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ABSTRACT

Search agents have achieved significant advancements in enabling intelligent infor-
mation retrieval and decision-making within interactive environments. Although
reinforcement learning has been employed to train agentic models capable of
more dynamic interactive retrieval, existing methods are limited by shallow tool-
use depth and the accumulation of errors over multiple iterative interactions. In
this paper, we present WebSeer, a more intelligent search agent trained via rein-
forcement learning enhanced with a self-reflection mechanism. Specifically, we
construct a large dataset annotated with reflection patterns and design a two-stage
training framework that unifies cold start and reinforcement learning within the
self-reflection paradigm for real-world web-based environments, which enables the
model to generate longer and more reflective tool-use trajectories. Our approach
substantially extends tool-use chains and improves answer accuracy. Using a single
14B model, we achieve state-of-the-art results on HotpotQA and SimpleQA, with
accuracies of 72.3% and 90.0%, respectively, and demonstrate strong generalization
to out-of-distribution datasets.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across a wide range
of natural language processing tasks, including question answering, summarization, and dialogue
generation (Hendrycks et al., 2021; Rein et al., 2024). However, relying solely on the parametric
knowledge of language models poses fundamental limitations: it is static, often outdated, and prone
to hallucinations (Sardana, 2025). To overcome these challenges, retrieval-augmented generation
(RAG) (Lewis et al., 2020) approaches have been developed to enable models to access and retrieve
external documents dynamically.

With the continuous advancement of model capabilities, agentic RAG (Trivedi et al., 2023; Li et al.,
2025; Jin et al., 2025) has emerged as a powerful paradigm. This design empowers models to follow
more complex reasoning trajectories. Unlike traditional RAG systems (Asai et al., 2023; Trivedi
et al., 2023; Yu et al., 2024), agentic RAG can freely browse vast knowledge sources available
on the internet and leverage tools such as code execution to extend their skills, enabling them to
tackle a more diverse range of tasks. While agentic RAG greatly extends the scope of tool use and
demonstrates strong potential, existing approaches exhibits several notable limitations in practice. In
particular, when faced with complex or open-domain tasks, current systems often struggle to maintain
coherent reasoning chains and robust retrieval. Errors introduced at intermediate steps can easily
accumulate, while the lack of effective coordination across components makes it difficult to achieve
reliable end-to-end performance. Thus, despite its promise, agentic RAG still confronts a set of
fundamental challenges that must be addressed.

1) Insufficient Search Calls. The most common issue when it comes to model invocation tools
to solve problems is Insufficient API Calls (Kokane et al., 2025), which is also often seen in the
RAG scenario, as shown in the Appendix B. This may be due to models being biased toward
synthesizing the currently available information into a plausible answer rather than actively seeking
new or complementary knowledge. Existing work typically exhibits short tool-use chains (Jin et al.,
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Figure 1: Comparasion between different search agent: Search-r1(Jin et al., 2025) faces shallow
search and error buildup, while WebSeer trained using our self-reflection paradigm significantly
improve tool calls and maintain rigorous reasoning.

2025; Song et al., 2025), suggesting that models may fall into suboptimal behaviors—prematurely
producing an answer instead of verifying its correctness or exploring further evidence.

2) Lack of Spontaneous Self-Reflection Mechanisms. Current search agents lack spontaneous
reflection steps in RAG scenario: models neither actively cross-verify information nor autonomously
rewrite queries or backtrack retrievals when uncertain. As a result, if initial retrieval is incomplete,
the generation phase expands answers based on flawed or partial context, amplifying early errors.

3) Neglect of Real-World Web Scenarios. Most existing work focuses on retrieval from local vector
databases, with limited attention to more complex and open-ended web agent scenarios.

In this paper, we introduce Webseer, a novel search agent designed to tackle complex real-world
multi-hop question answering tasks. Different from prior approaches (Jin et al., 2025; Zheng et al.,
2025), WebSeer explicitly encourages deeper exploration and integrates a build-in self-reflection
mechanism, enabling the model to backtrack, reformulate queries, and iteratively refine its reasoning
process. As shown in Figure 1, previous agentic RAG primarily rely on short tool-use chains and often
terminate once a superficially plausible answer is formed. In contrast, WebSeer actively prolongs
the search trajectory and incorporates reflection steps, and revises its queries when uncertainty
is detected. This design enables Webseer to gather more comprehensive evidence, mitigate the
accumulation of errors, and improve robustness in open-domian multi-hop reasoning. Specifically,
we design a two-stage training framework that unifies cold start and reinforcement learning within the
self-reflection paradigm. A central component of this framework is Self-Reflective Reinforcement
Learning (SRRL), which leverages answer correctness signals during multi-turn interactions to more
effectively encourage reflective behavior. To ground the model in realistic web scenarios, we equip it
with three complementary tools: a web search API for external knowledge acquisition, a webpage
reader for lightweight comprehension of web content, and a code executor for precise computation.

To support this framework, we construct a high-quality dataset of long-horizon reasoning trajectories
through rejection sampling. These trajectories contain multiple rounds of answer refinement and
substantially longer tool-use chains compared to conventional dialogue datasets. This training
framework significantly increases the average length of tool invocation chains while maintaining
rigorous reasoning quality. Compared to prior work (Zheng et al., 2025), all decisions and tool
interactions are handled by a single model, eliminating the need for auxiliary agent controllers or
stronger backbone models.

Overall, our contributions are three-fold:
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Figure 2: Overview of our two-stage training framework. In the first stage, we construct self-reflective,
tool-augmented reasoning trajectories. In the second stage, we apply SRRL, allowing the model to
iteratively refine and resubmit answers with token-level F1-based reward.

• We propose the first unified two-stage training framework with a self-reflection paradigm,
enabling a more intelligent search agent that improves search depth, breadth, and accuracy.

• We propose a novel SFT data synthesis method that encourages proactive tool invocation,
resulting in significantly longer and more complex tool-use chains;

• Through extensive experiments, we demonstrate notable improvements in answer accuracy,
achieving SOTA on HotpotQA with a 72.3% accuracy and on simpleQA with a 90.0%
accuracy. Our proposed training framework shows explicit self-verification behaviors and
strong generalization to OOD datasets.

2 WEBSEER

We introduce WebSeer, a search agent for multi-hop question answering in real-world web settings.
The model is trained with our proposed unified two-stage framework based on self-reflection as
shown in Fig 2. To obtain diverse high-quality data, we propose multi-turn rejection sampling for
collecting positive trajectories used in supervised fine-tuning, enabling the model to learn reflective
reasoning patterns. Building on this, we develop Self-Reflective Reinforcement Learning (SRRL),
which incorporates feedback and preserves reflective context during RL, guided by effective reward
design to achieve robust and optimal performance.

2.1 TASK FORMULATION

For a given problem, our objective is to construct a reasoning chain augmented by tool invocations.
Specifically, the reasoning chain consists of N sequential steps, each comprising a model-generated
output, a tool invocation, and the resulting observation. At each step, the model initially generates
reasoning outputs based on the current context, then decides to invoke one or more external tools.
The tool invocation parameters are extracted by the decoder, and subsequently, the invoked tools are
executed, returning observations integrated into the reasoning context. The reasoning chain terminates
if the model either abstains from further tool invocations or invokes a special submit-answer tool,
signaling completion. Additionally, a predefined maximum step limit Tmax is enforced to prevent
indefinite chaining, thus constraining the length of the reasoning trajectory.
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2.2 TOOL DESIGN

In this work, we design three specialized tools to support external knowledge acquisition and
reasoning execution. Additionally, we treat the Answer Submission step itself as a tool, ensuring that
the model explicitly decides when to terminate reasoning and output the final answer.

Search Engine This tool receives a set of keywords and performs a Google search. It returns the top
page of search results in a structured format, including the title, URL, and snippet for each result.

Webpage Reader Due to the prohibitive input length of raw HTML, we design the webpage reader to
act as a lightweight, model-mediated summarization interface. Given a specific URL and a question,
the system fetches the HTML content of the page and prompts the same language model to answer
the question based on the page content. The tool then returns the model-generated answer.

Code Executor This tool accepts a Python code snippet, executes the code in a controlled environment,
and returns the standard output as the tool result.

2.3 SELF-REFLECTIVE REASONING CHAIN CONSTRUCTION

Deepseek R1 (DeepSeek-AI et al., 2025) has highlighted the importance of cold-start in reinforcement
learning training. Lee et al. (2025) provided several trajectories for training models to solve multi-
hop QA problems. However, these trajectories only included cases where the correct answer was
successfully found, without teaching the model how to handle situations in which an incorrect answer
might arise. To address this limitation, we propose a multi-turn rejection sampling method to collect
reasoning paths that incorporate reflective patterns. To encourage trajectory diversity, we impose
no restrictions on the form of reflection itself, retaining only those reasoning paths that ultimately
converge to the correct solution.

Let D = (xi, y
∗
i )

N
i=1 denote a multi-hop QA dataset with ground-truth answers y∗i . We consider

two models: (i) a reasoner G, which, given an instance and its interaction history, generates a
tool-augmented reasoning path until producing a final answer; and (ii) an independent verifier V ,
which assesses the factual correctness of a proposed answer by invoking tools and ultimately returning
a judgment. The verifier and the reasoner use the same model, tool interfaces, sampling parameters,
and execution environment; the only difference is the prompt, which is provided in the Appendix A.

At reflection step t ∈ {1, . . . , nmax} for instance xi, the reasoner receives the concatenated history
Ht−1 = {P1, R1, . . . , Pt−1, Rt−1}, and generates a tool-augmented path Pt that culminates in an
answer proposal ŷ(t)i ← G(xi, Ht−1). To evaluate this proposal, we query the verifier up to a budget
of K, yielding a verification outcome Rt ∼ V ( · | xi, Pt, ŷ

(t)
i ).

Each Rt consists of (i) a binary judgment Jt ∈ {CORRECT, INCORRECT} regarding ŷ
(t)
i , and (ii) a

tool-augmented path that may be appended to the full path.

Validity predicate. We define a predicate Ψ
(
Rt, ŷ

(t)
i , y∗i

)
∈ {0, 1} that evaluates whether the

judgment in Rt matches factual correctness, i.e.,

Ψ
(
Rt, ŷ

(t)
i , y∗i

)
=

{
1, if

(
Jt = CORRECT ∧ ŷ

(t)
i = y∗i

)
or

(
Jt = INCORRECT ∧ ŷ

(t)
i ̸= y∗i

)
,

0, otherwise.

So, if there exists Ψ = 1, we accept the verifier’s feedback and update the history via concatenation,
Ht ← Ht−1 ∪ {Pt, Rt}. Otherwise, we re-query the verifier to sample the next outcome

R
(m)
t ∼ V ( · | xi, Pt, ŷ

(t)
i ), m = 1, 2, . . . ,K,

and evaluate Ψ
(
R

(m)
t , ŷ

(t)
i , y∗i

)
.

If all K attempts fail, then the instance xi is discarded, and we directly proceed to the next problem
instance xi+1.

Iteration and termination. The above process iterates for t = 1, 2, . . . with the updated history
until one of the following conditions holds:

(Success) ŷ
(t)
i = y∗i and Jt = CORRECT,

4
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in which case we halt and record the finalized, verified trajectory Ti =
{P1, R1, P2, R2, . . . , Pt, Rt},

(Budget stop) t = nmax,

in which case the instance is not recorded as a successful trajectory.

Supervised fine-tuning. Let {Ti}Ni=1 denote the all set of successful trajectories, where each
trajectory Ti is represented as a token sequence Ti = {y(i)1 , y

(i)
2 , . . . , y

(i)
Ti
}. To stabilize subsequent

reinforcement learning and mitigate degenerate exploration, we perform supervised fine-tuning (SFT)
of the model parameters θ on the dataset {(xi, Ti)}Ni=1. Following empirical findings on iterative
search training (Zhang et al., 2025), we adopt a masked autoregressive negative log-likelihood (NLL)
objective that excludes external observation tokens from the loss.

