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ABSTRACT

Reverse-Kullback-Leibler regularization has emerged to be a predominant tech-
nique used to enhance policy optimization in reinforcement learning (RL) and
reinforcement learning from human feedback (RLHF), which forces the learned
policy to stay close to a reference policy. While the effectiveness and necessity
of KL-regularization has been empirically demonstrated in various practical sce-
narios, current theoretical analysis of KL-regularized RLHF still obtain the same
O(1/€%) sample complexity as problems without KL-regularization. To under-
stand the fundamental distinction between policy learning objectives with KL-
regularization and ones without KL-regularization, we are the first to theoretically
demonstrate the power of KL-regularization by providing a sharp analysis for KL-
regularized contextual bandits and RLHF, revealing an O(1/¢) sample complexity
when e is sufficiently small.

We further explore the role of data coverage in contextual bandits and RLHFE.
While the coverage assumption is commonly employed in offline RLHF to link
the samples from the reference policy to the optimal policy, often at the cost of
a multiplicative dependence on the coverage coefficient, its impact on the sam-
ple complexity of online RLHF remains unclear. Previous theoretical analyses of
online RLHF typically require explicit exploration and additional structural as-
sumptions on the reward function class. In contrast, we show that with sufficient
coverage from the reference policy, a simple two-stage mixed sampling strategy
can achieve a sample complexity with only an additive dependence on the cover-
age coefficient. Our results provide a comprehensive understanding of the roles
of KL-regularization and data coverage in RLHF, shedding light on the design of
more efficient RLHF algorithms.

1 INTRODUCTION

Recently, Reinforcement Learning from Human Feedback (RLHF) has emerged as a central tool for
aligning large language models (LLMs) and diffusion models with human values and preferences
(Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022; Bai et al., 2022; Rafailov et al.,
2024), exhibiting impressive capabilities in applications, such as Chatgpt (Achiam et al., 2023),
Claude (Anthropic, 2023), Gemini (Team et al., 2023), and LLaMA-3 (Meta, 2024).

RLHF methods treat the language model as a policy that takes a prompt « and produces a response
a conditioned on z, and they optimize the policy by aligning it with human feedback. There are
two main kinds of feedback: absolute rating and preference comparison. In practice, collecting the
absolute ratings typically involving the human annotators to provide rating scores like 1 to 5 (Wang
et al., 2024a;b) for the responses or hard 0-1 scores for math reasoning tasks since the reasoning
tasks often have golden answers (Cobbe et al., 2021; Hendrycks et al., 2021; Xiong et al., 2024b).
Additionally, preference comparison is frequently applied in chat tasks when making comparisons
is much easier for human labler (Achiam et al., 2023).

Since the human value and preference are so complicated that they are unlikely to be encompassed
by the considered preference model classes (such as the absolute reward model or the reward-based
Bradley-Terry model (Bradley and Terry, 1952a)), the learned model is easy to be hacked and biased.
Practically, the policy may generate disproportionate bold words or emoji to please the learned
reward (Zhang et al., 2024). Hence, the KL-regularization between the learned policy and a reference
policy (the pre-trained model after supervised fine-tuning) plays a fundamental role in RLHF to
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avoid overfitting. There is a line of RLHF work that realizes the significance of KL-regularization
and regards the problem as a reverse-KL regularized contextual bandit (Ziegler et al., 2019; Wu et al.,
2021; Ouyang et al., 2022; Rafailov et al., 2024; Xiong et al., 2024a; Ye et al., 2024b). However,
they basically adopt the techniques from bandit framework and neglect the characteristic of reverse-
KL-regularization, thus obtaining almost the same sample complexity with problems without KL-
regularization. Therefore, the question of whether there exists a fundamental distinction between
policy learning objectives with KL-regularization and ones without KL-regularization is still largely
under-explored.

Compared to the offline RLHF algorithms (Rafailov et al., 2024; Azar et al., 2024; Chen et al.,
2024) that can only use planning to approximate the solution of the minimizing relative entropy
optimization (Ziebart et al., 2008; Song et al., 2024), online RLHF has been demonstrated to out-
perform offline methods empirically and theoretically (Bai et al., 2023; Meta, 2024; Xiong et al.,
2024a; Tajwar et al., 2024; Song et al., 2024), because it has further interactions with human or the
preference oracle. Most standard theoretical online RL techniques apply optimism in the balance
of exploration and exploitation (Abbasi-Yadkori et al., 2011; Wang et al., 2020). However, it is
inefficient to implement exploration for practical RLHF algorithms. Meanwhile, an emerging line
of offline RLHF literature highlights the coverage of the reference policy 7my. The coverage of 7
refers to the ability of the model to generate diverse responses for a wide range of prompts. A model
with good coverage can generalize well to unseen contexts and actions, which is essential for the
learned reward function to generalize well. In practice, this is evidenced by the fact that the sim-
ple best-of-n sampling based on 7y is competitive with the well-tuned PPO algorithm for general
open-ended conversation tasks (Dong et al., 2023), and the fact that the my can solve a majority of
the math problems with multiple responses (Shao et al., 2024; Nakano et al., 2021). However, the
theoretical understanding of the role of coverage in online RLHF is still largely understudied. Thus,
it is natural to ask is explicit exploration necessary for online RLHF with a good coverage of Ty and
how the coverage of T affects the sample complexity of online RLHF.

In this paper, we answer the above questions by

* providing a novel fine-grained analysis for KL-regularized in contextual bandits and RLHF, which
adapts to the optimization landscape of the reverse-KL regularization and reveals a sharper sample
complexity than the existing results, and

* proposing an efficient 2-stage mixed sampling strategy for online RLHF with a good coverage
of my, which achieves a sample complexity with only an additive dependence on the coverage
coefficient.

1.1 OUR CONTRIBUTIONS

In this paper, we make a first attempt to illustrate the statistical benefits of KL-regularization for
policy optimization in contextual bandits and reinforcement learning from preference feedback.

Our main contributions are summarized as follows:

* In Section 3, we formulate RLHF with absolute-rating feedback as a contextual bandit problem
with KL-regularization. First, we provide a novel lower bound for the KL-regularized contextual
bandit problem, which indicates that the sample complexity of the problem is Q(nlog Nz (¢€)/¢)
when e is sufficiently small, where N (¢€) is the covering number of the reward function class and
7 is the KL-regularization coefficient.

* Then we showcase a novel analysis to upper bound the suboptimality gap of the KL-regularized
objective in contextual bandits, and propose a simple two-stage mixed sampling strategy for online
RLHF which achieves a sample complexity of O(max(n?D?,n/¢)log Nz (e/5)) when the reward
scale is a constant, where D is the coverage coefficient of the reference policy 7wy and § is the
confidence parameter. To the best of our knowledge, this is the first work to provide a sharp
sample complexity for KL-regularized contextual bandits.

* In Section 4, we extend our analysis to reinforcement learning from preference feedback. We
rigorously demonstrate that KL-regularization is essential for more efficient policy learning in
RLHF with preference data. We further propose a two-stage mixed sampling strategy for online
preference learning setting with a good coverage of 7, which achieves a sample complexity of
O(max(n?D?,n/€) log N (¢/5)) when the reward scale is a constant.
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2 PRELIMINARIES

In this section, we formally state the problem settings of reinforcement learning from human feed-
back (RLHF), where we consider two types of feedback: absolute rating and preference.

2.1 CONTEXTUAL BANDITS WITH KL REGULARIZATION

The first setting is the absolute-rating feedback, where we can query the ground-truth reward func-
tion to measure the quality of the responses by providing absolute reward value. For instance, in
the NVIDIA Helpsteer project (Wang et al., 2023b; 2024c), human labelers are required to provide
absolute score in five attributes: helpfulness, correctness, coherence, complexity, and verbosity. The
dataset leads to many high-ranking open-source reward models, including the ArmoRM-Llama3-
8B-v0.1 (Wang et al., 2024a;b), URM-LLaMa-3.1-8B!, and Llama-3.1-Nemotron-70B-Reward?.
We also notice that recently this feedback framework is extended to other task such as video gener-
ation (He et al., 2024).

The absolute-rating feedback is directly modeled as reward functions (Wang et al., 2024a; Xiong
et al., 2024b), and can be regarded as contextual bandits with KL regularization. In the contextual
bandit setting, at each round ¢t > 1, the agent observes a context z; € X’ generated from a distribution
dy and chooses an action a; € A. The agent receives a stochastic reward r; € R that depends on the
context x; and the action a;. The goal of the agent is to maximize the expected cumulative reward
over 1" rounds.

The learner has access to a family of reward functions R(6, x, a) parameterized by 6 € ©, such that
there exists 0, € © satisfying E[r¢|z1.¢,a1.t] = R(0«, z¢, a;). WLOG, we assume that the reward
feedback r; at all rounds is a non-negative real number bounded by B.

We consider a KL-regularized objective as follows:

1. =w(alz)
=EsndoEamn(lz) | RO, z,a) — =1 ,
Q) = BarteBatiey | RO 2,0) = 0 2 o)
where 7y is a known fixed policy, and 1 > 0 is a hyperparameter that controls the trade-off between
maximizing rewards and staying close to the reference policy 7.

