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Bridging data gaps of rare conditions in
ICU: a multi-disease adaptation approach
for clinical prediction
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Artificial Intelligence has revolutionised critical care for common conditions. Yet, rare conditions in the
intensive care unit (ICU), including recognised rare diseases and low-prevalence conditions in the ICU,
remain underserved due to data scarcity and intra-condition heterogeneity. To bridge such gaps, we
developed KnowRare, a domain adaptation-based deep learning framework for predicting clinical
outcomes for rare conditions in the ICU. KnowRare mitigates data scarcity by initially learning
condition-agnostic representations from diverse electronic health records through self-supervised
pre-training. It addresses intra-condition heterogeneity by selectively adapting knowledge from
clinically similar conditions with a developed condition knowledge graph. Evaluated on two ICU
datasets across five clinical prediction tasks (90-day mortality, 30-day readmission, ICU mortality,
remaining length of stay, and phenotyping), KnowRare consistently outperformed existing state-of-
the-art models. Additionally, KnowRare demonstrated superior predictive performance compared to
established ICU scoring systems, including APACHE IV and IV-a. Case studies further demonstrated
KnowRare’s flexibility in adapting its parameters to accommodate dataset-specific and task-specific
characteristics, its generalisation to common conditions under limited data scenarios, and its
rationality in selecting source conditions. These findings highlight KnowRare’s potential as a robust
and practical solution for supporting clinical decision-making and improving care for rare conditions in
the ICU.

Rare conditions in the intensive care unit (ICU), including both formally
classified rare diseases and low-prevalence conditions in the ICU1, can be
life-threatening or chronically debilitating, contributing to a high burden on
health systems2. Patients with rare conditions often face challenges such as
limited access to specialised clinical expertise, frequent misdiagnoses, and
prolonged diagnostic delays3,4. These factors collectively contribute toworse
clinical outcomes, such as a longer stay in the ICU, higher readmission rates,
and increased post-dischargemortality compared to common conditions5,6.
Consequently, rare conditions place a greater per-patient strain on critical
care resources than common conditions.

Although artificial intelligence, especially deep learning (DL), has
significantly advanced critical care analytics for common conditions such as
septic shock and heart failure7,8, its application to rare conditions in the ICU
remains limited. Existing DL models for common conditions frequently
underperform for rare conditions due to insufficient training data, pre-
venting the development of robust and generalisable predictive models9.
Adding to this problem, the geographic dispersion of patients contributes to
the variability in clinical practices and observations across institutions5.

Meanwhile, rare conditions often exhibit complex clinical manifestations
due to multisystem involvement, affecting multiple organs or physiological
pathways2. Collectively, these factors result in substantial intra-condition
heterogeneity.

Recent efforts to improve predictive performance for rare conditions
focusedmainly on overcoming data scarcity, employing approaches such as
few-shot learning10,11, federated learning12,13, large-scale pre-training9,14–17,
and synthetic data generation18,19. Although these approaches have shown
potential in mitigating data scarcity, they often overlook intra-condition
heterogeneity.Moreover, existingmethods develop one-size-fits-allmodels,
which canwork for all conditions or amixture of conditions. This paradigm
further compromises model performance, especially given the diverse
presentations and pathophysiology of rare conditions20. Therefore, a model
designed to bridge the gaps caused by data scarcity and intra-condition
heterogeneity in the prediction of outcomes for rare conditions is critical.

In this study, we introduce KnowRare, a DL framework specifically
designed to bridge the challenges posed by data scarcity and intra-condition
heterogeneity in rare conditions. To address data scarcity, KnowRare first

Department of Engineering Science, University of Oxford, Oxford, UK. e-mail: mingcheng.zhu@eng.ox.ac.uk

npj Digital Medicine |             (2026) 9:7 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-025-02176-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-025-02176-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-025-02176-y&domain=pdf
mailto:mingcheng.zhu@eng.ox.ac.uk
www.nature.com/npjdigitalmed


learns condition-agnostic representations through self-supervised pre-
training across diverse conditions. To address intra-condition hetero-
geneity, KnowRare employs knowledge-guided domain adaptation,
enabling it to learn robust representations that capture the heterogeneity
within the rare conditions. This adaptation is guided by a condition
knowledge graph (KG), which encodes clinical similarities among condi-
tions and enables the selective transfer of relevant knowledge from clinically
similar conditions.The framework comprises threekeymodules: condition-
agnostic pre-training to establish general time-series representations,
knowledge-guided domain selection to identify clinically similar source
conditions, and joint adversarial domain adaptation to align patient-level
time-series variables and outcome distributions across the selected condi-
tions. Thesemodules enableKnowRare to provide robust condition-specific
predictions for rare conditions in the ICU.

We validatedKnowRare for five clinical prediction tasks, including 90-
day mortality, 30-day readmission, ICUmortality, remaining length of stay
(LoS), and phenotyping, using the MIMIC-III and eICU datasets21,22.
KnowRare consistently outperformed baseline methods in predicting out-
comes for rare conditions, demonstrating superior predictive performance
and robustness. These findings highlight the effectiveness of KnowRare in

overcoming critical gaps caused by data scarcity and intra-condition het-
erogeneity. By providing accurate, disease-specific predictions, KnowRare
has implications for clinical decision-making, improving patient outcomes,
and optimising resource allocation tailored to rare conditions in the ICU.