Let O ⊂ T denote the subsequence of tokens in T corresponding to tool observations. The masked
training objective is defined as

L(x, T ; θ) = −
∑T

t=1 I[ yt /∈ O ] · log pθ(yt | x, y<t)∑T
t=1 I[ yt /∈ O ]

,

where I[·] denotes the indicator function.

This masking restricts the loss to the agent’s own outputs—such as internal reasoning steps and tool-
calling decisions—while excluding literal tool observations. In doing so, the objective encourages
the model to faithfully reproduce the supervised reasoning process (e.g., when to retrieve and how
to compose intermediate steps) while ignoring raw tool outputs, a practice shown to improve both
performance and robustness.

2.4 SELF-REFLECTIVE REINFORCEMENT LEARNING (SRRL)

Unlike other previous training frameworks, our reinforcement learning framework unifies SFT and
RL under the self-reflection mechanism, which we call Self-Reflective Reinforcement Learning
(SRRL). Specifically, SRRL as allows the model to submit answers multiple times within a single
dialogue turn. This design enables the model to iteratively refine its reasoning based on external
feedback, leading to more stable and effective exploration.

Formally, given an input query x and the ground-truth answer y∗, the LLM interacts with external
tools to produce an evolving trajectory

T = {(a1, o1), (a2, o2), . . . , (aT , oT )},
where at step t, at denotes the agent’s action (e.g., a tool call or an answer_submit), and ot denotes the
resulting observation. In particular, when the action corresponds to the special tool answer_submit,
the submitted answer ŷ(t) is compared with y∗ and return

r(t) = F1

(
ŷ(t), y∗

)
∈ [0, 1].

The scalar feedback r(t) is returned as text and appended to the dialogue context. If r(t) is below a
predefined threshold, the environment allows the model to continue reasoning, enabling the model
to revise its reasoning and potentially submit an improved answer at a later step. We employ a
hybrid optimization objective that integrates the advantage estimation from Group Relative Policy
Optimization (GRPO) (Shao et al., 2024) with the asymmetric clipping mechanism from DAPO (Yu
et al., 2025). Specifically, for each query q, we sample a group of G outputs {oi}Gi=1 from the old
policy πθold . The optimization objective is formalized as:

L(θ) = Eq∼D,{oi}Gi=1∼πθold

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ri,t(θ)Âi,t, clip (ri,t(θ), 1− ϵlow, 1 + ϵhigh) Âi,t

) ,

(1)

where ri,t(θ) =
πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

denotes the probability ratio. Following GRPO, the advantage Âi,t

is computed using

Âi,t =
R(oi)− µgroup

σgroup + δ
, where µgroup =

1

G

G∑
j=1

R(oj), σgroup =

√√√√ 1

G

G∑
j=1

(R(oj)− µgroup)2. (2)
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Following DAPO, we employ asymmetric clipping parameters ϵlow and ϵhigh to better accommodate
the skewed distribution of reasoning rewards, preventing the policy from overfitting to noisy high-
reward trajectories.

2.5 REWARD DESIGN

Because in addition to the correctness of the answer, we also care about how many times the agent
has tried, we define a trajectory-wise reward. Let a trajectory be denoted by τ = {(ot, at, rt)}Nt=1,
where ot is the observation (context), at is the model output including potential tool invocations, and
rt is the instantaneous reward. The total trajectory-wise reward is then given by

R(τ) = Rformat(τ) +Rcorrect(τ). (3)

For format, let |y| be the output length, Lexpect the safe-zone threshold, and Lmax the hard limit. The
reward is

Rformat(τ) =


0, |y| ≤ Lexpect,

−
|y| − Lexpect

Lmax − Lexpect
, Lexpect < |y| ≤ Lmax,

−1, |y| > Lmax.

(4)

Thus, outputs in the safe zone incur no penalty, those in the transition region are linearly penalized,
and overly long ones receive the maximum penalty.

For correctness, let r ∈ [0, 1] be a task-specific score (e.g., token-level F1 reward) and T the number
of submission attempts. To discourage resubmissions, we apply an exponential discount α ∈ (0, 1]:

Rcorrect(τ) = r · αT . (5)

3 EXPERIMENTS

3.1 EXPERIMENT SETUP

Datasets. We evaluate our model on a diverse suite of open-domain QA benchmarks, spanning both
in-domain and out-of-domain settings. Following Zheng et al. (2025), we adopt the same evaluation
split: 512 examples sampled from the development sets of NQ (Kwiatkowski et al., 2019), TQ (Joshi
et al., 2017), HotpotQA (Yang et al., 2018), 2WikiMultiHopQA (Ho et al., 2020), MuSiQue (Trivedi
et al., 2022), PopQA (Mallen et al., 2023), FanoutQA (Zhu et al., 2024), FRAMES (El Asri et al.,
2017), and SimpleQA (Wei et al., 2024), along with 125 examples from Bamboogle.

Because valid answers in open-domain QA often admit multiple surface forms, rule-based string-
matching metrics can lead to inaccurate performance estimates. To address this, we adopt LLM-as-a-
Judge, following the methodology and prompt template of Zheng et al. (2025). During evaluation, all
models are restricted to submitting a single answer. The full evaluation prompt and implementation
details are provided in Appendix A.

Baselines. We compare our approach against several strong baselines that represent different
paradigms for reasoning and retrieval in open-domain QA: (1) Closed-book (CoT): The model
answers questions using only its internal parametric knowledge, without any external retrieval,
following a chain-of-thought prompting strategy. We choose Qwen2.5-7B-Instruct (Qwen et al.,
2025) as the base model. (2) Local RAG: The model is allowed to access a local vector-based
retrieval system, where the knowledge source consists of the English Wikipedia page dump dated
March 1, 2022. We test Qwen2.5-7B-Instruct (Qwen et al., 2025), Search-r1 (Jin et al., 2025),
and R1-Searcher (Song et al., 2025) in this setting. (3) Web Agents: The model is equipped with
web-based tool access, including search engine querying and webpage parsing through Markdown
conversion. We test DeepResearcher (Zheng et al., 2025) in this setting.

Implementation Details During inference, we use the Google Web Search API for real-time
retrieval and the Jina API to bypass anti-crawling and extract clean, LLM-friendly text.
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For training, we prioritize cost, stability, and consistency by restricting retrieval to Wikipedia via the
Google Site Search API and fetching full pages through the official Wikipedia API. Training uses the
verl framework (Sheng et al., 2025), sampling 12 prompts per step, each with 8 candidate trajectories
and up to 30 interaction turns. This controlled setup ensures stable, noise-reduced signals while still
exposing the model to realistic retrieval and comprehension tasks. We trained a total of 100 steps,
spending 480 A800 GPU hours.

Table 1: Main results on seven multi-hop question answering (MHQA) benchmarks. All the results
labelled with † are taken from (Zheng et al., 2025).

Method Inference In Domain Out of Domain
Environment NQ TQ Hotpot 2Wiki Avg Musique Bamb PopQA Avg

CoT† - 32.0 48.2 27.9 27.3 33.9 7.4 21.6 15.0 14.7
CoT+RAG† Local RAG 59.6 75.8 43.8 24.8 51.0 10.0 27.2 48.8 28.7
Search-o1† Web Search 55.1 69.5 42.4 37.7 51.2 19.7 53.6 43.4 38.9

7B/8B Models
Qwen3-8B w/ Tools Local RAG 67.0 76.4 50.8 33.0 56.8 18.4 43.2 44.0 35.2
Search-r1-base† Local RAG 60.0 76.2 63.0 47.9 61.8 27.5 57.6 47.0 44.0
Search-r1-instruct† Local RAG 49.6 49.2 52.5 48.8 50.0 28.3 47.2 44.5 49.5
R1-Searcher† Web Search 52.3 79.1 53.1 65.8 62.6 25.6 65.6 43.4 44.9
DeepResearcher† Web Search 61.9 85.0 64.3 66.6 69.5 29.3 72.8 52.7 51.6

14B Models
Qwen2.5-14B w/ Tools Local RAG 72.1 83.8 62.9 70.9 72.4 29.7 72.0 46.1 49.3
Qwen2.5-14B w/ Tools Web Search 72.5 87.9 67.9 80.3 77.2 26.6 73.6 54.7 51.6
Qwen3-14B w/ Tools Local RAG 73.1 80.9 54.9 52.5 65.4 22.7 63.2 46.7 44.2
Qwen3-14B w/ Tools Web Search 73.7 84.2 57.9 58.5 68.6 23.2 65.6 57.7 48.8
Search-r1 Local RAG 66.9 82.6 69.8 57.0 69.1 36.9 64.8 56.3 52.7
WebSeer Local RAG 81.9 86.7 70.9 76.0 78.9 35.0 81.6 60.6 59.1
WebSeer Web Search 82.8 91.0 72.3 84.2 82.6 35.2 80.0 58.0 57.7

3.2 MAIN RESULTS

Table 2: Evaluation on three harder benchmarks.
Qwen2.5-14B and WebSeer use web search engine,
while Search-r1 relies on local RAG.

Model FanoutQA FRAMES SimpleQA Avg.

Qwen2.5-14B 45.5 52.7 85.7 61.3
Search-r1-14B 12.6 29.5 36.4 26.2
WebSeer 55.4 56.1 90.0 65.3

Table 1 reports the performance of our method
against baselines on seven multi-hop QA bench-
marks. Our approach consistently achieves the
best results, substantially outperforming both
closed-book and retrieval-augmented baselines.
On in-domain tasks, our model reaches an aver-
age accuracy of 82.4%, exceeding the previous
state-of-the-art method Search-r1 by 12.5 points.
The largest gains are observed on NQ and 2Wiki-
MultiHopQA, with improvements of 15.9 and 27.2 points, respectively.

Table 3: Accuracy and average tool call times for
Qwen2.5 Models on HotpotQA and SimpleQA

Model HotpotQA SimpleQA
Acc Tool Call Acc Tool Call

Qwen2.5-3B
Instruct 44.73 4.31 41.02 4.17
SFT 41.21 (-3.52) 12.40 49.08 (+8.06) 11.46

Qwen2.5-7B
Instruct 51.95 2.95 51.56 3.24
SFT 46.09 (-5.86) 9.23 50.39 (-1.17) 11.09

Qwen2.5-14B
Instruct 62.89 3.57 65.43 3.76
SFT 68.75 (+5.86) 13.43 76.17 (+10.74) 10.82

Beyond in-domain evaluation, our method
also demonstrates strong generalization on
out-of-distribution (OOD) datasets, indicat-
ing that it does not merely overfit to the
retrieval distribution encountered during
training. Instead, it learns reasoning pat-
terns and retrieval strategies that transfer
effectively to unseen question types, do-
mains, and web sources. In this regime,
WebSeer benefits from local RAG: on Bam-
boogle, it achieves 81.6%, a substantial
12.8-point improvement over the prior best,
while on PopQA it reaches 60.6%. These
results highlight the effectiveness of our re-
inforcement learning framework and tool-
augmented reasoning design in enabling
robust cross-domain generalization.
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We further evaluate on three challenging benchmarks: FanOutQA, Frames, and SimpleQA (Table 2).
On FanOutQA, a fully OOD multi-document QA benchmark, our model attains a loose accuracy
of 55.4, surpassing all baselines and nearly matching GPT-4o (55.8)1. It also achieves 56.1% on
Frames and 90.0% on SimpleQA, while the RL-only Search-r1 model performs poorly across these
datasets. These results underscore the strong generalization of our approach: despite being trained
under site-restricted search, it performs even better when deployed in the open web, demonstrating a
robust and transferable retrieval–reasoning policy that adapts to diverse domains.

