
FlowDrone: Wind Estimation and Gust Rejection on
UAVs Using Fast-Response Hot-Wire Flow Sensors

Anonymous Author(s)
Affiliation
Address
email

Abstract: Traditional multirotor UAV platforms do not directly sense wind; in-1

stead, drones typically observe the effects of wind indirectly through accumu-2

lated errors in position or trajectory tracking. In this work, we integrate a novel3

flow sensor based on micro-electro-mechanical systems (MEMS) hot-wire tech-4

nology [1] onto a multirotor UAV for wind estimation. In order to achieve superior5

tracking performance in windy conditions, we train a ‘wind-aware’ residual-based6

controller via reinforcement learning using simulated wind gusts and their aero-7

dynamic effects on the drone. In extensive hardware experiments, we demonstrate8

the wind-aware controller outperforming two strong ‘wind-unaware’ baseline con-9

trollers in challenging windy conditions.10

1 Introduction11

Autonomous multirotor drones have the potential for transformative impact in domains such as12

infrastructure inspection and repair, search-and-rescue, and aerial package delivery. Current systems13

face a major challenge: severe wind conditions in outdoor environments. For example, a typical14

multirotor (e.g., DJI Phantom [2]) is wind-limited to 20 mph, which corresponds roughly to a windy15

day at the beach. This challenge is exacerbated by the presence of complex airflow phenomena (e.g.,16

ground and surface effects) when the drone operates in proximity to obstacles or in urban canopies.17

Modern multirotor systems rely almost exclusively on indirect methods to sense wind, e.g., position18

error measured by onboard sensors. This approach – as opposed to directly sensing the wind and19

anticipating its forces – is used in part because existing anemometers (e.g., conventional pitot tubes20

and hot-wires) are typically too slow, insensitive, or lack the form-factor for deployment on multi-21

rotor systems. In this work, we leverage an omnidirectional flow sensor [1] based on micro-electro-22

mechanical systems (MEMS) hot-wire technology [1, 3, 4] to directly sense wind for real-time23

compensation. We demonstrate the effectiveness of a ‘wind-aware’ controller that uses turbulent24

airflow measurements to improve multirotor performance in gusty conditions.25

Figure 1: FlowDrone calculates fast
and accurate wind estimates with the
MAST (inset) to achieve superior
flight performance in gusty conditions.

Figure 2: Controller diagram showing the wind sensing and the
wind-aware residual-based controller. Taking MAST voltage
readings and drone states as input, the controller computes motor
PWM commands compensating for wind disturbances.
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Related work in drone control in wind. Modern drones typically treat wind as an external dis-26

turbance and rely on a feedback controller to perform gust rejection [5, 6], e.g., using techniques27

from robust and adaptive control [7, 8, 9]. Recently, techniques from adaptive control have also28

been combined with deep neural network representations of aerodynamic effects in order to perform29

multirotor control in the presence of wind [10]. Alternate approaches to wind estimation include30

utilizing an extended Kalman filter with measurements from the drone’s IMU (e.g., as implemented31

by the widely used PX4 controller [11]). Such wind estimates can then be utilized by a feedback32

controller for gust rejection [12]. In this work, we seek to leverage sensors that directly measure33

wind with adequate accuracy and frequency for improving multirotor drone control.34

2 Hardware Platform and Wind Sensing35

Drone hardware. The FlowDrone platform is built on the Holybro X500 platform equipped with36

the Pixhawk 4 autopilot, which additionally uses the PX4FLOW Camera and LIDAR-Lite v3 for37

state estimation. The state estimate is passed to the Raspberry Pi 4 companion computer over ROS238

at 100 Hz. Onboard sensing and computation allows for deployment outdoors.39

Sensors and wind estimation. For wind estimation, we use the MAST (MEMS Anemometry Sens-40

ing Tower) – an omnidirectional flow sensor suitable for integration on multirotor UAVs [1]. The41

