 1896.52 (� 284.89)

Batch= 128, n = 100, ne = 100, ni = 100 119.13(� 10.17) 934.26 (� 87.79) 2059.44 (� 147.77)

Table 5: Timing benchmarks of different backends used for solving a forward pass for different batch
sizes.ne stands for the number of equality constraints.

C.3 TRAINING WITH LARGE LEARNING RATES

In this section, we assess the numerical robustness of QPLayer on traditional learning tasks by
demonstrating that it can be trained with larger learning rates than other approaches, potentially
resulting in improved attraction pools.

More precisely, we ran the MNIST classi�cation and denoising tasks described in?? with SGD and
larger learning rates and reported the corresponding results. We measured the �nal test loss and error
reached after 30 epochs and the standard deviation over the last 10 epochs of the test loss and test
error. The results are averaged over 10 seeds and the experiment is performed for different learning
rates.

As described in Appendix C.2.2, for those tasks, the QP layers need to learn all the model parameters
(i.e.,H , g, C, andu). We observe that it generates potentially very ill-conditioned problems when
the forward or the backward passes are not solved accurately enough. This phenomenon appears to
be ampli�ed with larger learning rates. In those situations, it appears that robust solution methods
(e.g., allowing for temporary infeasible, or ill-conditioned problems) are critical.

Figure 10a and Figure 10b show that for too high learning rates (i.e.,10� 4 or 10� 5 for denoising task
and10� 2 for the classi�cation task) the OptNet layer generate errors, whereas it is never the case for
QPLayer. Furthermore, for low learning rate levels (i.e.,10� 6 or 10� 7 for the denoising task and10� 3

and10� 4 for the classi�cation task), the �nal loss reached is similar but with a less important noise
amplitude level when using QPLayer ( Figure 11 provides robustness statistics of the classi�cation
task using the prediction error rate of the two layers). Finally, QPLayer is capable of being trained
with a larger learning rate (i.e.,10� 4 for the denoising task and10� 2 for the classi�cation task). Also,
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note that CvxpyLayer fails to be run in all these robustness experiments because the Hessian part of
the quadratic model fails to �t the required DPP form (Amos et al., 2018, Section 4.1).

(a) Robustness statistics for denoising task. (b) Robustness statistics for MNIST classi�cation task.

Figure 10: Robustness statistics for denoising and MNIST classi�cation tasks: number of errors (i.e.,
NaNs), averaged �nal loss reached after 30 epochs (with 95% con�dence intervals), and averaged
standard deviations over the last 10 epochs (with 95% con�dence intervals). Results are averaged
over 10 seeds. CvxpyLayer fails to be trained for all these tasks.

Figure 11: Robustness statistics for the MNIST classi�cation: number of errors (i.e., NaNs), averaged
�nal prediction error reached after 30 epochs (with 95% con�dence intervals), and averaged standard
deviations over the last 10 epochs (with 95% con�dence intervals). Results are averaged over 10
seeds.

Remark 3 (Numerical differences with OptNet). Our approach offers a few numerical advantages
compared to (Amos & Kolter, 2017). In particular, a numerical matrix factorization is at the center
of most popular techniques for differentiating through QPs. This factorization procedure represents
one of the main bottlenecks in the computational costs. In our approach, we need to factorize smaller
and better-conditioned symmetric matrices.
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The formulation exploited by OptNet consists of a larger linear system to compute its Jacobians.
More precisely, they factorize a matrix of the form:

K =

24H 0 C>

0 D(z⋆) D(t⋆)
C I 0

35 ,

where t⋆ = Cx⋆�u and D(z⋆) corresponds to a diagonal matrix whose diagonal entries correspond
to z⋆. For obtaining a symmetrized version that can be factorized with efficient methods, the second
row block is scaled by D(1/t⋆) (Amos & Kolter, 2017, Section 3.1). Yet, symmetrization comes at the
price of being more sensitive to the localization of the solution w.r.t the constraints. Indeed, if x⋆ lies
on the boundary, i.e., CIx

⋆ � uI = 0 for some component index I , the conditioning of the matrix is
degraded, as OptNet needs to divide by zeros (or small clamped numbers in practice).

On our side, the formulation for feasible QPs relies on a smaller matrix, which is symmetric and better-
conditioned (it does not require scaling rows by values that are potentially zeros, see equation 10).

D EXPERIMENTAL SETUP

This section details the optimization architectures used for the Sudoku tasks described in Section 4.1.
The cart-pole task mentioned in Appendix C.2.2 is detailed in Appendix D.2.

D.1 LAYER ARCHITECTURE FOR THE SUDOKU PROBLEM

The layer architecture used by OptNet Amos & Kolter (2017) for the Sudoku problem is described in
Figure 12. In contrast, the QPLayer architecture (which does not require structural feasibility of the
QPs) is described in Figure 13. The QPLayer architecture allows learning more structured constraints,
such as the Sudoku constraint “Ax = 1”, which cannot be done, as is, with OptNet (which requires
the QPs to be structurally feasible).
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Figure 12: Strictly convex QP layer trained using OptNet in Section 4.1.1 (as in Amos & Kolter
(2017)). The constraint matrix and an extra variable z0 are learned in order to be sure that the QP is
always primal feasible (structural feasibility).

Figure 13: An LP layer trained as allowed by QPLayer in Section 4.1.2. It enables for more flexibility
in the problem to be learned (only the constraint matrix A is learned). The optimal shift s� is a new
output variable minimized in the loss, in order to learn at test time a feasible LP layer.
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