3.3 QUANTITATIVE ANALYSIS

Model capacity matters for complex tool using. We find that sufficient model capacity is essential
for multi-step reasoning in search agents. As shown in Table 3, SFT consistently increases tool usage
across scales but its effect on accuracy is uneven: the 3B model drops 3.52 points on HotpotQA
yet gains 8.06 on SimpleQA, while the 7B model degrades on both. Only the 14B model achieves
consistent improvements in both tool usage and accuracy, underscoring the role of scale.

Applying RL after SFT reinforces this pattern: the 14B model improves steadily, while smaller models
(3B, 7B) show little benefit and suffer from instability, including repetitive text and malformed JSON
that causes failed tool calls. Although rewards may rise initially, behavior often collapses. Overall,
sufficient scale is crucial for stable reasoning and reliable tool-augmented decision making.
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Figure 3: Tool call distributions on HotpotQA
across three training stages: Pre-SFT, Post-SFT,
and Post-RL.

Training progressively shapes tool-use be-
havior from underuse to strategic deploy-
ment. We examine tool invocation distribu-
tions across three development stages: pre-SFT,
post-SFT, and post-RL. Using HotpotQA tra-
jectories, we plot interaction counts per exam-
ple (Figure 3), revealing how supervision and
reinforcement learning shape reasoning depth
and tool use. Before SFT, tool usage is lim-
ited, with most conversations involving around
three calls—suggesting a conservative strategy
arising from insufficient mastery of tool behav-
iors. After SFT, the distribution shifts markedly
rightward, peaking at 10 calls and extending
up to 50, indicating more active and flexi-
ble tool engagement, often in lengthy multi-
step interactions. Following RL, the distri-
bution sharpens between 5 and 8 calls, with very high and very low counts becoming rare.
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Figure 4: Impact of SFT data composition on
tool usage and accuracy. We vary the ratio be-
tween single-pass correct trajectories and multi-
refinement trajectories during SFT.

Although we did not penalize underuse during
RL, the model rarely produces trajectories with
fewer than five calls. This implies that repeated
tool use is implicitly reinforced, as it aids verifi-
cation and validation. Overall, training progres-
sion shows a shift from underuse, to overuse,
to strategic use. RL fine-tuning improves task
performance and yields more stable, efficient
behavior, encouraging sufficient—but not exces-
sive—tool invocation without hard-coded con-
straints.

Data mixing ratio in SFT are also key to per-
formance improvement.

We further examine the effect of data compo-
sition during the SFT stage. As shown in Fig-
ure 4, the ratio between single-pass correct tra-
jectories—where the model produces the correct

1https://fanoutqa.com/leaderboard/
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answer in a single step—and multi-refinement
trajectories—where multiple reasoning or retrieval steps are required—plays a pivotal role in shaping
model behavior. Increasing the share of longer reasoning trajectories encourages more frequent
tool usage, but does not necessarily translate into higher accuracy. Striking an appropriate balance
between the two types of trajectories is therefore essential for effective SFT, and can even determine
the success of subsequent RL fine-tuning.

3.4 ABLATION STUDIES

HotpotQA SimpleQA

Method Acc Tool Call Acc Tool Call

SFT 68.75 13.43 76.17 10.82
w/ GRPO 67.27 7.38 75.98 6.15
w/ SRRL 70.90 7.91 78.91 8.61
(WebSeer)

HotpotQA SimpleQA

Method Acc Tool Call Acc Tool Call

SRRL w/o SFT 0.00 N/A* 0.00 N/A*
SRRL w/ SFT
(WebSeer) 70.90 7.91 78.91 8.61
*The model generates malformed output, making
valid tool calls impossible.

0 5 10 15 20 25 30 35
Steps

0.0

0.2

0.4

0.6

0.8

1.0
14b w/o sft

Figure 5: (Top) Limiting the model to submit only
one answer results in a decrease in the final model’s
performance. (Bottom) Without complex data for
SFT, the 14B model collapses with decreasing re-
wards.

In this section, we present ablation experiments
to assess the contribution of key components
in our framework. We evaluate two variants:
(1) restricting the model to produce only a sin-
gle answer during reinforcement learning, and
(2) training without cold-start initialization. Re-
sults are summarized in Table 5. We also in-
clude additional ablations on reward design in
Appendix G.

Our analysis yields three main observations: (1)
Each component is critical to the success of
training—removing any of them consistently de-
grades performance. (2) The cold-start strategy
is especially important, as it substantially im-
proves the model’s ability to develop effective
tool-use behaviors. For more challenging tasks,
we additionally find that high-quality SFT data
is indispensable for ensuring stable optimiza-
tion. (3) The reward structure itself plays a cen-
tral role: improper weighting can lead to reward
hacking or premature termination, reinforcing
the need for carefully balanced incentives.

4 RELATED WORK

LLM With Tools A growing body of work fo-
cuses on tool-augmented LLMs designed to in-
teract with external environments to perform
complex tasks. Early approaches like Tool-
LLaMA (Qin et al., 2023) applied structured
decision-tree search to decompose multi-step in-
structions, enhancing compositional reasoning
through explicit planning. To further optimize tool interactions, recent studies have increasingly
adopted Reinforcement Learning (RL). ReTool (Feng et al., 2025) and SWiRL (Goldie et al., 2025)
employs RL to enable strategic tool-use behaviors, while ToolPlanner (Wu et al., 2024) refines inter-
action schemas for multi-granularity tasks. More recently, Tool-Star (Dong et al., 2025) introduced
a multi-tool self-critique framework with hierarchical reward design, which enhances the model’s
understanding of feedback in collaborative scenarios. However, these methods primarily treat tool
use as a forward planning problem optimized via hierarchical signals, often overlooking the dynamic
nature of error correction. In contrast, WebSeer distinguishes itself by proposing a unified framework
that enables the model to master both explicit and implicit reflection patterns. This allows the agent to
spontaneously backtrack and refine its search trajectory in open-ended web environments, a capability
largely absent in prior general tool-use frameworks.

Reasoning Agentic RAG Early RAG approaches are primarily linear or branching structures (Chen
et al., 2024; Gao et al., 2024a;b). They typically rely on manually crafted prompts or fixed execution
workflows, which severely constrain the model’s autonomy and flexibility. Recent work has begun to
incorporate reinforcement learning into RAG (Jin et al., 2025; Song et al., 2025). These methods
adopt an outcome-driven RL framework that enables the model to explore how to invoke external
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retrieval systems during the reasoning process. DeepResearcher (Zheng et al., 2025) extends this
line of work to the web search setting, but their approach still depends on stronger models to act
as agents for webpage navigation. (Shi et al., 2025) propose Pangu DeepDiver, which combines a
carefully constructed dataset designed to foster information-seeking behavior in open-world internet
environments with a specialized DeepDiver framework to enhance search capabilities. However,
despite these advances, the reasoning chains produced by current methods remain relatively shallow
and are insufficient for solving more complex or open-ended tasks.

5 FUTURE WORK

While this work focuses on multi-hop QA, the Self-Reflective Reinforcement Learning (SRRL)
paradigm naturally extends to other complex reasoning domains. A particularly promising direction
is Code Generation. Current agents typically rely on a reactive "generate-execute-debug" loop,
which can be computationally expensive in large-scale or long-horizon tasks. In contrast, WebSeer’s
reflection mechanism can be adapted for pre-execution verification—enabling the agent to statically
analyze code logic and check for alignment with task goals before invoking the execution tool. By
acting as a proactive filter for logical fallacies and bugs, this "think before you run" capability has the
potential to significantly reduce the computational overhead associated with invalid trial-and-error.
Similarly, in Mathematical Reasoning, the framework could verify the logical consistency of problem
formulation steps before invoking calculation tools, ensuring rigorous process supervision.

6 CONCLUSION

In this work, we introduced WebSeer, a novel agent training paradigm tailored for real-world
web-based retrieval environments. By synthesizing multi-refinement reasoning trajectories through
rejection sampling and incorporating self-reflective reinforcement learning (SRRL), WebSeer learns
to perform deeper, more robust reasoning that mimics human information-seeking behavior. Through
extensive experiments across a wide range of open-domain and out-of-domain question answering
benchmarks, WebSeer consistently outperforms existing baselines achieving state-of-the-art perfor-
mance on datasets such as HotpotQA, Bamboogle, and SimpleQA. WebSeer lays a foundation for
more general-purpose reasoning agents that can seamlessly interact with dynamic, heterogeneous
web environments.

10
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A HYPERPARAMETERS AND PROMPTS

We employ Qwen3-235B-A22B as the verfier model to generate and verify reasoning trajectories.
We chose this model for its strong reasoning and tool-use capabilities. Due to we utilize the non-
thinking mode of Qwen3-235B-A22B as our verifer, we follow the suggested decoding setting with
Temperature=0.7, TopP=0.8, TopK=20, and MinP=0. For each query, we set the retry buget as K =
10.

Prompts for WebSeer

System:
You are a reasoning assistant with the ability to perform web searches and execute Python
code to help you process the content of the page and answer the user’s question accurately.
Do not use any knowledge you know; all facts in your thinking should be obtained from
the information returned by the tools. You can repeat the search process multiple times if
necessary.
Once you have all the information you need, continue your reasoning.
Please first make a plan before calling tools.
Please answer the following question. You should provide your final answer to the
"submit_answer" tool.

Tools:
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:
<tools>
"type": "function", "function": "name": "submit_answer", "description": "Submit your final
answer. You must use this tool to submit your answer before the dialog ends.", "parameters":
"type": "object", "properties": "answer": "type": "string", "description": "Your final answer",
"required": ["answer"]
"type": "function", "function": "name": "search", "description": "Call google to search for
relevant information.", "parameters": "type": "object", "properties": "query": "type": "string",
"description": "Search keywords", "required": ["query"]
"type": "function", "function": "name": "query_on_page", "description": "This tool will visit
a specific page of url, and it will answer the question based on the content of the page. The
assistant has no context information, please describe the question completely.", "parameters":
"type": "object", "properties": "url": "type": "string", "description": "The url of the page,
must be a page provided by the search tool.", "question": "type": "string", "description":
"The question about the content of the page", "required": ["url", "question"]
</tools>

For each function call, return a json object with function name and arguments within
<tool_call></tool_call> XML tags:
<tool_call>
"name": <function-name>, "arguments": <args-json-object>
</tool_call>
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user:
Question: Question

Prompts for verifier

System:
You are a reasoning assistant with the ability to perform web searches and execute Python
code to help you process the content of the page and answer the question accurately.
Do not use any knowledge you know; all facts in your thinking should be obtained from
the information returned by the tools. You can repeat the search process multiple times if
necessary.
Once you have all the information you need, continue your reasoning. You should provide
your final answer to the "submitanswer”tool.

Tools:
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:
<tools>
"type": "function", "function": "name": "submit_answer", "description": "Submit your final
answer. You must use this tool to submit your answer before the dialog ends.", "parameters":
"type": "object", "properties": "answer": "type": "string", "description": "Your final answer",
"required": ["answer"]
"type": "function", "function": "name": "search", "description": "Call google to search for
relevant information.", "parameters": "type": "object", "properties": "query": "type": "string",
"description": "Search keywords", "required": ["query"]
"type": "function", "function": "name": "query_on_page", "description": "This tool will visit
a specific page of url, and it will answer the question based on the content of the page. The
assistant has no context information, please describe the question completely.", "parameters":
"type": "object", "properties": "url": "type": "string", "description": "The url of the page,
must be a page provided by the search tool.", "question": "type": "string", "description":
"The question about the content of the page", "required": ["url", "question"]
</tools>

For each function call, return a json object with function name and arguments within
<tool_call></tool_call> XML tags:
<tool_call>
"name": <function-name>, "arguments": <args-json-object>
</tool_call>
user:
Please verify if the answer of question ’question’ is ’answer’. You can choose your answer
from ’Correct’, ’Partly Correct’ or ’Incorrect’. You should provide your final answer to the
’submitanswer′tool.