2.1)

Remark 2.1. It is worth noting that entropy or Kullback-Leibler (KL) regularization is also widely
used in contextual bandits (Berthet and Perchet, 2017; Wu et al., 2016) and deep reinforcement
learning algorithms (Schulman et al., 2015; Fox et al., 2016; Schulman et al., 2017a; Haarnoja
etal., 2017; 2018), where KL-divergence regularization is a popular technique for preventing drastic
updates to the policy. Algorithms such as Trust Region Policy Optimization (TRPO) (Schulman
et al., 2015) explicitly incorporate KL-regularization to limit the policy updates during optimization,
ensuring that the updated policy does not deviate too much from the current policy. This constraint
promotes more stable and reliable learning, particularly in high-dimensional state-action spaces.
Additionally, KL-regularization is central to Proximal Policy Optimization (PPO) (Schulman et al.,
2017a), where a penalty term involving KL-divergence helps ensure updates remain within a ‘trust
region’.

2.2 REINFORCEMENT LEARNING FROM PREFERENCE FEEDBACK

The second framework we consider is the preference feedback, which is a widely applied in projects
such as Chat-GPT (OpenAl, 2023) and Claude (Bai et al., 2022). Specifically, when receiving a
prompt z € X, and two actions (responses) a', a? € A from some LLM policy 7(-|x), a preference
oracle will give feedback y defined as follows:

Definition 2.2 (Preference Oracle). A Preference Oracle is a function P : & x A x A — {0,1}.
Given a context x € X and two actions a1, az € A, the oracle can be queried to obtain a preference
signal y ~ Bernoulli(P(z, a1, as)), where y = 1 indicates that a; is preferred to as in the context
z, and y = 0 indicates the opposite.

To learn the preference, we follow Ouyang et al. (2022); Zhu et al. (2023); Rafailov et al. (2024);
Liu et al. (2023); Xiong et al. (2024a) and assume that the preference oracle is measured by the

1https ://huggingface.co/LxzGordon/URM-LLaMa-3.1-8B
https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward


https://huggingface.co/LxzGordon/URM-LLaMa-3.1-8B
https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward

Under review as a conference paper at ICLR 2025

difference of ground-truth reward functions R(6., z,a), which is named the Bradley-Terry model
(Bradley and Terry, 1952b).

Definition 2.3 (Bradley-Terry Model). The Bradley-Terry model is a probabilistic model for pair-
wise comparison data. Given a context x € X and two actions a1, as € A, the probability of a;
being preferred to as is modeled as

exp(R(0, 7, a1))
exp(R(0., z,a1)) + exp(R(b4, z,a2))
where o (+) is the sigmoid function.

P(l‘, ai, a2) = = 0(R(0*7l’, 0,1) - R(G*, z7042))7 (2.2)

The RLHF training always follows the fine-tuning process, which yields a reference policy 7.
When performing RLHF on specific tasks, to avoid overfitting, we impose KL-regularization to the
learned reward model when optimizing the policy. Hence, our objective function is also (2.1).

2.3 ADDITIONAL NOTATIONS AND DEFINITIONS

In this subsection, we introduce the definitions shared by both settings.

Reward function class. We consider a function class R = {R(6,-,-)|f € ©} and for the realiz-
ability, we assume that the ground truth reward function R (6., x, a) is in the function class R. Then,
we define the covering number of R as follows.

Definition 2.4 (e-cover and covering number). Given a function class F, for each € > 0, an e-
cover of F with respect to || - ||, denoted by C(F, €), satisfies that for any f € F, we can find
f' € C(F,e) such that || f — f'||cc < €. The e-covering number, denoted as N (¢), is the smallest
cardinality of such C(F,€).

Planning oracle. Given a reward model, we can learn the policy by optimizing the KL-regularized
objective in (2.1). To simplify the analysis, we assume that there exists a planning oracle, which in
empirical can be efficiently approximated by rejection sampling (Liu et al., 2023), Gibbs sampling
(Xiong et al., 2024a), and iterative preference learning with a known reward (Dong et al., 2024).

Definition 2.5 (Policy Improvement Oracle). For a reward function R(6,-,-) € R and a reference
policy g, for any prompt z ~ dy, we can compute:

7(alz)

mo(alx)

1
7y (-|z) == argmax Eqror(-|2) [R(@,a@a) — —log x 7o (|z) - exp (nR(@,w7 ))
w(-|z)EA(A) n
Hence, the comparator policy is the solution of the oracle given the true reward function R(6*, -, -):
7*(+]-) o< wo(+|-) -exp(nR(6*, -, -)). The goal is to minimize the sub-optimality of our learned policy
7 with 7 Q(7*) — Q(7T)

Coverage conditions. It is crucial to assume that our data-collector policy 7y possesses good
coverage, which can ensure that the learned reward function can generalize well to unseen contexts
(prompts) and actions (responses), and thus can enable us to approximate the optimal policy. The
global coverage is the uniform cover over all the policies in the considered class I, which is standard
in offline RL (Munos and Szepesvari, 2008; Song et al., 2024) and online RL (Xie et al., 2022; Rosset
et al., 2024). Essentially, Song et al. (2024) demonstrated that global coverage is necessary for
offline framework and Direct Preference Optimization (DPO) fails without global coverage. Hence,
we introduce two types of global coverage conditions.

Definition 2.6 (Data Coverage). Given a reference policy g, D? is the minimum positive real
number satisfying V (z,a) € X x A, s.t. w(alz) > 0andV b: X — [-B, B], we have

|R(¢,x,a) — R(0,z,a) — b(z)|?

< D>
0,591’156 Eac/wdo]Ea’Nﬂ'o(-kE’) |R(6/a z’, a/) - R(67 @, a/) - b($/)|2 B

The coverage coefficient D measures how well the in-sample error induced by distribution dy X
7o can cover the out-of-sample error, identifically speaking, it depicts the ability of my to cover
the action space. This concept is adapted from the F-design for online RL under general function
approximation (Agarwal et al.), and resembles the coverage coefficient for offline RL (Ye et al.,
2024c;a), and the eluder dimension (Wang et al., 2020; Ye et al., 2023; Agarwal et al., 2023) for
online RL.
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Definition 2.7 (Global-Policy Coverage). Given a reference policy 7y, Cqy, is the minimum positive
real number satisfying that for any 7 : X — A

m(al|x)

sup < Car.

z~dg,a€A mo(alx)

The two conditions both require the reference policy to cover all possible policy distributions, which
is standard and common in RL literature. Additionally, although the two conditions defined above
are both global, it is obvious that D? < Cqr, indicating that it is more general to assume a finite D
coefficient.

Because of the KL-regularization for RLHF, the learned policy will not move too far from the ref-
erence policy. Hence, it is natural to relax the global coverage to local coverage inside the KL-ball
(Song et al., 2024).

Definition 2.8 (Local KL-ball Coverage). Given a reference policy 7, for a positive constant pky, <
00, and all policy satisfying that E,4, [KL(7, m0)] < pkL, we define
sup m(alz) =
z~dg,ac A TO (a"r)

PKL "

Remark 2.9 (Relation between Local and Global Coverage Conditions). The local coverage con-
dition (Definition 2.8) is more precise because compared to the global conditions targeting all
possible policies, it only constraint the coverage to a KL-ball. In Song et al. (2024), because
of the specific form of the oracle (Definition 2.5), the considered policy class is IT = {7 (+]-) x
mo(-|-) exp(nR(0,-,-)) : R(0,-,-) € R}. Thus, they only need to assume that the condition hold for
p = 2nB, indicating that C),,, < Cgr,. On the other hand, the data coverage condition (Definition
2.6) is measured on the level of reward functions instead of policies. In this sense, the data coverage
condition and local coverage condition do not encompass each other.

3 KL-REGULARIZED CONTEXTUAL BANDITS

3.1 LOWER BOUND

In this section, we provide a lower bound for the KL-regularized contextual bandit problem.

Theorem 3.1. For any ¢ € (0,1),7 > 0, and any algorithm A, there exists a KL-regularized
contextual bandit problem with O(1) coverage coefficient and reward function class R such that A
nlog N (e) log 1\7271(6)))

rounds to achieve a suboptimality gap of e.

)

requires at least € min(

Remark 3.2. The lower bound in Theorem 3.1 indicates that the sample complexity of the KL-
regularized contextual bandit problem is () log N (€) /¢) when € is sufficiently small. In our proof,
the KL-regularization term shifts the local landscape of the objective function, which prevents us to
directly apply the standard bandit analysis, and thus requires a novel analysis to derive the new lower
bound. This Q(nlog Nz (¢)/€) lower bound suggests that the KL-regularized contextual bandit
problem enjoys a lower sample complexity compared to the standard contextual bandit problem.