MAST consists of five pentagonally-arranged MEMS Hotwire chips (see Fig. 1 inset). Vertical PCBs42

project the MEMS Hotwires sufficiently above the rotor plane (150 mm) and into the free-stream43

velocity. The MEMS Hotwires consist of a Wheatstone bridge of platinum wire arrays. One leg of44

the bridge is exposed to the surrounding flow, and the differential convective cooling is measured as45

a voltage.46

Sensor model. A sensor model on board the Raspberry Pi estimates the wind vector (direction47

and magnitude) from MAST voltages using two distinct neural networks trained on data from wind48

tunnel experiments. The MAST achieves the following performance over 360◦ and 0-5 m/s: 1.6◦49

expected angle prediction error (with an empirical 95% error upper bound of 5.0◦), and 0.14 m/s50

expected speed prediction error (with an empirical 95% error upper bound of 0.36 m/s). The low-51

weight MAST and associated sensor model provide low-latency (1.56 ms) wind estimates to the52

control architecture that are as accurate as any existing method implementable on UAVs.53

3 Wind-Aware Control54

3.1 Simulated environment with wind55

Since it is expensive and time-consuming to learn a residual-based policy in diverse wind56

conditions directly on hardware, we train the policy in a simulated environment built upon57

gym-pybullet-drones [13], an open-source drone simulation environment based on the PyBullet58

simulator [14]. We model the bluff-body and induced drag components from wind as in [15]. The59

simulated wind is generated in the positive X direction in the world frame. We vary the wind speed60

in a step-like profile (mimicking the measurements taken in real wind conditions as in Fig. 3 (Bottom61

Left)), which consists of three stages: “Low”, “Slope”, and “High”. The wind speed and duration62

of the three stages are all randomized to train a robust wind-aware policy. An additional dip of the63

wind speed is added to the “High” stage to mimic sudden instability, which was frequently observed64

during real flights as the flow generated by the fan array is unsteady and not spatially uniform.65

3.2 Residual policy for wind compensation66

In order to perform wind compensation, we train a residual control policy on top of the open-source67

PX4 attitude controller (see Fig. 2 for a visualization of the overall controller architecture). Using a68

reinforcement learning approach (instead of a model-based approach) allows us to train a nonlinear69

policy which can potentially leverage temporal structure in wind gusts. The trained residual policy70

takes real-time wind estimates and drone states as input and outputs additional body angular rates71
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Ωres and thrust Tres, which are then added to the respective setpoints Ωsp, Tsp calculated by the72

upstream PX4 attitude PID controller. The net setpoints Ωnet, Tnet are then fed into the downstream73

angular rate controller and mixer. The overall controller runs at 40 Hz. The residual policy πres is74

parameterized as a multi-layer perceptron (MLP) with hidden layer sizes [512, 256, 128, 128] and75

ReLU activation. The input to the residual policy76

[Ωres, Tres] = πres(r,Ψ, v, w, vwind) (1)

includes the drone’s current 3D position (r = [x, y, z]), orientation in roll, pitch, and yaw (Ψ =77

[ϕ, θ, ψ]), linear velocity (v = ṙ), and angular velocity (w = [wx, wy, wz]), all relative to the world78

frame. In addition, the residual policy takes as input the wind measurement at the current timestep79

t and past four timesteps (only the components in the X direction of the world frame). We skip80

ts = 5 steps between each wind measurement (vwind = [vtwind, v
t−ts
wind , v

t−2ts
wind , vt−3ts

wind , vt−4ts
wind ]). Since81

the control loop is 40 Hz, this roughly covers a time window of 0.5 s. The outputs, Ωres and Tres, are82

normalized between [−0.3, 0.3] rad/s and [−1, 1] N respectively using the Tanh activation function.83

We also find that large values of body rate setpoints Ωsp from the attitude controller can hinder the84

training progress of the residual policy. Thus we clip Ωsp to be in [−0.1, 0.1] rad/s.85

On the real hardware platform, the wind measurements are obtained by processing the MAST read-86

ings through the sensor model described in Sec. 2. In simulation, we treat the wind sensor model as87

perfect, meaning the wind measurement is the same as the simulated wind. Since the wind profile88

contains a non-trivial amount of noise, we filter the measurements using a rolling maximum over89

the past 0.1 s both in simulation and hardware, as shown in Fig. 3 (Bottom Left).90

We train the residual policy in simulation using Soft Actor Critic [16]. The task of the drone is to91

hover at the target position [0, 0, 1] m in an inertial East-North-Up frame for a 10-second horizon.92

The reward function is defined as the negative of the distance of the current drone position to the93

target. We randomize the initial position and orientation of the drone at each rollout; the ranges of94

the initial 3D positions, roll and pitch angles, and yaw angle are [−30, 30] cm, [−0.1, 0.1] rad, and95