Prompts for Evaluation

You will be given a question and its ground truth answer list where each item can be a
ground truth answer. Provided a pred_answer, you need to judge if the pred_answer correctly
answers the question based on the ground truth answer list.
You should first give your rationale for the judgement, and then give your judgement result
(i.e., correct or incorrect).

Here is the criteria for the judgement:
1. The pred_answer doesn’t need to be exactly the same as any of the ground truth answers,
but should be semantically same for the question.
2. Each item in the ground truth answer list can be viewed as a ground truth answer for the
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question, and the pred_answer should be semantically same to at least one of them.

question: {question}
ground truth answers: {target}
pred_answer: {predicted_answer}

The output should in the following json format:

{
"rationale": "your rationale for the judgement, as a text",
"judgement": "your judgement result, can only be ’correct’ or ’incorrect’"
}

Your output:

B CASE STUDY

Case study 1.1 is generated by the Qwen2.5-14B-instruct model and exhibits a brittle reasoning
process; it over-relies on information parsed from search snippets, leading to an incorrect inference
about one player’s batting hand, and prematurely abandons a sub-task after a single, poorly formulated
query fails. This results in an incomplete and partially erroneous answer. In contrast, WebSeer
employs a more robust, iterative strategy. It consistently pairs web searches with targeted page queries
for verification, avoiding the errors from snippet parsing. Crucially, when faced with an initial search
failure for a specific entity (player Jeff Austin), it demonstrates effective error recovery by refining
its search query with disambiguating context (‘1998 MLB draft‘). This methodical approach of
iterative refinement and verification, despite requiring more tool interactions, allows the second agent
to successfully decompose the problem and provide a complete and correct solution.

Case study 2.1 involved more than a dozen tool calls: multiple search calls to locate the “Panther
tank” article and repeated query_on_page checks to confirm it was officially the Panzerkampfwagen
V Panther deployed on both Eastern and Western fronts from mid-1943, followed by additional
query_on_page calls verifying that the Jagdpanther tank destroyer used its armor and suspension;
by repeatedly cross-validating the tank’s name, deployment timeline, and derivative chassis, the
process covered all key details and reinforced the conclusion with multiple lines of evidence, perfectly
demonstrating how to leverage tools systematically and efficiently to support rigorous reasoning.

Case study 1.1 (Qwen2.5-14B-instruct)

System:
You are a reasoning assistant with the ability to perform web searches and execute Python code to
help you process the content of the page and answer the user’s question accurately. Do not use any
knowledge you know; all facts in your thinking should be obtained from the information returned by the
tools. You can repeat the search process multiple times if necessary. Once you have all the information
you need, continue your reasoning. Please first make a plan before calling tools. Please answer the
following question. You should provide your final answer to the "submit_answer" tool.

User:
Question: What is the batting hand of each of the first five picks in the 1998 MLB draft?

Assistant:
To find the batting hand of each of the first five picks in the 1998 MLB draft, I will follow these steps:
1. Search for the list of the first five picks in the 1998 MLB draft. 2. For each player, search for their
batting hand (left-handed or right-handed).
Let’s start with step 1.
Tool Calls: search(query=first five picks in the 1998 MLB draft)

Tool Response (search):
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1. Title: 1998 Major League Baseball draft - Wikipedia
URL: https ://en.wikipedia.org/wiki /1998 _Major_League_Baseball_draft
Content Summary:
<b>First </b> round <b>selections </b> ; <b>5</b>, J. D. Drew &

middot; St. Louis Cardinals ; 6, Ryan Mills , Minnesota Twins ;
7, Austin Kearns &middot; Cincinnati Reds ; 8, Felipe L p e z &
middot; Toronto Blue&nbsp ;...

2. Title: List of 1998 Seattle Mariners draft picks - Wikipedia
URL: https ://en.wikipedia.org/wiki/

List_of_1998_Seattle_Mariners_draft_picks
Content Summary:
In all , the Mariners selected 23 pitchers , 9 outfielders , 7

catchers , <b>5</b> shortstops , 3 <b>first </b> basemen , 2 third
basemen , and 1 second baseman.

3. Title: List of Major League Baseball first -round draft picks -
Wikipedia

URL: https ://en.wikipedia.org /.../
List_of_Major_League_Baseball_first -round_dr ...

Content Summary:
Contents &middot; 1 Atlanta Braves; 1.1. &middot; 2 Miami Marlins;

1.1. &middot; 3 New York Mets; 1.1. &middot; 4 Philadelphia
Phillies; 1.1. &middot; <b>5</b> Washington Nationals.

... (content truncated to save space)

Assistant: From the search results, the most relevant link appears to be the Wikipedia page titled "1998
Major League Baseball draft". This page contains the list of the first five picks in the 1998 MLB draft.
Let’s extract that information from the page.
Next, I’ll visit the page and gather the names of the first five picks.
Tool Calls: query_on_page(url=https://en.wikipedia.org/wiki/1998_Major_League_Baseball_draft,
question=What are the names of the first five picks in the 1998 MLB draft?)

Tool Response (query_on_page):

The first five picks in the 1998 MLB draft are as follows:

1. **Pat Burrell ** - Philadelphia Phillies
2. **Mark Mulder ** - Oakland Athletics
3. **Corey Patterson ** - Chicago Cubs
4. **Jeff Austin ** - Kansas City Royals
5. **J. D. Drew** - St. Louis Cardinals

Assistant:
Now we have the names of the first five picks in the 1998 MLB draft. Next, I will search for the batting
hand of each player.
I will start with Pat Burrell.
Tool Calls: search(query=Pat Burrell batting hand)

Tool Response (search):

1. Title: Pat Burrell - Wikipedia
URL: https ://en.wikipedia.org/wiki/Pat_Burrell
Content Summary:
<b>Patrick </b> Brian <b>Burrell </b> (born October 10, 1976),

nicknamed &quot;<b>Pat </b> the <b>Bat </b>&quot;, is an American
former professional <b>baseball </b> outfielder and current <b>

hitting </b> coach for&nbsp ;...

2. Title: Brian Wilson (baseball) - Wikipedia
URL: https ://en.wikipedia.org/wiki/Brian_Wilson_(baseball)
Content Summary:
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Brian <b>Patrick </b> Wilson (born March 16, 1982), nicknamed &quot
;the Beard&quot; and &quot;B-Weezy&quot;, is an American former
professional <b>baseball </b> relief pitcher.

3. Title: List of Major League Baseball career assists leaders -
Wikipedia

URL: https ://en.wikipedia.org /.../
List_of_Major_League_Baseball_career_assists_l ...

Content Summary:
The second baseman often possesses quick <b>hands </b> and feet ,

needs the ability to ... <b>Pat Burrell </b>, 92, 0, 92. Hank
Sauer , 92, 0, 92. 46, Joe Vosmik , 90, 89, 1. 47& nbsp ;...

... (content truncated to save space)

Assistant:
From the search results, the Wikipedia page for Pat Burrell provides the most relevant information.
Let’s extract the batting hand of Pat Burrell from this page.
I will now visit the page and gather the required information.
Tool Calls: query_on_page(url=https://en.wikipedia.org/wiki/Pat_Burrell, question=What is Pat Bur-
rell’s batting hand?)

Tool Response (query_on_page):

Pat Burrell batted right -handed.

Assistant:
Pat Burrell batted right-handed. Now let’s find out the batting hand of the next player, Mark Mulder.
I will search for "Mark Mulder batting hand".
Tool Calls: search(query=Mark Mulder batting hand)

Tool Response (search):

1. Title: Mark Mulder - Wikipedia
URL: https ://en.wikipedia.org/wiki/Mark_Mulder
Content Summary:
<b>Mark </b> Alan <b>Mulder </b> (born August 5, 1977) is an

American former professional <b>baseball </b> player. A left -
handed starting pitcher , <b>Mulder </b> pitched in Major League&
nbsp ;...

2. Title: List of Major League Baseball annual wins leaders -
Wikipedia

URL: https ://en.wikipedia.org /.../
List_of_Major_League_Baseball_annual_wins_l ...

Content Summary:
<b>Mark Mulder </b>, 21, Oakland Athletics &middot; Roger Clemens &

middot; Jamie Moyer , 20. 2002 &middot; Barry Zito , 23, Oakland
Athletics &middot; Derek Lowe , 21. 2003 &middot; Roy Halladay <
sup > </sup >, 22& nbsp ;...

3. Title: 2006 St. Louis Cardinals season - Wikipedia
URL: https ://en.wikipedia.org/wiki /2006 _St._Louis_Cardinals_season
Content Summary:
Momentum would be slowed by injuries , as starting pitcher <b>Mark

Mulder </b> was ... <b>Batting </b>. edit. Note: G = Games played
; AB = At <b>bats </b>; R = Runs; H = Hits; 2B&nbsp ;...

... (content truncated to save space)

Assistant:
From the search results, the Wikipedia page for Mark Mulder provides the most relevant information.
According to the summary, Mark Mulder is described as a left-handed starting pitcher. Therefore, we
can conclude that Mark Mulder batted left-handed.
Next, I will search for the batting hand of Corey Patterson.
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I will search for "Corey Patterson batting hand".
Tool Calls: search(query=Corey Patterson batting hand)

Tool Response (search):

1. Title: Corey Patterson - Wikipedia
URL: https ://en.wikipedia.org/wiki/Corey_Patterson
Content Summary:
Atlanta , Georgia , U.S.. <b>Batted </b>: Left. Threw: Right. MLB

debut. September 18, 2000, for the Chicago Cubs.

2. Title: All -Star Final Vote - Wikipedia
URL: https ://en.wikipedia.org/wiki/All -Star_Final_Vote
Content Summary:
On Monday July 7, 2003, Kenny Lofton was added to the ballot to

replace the Chicago Cubs &#39; <b>Corey Patterson </b> who was
injured on the day before. ... <b>hand </b> and wearing&nbsp ;...

3. Title: Cody Ross - Wikipedia
URL: https ://en.wikipedia.org/wiki/Cody_Ross
Content Summary:
He is one of the few Major League players to <b>bat </b> right -

handed and throw left -handed. Cody Ross. Ross with the San
Francisco Giants in 2011. Outfielder.

... (content truncated to save space)

Assistant: From the search results, the Wikipedia page for Corey Patterson provides the most relevant
information. According to the summary, Corey Patterson batted left-handed.
Next, I will search for the batting hand of Jeff Austin.
I will search for "Jeff Austin batting hand".
However, since Jeff Austin might not be as well-known as the other players, I will also include his full
name and position in the search query to ensure accuracy.
I will search for "Jeff Austin, catcher batting hand".
Tool Calls: search(query=Jeff Austin, catcher batting hand)

Tool Response (search):

1. Title: Austin Hedges - Wikipedia
URL: https ://en.wikipedia.org/wiki/Austin_Hedges
Content Summary:
<b>Austin </b> Charles Hedges (born August 18, 1992) is an American

professional <b>baseball catcher </b> for the Cleveland
Guardians of Major League <b>Baseball </b> (MLB).

2. Title: Austin Nola - Wikipedia
URL: https ://en.wikipedia.org/wiki/Austin_Nola
Content Summary:
<b>Austin </b> Kyle Nola (born December 28, 1989) is an American

professional <b>baseball catcher </b> for the Colorado Rockies
of Major League <b>Baseball </b> (MLB).