3.2 THE PROPOSED ALGORITHM

We present the algorithmic framework in Algorithm 1 for the KL-regularized contextual bandit
problem, which serves as a theoretical model for online RLHF with absolute-rating feedback. The
algorithm consists of two states:

* In the first stage, we sample m contexts (prompts) and actions (answers) from the foundation
model 7y and observe the corresponding rewards (absolute ratings). These ratings can be regarded
as noisy observations of the underlying reward function R(0.,z,a). In line 6, we compute an

estimate of the reward function 6, using least squares regression based on the collected data.
In line 7, we apply the planning oracle to obtain the policy Wg which maximizes the following
0

KL-regularized estimated objective in Definition 2.5 with reward function R(0, -, ) = R(@O, )

n

fo

(responses). With the intermediate policy ﬂg , we can collect new data {(x;, a;,r;)}—; which is
0

* In the second stage, we utilize the trained policy 7~ to sample n contexts (prompts) and actions

5
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Algorithm 1 Two-Stage mixed-policy sampling
1: Input: 7, €, mo, ©.

>
2: fori=1,...,mdo
3 Sample context al:Z ~ do and actlon ad ~ mo(- \wl)
4: Observe reward r{ = = R(6-, z0, al ) + €7, where €? is the random noise.
5: end for
6: Compute the least square estimate of the reward function based on Dy = {(m?, al, r?) oo

0o argmin E R(6 x?,a?) — r?)2.

b T

7: Apply the planning oracle to compute ﬂ'g () o< mo(|-) exp (nR(é\o, )
0

>
8: fori=1,...,ndo
9: Sample context x; ~ do and action a; ~ 7TA (|xs)-
10: Observe reward r; = R(0x, x5, a;) + €;, where €; is the random noise.
11: end for

12: Compute the least square estimate of the reward function using {(z;, a;, ;) }i=; together with Do:

Geargmmg R(6 :cl, i fn 24 E R(6,x;,a;) *Tz)Q-
vco =

13: Output 7r3(|) o ﬂo(-\')GXP(WR(§7’7'))~

more aligned with the data distribution induced by the optimal policy 7. In line 12, the algorithm
combines data from both stages {(z;, a;,7;)}"; and {(z¥, a?, )}, to compute a refined least

[RE
squares estimate § of the reward function, minimizing the sum of squared errors across both
datasets. By aggregating the two datasets together, there is an overlap between the data to compute

0 and 6y, so that the output policy wg is well covered by the intermediate policy Wg .
0

3.3 THEORETICAL GUARANTEES

Loose Bound of Previous Analysis. The previous analysis is loose since they basically follow the
techniques of bandits and neglect the significance of KL-regularization. For simplicity, We use short-
hand notation R(6, z,7) = E,wr(|z)R(0, 7, a) and denote KL(7(:|z)||7’(-|x)) by KL(7||7") when

there is no confusion. Estimator 6 is estimated on a dataset {(z;, a;,r;) : ©; ~ do,$; ~ To}rq:

Wg = argmaX,cp Ez~d, [R(@, x,m) — n ' KL(r||m0)]. The sub-optimality is decomposed as:

Q(ﬂ-*) - Q(ﬂ-g :]ECENdO [R(0*7I,7T*) - R(é\,l‘ﬂT*)] + ]EINdO [ (9 T 7TA) - ( » 7TA)]
+ Eomy [R(B,2,7%) = 0~ "KL (" [[70)] = Eamety [R(B, 2, 72) — "KL (w2 o))

<Epmdo [R(O", 2, 7") = R(O,2,7") + R(0,2,77) — R(0", 2, 77)],

~

where the inequality holds since wg is the maximum.
Then, the suboptimality can be further bounded by using the coverage condition (Definition 2.7) and
concentration inequalities: for any 7 € I, if n = O(1/€?),

EomdoEarnn(.|a) [R(Q*, z,a) — R(é\, z, a)] < CoLEandoEanm(-|a) [R(Q*, z,a) — R(é\, z, a)} < Cgre.

Power of KL-regularization The crucial point of the sharper result is utilizing the strong convex-
ity of the objective @) because of the KL-regularization. Specifically, we take the first-order Taylor

expansion of sub-optimality with respect to {A(z,a) = R(a, x,a) — R(0*,x,a) : a € A}
Q") — Q(x2) =nEema, [ S wl(aa)A(z,a) — Y wlarle)r(az]z) Ale, ar)Ale, QQ)}

acA ay,as€A

<IBoanay | Y 7)) A%, a)]

acA
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where f(-,-) = YR(0,-,-) + (1 — 7)R(0,,-,-) (v € (0,1)) the inequality uses the fact that second
term on the right-hand side of the equality is (3_,c 4 7} (alz)A(z, a))? > 0.

Now, under Algorithm 1, the coverage condition (Definition 2.6) and with concentration inequal-
ities, if the datasize m = O(n~D2?B2), we can prove that for [|R(6, -,-) — R(0%,-,")|lsc < 7"
and HR(@O, ) — R(O*,-, )]l < n~%, which implies the whole-policy coverage condition:
H7r?(\)/7rgo(|)||oo < e*. Therefore, by setting nn = ©(1/¢), we obtain that 77 is O(e) optimal.

The conclusion is presented in the following theorem.

Theorem 3.3. Suppose that Assumption 2.6 holds. For any § € (0,1/5), ¢ > 0 and constant
Cm.n > 0, if we set m = O(n 2D2 B?log(2Ng(e.)/8)) and n = ©(n/e - B?log(Nx(e.)/d)) and
= min{ =z J» then with probability at least 1 — 5§ the output policy of

2(1+0;L1,L)B’ 8(1+cm, n)Bn
A]gorlthm 1 775 is O(e) optimal.

Remark 3.4. Theorem 3.3 shows that the sample complexity of Algorithm 1 is O(n/elog Nz (€/9))
when the reward scale is a constant and e is sufficiently small. The result indicates that the proposed
two-stage mixed sampling strategy can achieve a suboptimality gap of € with only an additive de-
pendence on the coverage coefficient D2,

3.4 DISCUSSION: RESULT FOR LOCAL COVERAGE

In this subsection, we consider a weaker assumption as described in Definition 2.8.

Corollary 3.5. Let C,,, be defined in Definition 2.8 where pk1, = 2nB. For any § € (0,1/6) and
e > 0,if wesetn = ¢y nm = O(C, . n/€ - Blog(Nr(e:)/d)) (where ¢, , > 0 is a constant,
€. = €/(2(1+ ¢;,!,) B)) then with probability at least 1 — 64 the output policy of Algorithm 2 Wg is
O(€) optimal.

Proof of Corollary 3.5. The proof follows the same lines as Theorem 4.3 by replacing the global
coverage condition with the local coverage condition. It still holds that

Q(,/T*) - Q(,/T’go) < n- ]EW}7 [(R(é\ﬂaxa a) - R(e*,fﬂ, a))Q]

where 71'?((1|x) x mo(alx) - exp(n - f(x,a)) and f(-,-) = 'yR(é\o, )+ (1 —~)R(b., -, ) for some
7 € (0,1). Thus, We have KL(7}(-|)||mo(-|z)) < 2nB, which further implies that

Q) ~ QUE2) < 71 Cpre, O Blog(Nr(e)/6) + B(1 + e} )ec)

by Lemma E.4. Then we can conclude by substituting the value of m into the suboptimality gap. [J

4 REINFORCEMENT LEARNING FROM PREFERENCE FEEDBACK

In this section, we consider the problem of aligning the language model with preference feedback.
As discussed in Section 2.2, at each round, we can sample a pair of actions (responses) a1, as and
call a preference oracle to get the preference label y € {0,1}, where y = 1 means that the user
prefers a; over ay (Definition 2.2).

Although preference feedback is believed to be more intuitive for human users and easier to collect,
it also poses more challenges for the RLHF algorithms to effectively leverage the feedback signals
since the reward signals are not directly observed.

In practice, RLHF with preference feedback typically involves
1. constructing a reward model based on the maximum likelihood estimation (MLE) of Bradley-
Terry model from the preference feedback, and

2. applying RL algorithms like PPO (Schulman et al., 2017b) to train the language model so that
it maximizes the reward signals with KL regularization (Ouyang et al., 2022; Bai et al., 2022;
Touvron et al., 2023).
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To analyze the above approach theoretically, we introduce the following assumption for step 1 to
ensure the existence of an MLE estimation oracle which can globally maximize the likelihood of the
Bradley-Terry model over all possible reward functions.

Definition 4.1 (MLE estimation oracle). There exists an MLE estimation oracle that, given a set of
context-action pairs {(z;, a},a?,y;)}", generated from the Bradley-Terry model, can output the

parameter 6 such that

é\: argmaXZyi ) IOgO—(R(QPTi: a'}) - R(ea Li, a?)) + (1 - yl) : IOgO—(R(evxiv af) - R(€7x17a'})) .
vee T

L(Blz;,a},af,yi)

Following the previous analysis for RLHF (Xiong et al., 2024a), we assume the existence of a policy
improvement oracle (Definition 2.5, corresponding to step 2) that can compute the optimal policy

wg based on the reward function 6.

4.1 LOWER BOUND

We provide a lower bound for the RLHF problem with preference feedback. The lower bound is
derived by constructing a hard instance where the reward function is difficult to estimate from the
preference feedback.