Results
Overview of KnowRare
KnowRare (Fig. 1) addresses the challenges of scarcity and heterogeneity in
predicting the outcomes of rare conditions by integrating both condition-
agnostic pre-training and condition-specific adaptation. The framework
consists of three stages. First, structured EHR data are extracted and pre-
processed. The similarities of the conditions are then calculated and inte-
grated into a heterogeneous condition KG that captures clinical
relationships among conditions in general. Second, KnowRare learns
condition-level representations using two modules: (i) the condition-
agnostic pre-training module trains a time-series encoder through self-
supervised next-step prediction, allowing it to capture general patterns
independent of specific conditions, and (ii) the condition KG embedding
module generates condition embeddings that represent relationships
among conditions. Both modules run in parallel. Third, rare condition

Fig. 1 | Overview of the KnowRare framework. KnowRare operates in three steps:
a Data extraction and graph construction: Structured EHR data, including demo-
graphic data, vital signs, laboratory tests, diagnoses, and drug records, are extracted
and preprocessed through aggregation, imputation, and normalisation. Condition
similarities are quantified from three perspectives: diagnosis co-occurrence (cate-
gorical), record variable distributions (continuous), and shared drug usage (cate-
gorical). These similarities are integrated into a heterogeneous condition knowledge
graph (KG), capturing comprehensive clinical relationships. b Condition-level
representation learning: This step involves two modules. The condition-agnostic
pre-trainingmodule trains a time-series encoder via self-supervision to learn general
temporal patterns independent of specific conditions, providing robust initial latent
representations. Concurrently, the condition KG embedding module uses KG
embedding techniques to generate condition embeddings that represent clinical
similarities among conditions. c Rare condition adaptation: This step optimises

patient-level representations. First, the knowledge-guided domain selection module
identifies the top-k source conditions most similar to the target rare condition by
calculating cosine similarity between condition embeddings. Subsequently, the joint
adversarial domain adaptation module fine-tunes the pre-trained time-series
encoder with the target rare condition and the selected top-k source conditions. The
encoder produces patient-level latent representations (hT), integrating condition-
agnostic knowledge with insights derived from similar source conditions. Based on
these latent representations, a classifier predicts clinical outcomes (by; mortality,
readmission, length of stay, etc.). Concurrently, a discriminator network is trained
adversarially to distinguish whether the latent representations and predicted out-
comes originate from patients with the target rare condition or the selected source
conditions. This adversarial process ensures the encoder generates robust repre-
sentations, which improve predictive performance for heterogeneous rare condi-
tions in the ICU. The figure is created using Microsoft PowerPoint.
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adaptation optimises patient-level representations through two steps: (i)
multi-source domain selection identifies the top-k conditions that are
clinically similar to the target rare condition using cosine similarity between
condition embeddings, and (ii) joint adversarial domain adaptation fine-
tunes the pre-trained encoderwith patient samples fromboth the target rare
condition and the selected conditions. This process aligns latent repre-
sentations and prediction outcomes across domains, enabling accurate
patient-level outcome prediction by combining generalisable knowledge
with transferable insights from clinically similar conditions.

Data description
We evaluated KnowRare using two publicly available ICU EHR datasets:
MIMIC-III21 and eICU22, both providing granular clinical records suitable
for studying rare conditions in the ICU. MIMIC-III is a large, single-centre
critical care database comprising health-related data from 46,520 patients
admitted to Beth Israel Deaconess Medical Centre between 2001 and 2012.
In contrast, eICU is a multi-centre dataset collected from more than 200
hospitals, offering broader variability in patient demographics, phenotypes,
and treatment protocols. Following established conventions23,24, we classi-
fied conditions as rare if their prevalence is fewer than one case per 2000
patients within each dataset. The statistics of the datasets are summarised in
Table 1, and the variables extracted from each dataset are detailed in Sup-
plementary Table S1. The condition is defined using the first three levels of
ICD-9-CM code, with further details provided in Supplementary D.

For MIMIC-III, we evaluated two prediction tasks: (1) 30-day read-
mission, predicting whether a patient will be readmitted to the hospital
within 30 days after discharge, using the final 48 h of hospital admission
data; and (2) 90-day mortality, predicting whether a patient will die within
90 days after discharge, also using the final 48 h of hospital admission data.
For eICU, we assessed three tasks: (1) ICU mortality, predicting whether a
patient will die during their ICU stay, using the first 24 h of ICU admission
data; (2) Remaining LoS, predicting the remaining duration of stay in the
ICU using the initial 24 h of data, with targets categorised into 10 intervals:
less than 1 day, 1–2 days, 2–3 days, 3–4 days, 4–5 days, 5–6 days, 6–7 days,
7–10 days, 10–14 days, and more than 14 days; and (3) classification of
phenotypes, predicting the presence of 25 acute care phenotypes using the
first 24 h of ICU admission data. All tasks adhere to established benchmark
definitions25,26.

We selected the ten least prevalent conditions in the ICU, including
both recognised rare diseases and low-prevalence conditions, based on
two criteria: (1) prevalence of the condition less than one in 2000
patients23,27, and (2) at least one positive outcome sample (e.g., mortality
or readmission case) per prediction task evaluated. The conditions were
ranked according to their total number of cases, and the least prevalent
ones satisfying both criteria were selected until we obtained ten quali-
fying conditions (the statistics are summarised in Supplementary Tables
S2 and S3). To prevent data leakage, patients were split into training
(67%), validation (16%), and test (17%) sets, maintaining patient-level
separation across sets9,28. Additional details on preprocessing steps are
provided in Supplementary B. Sensitivity analyses of preprocessing
parameters are detailed in Supplementary E and Supplementary F.
Model performance for these rare conditions was evaluated using the
Area Under the Receiver Operating Characteristic Curve (AUROC) and

the Area Under the Precision-Recall Curve (AUPRC), with the latter
preferred for class imbalance.