3. Title: Catcher - Wikipedia
URL: https ://en.wikipedia.org/wiki/Catcher
Content Summary:
... <b>hitting </b>, defensive specialists were Jerry Grote , <b>

Jeff </b> Mathis ... <b>hand </b> in professional <b>baseball </b>
players with emphasis on digital ischemia in <b>catchers </b>&

quot;.
... (content truncated to save space)

Assistant:
None of the search results directly mention Jeff Austin’s batting hand. However, the Cincinnati Reds
all-time roster mentions Jeff Austin, which suggests he played for the Cincinnati Reds. To get accurate
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information about Jeff Austin’s batting hand, I will visit the Wikipedia page for Jeff Austin and check
his details.
I will now visit the page and gather the required information.
Since there isn’t a direct link to Jeff Austin’s Wikipedia page, I will search for it directly.
I will search for "Jeff Austin Cincinnati Reds batting hand".
But since the search did not yield a direct result, I will assume that Jeff Austin’s batting hand is not
widely documented online. Given the lack of specific information, I will proceed to the next player, J.D.
Drew, and then submit the answers I have gathered so far.
Let’s move on to J.D. Drew.
I will search for "J.D. Drew batting hand".
Tool Calls: search(query=J.D. Drew batting hand)

Tool Response (search):

1. Title: J. D. Drew - Wikipedia
URL: https ://en.wikipedia.org/wiki/J._D._Drew
Content Summary:
David Jonathan &quot;<b>J. D.</b>&quot; <b>Drew </b> (born November

20, 1975) is an American former Major League <b>Baseball </b>
right fielder. He began his major league career in 1998& nbsp
;...

2. Title: Home run - Wikipedia
URL: https ://en.wikipedia.org/wiki/Home_run
Content Summary:
<b>J. D. Drew </b> has been part of two different sets of back -to-

back -to-back -to ... &#39; Ralph ,&#39; he said , &#39; the right -<b
>hand batters </b> who hit to the right field are driving&nbsp
;...

3. Title: Adam Wainwright - Wikipedia
URL: https ://en.wikipedia.org/wiki/Adam_Wainwright
Content Summary:
After the 2003 season , the Braves traded him to the Cardinals for

outfielder <b>J. D. Drew </b>. ... <b>batting </b> practice on
February 21. Three days later , the&nbsp ;...

... (content truncated to save space)

Assistant:
From the search results, the Wikipedia page for J.D. Drew provides the most relevant information.
According to the summary, J.D. Drew is described as a right fielder who began his major league career
in 1998. Additionally, the page states that he is a right-handed batter.
Now we have the batting hands for four out of the five players: 1. Pat Burrell - Right-handed 2. Mark
Mulder - Left-handed 3. Corey Patterson - Left-handed 4. J.D. Drew - Right-handed
Since we couldn’t find specific information about Jeff Austin’s batting hand, I will assume that we don’t
have enough information to determine it.
Therefore, my final answer will include the known batting hands for the first four players and indicate
that Jeff Austin’s batting hand is unknown.
I will now submit the answer.

Final Answer:
Pat Burrell: Right-handed, Mark Mulder: Left-handed, Corey Patterson: Left-handed, Jeff Austin:
Unknown, J.D. Drew: Right-handed

Case study 1.2 (WebSeer-14B)

System:
You are a reasoning assistant with the ability to perform web searches and execute Python code to
help you process the content of the page and answer the user’s question accurately. Do not use any
knowledge you know; all facts in your thinking should be obtained from the information returned by the
tools. You can repeat the search process multiple times if necessary. Once you have all the information
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you need, continue your reasoning. Please answer the following question. You should provide your
final answer to the "submit_answer" tool.

User: Question: What is the batting hand of each of the first five picks in the 1998 MLB draft?

Assistant: Tool Calls: search(query=1998 MLB draft first five picks)

Tool Response (search):

1. Title: 1998 Major League Baseball draft - Wikipedia
URL: https ://en.wikipedia.org/wiki /1998 _Major_League_Baseball_draft
Content Summary:
<b>First </b> round <b>selections </b> ; 2, Mark Mulder &middot;

Oakland Athletics ; 3, Corey Patterson &middot; Chicago Cubs ;
4, Jeff Austin &middot; Kansas City Royals ; <b>5</b>, J. D.
Drew &middot; St. Louis&nbsp ;...

2. Title: List of Major League Baseball first -round draft picks -
Wikipedia

URL: https ://en.wikipedia.org /.../
List_of_Major_League_Baseball_first -round_dr ...

Content Summary:
Contents &middot; 1 Atlanta Braves; 1.1. &middot; 2 Miami Marlins;

1.1. &middot; 3 New York Mets; 1.1. &middot; 4 Philadelphia
Phillies; 1.1. &middot; <b>5</b> Washington Nationals.

3. Title: List of 1998 Seattle Mariners draft picks - Wikipedia
URL: https ://en.wikipedia.org/wiki/

List_of_1998_Seattle_Mariners_draft_picks
Content Summary:
In all , the Mariners selected 23 pitchers , 9 outfielders , 7

catchers , <b>5</b> shortstops , 3 <b>first </b> basemen , 2 third
basemen , and 1 second baseman.

... (content truncated to save space)

Assistant: Tool Calls: query_on_page(url=https://en.wikipedia.org/wiki/1998_Major_League_Baseball_draft,
question=What are the names of the first five picks in the 1998 MLB draft?)

Tool Response (query_on_page):

The first five picks in the 1998 MLB draft are as follows:

1. **Pat Burrell ** - Philadelphia Phillies
2. **Mark Mulder ** - Oakland Athletics
3. **Corey Patterson ** - Chicago Cubs
4. **Jeff Austin ** - Kansas City Royals
5. **J. D. Drew** - St. Louis Cardinals

Assistant:
Tool Calls: search(query=Pat Burrell batting hand)

Tool Response (search):

1. Title: Pat Burrell - Wikipedia
URL: https ://en.wikipedia.org/wiki/Pat_Burrell
Content Summary:
<b>Patrick </b> Brian <b>Burrell </b> (born October 10, 1976),

nicknamed &quot;<b>Pat </b> the <b>Bat </b>&quot;, is an American
former professional <b>baseball </b> outfielder and current <b>

hitting </b> coach for&nbsp ;...

2. Title: Brian Wilson (baseball) - Wikipedia
URL: https ://en.wikipedia.org/wiki/Brian_Wilson_(baseball)
Content Summary:
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Brian <b>Patrick </b> Wilson (born March 16, 1982), nicknamed &quot
;the Beard&quot; and &quot;B-Weezy&quot;, is an American former
professional <b>baseball </b> relief pitcher.

3. Title: List of Major League Baseball career assists leaders -
Wikipedia

URL: https ://en.wikipedia.org /.../
List_of_Major_League_Baseball_career_assists_l ...

Content Summary:
The second baseman often possesses quick <b>hands </b> and feet ,

needs the ability to ... <b>Pat Burrell </b>, 92, 0, 92. Hank
Sauer , 92, 0, 92. 46, Joe Vosmik , 90, 89, 1. 47& nbsp ;...

... (content truncated to save space)

Assistant:
Tool Calls: query_on_page(url=https://en.wikipedia.org/wiki/Pat_Burrell, question=What is Pat Bur-
rell’s batting hand?)

Tool Response (query_on_page):

Pat Burrell batted right -handed.

Assistant:
Tool Calls: search(query=Mark Mulder batting hand)

Tool Response (search):

1. Title: Mark Mulder - Wikipedia
URL: https ://en.wikipedia.org/wiki/Mark_Mulder
Content Summary:
<b>Mark </b> Alan <b>Mulder </b> (born August 5, 1977) is an

American former professional <b>baseball </b> player. A left -
handed starting pitcher , <b>Mulder </b> pitched in Major League&
nbsp ;...

2. Title: 2006 St. Louis Cardinals season - Wikipedia
URL: https ://en.wikipedia.org/wiki /2006 _St._Louis_Cardinals_season
Content Summary:
Momentum would be slowed by injuries , as starting pitcher <b>Mark

Mulder </b> was ... <b>Batting </b>. edit. Note: G = Games played
; AB = At <b>bats </b>; R = Runs; H = Hits; 2B&nbsp ;...

3. Title: Athletics (baseball) - Wikipedia
URL: https ://en.wikipedia.org/wiki/Athletics_(baseball)
Content Summary:
... mark when a player <b>bats </b>. Prior to the mid -2010s, the A

&#39;s had a long ... <b>Mark Mulder </b> &middot; P, 2000 200
... (content truncated to save space)

Assistant:
Tool Calls: query_on_page(url=https://en.wikipedia.org/wiki/Mark_Mulder, question=What is Mark
Mulder’s batting hand?)

Tool Response (query_on_page):

Mark Mulder 's batting hand is left.

Assistant:
Tool Calls: search(query=Corey Patterson batting hand)

Tool Response (search):

1. Title: Corey Patterson - Wikipedia
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URL: https ://en.wikipedia.org/wiki/Corey_Patterson
Content Summary:
Atlanta , Georgia , U.S.. <b>Batted </b>: Left. Threw: Right. MLB

debut. September 18, 2000, for the Chicago Cubs.

2. Title: All -Star Final Vote - Wikipedia
URL: https ://en.wikipedia.org/wiki/All -Star_Final_Vote
Content Summary:
On Monday July 7, 2003, Kenny Lofton was added to the ballot to

replace the Chicago Cubs &#39; <b>Corey Patterson </b> who was
injured on the day before. ... <b>hand </b> and wearing&nbsp ;...

3. Title: Cody Ross - Wikipedia
URL: https ://en.wikipedia.org/wiki/Cody_Ross
Content Summary:
He is one of the few Major League players to <b>bat </b> right -

handed and throw left -handed. Cody Ross. Ross with the San
Francisco Giants in 2011. Outfielder.

... (content truncated to save space)

Assistant: Tool Calls: query_on_page(url=https://en.wikipedia.org/wiki/Corey_Patterson, ques-
tion=What is Corey Patterson’s batting hand?)

Tool Response (query_on_page):

Corey Patterson 's batting hand is left.

Assistant:
Tool Calls: search(query=Jeff Austin batting hand)

Tool Response (search):

1. Title: Austin Hedges - Wikipedia
URL: https ://en.wikipedia.org/wiki/Austin_Hedges
Content Summary:
<b>Austin </b> Charles Hedges (born August 18, 1992) is an American

professional <b>baseball </b> catcher for the Cleveland
Guardians of Major League <b>Baseball </b> (MLB).

2. Title: List of Major League Baseball batting champions -
Wikipedia

URL: https ://en.wikipedia.org /.../
List_of_Major_League_Baseball_batting_champ ...

Content Summary:
In <b>baseball </b>, <b>batting </b> average (AVG) is a measure of a

batter &#39;s success rate in achieving a hit during an at <b>
bat </b>. In Major League <b>Baseball </b> (MLB),&nbsp ;...

3. Title: Austin Riley - Wikipedia
URL: https ://en.wikipedia.org/wiki/Austin_Riley
Content Summary:
Memphis , Tennessee , U.S.. <b>Bats </b>: Right. Throws: Right. MLB

debut. May 15, 2019, for the Atlanta Braves.
... (content truncated to save space)

Assistant:
Tool Calls: query_on_page(url=https://en.wikipedia.org/wiki/Jeff_Austin, question=What is Jeff
Austin’s batting hand?)

Tool Response (query_on_page):

The content provided does not mention Jeff Austin 's batting hand.
However , it does identify Jeff Austin as a "American Major
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League Baseball pitcher ," which implies he was a baseball player
. Pitchers typically do not bat , so the question about his
batting hand might not be applicable. If you are referring to a
specific Jeff Austin in the context of baseball , additional
information would be needed to determine his batting hand.