Theorem 4.2. For any ¢ € (0,1),7 > 0, and any algorithm A, there exists a KL-regularized
preference learning problem as defined in Section 2.2 with O(1) coverage coefficient and reward
function class R such that A requires at least €( min(Z26N=(9) log Ne(€)))

suboptimality gap of e.

samples to achieve a

)

4.2 THEORETICAL GUARANTEES

We defer Algorithm 2, a 2-stage mixed-policy sampling algorithm for RLHF with preference feed-
back, to Appendix C for conciseness because of its similarity to Algorithm 1. We provide the
theoretical guarantees for Algorithm 2 in the following theorem.

Theorem 4.3. Suppose that Assumption 2.6 holds. For any 6 € (0,1/6) and ¢ > 0, if we
set m = O(n?D? - eBlog(Ng(e.)/d)) and n = O(n/e - eBlog(Ng(e.)/5)) (where e, =
min{ ( 1 TEE 1) then with probability at least 1 — 64 the output policy of Al-

1+c;}n)eB ) 8(1+Cm.n)el
gorithm 2 77 is O(e) optimal.

Remark 4.4 (Comparison with Hybrid Framework). We compare our two-stage mixed sampling
method with hybrid frameworks. From the algorithmic perspective, a hybrid algorithm first learns
from an offline dataset and then requires sufficient online iterations to ensure the performance (Xiong
et al., 2024a). For example, for a finite action space with A actions, the number of online iterations
should be ©(A). In contrast, our method only requires two iterations of sampling from mixed policy
and interacting with the environment. Moreover, the results of hybrid literature depend on both the
coverage coefficient and the structure complexity of the function class (like the dimension for a
linear function class or eluder dimension (Russo and Van Roy, 2013)). Our result only needs the
coverage condition of the reference policy. More importantly, we obtain a sharper bound on the
sample complexity and derive the additive dependence on the coverage coefficient.

Remark 4.5. Although the coefficient e” appearing in sample size m, n can be exponentially large,
this term is caused by the non-linearity of the link function for the preference model, and is common
in RLHF literature (Zhu et al., 2023; Xiong et al., 2024a; Ye et al., 2024b; Song et al., 2024).

Theorem 4.3 shows that the sample complexity of Algorithm 2 is O(n/elog Nz (€/d)) when the
reward scale is a constant and ¢ is sufficiently small. The result indicates that the proposed two-stage
mixed sampling strategy can achieve a suboptimality gap of € with only an additive dependence on
the coverage coefficient D2,

Besides, the algorithm only requires sampling from the reference policy 7y and the intermediate
policy wg , which is more aligned with the practical scenarios where the preference feedback is
0

collected from the human users and it is expensive to collect the data while the language model is
being updated. Our result implies that we may achieve a near-optimal sample complexity by simply
leveraging an intermediate policy to collect more data, and the training process of the reward model
and the policy (language model) can be highly decoupled.
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A PREVIOUS UNDERSTANDING OF KL-REGULARIZATION IN RL

While we mainly focus on the theoretical understanding of KL-regularization in RLHEF, it is also
worth mentioning that our analysis for KL-regularized contextual bandits also contributes to the-
oretical understanding the impact of KL-regularization in reinforcement learning since contextual
bandits can be viewed as a simplified version of markov decision processes (MDPs).

In reinforcement learning, KL-regularization has been widely used to stabilize the learning process
and prevent the policy from deviating too far from the reference policy. In this section, we provide
a brief overview of the existing understanding of KL-regularization in decision-making problems.
From the perspective of policy optimization, KL-regularization captures entropy regularization as
a special case °, which is also an extensively used technique in reinforcement learning literature
(Sutton, 2018; Szepesvari, 2022). There is a large body of literature that has explored the benefits
of entropy regularization or KL-regularization in reinforcement learning (Schulman et al., 2015;
Fox et al., 2016; Schulman et al., 2017a; Haarnoja et al., 2017; 2018; Ahmed et al., 2019). Most
related to our work, Ahmed et al. (2019) provided a comprehensive understanding of the role of
entropy regularization in reinforcement learning, showing that entropy regularization can improve
the training efficiency and stability of the policy optimization process by changing the optimization
landscape through experiments on continuous control tasks (Brockman, 2016).

Theoretically, Neu et al. (2017) provided a unified view of entropy regularization as approximate
variants of Mirror Descent or Dual Averaging, and left the statistical justification for using entropy
regularization in reinforcement learning as an open question. Geist et al. (2019) provided a frame-
work for analyzing the error propagation in regularized MDPs, which also focused on the proof
of the convergence for the policy optimization methods with regularization and lacked of a sharp
sample complexity analysis.

B OTHER RELATED LITERATURE

Analyses for Policy Optimization with Regularization While it is previously unknown whether
regularization can improve the sample complexity of policy optimization without additional assump-
tions, there are some works that provided a sharp convergence rate in the presence of regularization
(Mei et al., 2020; Shani et al., 2020; Agarwal et al., 2020; 2021). However, these works either
assumed the access of exact or unbiased policy gradient or required uniform value function approx-
imation error, which are not the standard case in sample-based reinforcement learning setting.

RLHF Algorithms There are mainly three types of RLHF algorithms: offline, online and hyrbid.
The most well-known offline algorithms are Slic (Zhao et al., 2023), Direct Preference Optimization
(DPO) (Rafailov et al., 2024), Identity-PO (IPO) (Azar et al., 2024) and (SPIN) (Chen et al., 2024).

3We can regard the entropy regularization as a special case of KL-regularization by setting the reference
policy as the uniform distribution.
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They aim to approximate the closed-form solution of the optimization problem on a fixed offline
dataset. For the online algorithms, the most representative one is Proximal Policy Optimization
(PPO) (Schulman et al., 2017b). PPO has been used in the Chat-GPT (OpenAl, 2023), Gemini
(Team et al., 2023), and Claude (Bai et al., 2022). However, the deep RL method PPO is known
to be sample inefficient and unstable, making its success hard to reproduce for the open-source
community. In response to this, there have been many efforts in proposing alternative algorithms
to the PPO algorithm. The Reward ranked fine-tuning (RAFT) (also known as rejection sampling
finetuning) (Dong et al., 2023; Touvron et al., 2023; Gulcehre et al., 2023; Gui et al., 2024) is a
stable framework requiring minimal hyper-parameter tuning, which iteratively learns from the best-
of-n policy (Nakano et al., 2021). This framework proves to be particularly effective in the reasoning
task such as (Gou et al., 2024; Tong et al., 2024). However, the RAFT-like algorithms only use the
positive signal by imitating the best-of-n sampling. To further improve the efficiency, there is an
emerging body of literature that proposes online direct preference optimization by extending DPO
or IPO to online iterative framework (Xiong et al., 2024a; Guo et al., 2024; Calandriello et al., 2024;
Xiong et al., 2024b). Finally, for the third type, the common point of hybrid and online algorithms
is that they both require further interaction with the preference oracle and on-policy data collection.
The difference is that hybrid algorithms start with a pre-collected dataset (Xiong et al., 2024a; Song
et al., 2024; Touvron et al., 2023), while the online algorithms learn from scratch.

RLHF Theory The theoretical study of RLHF can date back to the dueling bandit (Yue et al.,
2012) and follow-up works on MDP (Wang et al., 2023a; Zhu et al., 2023). However, these works
deviate from the practice because they do not realize the significance of KL-regularization and still
choose the greedy policy that simply maximizes the reward. After this line of work, Xiong et al.
(2024a); Ye et al. (2024b); Song et al. (2024) highlight the KL-regularization theoretically and incor-
porates the KL term into the learning objective. However, they circumvent the special advantages of
KL-regularization and still follow the techniques in bandit analysis, thus obtaining a looser bound.
In our paper, we establish a new lower bound and a sharper upper bound for the KL-regularized
framework, thus validating the empirical advantage of KL-regularization. There are also some works
extending KL-regularized RLHF from bandit problems to the Markov decision process (MDP) prob-
lems (Zhong et al., 2024; Xiong et al., 2024b). We expect that our techniques can also be extended
to the MDP setting, which we leave for future work.

C ALGORITHM FOR PREFERENCE FEEDBACK

In the first stage, we sample m context-action pairs {(Z;,a;}, a7, y;)}™, from the Bradley-Terry
model and call the preference oracle to get the preference labels. We then compute the MLE estima-

tor of the reward function 50 based on the preference feedback in line 6. Afterwards, we apply the
planning oracle to compute the optimal policy 7rA based on the reward function 60 in line 7. Line
6 and line 7 correspond to the practical 1mplementat10n of RLHF(Ouyang et al., 2022; Bai et al.,
2022; Touvron et al., 2023) given a dataset of preference feedback.

In the second stage, we sample n context-action pairs {(z;,al,a?,y;)}" ; using the intermediate

policy Wg and call the preference oracle to get the preference labels. We then compute the MLE
0

estimator of the reward function 8 based on the preference feedback from both stages. Finally, we
apply the planning oracle to compute the optimal policy 7Tg based on the reward function 6.

D PROOFS FROM SECTION 3

D.1 PROOF OF THEOREM 3.1

Proof of Theorem 3.1. Consider a simple case when |X| = M and | A| = 2. We suppose that the
context x is drawn uniformly from X at the beginning of each round. Let © be the set consisting of

mappings from X to A = {0,1}. For each § € ©, we have R(0,x,a) = {1;; te ;;Z ; zg;’

where ¢ > 0 is a constant, and 6(x) is the optimal action under context = when the model is 6.