Performance evaluation of KnowRare
We evaluated the performance of KnowRare across five clinical prediction
tasks on two publicly available datasets, comparing it with widely-used
methods for ICU outcome prediction and specificmethods for limited-data
scenarios. KnowRare achieves the highest AUPRC on all five tasks, out-
performing both baseline categories (Table 2). In particular, it surpasses the
best domain adaptation method (Stable-CRP) by 12.4% in ICU mortality
(AUPRC: 0.709 vs. 0.631) and outperforms MetaPred by 17.0% in
Remaining LoS (AUPRC: 0.206 vs. 0.176) on the eICU dataset. KnowRare
consistently ranks first or second, demonstrating balanced precision-recall
trade-offs.

Performance comparison with ICU scoring systems
To further evaluate the clinical relevance of KnowRare, we compared its
performance in the prediction of ICU mortality with established ICU
scoring systems, specifically APACHE IV29 and APACHE IV-a30. These
systems are considered gold standards for the prediction ofmortality in ICU
settings31. The analysis focused on the prediction of ICU mortality in the
eICU dataset.

For the ICU mortality prediction, KnowRare demonstrated superior
performance compared to APACHE IV and APACHE IV-a29 (Table 3).
KnowRare achieved an AUPRC of 0.709 and an AUROC of 0.757, out-
performing APACHE IV (AUPRC: 0.639, AUROC: 0.701) and APACHE
IV-a (AUPRC: 0.627, AUROC: 0.695). These results indicate that Know-
Rare provides improved predictive accuracy for ICUmortality, reinforcing
its potential clinical utility over traditional scoring systems.

Ablation study
To assess the contributions of different modules in KnowRare, we con-
ducted an ablation study by independently removing three keymodules: (1)
condition-agnostic pre-training, (2) knowledge-guided domain selection,
and (3) joint adversarial domain adaptation. The statistical significance of
performancedifferenceswas evaluatedusing two-tailed t-tests32. The results,
summarised inTable 4, indicate that the removal of anymodule consistently
leads to decreased AUROC or AUPRC across all tasks, demonstrating the
necessity of each module. Among these, the knowledge-guided domain
selection module proved to be the most critical, as its removal resulted in
consistent reductions in performance across all tasks on both datasets, with
notable performance drops observed in the multi-centre eICU dataset (the
mean of AUPRC reduced from 0.709 to 0.573 for ICU mortality and from
0.206 to 0.065 for remaining LoS). Removing condition-agnostic pre-
training also consistently reduced performance across most tasks,
decreasing the mean of AUPRC for the ICU mortality prediction in
MIMIC-III from 0.744 to 0.640. Similarly, removing joint adversarial
domain adaptation markedly decreased the mean of AUPRC in the 30-day
readmission task in MIMIC-III from 0.716 to 0.481.

Case studies: evaluation of KnowRare’s adaptability and
generalisation
This section presents three case studies designed to evaluate KnowRare’s
adaptability and generalisation in real-world clinical settings. Specifically,
we conducted experiments to assess: (1) the number of source conditions
required by KnowRare to adapt effectively across different datasets and
prediction tasks; (2) the impact of condition KG sparsity on KnowRare’s
adaptability todifferentdataset characteristics; and (3)KnowRare’s ability to
generalise robustly to common conditions under limited training data
scenarios. We also evaluate the discriminative performance and calibration
of KnowRare (Supplementary G and H).

To evaluate the influence of source condition diversity on domain
adaptation, we varied the proportion of source conditions selected for
KnowRare training, ranging from 1% to 100% of the available source
conditions. The objectivewas to determinewhether the broader inclusion of

Table 1 | Statistics for EHR databases

Statistic MIMIC-III eICU

Number of patients 46,520 139,367

Number of hospital Visits 58,976 166,355

Number of ICU stays 61,532 200,859

Number of hospitals 1 (single-centre) 208 (multi-centre)

Number of level 3 ICD-9-CM codes 587 303

Number of RareConditions (Percentage) 383 (65.2%) 192 (63.4%)
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source conditions enhances generalisation or introduces confounding. The
results (Fig. 2(a)) reveal a non-linear relationship between the quantity of
the source condition and the performance of themodel. Initially, increasing
the proportion of source conditions improves the accuracy of the task, with
peak performance occurring at 10-20% across tasks. Beyond this threshold,
performance declines sharply for ICU mortality, LoS, and phenotyping
predictions in the multi-centre setting, eventually stabilising at higher
proportions. In particular, for LoS prediction, minimal source diversity (1%
of conditions) yields superior results compared to larger selections.

In addition, we investigated the effect of the completeness of the
condition KG. This was achieved by iteratively retaining only the top n% of
the weighted edges (ranging from 1% to 100%) in the KG and re-evaluating
the KnowRare framework. The experiment aimed to identify whether
sparser, high-confidence relationships or denser, inclusive graphs better
support adaptation in clinical prediction tasks. The optimal proportion of
retained edges differs markedly between datasets (Fig. 2(b)). For the multi-
centre eICU cohort, performance peaks when the top 5% of KG edges are
included, except for the phenotyping prediction task. The single-centre
MIMIC-III dataset achieves maximal AUPRC with 60-70% of edges.
Beyond these thresholds, inclusion of lower-weighted edges correlates with
progressive performance degradation. One outlier appears at the pheno-
typing prediction task, which exhibits a dual-peak pattern in the eICU
dataset, achieving optimal performance at both 5% and 80% edge retention.