Assistant:
Tool Calls: search(query=J.D. Drew batting hand)

Tool Response (search):

1. Title: J. D. Drew - Wikipedia
URL: https ://en.wikipedia.org/wiki/J._D._Drew
Content Summary:
On August 9, on what would have been <b>Drew &#39;s</b> first game

in Philadelphia , he sat out , citing a bruised right <b>hand </b
>. ... <b>Drew </b> had a very good season , <b>batting </b> .284&
nbsp ;...

2. Title: Home run - Wikipedia
URL: https ://en.wikipedia.org/wiki/Home_run
Content Summary:
<b>J. D. Drew </b> has been part of two different sets of back -to-

back -to-back -to ... &#39; Ralph ,&#39; he said , &#39; the right -<b
>hand batters </b> who hit to the right field are driving&nbsp
;...

3. Title: Adam Wainwright - Wikipedia
URL: https ://en.wikipedia.org/wiki/Adam_Wainwright
Content Summary:
After the 2003 season , the Braves traded him to the Cardinals for

outfielder <b>J. D. Drew </b>. ... <b>batting </b> practice on
February 21. Three days later , the&nbsp ;...

... (content truncated to save space)

Assistant:
Tool Calls: query_on_page(url=https://en.wikipedia.org/wiki/J._D._Drew, question=What is J. D.
Drew’s batting hand?)

Tool Response (query_on_page):

J. D. Drew 's batting hand is left.

Assistant:
Tool Calls: search(query=Jeff Austin batting hand 1998 MLB draft)

Tool Response (search):

1. Title: 1998 Major League Baseball draft - Wikipedia
URL: https ://en.wikipedia.org/wiki /1998 _Major_League_Baseball_draft
Content Summary:
The <b>1998 </b> Major League <b>Baseball draft </b>, was the

choosing of high school and college <b>baseball </b> players ,
held on June 2 and 3, <b>1998 </b>. A total of 1445 players were
&nbsp ;...

2. Title: List of Boston Red Sox first -round draft picks -
Wikipedia

URL: https ://en.wikipedia.org /.../ List_of_Boston_Red_Sox_first -
round_draft_pic ...
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Content Summary:
The Boston Red Sox are a <b>Major League Baseball </b> (<b>MLB </b>)

franchise based in Boston , Massachusetts. They play in the
American League East division.

3. Title: List of Detroit Tigers first -round draft picks -
Wikipedia

URL: https ://en.wikipedia.org/wiki/List_of_Detroit_Tigers_first -
round_draft_picks

Content Summary:
The Detroit Tigers are a <b>Major League Baseball </b> (<b>MLB </b>)

franchise based in Detroit , Michigan. They play in the
American League Central division.

... (content truncated to save space)

Assistant:
Tool Calls: query_on_page(url=https://en.wikipedia.org/wiki/Jeff_Austin_(baseball), question=What is
Jeff Austin’s batting hand?)

Tool Response (query_on_page):

Jeff Austin 's batting hand is **Right **.

Assistant:
The information retrieved confirms that the batting hands of the first five picks in the 1998 MLB draft
are:
1. **Pat Burrell**: Right-handed 2. **Mark Mulder**: Left-handed 3. **Corey Patterson**: Left-
handed 4. **Jeff Austin**: Right-handed 5. **J. D. Drew**: Left-handed
This matches the statement provided.
Final answer: Correct.
So the answer is The batting hands of the first five picks in the 1998 MLB draft are as follows:Pat Burrell:
Right-handed, Mark Mulder: Left-handed, Corey Patterson: Left-handed, Jeff Austin: Right-handed, J.
D. Drew: Left-handed.

Final Answer:
The batting hands of the first five picks in the 1998 MLB draft are as follows:Pat Burrell: Right-handed,
Mark Mulder: Left-handed, Corey Patterson: Left-handed, Jeff Austin: Right-handed, J. D. Drew:
Left-handed.

Case study 2.1 (WebSeer-14B)

System:
You are a reasoning assistant with the ability to perform web searches and execute Python code to
help you process the content of the page and answer the user’s question accurately. Do not use any
knowledge you know; all facts in your thinking should be obtained from the information returned by the
tools. You can repeat the search process multiple times if necessary. Once you have all the information
you need, continue your reasoning. Please first make a plan before calling tools. Please answer the
following question. You should provide your final answer to the "submit_answer" tool.

User:
Question: What German medium tank, sometimes called the "Mark V", that was deployed on the
Eastern and Western fronts from mid-1943 provided the armor and suspension for the chassis of the
tank destroyer built by Nazi Germany during World War II?

Assistant:
Tool Calls: search(query=German medium tank Mark V WWII)

Tool Response (search):

1. Title: Panther tank - Wikipedia
URL: https ://en.wikipedia.org/wiki/Panther_tank
Content Summary:
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The Panther tank , officially Panzerkampfwagen <b>V</b> Panther (
abbreviated Pz.Kpfw. <b>V</b>) with ordnance inventory
designation: Sd.Kfz. 171, is a <b>German medium tank </b>&nbsp
;...

2. Title: Mark V tank - Wikipedia
URL: https ://en.wikipedia.org/wiki/Mark_V_tank
Content Summary:
There are eleven surviving <b>Mark V tanks </b>. The Mark VIII <b>

tank </b> was an enlarged <b>Mark V</b> with greater power: only
those with the Liberty engine saw post -war service&nbsp ;...

3. Title: German tanks in World War II - Wikipedia
URL: https ://en.wikipedia.org/wiki/German_tanks_in_World_War_II
Content Summary:
List of <b>tanks </b> &middot; Grosstraktor &middot; Leichttraktor

&middot; Panzer I &middot; Panzer II &middot; Panzer III &
middot; Panzer <b>IV </b> &middot; Neubaufahrzeug &middot;
Panther.

... (content truncated to save space)

Assistant:
Tool Calls: query_on_page(url=https://en.wikipedia.org/wiki/Panther_tank, question=What German
medium tank, sometimes called the ’Mark V’, was deployed on the Eastern and Western fronts from
mid-1943?)

Tool Response (query_on_page):

The German medium tank , sometimes called the 'Mark V', that was
deployed on the Eastern and Western fronts from mid -1943 is the
** Panther tank**, officially designated as the **
Panzerkampfwagen V Panther **.

Assistant:
Tool Calls: query_on_page(url=https://en.wikipedia.org/wiki/Panther_tank, question=Which tank de-
stroyer built by Nazi Germany during World War II used the Panther tank’s armor and suspension for
its chassis?)

Tool Response (query_on_page):

The tank destroyer built by Nazi Germany during World War II that
used the Panther tank 's armor and suspension for its chassis was
the ** Jagdpanther **.

The Jagdpanther was a heavy Jagdpanzer (tank destroyer) that was
based on the Panther tank 's chassis , incorporating its armor and
suspension system. It was equipped with an 88 mm long -barrel

gun , and was designed to provide superior armor protection and
mobility compared to other German tank destroyers of the time.

Assistant:
The German medium tank, sometimes called the "Mark V," that was deployed on the Eastern and
Western fronts from mid-1943 is the Panther tank (officially Panzerkampfwagen V Panther). The tank
destroyer built by Nazi Germany during World War II that used the Panther tank’s armor and suspension
for its chassis is the Jagdpanther.
Final answer: Panther tank.
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So the answer is Panther tankWait, I need to verify the answer:
Tool Calls: search(query=German medium tank Mark V WWII)

Tool Response (search):

1. Title: Panther tank - Wikipedia
URL: https ://en.wikipedia.org/wiki/Panther_tank
Content Summary:
The Panther tank , officially Panzerkampfwagen <b>V</b> Panther (

abbreviated Pz.Kpfw. <b>V</b>) with ordnance inventory
designation: Sd.Kfz. 171, is a <b>German medium tank </b>&nbsp
;...

2. Title: Mark V tank - Wikipedia
URL: https ://en.wikipedia.org/wiki/Mark_V_tank
Content Summary:
There are eleven surviving <b>Mark V tanks </b>. The Mark VIII <b>

tank </b> was an enlarged <b>Mark V</b> with greater power: only
those with the Liberty engine saw post -war service&nbsp ;...

3. Title: German tanks in World War II - Wikipedia
URL: https ://en.wikipedia.org/wiki/German_tanks_in_World_War_II
Content Summary:
List of <b>tanks </b> &middot; Grosstraktor &middot; Leichttraktor

&middot; Panzer I &middot; Panzer II &middot; Panzer III &
middot; Panzer <b>IV </b> &middot; Neubaufahrzeug &middot;
Panther.

... (content truncated to save space)

Assistant:
Tool Calls: query_on_page(url=https://en.wikipedia.org/wiki/Panther_tank, question=Was the Panther
tank deployed on the Eastern and Western fronts from mid-1943?)

Tool Response (query_on_page):

Yes , the Panther tank was deployed on both the Eastern and Western
fronts from mid -1943. On the Eastern Front , it was introduced
during the Battle of Kursk in the summer of 1943, and it was
used throughout the war. On the Western Front , it was deployed
in France , with the first Panther -equipped Panzer regiments
arriving there in June 1944. The tank served in most European
theatres of World War II from mid -1943 to the end of the war in
May 1945.

Assistant:
Tool Calls: query_on_page(url=https://en.wikipedia.org/wiki/Jagdpanther, question=What tank de-
stroyer used the Panther tank’s armor and suspension for its chassis?)

Tool Response (query_on_page):

The tank destroyer that used the Panther tank 's armor and
suspension for its chassis is the ** Jagdpanther **.

Assistant:
The Panther tank was indeed deployed on both the Eastern and Western fronts from mid-1943, and the
tank destroyer that used its armor and suspension for its chassis is the Jagdpanther.
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Final answer: Correct
So the answer is Panther tank
Tool Calls: submit_answer(answer=Panther tank)

Final Answer:
Panther tank

C SMALLER MODELS BEHAVIOR BEFORE SFT

Case study 3.1 (Qwen2.5-3B-Instruct):

System:
You are a reasoning assistant with the ability to perform web searches and execute Python code to
help you process the content of the page and answer the user’s question accurately. Do not use any
knowledge you know; all facts in your thinking should be obtained from the information returned by the
tools. You can repeat the search process multiple times if necessary. Once you have all the information
you need, continue your reasoning. Please answer the following question. You should provide your
final answer to the "submit_answer" tool.

User:
Question: What is the profession of Ansel Elgort’s character in "Baby Driver?"

Assistant:
Tool Calls: query_on_page(url=https://en.wikipedia.org/wiki/Baby_(film), question=What is the profes-
sion of Ansel Elgort’s character in Baby Driver?)

Tool Response (query_on_page):

Ansel Elgort 's character in *Baby Driver* is **a getaway driver **.
He is a skilled driver who uses his expertise to help a group of
robbers escape after heists , while also dealing with his

personal challenges , including a severe hearing condition that
requires him to wear headphones constantly. His profession as a
driver is central to the film 's plot , which revolves around high
-speed chases and his role in the criminal underworld.

Assistant:
Tool Calls: submit_answer(answer=Ansel Elgort’s character in ’Baby Driver’ is a getaway driver.)

Final Answer:
Ansel Elgort’s character in ’Baby Driver’ is a getaway driver.

Case study 3.2 (Qwen2.5-7B-Instruct): Smaller models typically perform short

System:
You are a reasoning assistant with the ability to perform web searches and execute Python code to
help you process the content of the page and answer the user’s question accurately. Do not use any
knowledge you know; all facts in your thinking should be obtained from the information returned by the
tools. You can repeat the search process multiple times if necessary. Once you have all the information
you need, continue your reasoning. Please answer the following question. You should provide your
final answer to the "submit_answer" tool.

User:
Question: What is the profession of Ansel Elgort’s character in "Baby Driver?"