For any (0, 2z,a) € © x X x A, we assume the reward feedback r ~ Bernoulli(R(6,x,a)) when
the model is # and a is chosen under context x.
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Algorithm 2 2-Stage mixed-policy sampling for preference feedback

1: Input: 7, €, Ty, O.
>
fori=1,...,mdo

Sample context Z; ~ do and 2 actions @}, a; ~ mo(+|Z;).

Observe preference label g; € {0, 1} from the preference oracle defined in Definition 2.2.
end for
Compute the MLE estimator of the reward function based on {(Z;,a}, a7, g;) }"q:

AN AN

0y + argmax Y 7 - log o (R(0, %:,a}) — R(0,%:,a;)) + (1 — i) - log o(R(0, %, @} ) — R(0, %1,a})).
0

=1
7: Apply the planning oracle to compute 77 (-|-) o< 7o (+|-) exp (nR(8o,-,-)).
0
>
8: fori=1,...,ndo
9: Sample context x; ~ dg and 2 actions a}, a? ~ ™ ( ;).

10: Observe preference label y; € {0, 1} from the preference oracle defined in Definition 2.2.

11: end for
12: Compute the MLE estimator of the reward function using {(;,a},a?,y;)}", together with

{(Ewazlaazza gl)}zll

0« argmangi logo(R(6,%:,a;) — R(0,%:,a:)) + (1 — i) - log o(R(6, Ti, a;) — R(0, %4, a)))
0

i=1

+Zy1 lOgU 9 xuaz) (073:i7a22)) + (1 - yl) ) IOgU(R(g,Z’i,CL?) - R(971’l7a”}))

13: Output 7r£(|) o mo(+]-) eXp(nR(a, N ))

We pick a pair of model 61, 62 in ©, such that 6 (z) = {?( (3 (2) ii#io’
— 02 = To.

We denote by Py, Ey the probability measure and expectation under the model 6.

Applying Pinsker’s inequality (Lemma F.3), we have for all event A measurable with respect to the
filtration generated by the observations,

|MJ&—P%MH<vgbgl—@%mﬂNm)<\M§M1N = \/2¢2T/M,

where the first inequality follows from the chain rule of KL divergence, and the fact that
Eg, [N (z0)] =T/M.

Set A to be the event that 7y, (61 (z0)|zo) > 1/2. Then we have
Po, (Tout (01 (20)[20) < 1/2) + Pog (ot (02 (0 0) < 1/2) > 1~ [Po, (A) — Pay (A)] > 1 — /2 T/M.

If the model 6 is uniformly drawn from ©, then we have

— AT /2M

| =

Eg~tnif©)Po(mout(0(x0)) < 1/2) >

for an arbitrary x.

Then we consider the following suboptimality gap:

E n [ 0y, x,a) — 11 779 (alx)} Ewwt{ (0., x,a) — 11n7rout(a|x)}
0

7o (alx) n o mo(alz)
[ )l Gon)] g, [, T 0o )]

7r(9 (alz) Tout (@] 2)

1
= —E,»
n o

15
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1 ou
= 7E7Tout, |:1n il *t(a|x):|7
U 7 (alz)

where the last equality follows from the fact that 7 o< mo(alx) - exp(nR(0s, z, a)).
To bound the suboptimality gap, we further have

Tout (a|x)
Eonvnif (@) Emu: [ln W]

1
= EGNUnif(@)M Z ]EaNﬂ'out("f”) |:h’l T* (a‘x)

rzeX

1
> E@NUm‘f(G)M Z Py (mout (0(x)) < 1/2) -
reX

1 1. 14exp(—nc) 1, 14 exp(nc)
- (3 v e 1 e

1, Lexp(=ne) 1, 1+ exp(nc)
2 2 2 2

Note that
drl 14e™ 1 1+4e€* 1 1 1
— {f In + —In } == [ — }
du L2 2 2 2 u=0 2L1+exp(—u) 1+ exp(u)
d? (1 14e™ 1. 1+
Lilf O R S . T
du? [1+4 exp(u)]?

u=0

2 2 2 2

Thus, applying Taylor’s expansion on the right-hand side of (D.1), we have

Towtlalz)] _ 1 /1 2 2 1
E ~Uni EW |:l 7:| > 92 <7 B 2T 2M) "3+ exp(ne)
O~ Unif(©) Ly, (111 ™ (alz) 1 = 2 2 W e 3 + exp(nc)

When e < 1/64n, we can set ¢ = 84/¢/1. To achieve a suboptimality gap of €, we need to satisfy:
1 /1
3 (5 - \/C2T/2M)77262 :

CRT : nM nM
indicating that 7" > g5 = Q(1=).

— = < e
3+ exp(ne)

When € > 1/647, or equivalently, n > 1/64¢, we employ a different lower bound for (D.1) as
follows:

1 1+4exp(—ne) 1, 14+exp(ne) 1. 2+ exp(ne)—+ exp(—nc)
| 21 — 21
2" 2 Tt T 2 " 1
11 (ln exp(nce) + exp(—nc) )
2 2 2
1
> 1(770 —1n2), (D.2)

where the first inequality follows from Jensen’s inequality.

Substituting (D.2) into (D.1), we have
1 Tout (@] 2) 1 /1 1
= —Eovnif@)Enx {1 7]>7~(7—\/2T2M) —In2)-~.
6_77 O~Unif(©) Loy, |11 F*(alaﬁ) =4 2 c / (770 n ) n
Set ¢ = 64¢. Then we have T = Q(M/€?).

D.2 PROOF OF THEOREM 3.3

We start with the following lemma, which provides an on-policy generalization bound for the reward
function. Due to the on-policy nature of the algorithm (i.e., the usage of intermediate wg ), we can
0

leverage the covering number of the reward function class R to derive the generalization error. Since

we are using a fixed policy ﬂg to sample in the second stage, we can derive the generalization error
0

of the reward function as follows:

16
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Lemma D.1 (Generalization error of reward function). For an arbitrary policy 7, a set of context-
action pairs {(z;,a;)}"_, generated i.i.d. from 7, and a distance threshold 0 < ¢, < B, we have
with probability at least 1 — §, for any pair of parameters ¢; and 65,

EW‘R(017I7Q) - R(g%xa a)|2

3282
n

2 n
<= > IR(01, 2, a:) — R0z, 24, 0:)|* + log(2NR (e.)/8) + 10e.B.
i=1

Proof. We first consider an e.-net R¢ of the reward function class R where R¢ = {R(0,-,-)|0 €
©°} with size Ng(e.). For any R(6, -, ) € R, there exists 8° such that || R(0, -, ) — R(6°, -, )|cc <

€c.

By Lemma F.1, for each pair of 6f,05 € ©°¢ (corresponding to 61, 62), we have with probability at
least 1 — 6,

1 n
RO 00 RO 20,00 = B R .0) — R0

i=1

_ \/2Varﬂ|R(9§,a:,a)—R(Gg,x,aﬂz
- n
- \/2BQEW|R(9‘f,x,a) — R(65,z,a)?
- n

log(2/6) + 3%32 log(2/4)

log(2/0) + 3%32 log(2/4)

where the second inequality follows from the fact that R(65, z,a), R(05,z,a) < B.
Using union bound over all ¢, 65 € ©¢, we have with probability at least 1 — 9§, for all 67, 65 € ©°,

1 n
E c _ c 2 _ = c . N c . \)\2
71—|R(91,$,Cl) R(927x?a‘)| n Z(R( 1axzaal) R(927xual))

=1

<

\/4B2]EW|R(9;', x,a) — R(65,z,a)|

2
“ 082N (6)/0) + 2 1og(2Ng (c)/5),

from which we further obtain the following inequality by Lemma F.2,

: 2 32B?
Ex|R(05, 2, a) — R(0S, x,a)|> < - > (R(65, wi,ai) — R(05, i, ) + — log(2Nr (ec) /0).
i=1
(D.3)
Then we can complete the proof by the definition of e-net. O

Next, we provide the following lemma, which gives an upper bound on the cumulative square error
of the learned reward function.

Lemma D.2 (Confidence bound for reward function). For an arbitrary policy 7, and a set of data
{(x,a4,7;) i, generated i.i.d. from 7, suppose that 0 is the least squares estimator of 6,, i.e.,
0 = arg mingeo S (R(0,2;,a;) — r;)?. Then for any threshold €. > 0, with probability at least
1 — ¢, it holds that

> (RO, 2, 05) — R(0.,21,0:))* < 16B2log(2Nr () /) + decnB.

i=1
Proof. We have the following inequality for } ;" ; (R(0, z:,a;) — R(0,, i, a:))2,

> (RO, 2, 0:) — R(0., 21, 0,))?
=1

= Z(R(é\, i, ai) - ri)z - Z(R(H*,ml,az) - ’I“i)2

i=1

17
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n

+ 2 Z(R(é\) T, ai) - R(e*a T, ai)(ri - R(e*a T, al))

<2 Z(R(é} i, a;) — R(0y, 25, 0:))(ri — R(0s, x4, a5)),

where the last inequality follows from the fact that ) . ; (R(0,zi,a;) — )2 <

Z?=1(R(9*, ZTi, ai) — 7“1')2.