We further evaluated KnowRare’s applicability to common conditions
in scenarios characterisedby limited training data. Common conditions can
also experience data scarcity due to practical constraints. To examine
whether KnowRare could generalise to such situations, we experimented
with septicaemia, a common ICU condition, deliberately restricting the
training set to only 10%of the available samples. This setting assumes access
to only a small amount of data that is insufficient for condition-agnostic pre-
training. Therefore, the pre-training module was disabled, ensuring an
accurate evaluation of KnowRare’s ability to exploit general clinical
knowledge under severe resource constraints. Our results (Fig. 2(c))
demonstrated that KnowRare achieved comparable or superior perfor-
mance to a standard LSTM model trained on all available data on 90-day
mortality, 30-day readmission, and remaining LoS. In ICU mortality and
phenotyping prediction tasks, the standard LSTM model only surpassed
KnowRare’s performance when trained with at least three times more
labelled data. These findings underscored KnowRare’s potential to effec-
tively leverage clinical insights from similar conditions, thereby improving
predictive performance in data-limited clinical scenarios.

Explanability analysis
To evaluate the explanability of KnowRare’s selection of source conditions,
we visualised its choices for two rare conditions: mycoses, a low-prevalence
condition in MIMIC-III, and aplastic anaemia (AA), a rare recognised
condition in eICU. For each case, we included the 40 most prevalent con-
ditions, the 10 least prevalent conditions, and the subset of conditions
selectedbyKnowRare (Fig. 3).This analysis aimed todeterminewhether the
framework prioritises hierarchy from the ICD-9-CM coding system or
instead identifies clinical similarities directly from the heterogeneous EHR
data. A summary of all rare conditions provides a quantitative overview of
the selected source conditions (Supplementary Table S5).

Table 3 | Performance comparison of KnowRare against ICU
scoring systemsa

Method ICU Mortality (eICU)

AUPRC AUROC

APACHE IV29 0.639 0.701

APACHE IV-a30 0.627 0.695

KnowRare (Ours) 0.709 (0.022) 0.757 (0.012)
a Metrics are reported asmean (std) over five runs with different random seeds. The best results are
bolded.
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The analysis yielded a key observation. 80.8% of the source condi-
tions inMIMIC-III and 90.5% in eICU selected byKnowRare belonged to
ICD-9-CM categories different from those of the target rare condition
(Table S8). Specifically, for mycoses, KnowRare predominantly selected
source conditions from circulatory system disorders (ICD-9-CM 390-

459), even though fungal infections are classified under infectious con-
ditions (ICD-9-CM 001-139). Likewise, for AA, the model primarily
selected source conditions from injury and poisoning (ICD-9-CM 800-
999), despite AA being categorised as a blood disorder (ICD-9-CM 280-
289). These results indicated that KnowRare captured clinical similarities

Fig. 2 | Case studies: Evaluating KnowRare’s adaptability and generalisation in
clinical practice. Studies include: a Analysis of required source conditions: Asses-
sing KnowRare’s adaptability to different hospital datasets and clinical prediction
tasks by varying the proportion of source conditions included from 1% to 100%.
b Impact of condition KG sparsity: Assessing KnowRare’s sensitivity and adapt-
ability to varying KG completeness by retaining different proportions of top-
weighted edges (from 1% to 100%) in the KG. c Generalisation to common condi-
tions under limited-data scenarios: Evaluating KnowRare’s robustness by training it

with only 10% of the available septicemia data, while the LSTM baseline model uses
septicemia data ranging from 10% to 100%. Rows correspond to the five prediction
tasks: (1) 90-day mortality prediction after hospital discharge (MIMIC-III),
(2) 30-day readmission prediction after hospital discharge (MIMIC-III), (3) ICU
mortality prediction (eICU), (4) Remaining length of stay prediction (eICU), and (5)
Phenotyping prediction (eICU). Points represent mean values, and shaded regions
indicate standard deviation over five runs. Plots are generated using matplotlib
(Python).
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directly from heterogeneous patient data rather than relying solely on
established ICD-9-CM hierarchies.

Discussion
In this study,we proposedKnowRare, aDL frameworkdesigned to improve
the prediction of clinical outcomes for rare conditions in the ICU. Know-
Rare addresses two critical challenges, data scarcity and intra-condition
heterogeneity, by combining condition-agnostic pre-training with
knowledge-guided domain adaptation. Evaluation of two publicly available
ICU datasets (MIMIC-III and eICU) demonstrated that KnowRare con-
sistently outperformed baseline methods, achieving improvements of up to
17.0% in AUPRC. The consistent improvement across multiple clinical
tasks, including 90-day mortality after discharge, 30-day readmission after
discharge, ICU mortality, ICU LoS, and phenotyping, demonstrates
KnowRare’s potential to improve clinical decision-making for rare condi-
tions in ICUs.

We observed a clear “data-volume paradox" with standardmethods in
our experiments (Table 2): training exclusively on target rare conditions
resulted in significantly inferior performance, whereas aggregating data
from multiple conditions improved results in single-centre scenarios but
degraded performance inmulti-centre scenarios. This paradox underscores
the necessity for careful selection of aggregated data sources to ensure that
increased data volume does not compromise the quality and clinical rele-
vance of training data. KnowRare addresses this issue through knowledge-
guided domain adaptation, selectively identifying and utilising only the
most similar source conditions. This targeted approach enhances data
volume without amplifying irrelevant noise, contributing significantly to
KnowRare’s effectiveness.