Assistant:
Let’s search for information about the movie "Baby Driver" and the character played by Ansel Elgort.
Tool Calls: search(query=Ansel Elgort character profession Baby Driver)
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Tool Response (search):

1. Title: Baby Driver - Wikipedia
URL: https ://en.wikipedia.org/wiki/Baby_Driver
Content Summary:
Baby Driver is a 2017 action crime film written and directed by

Edgar Wright. It stars Ansel Elgort as a getaway driver seeking
freedom from a life of crime with his girlfriend Debora (Lily

James). Kevin Spacey , Eiza G o n z l e z , Jon Bernthal , Jon Hamm ,
and Jamie Foxx appear in supporting roles.

2. Title: Ansel Elgort - Wikipedia
URL: https ://en.wikipedia.org/wiki/Ansel_Elgort
Content Summary:
Musical career In 2017, Elgort played the title character in Edgar

Wright 's action thriller Baby Driver , for which he received a
Golden Globe Award nomination ...

3. Title: Ansel Elgort - IMDb
URL: https ://www.imdb.com/name/nm5052065/
Content Summary:
Ansel played the title role in Baby Driver (2017) , director Edgar

Wright 's action film , starring opposite Lily James and Kevin
Spacey. Baby Driver was ...

... (content truncated to save space)

Assistant:
From the search results, we can gather that Ansel Elgort plays the character Baby in the film "Baby
Driver". The film describes Baby as a getaway driver who is coerced into working for a crime boss.
Therefore, Baby’s profession in the movie is a getaway driver.
Now I will use the query_on_page function to verify this information from the official IMDb page of
the movie "Baby Driver".
Tool Calls: query_on_page(url=https://www.imdb.com/title/tt3890160/, question=What is the profes-
sion of Ansel Elgort’s character in Baby Driver?)

Tool Response (query_on_page):

Failed to get page content

Assistant:
It seems that there was an issue retrieving the content from the IMDb page of "Baby Driver". However,
based on the previous search results, we can reasonably conclude that Ansel Elgort’s character, Baby, is
a getaway driver in the movie.
Let’s proceed with submitting this answer.
Tool Calls: submit_answer(answer=getaway driver)

Final Answer:
getaway driver

D QUALITATIVE EXAMPLE IN 7B MODELS

Case studies 3.1 and 3.2 present examples where a 7B model answered correctly before SFT but
incorrectly after SFT. Before SFT, the Qwen2.5-7B model performs a single, targeted search and
directly finds the answer in the tool output. After SFT, however, the model imitates the long
trajectories seen in the demonstrations and issues multiple tool calls, but many of these calls query
repeated or irrelevant information. The correct evidence (Marked with a red background) becomes
buried in the extended context and is effectively ignored by the model. In contrast, Qwen2.5-14B-SFT
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handles the same long tool-call chain and successfully identifies the correct supporting evidence,
demonstrating that larger capacity is necessary for robust long-context reasoning.

Case study 4.1 (Qwen2.5-7B)

User:
Question: Little Brown Stein is a rivalry trophy that imitates a mug made out of what item?

Assistant:
Let’s search for information about the Little Brown Stein trophy to find out what it is made of.
Tool Calls: search(query=Little Brown Stein trophy material)

Tool Response (search):

1. Title: Little Brown Stein - Wikipedia
URL: https ://en.wikipedia.org/wiki/Little_Brown_Stein
Content Summary:
The trophy is, as the name implies , a large stein mug with the

results of all the games between the two painted on.

2. Title: History of FCS Rivalry Trophies - Reddit
URL: https ://www.reddit.com/r/fcs/comments /1740 vfs/

history_of_fcs_rivalry_trophies/
Content Summary:
With this week being The Battle for the Little Brown Stein , I am

looking into the history of FCS rivalry trophies.

3. Title: 156 college football rivalry trophies , kind of ranked -
Banner Society

URL: https ://www.bannersociety.com /2019/11/28/20984367/ rivalry -
trophies -college -football -best -list -ranking

Content Summary:
Little Brown Jug , Michigan -Minnesota , JUG , Melee weapon. Little

Brown Stein , Idaho -Montana , STEIN , Melee weapon. Mayor 's Cup ,
Rice -SMU , Silver ...

... (content truncated to save space)

Assistant:
From the search results, we can gather the following information:
1. The Little Brown Stein trophy is described as a large stein mug with the results of all the games
between the two teams painted on it. This description matches the trophy given to the winner of the
Idaho-Montana football rivalry game.
2. In the Wikipedia article, it mentions that the trophy is made of wood, but does not specify the exact
type of wood used.
Given these points, it seems the Little Brown Stein trophy is likely made of wood, as mentioned in
the Wikipedia article. However, without a more specific source confirming the material, we cannot be
absolutely certain.
Let’s verify this information using the Wikipedia page directly.
Tool Calls: query_on_page(url=https://en.wikipedia.org/wiki/Little_Brown_Stein, question=What is
the material of the Little Brown Stein trophy?)

Tool Response (query_on_page):

The ** Little Brown Stein** trophy is a **large stein mug**. The
content explicitly describes it as a "large stein mug with the
results of all the games between the two [teams] painted on."
While the term "stein" traditionally refers to a type of ceramic
or stoneware drinking vessel , the provided text does not

specify the exact material beyond the term "stein mug."
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Therefore , based on the given information , the trophy 's material
is described as a **stein mug**.

** Answer :** The Little Brown Stein trophy is a large stein mug.

Assistant:
Based on the information provided by the Wikipedia page, the Little Brown Stein trophy is described as
a large stein mug. While the term "stein" traditionally refers to a type of ceramic or stoneware drinking
vessel, the exact material is not specified beyond the term "stein mug."
Therefore, the most accurate answer to the question is that the Little Brown Stein trophy is made out of
a stein mug, which is typically made of ceramic or stoneware.
Let’s submit this answer.
Tool Calls: submit_answer(answer=The Little Brown Stein trophy is made out of a stein mug, which is
typically made of ceramic or stoneware.)

Final Answer:
The Little Brown Stein trophy is made out of a stein mug, which is typically made of ceramic or
stoneware.

Case study 4.2 (Qwen2.5-7B-SFT)

User:
Question: Little Brown Stein is a rivalry trophy that imitates a mug made out of what item?

Assistant:
To answer this question, I need to determine the material used to make the Little Brown Stein rivalry
trophy. This trophy is known to resemble a mug but is not made of actual ceramic. Let me perform a
search to find out the specific material used for its construction.
Tool Calls: search(query=Little Brown Stein rivalry trophy material)

Tool Response (search):

1. Title: Little Brown Stein - Wikipedia
URL: https ://en.wikipedia.org/wiki/Little_Brown_Stein
Content Summary:
The trophy is, as the name implies , a large stein mug with the

results of all the games between the two painted on.

2. Title: The 25 Best Rivalry Trophies in College Football : r/CFB
- Reddit

URL: https ://www.reddit.com/r/CFB/comments /1 ccvrps/
the_25_best_rivalry_trophies_in_college_football/

Content Summary:
... trophy. The Little Brown Stein (very different story from the

Little Brown Jug) and the Dakota Marker are awesome. Upvote 7.
Downvote Award

3. Title: The 10 best rivalry trophies in college football |
DraftKings Network

URL: https :// dknetwork.draftkings.com /2023/11/24/ the -10-best -
rivalry -trophies -in-college -football/

Content Summary:
The trophy is a corn replica made of bronze , because of course it

is. ... rivalry series , and the Grizzlies took home the Brown
Stein. The ...

... (content truncated to save space)

Assistant:
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Useful Information Summary: 1. The Little Brown Stein is a rivalry trophy between Idaho and Montana
universities. 2. The trophy resembles a large stein mug. 3. The trophy was crafted by a local carpenter.
4. It costs $25 to make. 5. The trophy has been awarded since 1938.
Thinking Process: Based on the search results, particularly the information from the page at URL
"https://en.wikipedia.org/wiki/Little_Brown_Stein" and other related articles, it is clear that the Little
Brown Stein trophy is made of wood. The fact that it was crafted by a local carpenter and described as
resembling a large stein mug indicates that it is a wooden replica of a mug.
Final Answer: Wooden.
So the answer is Wooden.Wait, I need to verify the answer before submitting it.
Tool Calls: search(query=Little Brown Stein trophy material)

Tool Response (search):

1. Title: Little Brown Stein - Wikipedia
URL: https ://en.wikipedia.org/wiki/Little_Brown_Stein
Content Summary:
The trophy is, as the name implies , a large stein mug with the

results of all the games between the two painted on.

2. Title: History of FCS Rivalry Trophies - Reddit
URL: https ://www.reddit.com/r/fcs/comments /1740 vfs/

history_of_fcs_rivalry_trophies/
Content Summary:
With this week being The Battle for the Little Brown Stein , I am

looking into the history of FCS rivalry trophies.

3. Title: 156 college football rivalry trophies , kind of ranked -
Banner Society

URL: https ://www.bannersociety.com /2019/11/28/20984367/ rivalry -
trophies -college -football -best -list -ranking

Content Summary:
Little Brown Jug , Michigan -Minnesota , JUG , Melee weapon. Little

Brown Stein , Idaho -Montana , STEIN , Melee weapon. Mayor 's Cup ,
Rice -SMU , Silver ...

... (content truncated to save space)

Assistant:
The useful information from the search results includes:
1. The Little Brown Stein is a rivalry trophy between Idaho and Montana universities. 2. It is described
as a large stein mug with game results painted on it. 3. The trophy has been awarded since 1938. 4. It is
associated with the rivalry between Idaho and Montana football teams.
Now, let’s analyze the question and the proposed answer:
**Question:** Little Brown Stein is a rivalry trophy that imitates a mug made out of what item?
**Proposed Answer:** Wooden
From the information gathered, we know that the Little Brown Stein is a large stein mug-like trophy.
However, there is no direct mention in the summaries provided about the material used to make the
trophy. The descriptions focus on its appearance and history rather than its composition.
Since the question specifically asks about the material used to make the trophy, and none of the
summaries explicitly state the material, we cannot confirm if the trophy is made of wood or another
substance. Therefore, the current answer "Wooden" is speculative and lacks concrete evidence.
To verify the accuracy of the answer, I would need to conduct a more detailed search focusing on the
specific material used for the Little Brown Stein trophy. I will perform an additional search to find this
information.
Tool Calls: search(query=Little Brown Stein trophy material)

Tool Response (search):

1. Title: Little Brown Stein - Wikipedia
URL: https ://en.wikipedia.org/wiki/Little_Brown_Stein
Content Summary:
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The trophy is, as the name implies , a large stein mug with the
results of all the games between the two painted on.

2. Title: History of FCS Rivalry Trophies - Reddit
URL: https ://www.reddit.com/r/fcs/comments /1740 vfs/

history_of_fcs_rivalry_trophies/
Content Summary:
With this week being The Battle for the Little Brown Stein , I am

looking into the history of FCS rivalry trophies.

3. Title: 156 college football rivalry trophies , kind of ranked -
Banner Society

URL: https ://www.bannersociety.com /2019/11/28/20984367/ rivalry -
trophies -college -football -best -list -ranking

Content Summary:
Little Brown Jug , Michigan -Minnesota , JUG , Melee weapon. Little

Brown Stein , Idaho -Montana , STEIN , Melee weapon. Mayor 's Cup ,
Rice -SMU , Silver ...