[−0.3, 0.3] rad. The model is trained with 10 million total simulation timesteps.96

4 Hardware Experiments97

We evaluated the wind-aware controller’s performance in tracking a hover setpoint in the presence of98

a wind gust (same task as in simulation) in a real setting. We compare the following three controllers:99

Wind-Aware Residual-Based Controller (“wind-aware”): described in Sec. 3 and Fig. 2;100

Wind-Unaware Residual-Based Controller (“wind-unaware”): has the same architecture and is101

trained with the same conditions as wind-aware, except that the residual policy does not have access102

to the wind estimate v̄wind. Differences in performance between this controller and the wind-aware103

controller thus directly provide evidence for the benefits of utilizing wind measurements for control;104

PX4 Attitude Controller (“baseline”): the popular open-source PX4 Autopilot for attitude control.105

Referencing Fig. 2, this controller is the “PX4 controller” at the bottom half without wind sensing106

or residual policy.107

4.1 Experiment setup108

We conducted 10 flights for each of the three controllers in controlled gust conditions. The sup-109

plementary video [17] demonstrates representative trials of all three controllers. We used six high110

velocity (350 cfm) blowers to generate the gusts during hardware evaluation. The blowers were111

arranged in a 2 × 3 array (Fig. 1), with the top row blowers inverted, generating a flow volume of112

22× 86 cm at the blower exit. The peak gust speed at the drone’s location was approximately 5 m/s.113

For each test, the drone was commanded to take off and hover at rsp = [0, 0, 1] m, Ψsp =114

[0, 0, 0] rad, which remained the setpoint for the rest of the flight. From t = [0, 12) s, the drone115

hovers in zero wind. This delay ensures that the residual policy has not learned an open-loop pre-116

diction of when the gust will start. At t = 12 s, the fans are turned to their maximum setting for the117

remaining 18 s of flight. The fans are oriented to blow in the +X direction of the inertial frame.118
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Figure 3: (Top Left) Average X trajectory (line) for each controller with pointwise standard deviation (shaded).
(Bottom Left) Raw and filtered wind estimates for a representative gust measured during a wind-aware flight.
(Right) Trajectories of all ten trials for each controller. The starting positions for each trial are marked as ×s.

4.2 Results and Discussions119

The 10 trajectories for each controller are plotted in Fig. 3 (Right). Qualitatively, the wind-aware120

trajectory is more concentrated in both X and Y . In Fig. 3 (Top Left), the average X-trajectory of121

each controller is plotted against time, with bands for ±1 standard deviation. Again, the wind-aware122

controller deviates the least from the setpoint.123

In Fig. 3 (Bottom Left), we plot a representative gust measured during a wind-aware flight. The raw124

wind estimate is shown, as well as the input to the residual policy, to which we applied a moving125

maximum filter over the previous 100 wind estimates (0.1 seconds).126

The performance of each controller is evaluated by three metrics on the X trajectory: max error,127

mean-squared error, and total range. The results are shown in Table 1. Max error penalizes the128

gust onset effect, while mean squared error (MSE) penalizes error over the entire trajectory. The129

range metric additionally penalizes under- or over-shoot. By each metric, the wind-aware controller130

outperforms the others; this illustrates the wind-aware controller’s ability to reduce both maximal131

and overall error in the presence of wind. In terms of max error, the wind-aware controller improves132

on average by 44% over the baseline controller and by 24% over the wind-unaware controller.133

Wind-aware Wind-unaware Baseline

Max Error (m) 0.441 (0.064) 0.582 (0.094) 0.780 (0.142)

MSE (m2) 0.035 (0.006) 0.079 (0.013) 0.057 (0.016)
Range (m) 0.538 (0.072) 0.773 (0.100) 0.962 (0.222)

Table 1: Hardware performance of each controller along several metrics, with the standard deviation in paren-
theses and the minimum entry of each row in bold.

5 Conclusions134

We have presented the FlowDrone: a multirotor UAV platform that integrates fast-response hot-135

wire sensors for real-time wind estimation. We implemented a reinforcement learning pipeline for136

active gust rejection. We demonstrated significant improvements in tracking a hover setpoint with137

the wind-aware controller in gusty conditions and the importance of direct wind measurements.138
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