Specialised methods for rare conditions demonstrated strong perfor-
mance in individual prediction tasks, but lacked robustness when evaluated
across multiple clinical outcomes (Table 2). In contrast, KnowRare showed
consistent effectiveness across various clinical tasks. This improved gen-
eralisation was primarily driven by its two-stage training strategy: initially

capturing generalisable temporal patterns through condition-agnostic pre-
training, followed by fine-tuning with knowledge-guided domain adapta-
tion to selectively activate condition-specific knowledge for each rare
condition. This finding is consistent with related research for cases with
limited data9,10. Specifically, the condition-agnostic pre-training process
enables KnowRare to establish robust baseline representations capable of
generalising effectively to data-scarce conditions. Furthermore, the
knowledge-guided domain adaptation, particularly through the domain
selection module, substantially addresses intra-condition heterogeneity
(Table 4). By selecting clinically similar conditions based on the condition
KG, this module exposes KnowRare to diverse clinical patterns without
introducing excessive noise. Collectively, KnowRare provides a step toward
addressing the challenges of data scarcity and intra-condition heterogeneity
of rare conditions in the ICU.

For the most critical ICU mortality prediction, KnowRare out-
performed traditional ICU scoring systems, including APACHE IV and
IV-a. These systems typically rely on large cohorts that primarily comprise
common conditions, which limits their effectiveness for rare conditions. In
contrast, KnowRare’s tailored selection of clinically similar conditions and
knowledge-guided adaptation processes enabled superior performance
specifically for rare conditions.

The ablation study shows that the contributions of the KnowRare
modules vary across prediction tasks and datasets. Although somemodules
fail to contribute consistently across tasks, none of their removals led to a
significant performance decline, highlighting the synergistic value of com-
bining modules for different scenarios. However, task-specific patterns
reveal insightful differences. 90-daymortality prediction benefits only from
domain selection, consistent with the fact that long-termmortality is linked
to similar comorbidities across clinically similar conditions33. 30-day read-
mission benefits mainly from domain adaptation, as aligned features
across conditions capture discharge processes and early post-discharge care,
which are strongly linked to readmission risk34. ICU mortality prediction
benefits fromallmodules, as short-termoutcomes in the ICUaredominated

Fig. 3 |Visualisation of conditions selected byKnowRare as source conditions for
predictingmycoses inMIMIC-III and aplastic anaemia (AA) in eICU. aMycoses;
b AA. Conditions are categorised according to the ICD-9-CM classification system,
with each category represented by a distinct colour. The height of each bar

corresponds to the number of patients diagnosed with each condition, indicating
their relative prevalence within the datasets. This visualisation illustrates how
KnowRare selects clinically similar source conditions different from ICD-9-CM
hierarchical relationships. The visualisation is generated using matplotlib (Python).
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by acute pathophysiology and rapidly evolving critical events at the begin-
ning of ICU stay35. In this case, pre-training captures shared physiological
patterns, domain selection identifies clinically similar acute conditions,
and domain adaptation helps identify evolving critical events. Remaining
LoS in eICU improves with all modules, with the most significant con-
tribution from domain selection. This is potentially because non-clinical
operational factors vary widely across hospitals, and domain selection helps
reduce this variance36,37. Phenotyping task benefits only from domain
selection, as leveraging clinically similar conditions helps the model better
define phenotype boundaries38. Pre-training and domain adaptation can
negatively affect phenotyping. Pre-training on the full condition cohortmay
introduce inter-institutional heterogeneity39, while domain adaptation may
blur critical distinctions between phenotypes by forcing alignment of
latent features40.

The selection of source conditions by KnowRare was primarily based
on data-driven relationships rather than strictly following the ICD coding
hierarchies (Fig. 3). This approach is particularly effective for rare condi-
tions, where standard ICD categories often do not capture nuanced cohort-
specific similarities. By uncovering clinically meaningful relationships,
KnowRare not only improves interpretability but also provides clinicians
with insights into how knowledge is transferred across conditions. Specifi-
cally, for mycoses in MIMIC-III, many selected source conditions were
related to circulatory system diseases (ICD-9-CM 390-459), which is
clinically plausible given that fungal infections can spread through the
bloodstream after initial invasion41,42. Similarly, for AA in eICU, KnowRare
primarily selected source conditions related to injury and poisoning (ICD-
9-CM 800-999), consistent with the fact that AA can arise from prolonged
exposure to toxic agents such as chemotherapy or radiotherapy, which
progressively damage haematopoietic stem cells43.

Interestingly, our finding contradicts the conventional idea that using
more data leads to better performance until saturation44,45. Instead, optimal
performance for KnowRare was achieved by selecting the top 10% most
similar conditions for domain adaptation. Including more data for training
introduced excessive noise, hindering effective domain adaptation. Parti-
cularly in the multi-centre eICU dataset, significant performance degrada-
tion occurred beyond 50%data inclusion (Fig. 2(a)). However, an exception
was theLoSprediction task,where restricting thedata toonly 1%of themost
similar conditions optimally prevented the overfitting of irrelevant clinical
patterns. Unlike mortality or phenotyping, which are driven by underlying
pathophysiology and acute clinical events, LoS is strongly affected by non-
clinical operational factors such as discharge policies, bed availability, and
resource allocation36,37. These factors introduce substantial inter-centre
variability, making the inclusion of additional source conditionsmore likely
to degrade model performance.