We then consider an e.-net R¢ of the reward function class R where R¢ = {R(6, -, -)|0 € ©°} with

size Ng(e.). For any R(6,-,-) € R, there exists 6¢ such that ||R(0,z,a) — R(6°,2,a)|c < €.

From Azuma-Hoeffding inequality, with probability at least 1 — 4, it holds for all § € ©°¢ that
Z(R(Qv L, ai) - R(e*» Lis ai))(ri - R<9*7 Ti, al))

=1

<.,|2B? Z R(0,z;,a;) — R(04, 24,0;))%10g(2Nr (e.)/9).

Then we further have with probability at least 1 — ¢, there exists | R(6¢, -, ) — R(@, )|l < € such
that

n

Z(R(é\, xiy ;) — R(Ox, 24,a;)) (r; — R(Ox, 4, a;))

i=1

<,.|2B? Z R(0,x;,a;) — R(04«,x;,0;))?log(2Nr (e.)/6) + 2e.nB,

which implies that

n

> (R0, 3i,a:) — R(0., 2, 0:))* < 16B%log(2Ng () /6) + decnB (D.4)
=1
from Lemma F.2. O

With the above lemmas, we are now ready to prove the following lemma that bounds the estimation
error of the reward function R(6, -, -) under the sampled policy Wg .
0

Lemma D.3. Let 50 be the least squares estimator of the reward function based on the data
{(29,a2,79)}™ | generated from 7 as defined in Algorithm 1. Then for any threshold €. > 0,

with probability at least 1 — 29, we have

—~ B2
B |R(0,2,a) = (0., z, a)l < log(2Ng (€.)/8) + 10e.(1 + m/n)B
0

Proof. By Lemma D.1, we have with probability at least 1 — 6, the following upper bound holds for
]Eﬂ'g |R(617 z, CL) - R(92a Z, a’)|2’
0

Eﬂ'g |R(917$a CL) - R(927I7a)‘2
0

2 — 2B2
< > IR(01, 2, a:) — R0z, 24, a:)| + 3 log(2Ng (e0)/8) + 10e.B.  (D.5)

By Lemma D.2, with probability at least 1 — §

> IR(0., 71 0:) — R(0, 25, a:)* < 16B? log(2NR (e,)/0) + de(n +m)B. (D.6)
Then we can complete the proof using a union bound and substituting (D.6) into (D.5). O

18
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Lemma D.4. If m > 12872 D?B? -log(2Nx (€.)/9)), and there exists a positive constant ¢, , > 0
such that n = ¢,;, ,n in Algorithm 1 and Assumption 2.6 holds, then by taking e, < min{B, (8(1+
Cm,n)Bn?D?) 71}, with probability at least 1 — 34, we have

0|R(Bo. x,a) = R(b,x,0)| <1, 9|R@,,0) — R(O..z,0)| <1
for any pair (z,a) € X x A such that 7wy (a|z) > 0.

Proof. By Lemma D.1, with probability at least 1 — 4, for all 61, 05 € ©, we have

2 322
Er|R(01,2,a) — R(02, x, a)|* < - Z: |R(91,x?,a?) — R(92,$?,a?)|2 + ry log(2Nx (€.)/9).

By Lemma D.2, with probability at least 1 — §, we have

Z |R(60, 20, a0) — R(6,,22,a%)> < 16B?10g(2Nz (c.)/8) + decm

Also, with probability at least 1 — J, we have

Z IR(6,,20,a0) — R(0,20,a0)|> < 16B%log(2Ng (€.) /) + 4e.(m + n)B.

Similar to the proof of Lemma D.3, we have if m > 128n?D?B? - log(2Ngr (€.)/d), n = ¢m.nn,
then with probability at least 1 — 34,

Ero|R(0s, x,a) — R(aomc,aﬂ2 < 1/772D2, Er|R(0x, z,a) — R(é\,gc,a)|2 < 1/772D2.

which implies that 77|R(§0,1:,a) — R(04,z,a)] < 1 and 77|R(§,a:,a) — R(04,2,a)] < 1 for all
(z,a) € X x Asuch that mp(a|z) > 0. O

Proof of Theorem 3.3. We have

1. 7y (alz) alz)
£y [0 00) - S ] - g - a:cJ
1 N Xp(n (0., 2,a) ) 1 exp nR(G*,x,a))
= 5. [1 =7 (al2) ] e [1 wgm\x) ]
= %Exwdo [InZ] (z)] — %]Emwd0 [In Zg(:v)] —Epd, Z wg(a|x) - (R(0s,2,a) — R0, z, a))]

acA

For an arbitrary reward function f : X x A — R, let A(z,a) = f(x,a) — R(0«,x,a). Consider
the following first derivative of J(f) = In Z{(z) — n 3 ,c 4 7f(alz) - A(z,a), where Z{(z) =

>acamolalz) -exp(n - f(z,a)) and 7} (a|z) o< mo(alz) - exp(n - f(z,a)).

0 nZ! 7'l (alx
oty N )= 02 milala) e
1
=7 -mo(alz) exp(n - f(x,a)) -0 —n-7}(alz)
N mo(alz) - exp(n - f(z,a)) . Ny [mo(alz) .exp(n.f(x,a))]z |

S mo(d’|z) - exp(n - f(z,a")) .n.A(%a,)_Wo(alx)~exp(77~f(:v,a))

7 7
a’'€ A\{a} Zf(x) Zf('r)

19



Under review as a conference paper at ICLR 2025

= —n*m}(alr)Alx,a) + n’[7}(al2)]” - Alw,a) + 07 Y 7} |z)w](alr) Az, o).
a’€A\{a}

Therefore, there exists f(-,-) = 7R(§, )+ (1 —)R(0,-,-) such that (v € (0,1))

IE$Ndo [J(R(é\a * )) - J(R(H*, ) ))] - %Elfvdo |:772 Z ﬂ}](a|’£) Y (R(é\v T, CL) - R(e*v Z, CL))2:|
acA

+ %EM {7772 S wlasln) 7 (azl2) (RO, 2, a1) — R(0., ,01)) (R(0, %, a2) — R(G*,x,ag))]

a1€AazeA
>N Eﬂ}’ [(R(é\,:r,a) - R(Q*,x,a))z}
From Lemma D.4, if m > 128n>D?B? - log(2Ng(e.)/d), for any (z,a) € X x A such that
mo(alx) > 0, it holds that
R0, x,a) — R(0.,x,0)| <1, n|R(O,z,a) — R(0,,z,a)| <1,

which means that for any (x,a) € X x A

Let ¢, = 1111r1~{(1_~_cf1 5 §(iTe 1)Bn2D2,B}. From Lemma D.3, if m > 128p2D?B? .

log(2Ng(€.)/8) and n > n/e - B?log(Nr(e.)/d)) and n = ¢, ,m then with high probability
the output policy wg is O(€) optimal. O

E PROOFS FROM SECTION 4

E.1 PROOF OF THEOREM 4.2

Proof of Theorem 4.2. The proof follows a similar construction as the one for Theorem 3.1. Con-
sider a simple case when |X| = M and |A| = 2. We suppose that the context x is drawn uni-
formly from X at the beginning of each round. Let O be the set consisting of mappings from X" to

A = {0,1}. For each § € O, we have R(0,x,a) = {(C) ia ; Zéx§7
a ),

and 0(x) is the optimal action under context = when the model is 6.

92(‘1:) if]}?éxo,
1—0q(x) ifx=x.

where ¢ > 0 is a constant,

We pick a pair of model 61, 05 in ©, such that 6, (z) = {

We denote by Py, £y the probability measure and expectation under the model 6.

Applying Pinsker’s inequality (Lemma F.3), we have for all event A measurable with respect to the
filtration generated by the observations,

[Bo, (A) — P, (A)| < /Iog(1/2 + e/ + e~/4)Eg, [N (0)] < \/PEo, [N (w0)] = /PT/M,

where the first inequality follows from the chain rule of KL divergence, and the fact that
Eo, [N (z0)] =T/M.

Set A to be the event that 7, (01(x0)|z0) > 1/2. Then we have

Bo, (Tout (91 (20) 0) < 1/2) + Bo, (Tout (9 (o) 20) < 1/2) > 1 — [By, (A) — Py, (4)| > 1 — \/T/IL.