... (content truncated to save space)

Assistant:
None of the search results provide explicit information about the material used to make the Little Brown
Stein trophy. The descriptions focus on its appearance as a large stein mug and its historical context,
but they do not mention the specific material.
To verify whether the trophy is made of wood, I need to look for additional details about the trophy’s
construction. I will conduct a more focused search specifically targeting the material used for the Little
Brown Stein trophy.
Tool Calls: search(query=Little Brown Stein trophy material made of)

Tool Response (search):

1. Title: Little Brown Stein - Wikipedia
URL: https ://en.wikipedia.org/wiki/Little_Brown_Stein
Content Summary:
Missing: material made

2. Title: Beer stein - Wikipedia
URL: https ://en.wikipedia.org/wiki/Beer_stein
Content Summary:

Such steins may be made out of stoneware, pewter, porcelain or even silver,

wood or crystal glass; they may have open tops or hinged pewter
lids with a thumb - ...

3. Title: History of FCS Rivalry Trophies - Reddit
URL: https ://www.reddit.com/r/fcs/comments /1740 vfs/

history_of_fcs_rivalry_trophies/
Content Summary:
With this week being The Battle for the Little Brown Stein , I am

looking into the history of FCS rivalry trophies.

... (content truncated to save space)

Assistant:
None of the search results directly mention the material used to make the Little Brown Stein trophy.
While some pages discuss beer steins and trophies in general, none specifically address the composition
of the Little Brown Stein.
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Given this lack of direct information, I cannot confirm whether the trophy is made of wood or another
material based solely on the data retrieved so far. To provide an accurate answer, I would need to locate
additional sources that specifically detail the construction materials of the Little Brown Stein trophy.
Since the search results did not yield the required information, I cannot submit an answer at this time. I
will need to perform further research or consult authoritative sources about the trophy’s construction to
determine the correct material used for the Little Brown Stein.
I will attempt one more search focusing on the Little Brown Stein trophy itself to see if any details
about its material are available.
Tool Calls: search(query=Little Brown Stein trophy made of)

Tool Response (search):

1. Title: Griz set to battle Vandals for Little Brown Stein -
Montana Athletics

URL: https :// gogriz.com/news /2023/10/10/ football -griz -set -to-battle
-vandals -for -little -brown -stein

Content Summary:
Montana and Idaho first squared off 120 years ago in 1903 and meet

on the gridiron for the 89th time this week , with the winner
taking home "The Little Brown Stein ," a wooden traveling trophy
. The Stein was created by UM student newspaper writer John T.

2. Title: Little Brown Stein - Wikipedia
URL: https ://en.wikipedia.org/wiki/Little_Brown_Stein
Content Summary:
The trophy is, as the name implies , a large stein mug with the

results of all the games between the two painted on.

3. Title: History of FCS Rivalry Trophies - Reddit
URL: https ://www.reddit.com/r/fcs/comments /1740 vfs/

history_of_fcs_rivalry_trophies/
Content Summary:
With this week being The Battle for the Little Brown Stein , I am

looking into the history of FCS rivalry trophies.

... (content truncated to save space)

Assistant:
Useful Information Summary: 1. The Little Brown Stein is a wooden traveling trophy between the
University of Idaho and the University of Montana football teams. 2. It is described as a large stein
mug with the results of their games painted on it. 3. The trophy was created by UM student newspaper
writer John T. Campbell in 1938. 4. It is a unique trophy with a dark stain, but the specific type of wood
is not mentioned in the summaries.
Thinking Process: From the search results, we learn that the Little Brown Stein is a wooden trophy,
specifically described as a large stein mug with the results of the games painted on it. The trophy was
crafted in 1938 by a UM student newspaper writer named John T. Campbell. Although the exact type of
wood is not specified in the summaries, the presence of the term "wooden" in multiple contexts strongly
suggests that the trophy is indeed made of wood.
Based on this analysis, the answer "Wooden" appears to be correct.
Final Answer: Wooden.
So the answer is Wooden
Tool Calls: submit_answer(answer=Wooden)

Final Answer:
Wooden
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E FAILURE PATTERN ON SMALL MODELS

In Case study 5.1, the Qwen2.5-7B model did not properly close JSON tags when outputting tool
calls. In Case study 5.2, the Qwen2.5-7B model kept repeatedly calling tools after a search failure
until it exceeded the context length.

Case study 5.1 (Qwen2.5-7B-RL)

System:

You are a reasoning assistant with the ability to perform web
searches and execute Python code to help you process the content
of the page and answer the user 's question accurately.

Do not use any knowledge you know; all facts in your thinking
should be obtained from the information returned by the tools.
You can repeat the search process multiple times if necessary.

Once you have all the information you need , continue your reasoning
.

Please answer the following question. You should provide your final
answer to the "submit_answer" tool. /no_think

For each function call , return a json object with function name and
arguments within <tool_call ></tool_call > XML tags:

<tool_call >
{"name": <function -name >, "arguments ": <args -json -object >}
</tool_call >

Prompt:

Question: What is the the "Billboard" 200 where "Vice Verses"
debuted at number 8?

Assistant:

To answer the question regarding the Billboard 200 chart debut of "
Vice Verses ," I will first identify the song "Vice Verses" and
determine its chart performance. Then , I will confirm if it
debuted at #8 on the Billboard 200. Let 's proceed with this step
-by-step.

<tool_call >
{"name": "search", "arguments ": "query": "Billboard 200 chart debut

of Vice Verses "}}
</tool_call >

Case study 5.2 (Qwen2.5-7B-RL)

User:

Assistant:

To answer this question , I will perform a web search to find
information about the Hoover Company 's sale in 2006 and the
number of employees of the holding company involved in the sale.

<tool_call >
{"name": "search", "arguments ": {"query": "The Hoover Company 2006

sale to holding company number of employees "}}
</tool_call >

tool_response:

<tool_response >
1. Title: Maytag - Wikipedia
URL: https ://en.wikipedia.org/wiki/Maytag
Content:
<b>Number of employees </b>. 2,500. <b>Parent </b> &middot;

Whirlpool <b>Corporation </b> (<b>2006 </b>-present) ... On April
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1, <b>2006 </b>, Whirlpool completed its acquisition of Maytag
<b>Corporation </b>.

2. Title: Whirlpool Corporation - Wikipedia
URL: https ://en.wikipedia.org/wiki/Whirlpool_Corporation
Content:
In 2023, the Fortune 500 <b>company </b> had an annual revenue of

approximately $19 billion in <b>sales </b>, around 59,000 <b>
employees </b>, and more than 55 manufacturing and&nbsp ;...

3. Title: Ford Motor Company - Wikipedia
URL: https ://en.wikipedia.org/wiki/Ford_Motor_Company
Content:
Ford &#39;s former British subsidiaries Jaguar and Land Rover ,

acquired in 1989 and 2000, respectively , were <b>sold </b> to
the Indian automaker Tata Motors in March 2008.

4. Title: UnitedHealth Group - Wikipedia
URL: https ://en.wikipedia.org/wiki/UnitedHealth_Group
Content:
<b>Number of employees </b>. c. 400 ,000 (2024). Subsidiaries &

middot; Optum ... In February <b>2006 </b>, the <b>company </b>
acquired John Deere Health Care.

5. Title: The Hoover Company - Wikipedia
URL: https ://en.wikipedia.org/wiki/The_Hoover_Company
Content:
... <b>sales </b> in <b>many </b> parts of Europe. Today , <b>the

Hoover </b> Europe brand ... The machine was so fondly
remembered that it was reintroduced and <b>sold </b> from <b
>2006 </b> to 2009.

Please summarize the useful information in the returned results
first , then explain your thinking. The above information will
disappear soon.

</tool_response >

Assistant:

Based on the information retrieved:
1. The Hoover Company 's sale details are not explicitly detailed on

its Wikipedia page.
2. There 's no direct confirmation of any holding company that

purchased Hoover in 2006.
3. However , the sale of the Hoover Company (or its European brands)

is referenced in the context of its sales in Europe and its re-
introduction , but again , no specific buyer is named or linked to
the sale event.

The most relevant link is to the "Hoover Company" Wikipedia page.
It does not explicitly mention a sale in 2006 with a buyer and
their employment number. Other pages like Whirlpool 's mention
acquisitions but not in connection to Hoover specifically. There
's an indirect mention that Whirlpool Corporation (acquiring
another company in 2006) was mentioned but unrelated to Hoover.

Since no relevant data is found , and there 's confusion or lack of
clarity , I will perform a more detailed search about the Hoover
Company.

<tool_call >
{"name": "search", "arguments ": {"query": "Hoover Company sale 2006

acquisition details "}}
</tool_call >

F MULTI-SEED EVALUATION

We report the performance of SRRL and GRPO across multiple random seeds to assess the stability
and variance of both methods. The detailed results are shown in Table 4.
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Table 4: Performance across different random seeds for SRRL and GRPO.

Seed SRRL GRPO
42 70.9 66.3

142 71.5 67.5
1142 69.6 68.1
Mean 70.7 67.3
Std 0.97 0.91

G ABLATION STUDIES ON REWARD DESIGN

To quantify the contribution of individual reward components, we conduct ablations targeting (i) the
formatting penalty Rformat and (ii) the exponential discount coefficient α in the correctness reward
Rcorrect. The results highlight the delicate interplay between structural constraints and incentives for
iterative refinement.

G.1 EFFECT OF THE FORMATTING PENALTY RFORMAT

As shown in Figure 6, the formatting constraint is essential for maintaining stable training dynamics.
Removing Rformat leads to a characteristic length-explosion failure mode: although early-stage
performance (within the first 50 optimization steps) matches the full reward configuration, the policy
quickly discovers a reward-hacking strategy. Without penalties on trajectory structure, the model
aggressively accumulates tool calls and intermediate outputs to marginally improve the probability
of producing a correct answer and thereby secure Rcorrect. Reinforcement learning amplifies this
brittle behavior, creating a positive feedback loop in which sequence length grows without bound.
Once trajectories exceed the 32k-token context window, optimization collapses entirely. These
findings demonstrate that structural constraints are not auxiliary but instead prevent pathological
reward-seeking behaviors that undermine training stability.
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Figure 6: Accuracy and changes in output length before and after removing Rformat

G.2 EFFECT OF THE DISCOUNT COEFFICIENT α IN RCORRECT

We further study the sensitivity of the correctness reward to the exponential discount factor α, which
modulates the influence of repeated attempts. As summarized in Table 5, the choice of α induces
a clear trade-off between encouraging self-correction and avoiding inefficient exploration. When
α = 1.0 (no discount), the agent over-relies on environment feedback and tends to spam submissions,
resulting in reduced accuracy despite shorter trajectories. Conversely, a steep discount (α = 0.4)
discourages refinement: after an initial failure, the sharply diminished return of additional attempts
causes the model to terminate prematurely. The intermediate value α = 0.8 achieves the best
balance, yielding the highest accuracy while maintaining reasonable trajectory lengths. Overall, these
results indicate that carefully tuned discounting is crucial for enabling deliberate self-reflection while
discouraging indefinite, low-confidence guessing strategies.
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Table 5: Performance across values of the discount coefficient α.

Metric α = 0.4 α = 0.6 α = 0.8 α = 1.0

Accuracy 65.2 69.2 70.9 68.8
Length 4524 3807 3253 2301

H THE USAGE OF LLM

Portions of this paper were polished by the large language models (LLMs), which were used to
improve the clarity, grammar, and presentation of the text. The models were not used to generate
research ideas, conduct experiments, or analyze results; all conceptual contributions and empirical
findings are the work of the authors. We carefully reviewed and edited all LLM-generated suggestions
to ensure accuracy and alignment with the intended meaning.

I THE USAGE OF LLM

Portions of this paper were polished by the large language models (LLMs), which were used to
improve the clarity, grammar, and presentation of the text. The models were not used to generate
research ideas, conduct experiments, or analyze results; all conceptual contributions and empirical
findings are the work of the authors. We carefully reviewed and edited all LLM-generated suggestions
to ensure accuracy and alignment with the intended meaning.
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