Our findings also show KnowRare’s capability to adapt to diverse ICU
scenarios by adjusting the retention threshold of relationships in the con-
ditionKG (Fig. 2(b)). Optimal performance inmulti-centre datasets (eICU)
was achieved by retaining the strongest 5% of the graph edges, while single-
centre datasets (MIMIC-III) benefited from the retention of a higher pro-
portion (60–70%).An exception emerged in phenotyping prediction, which
exhibited a dual-peak performance pattern. Phenotyping prediction bene-
fited from both highly confident, tightly coupled clinical relationships at
lower retention thresholds and broader, weaker connections at higher
thresholds. This unique pattern can be caused by the distinct nature of
phenotyping prediction, where multiple concurrent patterns must be
identified simultaneously26. Besides the dataset-specific threshold, subtle,
long-range clinical relationships can enhance the identification of mean-
ingful phenotypes overlooked by strong connections, therefore contributing
to better performance in phenotyping prediction.

Beyond rare conditions, KnowRare extended its utility to com-
mon conditions that experienced data scarcity. Our evaluation with
limited training samples for septicaemia demonstrated that Know-
Rare could achieve comparable or superior predictive performance
compared to standard DL models trained on all data for the common
condition. This result highlights KnowRare’s potential utility in

clinical settings facing real-world data constraints due to operational
or ethical limitations46,47.

KnowRare has the potential to be integrated into ICU workflows to
stratify risk and support decision-making for rare conditions, similar to
established scoring systems such as APACHE IV30. Specifically, early and
accurate risk stratification in the ICU can help clinicians identify high-risk
patients with rare conditions, where records are often poorly
characterised3,4. Hence, time-sensitive interventions may have an even
greater impact on survival compared to common conditions48. Second,
reliable predictions of LoS and readmission risk are especially valuable to
allow a more efficient allocation of scarce ICU beds and staff for rare con-
ditions, where patients aremore likely to have prolonged stays in the ICUor
a higher readmission risk5. Third, improved phenotyping based on the first
24 h of admissions to the ICU could help clinicians identify subgroups of
patients who may benefit from personalised management strategies, espe-
cially for patients with rare conditions49.

Several limitations of our study should be acknowledged. Firstly,
our reliance on ICD-9 coding constrained the granularity of condition
categorisation, although this limitation arose directly from the datasets
used (MIMIC-III and eICU). This limited granularity could reduce the
accuracy of capturing subtle clinical distinctions among rare conditions,
potentially limiting the effectiveness of knowledge-guided domain
adaptation. Secondly, differences in ICD-CM recording methods
restricted our ability to evaluate identical tasks across datasets. In
MIMIC-III, ICD-CM codes are only available at discharge, providing a
retrospective summary of the entire stay in the ICU rather than reflecting
the evolving clinical state during admission. This constrains our analyses
to post-discharge clinical predictions and may reduce the gen-
eralisability of findings to settings where real-time diagnostic processes
are critical. In contrast, eICU records time-resolved ICU diagnosis
codes, which better represent the ongoing diagnostic process and thus
support more generalisable evaluation.

In conclusion, KnowRare effectively bridges data gaps to predict the
outcomes of rare conditions in the ICU by integrating general knowledge
and selectively adapting insights from clinically similar conditions. Vali-
dated through extensive experiments on real-world ICU datasets, Know-
Rare demonstrates robust predictive performance and strong potential to
support clinical decision-making. Future research should focus on pro-
spective validation in clinical settings and investigate opportunities for
integration within broader healthcare systems to further enhance care for
rare ICU conditions.

Methods
Data processing
To ensure a comprehensive representation of patient data across the
datasets, we extracted variables, including demographic data, vital
signs, and laboratory tests, fromMIMIC-III and eICU (Supplementary
Table S1). The extraction process involves multiple steps, including
cohort selection, variable aggregation, missing value imputation, and
normalisation. First, we exclude patients with a hospital stay of less than
48 h in theMIMIC-III dataset and those with an ICU stay of less than 24
h in the eICU dataset to ensure sufficient data availability for inference.
Then, each patient is assigned a primary diagnosis based on the ICD-9-
CM coding system, using the first three levels of their ICD-9-CM code.
To maintain a sufficient sample size for a robust evaluation, we exclude
conditions with fewer than ten patients. After applying these criteria,
the final dataset consists of 38,360MIMIC-III samples and 72,536 eICU
samples. We then split each dataset into training sets (67%), validation
sets (16%), and test sets (17%) at the patient level, ensuring that all ICU
stays belonging to the same patient were assigned to the same subset. In
addition, we stratify the patients for each condition across splits to
ensure a representative distribution in the training, validation, and
test sets.

After selecting the relevant cohorts of patients, we extract demo-
graphic variables, including age, gender, and race, from patient
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metadata. Vital signs and laboratory test measurements are obtained
from structured EHR tables. ForMIMIC-III, we use the recorded values
from the last 48 h of hospital admission, while for eICU, we extract
recorded values from the first 24 h of ICU admission. The difference in
these time windows reflects the distinct prediction tasks of each dataset.
In MIMIC-III, we focus on the outcomes of post-ICU discharge. The
last 48 h provide an optimal balance between information content and
computational efficiency, and were widely used as the default time
window for post-discharge prediction25,50,51. In the eICU, we focus on
outcomes in the ICU, where the first 24 h capture the patient’s acute
physiological response to critical illness and support early clinical
decision-making52.