If the model 6 is uniformly drawn from ©, then we have

—\/@T/AM

Eg~tnif©)Po(mout(0(x0)) < 1/2) >

M| —
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for an arbitrary x.
Then we consider the following suboptimality gap:

] g [0~ L Tl

Bag, | F(O.rzi0) £ 0 0" molala)

_ EEH {ln a|x exp(n 0, 7,a )] B EIE%M [ln mo(alx) -exp(nR(G*,:ma))}
no 7r0* (alz) n Tout (a|T)
=g, [ Telol))
U m*(alz)

where the last equality follows from the fact that 7, o< mo(alz) - exp(nR(6s, z, a)).
To bound the suboptimality gap, we further have

Tout (a|x)
Eontnif©)Eryu [hl W}

1 Tout (@] 2)
= Eovmif©) 37 D_ Barmou(la) [m W}
TEX
1 1. 1+ exp(—nc 1. 1+ exp(nc
2 Bonvnir(e) 77 > Po(mour(0(x)) < 1/2) - [2 In % +5ln 2(7’)}
TEX
1 1 1 - 1 1
> (7 - \/CQT/4M) [f p LHexplzne) L, 14 eXp(”C)} (E.1)
2 2 2 2 2
Note that
i{lln1+e‘“+llnl+e“} _1[ 1 _ 1 } _0
du L2 2 2 2 u=0 2L1+exp(—u) 1+exp(u)llu=o
1 14e ™ 1. 1+e" exp(u)
— | =1 —1 = .
du? [2 Nty ] [+ exp(u)2

Thus, applying Taylor’s expansion on the right-hand side of (E.1), we have

ou 1 1 1
EGNUnif(e)Eﬂ'out {ln W} > bR (5 - C2T/4M)772@2 .
™

(alz) 3 + exp(nc)

When e < 1/64n, we can set ¢ = 8+/¢/1. To achieve a suboptimality gap of e, we need to satisfy:

L (3 veron) e
5125 :Q(#)

When € > 1/647, or equivalently, > 1/64¢, we employ a different lower bound for (D.1) as
follows:

- < 6,
34+ exp(nc) ~ K

indicating that 7" >

1 1+4exp(—nec) 1, 1+exp(ne) 1. 2+ exp(ne)+ exp(—nc)
21 —1 =—-1In
2 " 2 Tt T 2 1
11 (ln exp(ne) + eXP(*W))
2 2 2
1
> 1(770 —1n2), (E.2)

where the first inequality follows from Jensen’s inequality.

Substituting (E.2) into (E.1), we have

1 Tout (a|x) 1 /1 1
> “Epvrmi o, [In 2N S = (2 SETI ) (e — In2) - =
€= n 0~Unif(O) out|:n 7T*(CL|.T) ] =4 (2 C / )(770 n ) n

Set ¢ = 64¢. Then we have T' = Q(M/€?).

21



Under review as a conference paper at ICLR 2025

E.2 PROOF OF THEOREM 4.3

First, we provide the following lemma for the connection between the likelihood loss and the reward
difference, which is a key step to upper bound the reward difference between 6 and 6..

Lemma E.1. For an arbitrary policy 7, and a set of context-action pairs {(z;,a},a?, y;)}" , gen-
erated i.i.d. from the Bradley-Terry model and 7, we have with probability at least 1 — 4§, for any
s<n,

1 s
5 Z’C(mxl?azl?a??yl) - £(0*|xi;a%7a?7yi)

=1

< log(1/5) _fe*BZ R(6,z:,02) — R(6,z5,a})] — [R(6., x:,a2) — R(B., 24, al)])”

Proof. Applying Lemma F.4 to the sequence

{_1 o(R(0y, zi,al) — R(0y, z;,a2))

1
2 (1—u)1
o(R(O,z1,al) —R(0,zr,a2)) 2 ¥)os

3

—yil
23/ 0g

We have with probability at least 1 — ¢, for all s < n,

)

o(R(6., :,03) — R(B., wi,a})) | "
o(R(8,z;,a2) — R(0,x;,al))

7 =1

1 s
5 Z‘C(mxlv 0%17 a?vyi) - £(9*|xzv 0%17 a?,yi)

i=1

< log(1/6) +Zlog<¢ (R0, 2) — R0 1,a1)) - o (RO, 21, 02) — R(6,,a1)

+ \/ e*axm z R(G*,xi,a?)) : O—(R(evxiva}) - R(t‘),xi,a?))>

— log(1/6) — % S <\/U(R(9*,xi, @) — R(0.,2:,a})) — \Jo(R(0, x;,02) — R(0, ;. ag))>2

i=1

< IOg(1/§) - é Z(J(R(G*v Li, a”L2) - R(a*a Zi, azl)) - O'(R(@, Zi, a?) - R(Gv Zi, aﬂl)))z

=1
< log(l/(S - 7€_B Z 0 y Ly A 12) - R(07xi7azl)] - [R(e*axlva?) - R(H*axiaazl)])27

where the equality follows from the fact that o(r) + o(—r) = 1 and the last inequality holds since
o'(ry=o(r) - (1—o(r)) > e Bforallr € [-B,B]. O

To further control the error bound for the reward function with the help of Lemma E.1, we introduce
the following lemma to show that the likelihood function class £ can be well-covered by the e-net
of the reward function class K.

Lemma E.2 (Covering number of £). For any €. > 0, consider an e.-net R® = {R(0, -,-)|0 € ©°}
for the reward function class R with size N (e.). Then for any 6 € O, there exists 8¢ € O such
that for any s € [n],

Z‘C(mxiaa’}aa?ayi) < Z‘C(ec|xi7a’z‘17a’§7yi) + 2560'

i=1 i=1

Proof. For any r € R, we have

dlog(o(r)) 1 L o) — 1 ot
dr _0(7‘) (r)-(1 (r) =1 (r) € (0,1).

Thus, forany § € ©, 7 € X,a',a? € Aand y € {0, 1}, there exists ¢ € O° such that
|£(9|$7a17a27y) _‘C(ac‘x’al’a?’y)‘
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< |[R(8,z,a") — R(0,,a%)] — [R(6°, x,a") — R(0°, z,a%)]| = 2¢.

O

With the above two lemmas, we are now ready to provide the confidence bound for the MLE esti-
mator of the reward function.

Lemma E.3. Consider a set of context-action pairs {(z;, a},a?,y;)}"_, where labels {y;}7" ; are

generated independently from the Bradley-Terry model. Suppose that 6 is the MLE estimator as
defined in Definition 4.1. We have with probability at least 1 — 9,

n

S TR, wi,a7) = RO, 2i,a})] — [R(0x, x1,07) — R(0+, z1,a1)])” < O(e” log(Nr (ec)/8) + " nee).

i=1

Proof. By Lemma E.1 and Lemma E.2, we have with probability at least 1 — §, for any § € O,
1 n
5 Z l"’(e'x“ azla CL?, yz) - ‘C(e* ‘xiv azl7 a?, y’b)

< log(Nr(e:)/d) — 76*3 Z R(0,zi,a}) — R(0,zi,a})] — [R(0«, xs,a7) — R(Os, 2, a; )]) + O(nec).

Since  is the MLE estimator, we have 7| £(6|z;,al, a2, y;) — L(0.4|2:,al, a2, y;) > 0, which
further implies

n

0< lOg(NR(EC)/(S) - éeiB Z ([R(97zza a%) - R(vaiv azl)} - [R(Q*,:L'Z,G,%) - R(G*,jS, azl)DQ + O(nec).

Then we have

n

ST (IR, zi,a?) — RO, 1,0})] — [R(0s, 25, 02) — R(0,,z1,a)])* < O(eP log(Nr(e0)/6) + ePnee).

=1

O

Finally, we provide the on-policy confidence bound for the squared reward difference between the
MLE estimator # and the optimal reward function 6.

Lemma E.4. Consider an arbitrary policy 7, and a set of context-action pairs {(z;, a}, a?,y;)}" ;

generated i.i.d. from the Bradley-Terry model and 7. Suppose that 0 is the MLE estimator. We have
with probability at least 1 — 24, there exists a mapping b : X — R such that

~ 1
E[(R(8,2,a) — R(0.,x,a) — b(z))’] <O (neB log(Nr (e.)/8) + eBec>.
Proof. By Lemma E.3, we have with probability at least 1 — 4,

Z 9 , L, @) —R(@xi,a})]—[R(9*,$i,a?)—R(9*yxz, Z)]) < O(eBlog(Ng(e.)/6) + eBne.).

i=1

We consider an e.-net R¢ = {R(6, -,-)|0 € ©°} for the reward function class R with size N (e.).
For any R(6, -, ), there exists R(6¢, -, -) such that

|R(97 €z, a’) - R(067 €z, (1)| < 0(6(1)
forallz € X,a € A.
Applying Lemma F.1, with probability at least 1 — §, we have

Z ([R(6°, 24, a%) — R(6°, 24, al)] — [R(0., x5, a2) — R(0s, 5,a})])”
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— nEandoEat a2or [(R(HC, r,a') — R(0,,x,a") — R(0°,x,a%) + R(0,,, aQ))z]

< Z4B2Ex~doEa1yazN7,[(R(&C,:mal) R(0.,x,a') — R(6°,x,a2) + R(0«,x,a ))2] log(Ng(e.)/9)

i=1
8 2
+ - B log(Nr (<) /0)

for all 6¢ € ©°.

From Lemma F.2 and the definition of ©¢, we further have

EwdeEal’azww [(R(é\, r,a') — R(0.,z,a") — R(é\, z,a%) + R(0,,, az))2] (E.3)
< O(- B log(N()/5) + S (B0, 22 02) — RO 20va])] — (RO, 22, 07) — R(Br20a))])’ + Beo),
- (E4)
from which we can further derive that
EzdeEal aZeom [(R(@,x, a') — R(0,,x,a') — R(@, z,a%) + R(6,,z, az))z}
< 0P 1og(Nr(c0)[8) + ¢c.)
with probability at least 1 — 2 from Lemma E.3 and the union bound.
We can then complete the proof by setting
b(x) = Eg2on(|a) [R(é\, z,a%) — R(0,,x, a2)}.
O

Lemma E.5 (Coverage of 7, and 75 by 75 ). If m > 32n2D%eB log(Ng(e.)), n = Cm nm and
€ < m in Algorithm 2 and Assumption 2.6 holds, then with probability at least 1 —4,
there exists b : X — R and by : X — R such that

77|R(§0>937a) - R(0*7x7a) - bl(x)| < 17 W‘R(a%a) - R(G*,x,a) - bQ(x)l <1
forall x € X, a € A such that my(a|z) > 0.