To create a structured time-series representation, we aggregated
the extracted variables into fixed time resolutions following established
benchmarks25,26. For MIMIC-III, we segment the time-series data into
2-hour windows and compute the mean value within each window,
resulting in 24 time steps spanning the last 48 h of hospital admission.
For eICU, we apply a similarmethod using 1 hwindows, also producing
24 time steps covering the first 24 h of ICU admission. If no recorded
values are available within a given time step, they are left as missing
values at this stage.

To handle missing values, we adopt the last observation carried for-
ward / next observation carried backward (LOCF/NOCB) strategy53,54. First,
we apply forward imputation, where missing values are replaced with the
last available measurement for the same patient. If no previous value exists,
we apply backwards imputation, filling in missing values using the next
available measurement from the same patient. After these steps, any
remaining missing values are imputed using the mean value of the corre-
sponding variables computed from the training set. This ensures that the
validation and test sets remain independent and do not incorporate statis-
tical information from unseen data.

Finally, to standardise the variable scales, we normalise all continuous
variables using Z-score normalisation55, where each variable is transformed
using themeanand standarddeviation computed fromthe training set. This
normalisation step ensures consistent variable distributions across different
datasets and tasks while preventing data leakage.

Baseline models
To comprehensively evaluate KnowRare, we compared its performance
against two categories of baseline methods: standard models commonly
used for clinical prediction tasks and specialisedmethods explicitly designed
for data-scarce scenarios. Detailed descriptions of the baseline methods are
summarised in Table 5.

Condition knowledge graph construction
To identify clinically similar source conditions, a heterogeneous condition
KG G ¼ ðV; EÞ is constructed from the EHR database, where V represents
the set of conditions, E defines the types of relationships that capture

similarities of the condition. The graph encodes three types of relationships
to model condition similarities.

Diagnosis similarity. The diagnosis-based relation captures co-
occurrence patterns between conditions within diagnosis records. In
EHRs, multiple ICD-CM codes are assigned during a patient visit,
resulting in frequent co-occurrence of conditions within the same
diagnosis record. A triplet ðvi; r1; vjÞ 2 E is established between condi-
tions vi; vj 2 V if they frequently appear together in patient records. The
edge weight is computed as the normalised co-occurrence frequency:

wðr1Þij ¼
CoOccðvi; vjÞP
kCoOcc ðvi; vkÞ

; ð1Þ

where CoOcc(vi, vj) represents the number of times conditions vi and vj
appear together in the same diagnosis record.

Record similarity. The record-based relation models condition simi-
larity based on statistical patterns in patient variables. Each condition
v 2 V is represented by a vector sv, calculated as the mean and standard
deviation:

sv ¼ mean ðX vÞ; std ðX vÞ
� �

; ð2Þ

where X v ¼ fXpjp 2 Pvg denotes the set of time-series variables of all
patientsPv diagnosedwith condition v, and p refers to an individual patient
with corresponding variables Xp. The mean and standard deviation are
computed element-wise across all patient records.

The similarity weight between conditions vi and vj is computed using
the inverse L2 distance:

wðr2Þij ¼
1

1þ jjsvi � svj jj2
: ð3Þ

To retain meaningful relationships, only the top 50% of the highest-
weighted record-based connections are preserved.

Drug similarity. The drug-based relationship captures the similarity of
the conditions based on the use of sharedmedications. For each condition
v 2 V, the weight of the relationship between conditions vi and vj is
calculated using the Jaccard similarity of their drug sets:

wðr3Þij ¼
jDvi
\Dvj

j
jDvi

∪Dvj
j ; ð4Þ

where Dv refers to the set of administrated drug for the condition v.
Similarly, only the top 50% of the highest-weighted drug-based relations
are retained.

Table 5 | Baseline methods included in this study

Name Description

LSTM57 Long short-term memory network for modelling EHR temporal dependencies.

Transformer61 Self-attention architecture capturing long-range variable interactions.

RETAIN62 Interpretable attention-based recurrent neural network for clinical time-series.

MetaPred10 Gradient-based meta-learning framework for few-shot condition diagnosis.

RareMed9 Pre-training on clinical notes to enhance rare condition medication recommendations.

SMART15 Self-supervised learning via masked reconstruction of EHR data.

FADA63 Few-shot classification via adversarial domain alignment.

AdvDiag59 Adversarial training to handle cross-population diagnostic distribution shifts.

Stable-CRP60 Patient data reweighting for stable predictions amidst temporal shifts.

MANYDG64 Learning domain-invariant representations to generalise across patient domains.
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Knowledge-guided domain selection
After constructing the conditionKGG ¼ ðV; EÞ, condition relationships are
embedded into a shared latent space using a KG embedding model. In this
study, we adopt the TuckER model56. TuckER factorises the KG tensor
T 2 RjVj× jRj× jVj into a shared core tensor W 2 Rd × d × d and the
embeddings of the relation / entity. The score for a triple (vi, rk, vj) is
computed as

Tikj ¼W× 1Evi
× 2Rrk

× 3Evj
; ð5Þ

where Evi
;Evj
2 Rd represent the embeddings of conditions vi and vj,

respectively, Rrk
2 Rd denotes the embedding of relation rk, and ×n indi-

cates the mode-n tensor product.
For a target rare condition vt, the most similar source conditions are

selected based on the cosine similarity of the condition embeddings:

S� ¼ arg max
S� � S
jS�j ¼ k

X
vs2S�

Evt
� Evs

jjEvt
jjjjEvs

jj : ð6Þ

The top-k conditions with the highest similarity scores are selected as
source domains for adaptation.

Condition-agnostic pre-training
WedevelopKnowRare using an LSTMnetwork57 as the backbone for time-
series encoding, given its proven effectiveness in capturing temporal
dependencies in sequential EHR data58. To capture general temporal and
contextual representations from EHR data, the proposed KnowRare fra-
mework includes a condition-agnostic pre-training stage, ensuring that the
model learns generalisable patterns without overfitting to any specific task.
Specifically, we employ a self-supervised method based on next-step
prediction.

The encoder consists of two separatemodules: a temporal encoder f temp

for time-series variables X and a contextual encoder f cont for contextual
variablesC. The encoded variables are concatenated and mapped to obtain
the latent representation:

ht ¼ f proj f tempðxtÞ; f contðCÞ
� �

; ð7Þ

where ht 2 Rdh is the hidden representation at time t.
By self-supervised learning, the encoder extracts general latent repre-

sentations that can be quickly adapted to rare conditions. The pre-training
objective is designedas amultivariate trajectory reconstruction task,where a
decoder f dec predicts the next timestep conditioned on the fused repre-
sentation:

Lpre�train ¼
1

T � 1

XT�1
t¼1
jjXtþ1 � f decðhtÞjj

2
: ð8Þ

By disentangling latent variables with task-specific patterns, this stage
learns condition-agnostic representations that encode general knowledge as
the initial parameters for target condition adaptation. This stage is valuable
in dealing with data scarcity.

Algorithm 1. Training Process of KnowRare
Require: EHR data {(Xp,Cp, yp)}, condition KG G ¼ ðV; EÞ, rare condition

vt, hyperparameters k, λ
Ensure: Trained model parameters θ*

1: Step 1: Condition-agnostic Pre-training
2: Initialise encoder parameters θ0
3: for each patient p do
4: for t = 1 to T − 1 do
5: ht ← fproj(ftemp(xt), f

cont(Cp))
6: bXtþ1  f decðhtÞ

7: Update θ0 with Equation (8)
8: end for
9: end for
10: Step 2: Knowledge-guided Domain Adaptation
11: Obtain embeddings {Ev} from G with Equation 5
12: Select S� of k conditions based on {Ev} with Equation (6)
13: Initialise θ ← θ0, define discriminator dϕ
14: while not converged do
15: Sample mini-batches from S� and Dt
16: hT ← fproj(ftemp(X), fcont(C))
17: by f θðhT Þ
18: Compute losses Lpred;Ladv
19: Update θ and ϕ with Equation (10)
20: end while
21: returnModel parameters θ* for vt

Joint adversarial domain adaptation
The final stage of the KnowRare framework employs adversarial learning to
align condition-level distributions for robust adaptation to the target rare
condition. Leveraging the final time-step latent representation hT that
encodes the full temporal dynamics of the input variables, we mitigate the
difference in the joint distribution of the latent representation and the
prediction. Unlike prior works that align marginal distributions59,60, we
hypothesise that domain shifts arise from discrepancies in the joint dis-
tribution P(hT, y) of both representations and clinical outcomes. To address
this, we propose a joint adversarial domain adaptation that considers both
latent representations and task-specific predictions. Specifically, a joint
discriminator dϕ operates on the concatenation of hT and predicted out-
come by, aligning the variance in the joint distribution:

Ladv ¼ �EðhT ;byÞ
XjS�jþ1
i¼1

yDi
log dϕðhT ;byÞ; ð9Þ

where yDi
2 V denotes the domain labels.

With the discriminator and the adversarial loss, we induce a minimax
optimisation process:

min
θ

max
ϕ

LadvðhT ;by; θ; ϕÞ; ð10Þ

where θ and ϕ denote the encoder and discriminator parameters, respec-
tively. Through this adversarial interaction, the encoder learns to extract
domain-invariant representations, while the discriminator continuously
refines its ability to distinguish domains. Eventually, the process converges
to a Nash equilibrium, where the encoder produces latent representations
thatminimise domain discrepancy, facilitating effective domain adaptation.

The outcome prediction loss is computed via cross-entropy:

Lpred ¼ LCE f θðX;CÞ; y
� �

: ð11Þ

To counteract data imbalance across conditions, we apply the inverse
propensity score weighting, assigning each sample a weight wv = 1/p(v),
where p(v) is the prevalence of the condition v. This prioritises under-
represented conditions during training.

The unified objective combines prediction and adversarial losses, with
λ balancing predictive performance and domain adaptation:

Ltotal ¼ Lpred þ λLadv: ð12Þ

For a clearer understanding, Algorithm 1 outlines the overall training
process of KnowRare. The process contains two steps: (1) Condition-
agnostic pre-training,where the encoder is pre-trained to learngeneralisable
temporal patterns; (2) Knowledge-guided domain adaptation, where the
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most similar source conditions are identified, and the model is trained with
adversarial learning to align distributions across conditions.

Data availability
The MIMIC-III and eICU databases analysed in this study are available on
the PhysioNet repositories https://physionet.org/content/mimiciii/1.4/ and
https://physionet.org/content/eicu-crd/2.0/.

Code availability
The code used for data processing and model development is available at
https://github.com/JasonZuu/KnowRare.
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