Proof. By Lemma E.3 and the union bound, we have with probability at least 1 — 4, it holds that

m

> (R0, 5:,02) — RO, 5, a})] - [R(60., 7:,02) — R(6.,7:,a}))°
i=1

+ ([R(gv Ty, a?) - R(é\’ xi’azl)] - [R(g*vxiv a?) - R(e*’xiﬂa%)])z

i=1
< O(ePlog(Nr(e.)/0) + eB(n +m)e.). (E.5)
Consider an e.-net R¢ = {R(6, -,-)|0 € ©°} for the reward function class R with size Nz (e.). For
any R(0, -,-), there exists R(0°, -, -) such that
|R(0,2,a) — R(0°,x,a)| < O(e.)
forallz € X,a € A.
Applying Lemma F.1, with probability at least 1 — §, we have

m

ST ([R(6°,7:,a2) — R(6°,5:,a})] — [R(6x, 21, 02) — R(0, 25, a})])’

=1

—mEsndoEat a2m, [(R(@C, x, al) — R(f.,z, al) — R(6°, x, a2) + R(0., x, ag))Q]
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< JZ4BQEr~doEal,a2~wo [(R(6°,2,a') — R(0,,z,a') — R(6°,2,a%) + R(0s,x,a ))2] log(Nr(e.)/9)
i=1

8
+ §B2 log(Ng(e.)/0)
for all 6¢ € ©°.

From Lemma F.2 and the definition of ©¢, we further have

EzndoEat g2mn [(R(é,:r, a') — R(0,,x,a") — R(a,x, a®) + R(0,, x, a2))2]

< O(%BQ IOg(NR(EC)/é) + %Z ([R(é\v ?Ezaa?) - R(é: 527511)] - [R(e*v:fwa?) - (9*,,@2, z)]) + BEC)
= (E.6)

Substituting (E.5) into (E.6), we have with probability at least 1 — 24,
EondoEar a2, [(R(é\, z,a') — R(6,,z,a') — R(é\, r,a?) + R(0,,z, az))Q]
< O(%eB log(Ng(e.)/d) + P - ntm “€c).
Therefore, there exists a mapping bs : X — R such that

Ex, [(R(@\,x, a) — R(0,,z,a) — b2(.’1)))2] < O(%eB log(Ng(e.)/d) + e - ntm, c)-

m

From Lemma E.4, we have with probability at least 1 — 24, there exists a mapping b; : X — R such
that

~ 1
Er, [(R(60,2,a) — R(0s,2,a) — bl(x))2] < O(EeB log(Ng (e:)/8) + € (1 + cpn)ec)-
Hence, we can complete the proof by a union bound over the two events and Assumption 2.6. [

Proof of Theorem 4.3. Let b be the mapping defined in Lemma E.4 for 0 We have

E {R(G ) — 11 (am} E, . {R(G ) — i a|x }
ol ws Ty @ = ey Ty @
o o(alz) g
[l [l 00 >] g, [ln anww»]
o g, (alz) n e 3 (al)
1 1 ~
= ;Egmdo [ln Zy (x)] - 77]EgmdO [1n Z’7 —Fopmd, [ Z 7rA (alz) - (R(Ox,x,a) — R(Q,x,a))].
a€A

For an arbitrary reward function f : X x A — R, let A(z,a) = f(x,a) — R(04,x,a). Consider
the following first derivative of J(f) = InZ}(z) — n>_,c 4 7}(alz) - Az, a), where Z}(x) =
S eamo(alz) - exp(n - f(z,a)) and 7(alz) ox molale) - exp( - £, 0))

Similar to the proof of Theorem 3.3, we still have

0
FINE) [an” n;ﬂ'f alz) - ,a)
1
=7 -mo(alz) exp(n - f(z,a)) -n—n-7}(alz)
N mo(alz) - exp(n - f(z,a)) . Ny [mo(alz) .exp(n.f(x,a))]z |

mo(alz) -exp(n - f(z,a))
Z}(x)

+n Z ﬂo(aI)'?Tf’((x”)‘f(x’a))~17.A(a:,a')‘
a’€ A\{a} !
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= —’mj(ale)Ale, @) + P [rf(ale)]® - Alz,a) +0° Y wj(a'l)n}(ale) Ale, o).

a’'€A\{a}
Note that
J(R@,z,")) = an" UZWA alz) - (R(B, z,q) — R(0,,%,a))
acA
=1In Z mo(alx) - exp(n (R(0 z,a) —b(z))) —n Z ’R'A alx) - 0 ,x,a) — R(0,,z,a) — b(x))
acA acA

= J(R(B,z,-) — b(x)).

Therefore, there exists f(-,-) = Y[R(,-,-) — b(-)] + (1 — 7)R(6,, -,-) such that (y € (0,1))
Byt [/ (RO, 7)) = J(R (02, )]

1 ~
= —Eyd, {—n2 Z mf(alz) -y (R(0,2,a) — R(0.,z,a) — b(x))2
" a€A
+ EmNdO {fyn Z Z 7} (a1]z)m} (az|z) (R(g,x, a1) — R(0,z,a1) — b(z))
aj€AazeA

(R0, z,as) — R(0.,x,as) — b(x))}

>—n-Em [(R(é\, z,a) — R(0.,z,a) — b(z))Q]

f

From Lemma E.2, if m > 322 D%eB -log(2Nx (¢.)/d), forany (z,a) € X x A such that 7o (a|z) >
0, it holds that
’I’}|R(§0,$,&) - R(G*,x,a) - b1($)| < 17 77|R(§,ac,a) - R(0*7x7a’) - b2($)| < 1a

which means that
m

~+3

<e

)3

™

jasy

0

Let ¢, = min{ }. From Lemma E.4, under the condition of the theo-

€ 1
2(14cmtn)eB’ (L+em,n)eBn? D?
rem, with high probability the output policy Wg is O(€) optimal. O
E.3 PROOF OF THEOREM ??

In this subsection, we also discuss our result under the local coverage condition (Definition 2.8).

Lemma E.6. Let 0 be the MLE estimator defined in Algorithm 2. Then for any threshold €. > 0,
with probability at least 1 — 24, it holds that

+
BTN )

B, (R 7,0) — R(6.,7,) ~ b(z))?] < O(--cPlog(Nr(ec) [8) + " - "

for some mapping b from X — R.

Proof. From Lemma E.3, with probability at least 1 — 4,
Z R(0,%;,a%) — R(0,%;,a))] — [R(0.,7:,a2) — R(6.,7:,a})])
< O(c® 0BV (e0)/3) + ¢ + e,

Following the same argument as (E.4) in the proof of Lemma E.4 and using the union bound, we
have with probability at least 1 — 20,

EzndoEat g2am0 [(R(g, z,a') — R(0.,z,a") — R(a, z,a%) + R(0., , az))2]
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< O(LeP log(Nr(e)/0) + €7 - E1 ).
m

Then we can complete the proof be setting

b(z) = Er,[R(0, x,a) — R(6,,x,a)].

F AUXILIARY LEMMAS

Lemma F.1 (Freedman inequality). Let M, v > 0 be fixed constants. Let { X} ; be a stochastic
process, {G; }; be a sequence of o-fields, and X; be G;-measurable, while almost surely

n
E[X;]G;] = 0, X[ < M, and Y "E[X?|G; 1] < v.
1=1

Then for any § > 0, with probability at least 1 — 6, it holds that
= 2
> X < /2vlog(1/6) + 3 M log(1/6).
i=1

Lemma F.2. Suppose a,b > 0. If 22 < a + b - x, then 22 < 2b% 4 2a.

Proof. By solving the root of quadratic polynomial ¢(z) := x? —b-x —a, we obtain max{z, z2} =

(b++vb? + 4a)/2. Hence, we have © < (b+ /b2 + 4a)/2 provided that ¢(x) < 0. Then we further
have

22 < -2 (0% +b° + 4a) <2V + 2a. (E.1)

(b+ Vb2 —|—4a)2 <

=
| =

O

Lemma F.3 (Pinsker’s inequality). If P;, P, are two probability measures on a common measurable

space (€2, F), then it holds that
1
(1, P2) < 4/ SKL(P1|[P2),

where §(-, ) is the total variation distance and KI(-||-) is the Kullback-Leibler divergence.

Lemma F.4 (Lemma A.4, Foster et al. 2021). For any sequence of real-valued random variables
(X¢)i<r adapted to a filtration (F; )<, it holds that with probability at least 1 — §, forall 7" < T,

T T’

ZXt < ZIOg(Et—l[GXt]) + log(1/6).

t=1 t=1
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