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Abstract

We present a comprehensive experimental study on pre-trained feature extractors for visual
out-of-distribution (OOD) detection, focusing on leveraging contrastive language-image pre-
trained (CLIP) models. Without fine-tuning on the training data, we are able to establish
a positive correlation (R2 ≥ 0.92) between in-distribution classification and unsupervised
OOD detection for CLIP models in 4 benchmarks. We further propose a new simple and
scalable method called pseudo-label probing (PLP) that adapts vision-language models for
OOD detection. Given a set of label names of the training set, PLP trains a linear layer using
the pseudo-labels derived from the text encoder of CLIP. Intriguingly, we show that without
modifying the weights of CLIP or training additional image/text encoders (i) PLP outperforms
the previous state-of-the-art on all 5 large-scale benchmarks based on ImageNet, specifically
by an average AUROC gain of 3.4% using the largest CLIP model (ViT-G), (ii) linear probing
outperforms fine-tuning by large margins for CLIP architectures (i.e. CLIP ViT-H achieves a
mean gain of 7.3% AUROC on average on all ImageNet-based benchmarks), and (iii) billion-
parameter CLIP models still fail at detecting feature-based adversarially manipulated OOD
images. The code is available at https://github.com/HHU-MMBS/plp-official-tmlr2024.

1 Introduction

Transferring the representations of pretrained vision models has improved the performance on a plethora of
image recognition tasks (Yosinski et al., 2014; Tan et al., 2018; Park et al., 2023; Adaloglou et al., 2023).
To date, these models are trained with various types of supervision, which accelerates training convergence
compared to random initialization (He et al., 2019). Examples include self-supervision (Chen et al., 2020b),
natural language supervision (Radford et al., 2021), weakly-supervised learning (Mahajan et al., 2018), or
standard supervised learning. Concurrently, Dosovitskiy et al. (2021) have established vision transformers
(ViTs), along with an enormous number of variants (Liu et al., 2021; Touvron et al., 2021; Beyer et al., 2023),
as a suitable architecture for training large-scale models in the visual domain (Dehghani et al., 2023).

Nevertheless, the applicability of the learned features of pretrained models is crucial and non-trivial, especially
for unsupervised downstream tasks (Bommasani et al., 2021; Adaloglou et al., 2023). This work centers
on adapting pretrained feature extractors for various visual OOD detection setups, focusing on contrastive
language-image pretraining (CLIP) models.
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The task of OOD, novelty, or anomaly detection aims at identifying whether a given test sample is drawn from
the in-distribution (the training set) or an alternative distribution, known as the out-distribution. Accurate
detection of anomalies is indispensable for real-world applications to ensure safety during deployment (Amodei
et al., 2016; Ren et al., 2019). The detected unfamiliar samples can be processed separately, possibly with
a human expert in the loop, rather than making a potentially uncalibrated prediction (Guo et al., 2017).
Despite significant advances in deep learning, neural networks tend to generate systematic errors for test
examples far from the training set (Nguyen et al., 2015) or assign higher likelihoods to OOD samples compared
to in-distribution samples (Nalisnick et al., 2019).

Recent studies have established a firm connection between the training data distribution accuracy and OOD
generalization (Hendrycks et al., 2021a; Wenzel et al., 2022; Dehghani et al., 2023). A similar connection has
been identified for supervised OOD detection when in-distribution training labels are available for training or
fine-tuning. Supervised training leads to intermediate representations that likely form tight label-related
clusters (Fort et al., 2021). An ideal representation for OOD detection should capture semantic properties,
such as the pose and shape of an object, while remaining sensitive to the properties of the imaging process
(e.g., lighting, resolution) (Winkens et al., 2020).

A suitable choice of visual feature representations is critical for detecting anomalies. However, learning
informative representations for unsupervised OOD detection (Tack et al., 2020; Sehwag et al., 2021; Rafiee
et al., 2022), where no in-distribution labels are available, is a challenging and active research area (Cohen et al.,
2023). Unsupervised methods often adopt self-supervision to learn the in-distribution features by defining
pretext tasks such as rotation prediction (Gidaris et al., 2018). A major milestone in visual representation
learning was reached by Chen et al. (2020b) with the development of contrastive and non-contrastive visual
self-supervised methods (Caron et al., 2021). Recently, CLIP has enabled learning from vast amounts of raw
text (Radford et al., 2021). Vision-language models offer the unprecedented advantage of zero-shot image
classification by leveraging the label names of the downstream dataset. Nonetheless, adapting CLIP models is
not straightforward, even in the supervised scenario. For instance, Pham et al. (2023) showed that fine-tuning
CLIP models degrades their robustness against classifying distribution-shifted samples.

Labeled OOD samples are typically unavailable in real-world applications, and the number of in-distribution
samples is usually limited. Therefore, external data have been widely employed (Rafiee et al., 2022) in two
ways: a) outlier exposure where the external data is treated as anomalous (Hendrycks et al., 2019a), and b)
using models pretrained on auxiliary data (Sun et al., 2022). Outlier exposure leads to performance gains
only if the auxiliary data are sufficiently diverse and disjoint from the in-distribution (Hendrycks et al., 2019a;
Liznerski et al., 2022). On the other hand, Hendrycks et al. (2020; 2021a) showed that pretrained backbones
can enhance OOD detection performance and robustness without relying on dataset-specific shortcuts (Geirhos
et al., 2020). Consequently, pretrained models are suitable candidates for OOD detection, while Galil et al.
(2023) has recently established CLIP models for OOD detection, especially when in-distribution label names
are present (Ming et al., 2022).

In parallel, several OOD detection methods still rely on similar small-scale benchmarks based on low-resolution
images (Mohseni et al., 2021; Rafiee et al., 2022; Esmaeilpour et al., 2022), such as CIFAR (Krizhevsky
et al., 2009). Huang & Li (2021) argued that methods explicitly tuned for these benchmarks may not always
translate effectively into larger-scale and real-life applications. Towards this direction, new large-scale and
more challenging benchmarks have been introduced (Hendrycks et al., 2021b; Yang et al., 2022; Bitterwolf
et al., 2023), which consider ImageNet (Deng et al., 2009) as in-distribution. Finally, even though the
robustness against adversarial attacks has been sufficiently explored in image classification (Szegedy et al.,
2014; Goodfellow et al., 2015; Mao et al., 2023), less attention has been given to studying the construction of
robust visual OOD detectors (Azizmalayeri et al., 2022; Yin et al., 2021). Even though several advancements
in visual feature extractors have been made and new large-scale OOD detection benchmarks (Bitterwolf et al.,
2023) have been proposed, limited research has been conducted in OOD detection regarding the choice of
pretrained model and evaluation scheme, especially regarding CLIP models (Ming et al., 2022; Galil et al.,
2023; Esmaeilpour et al., 2022).

In this paper, we present an experimental study across 25 feature extractors and several visual OOD detection
benchmarks. Using the existing publicly available models, we demonstrate that large-scale CLIP models are
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robust unsupervised OOD detectors and focus on adapting the representations of CLIP under different OOD
detection settings. Under this scope, we examine several OOD detection setups based on the availability of
labels or image captions (i.e. in-distribution class names). The core contributions of this work are summarized
as follows:

• To investigate whether the dependence between in-distribution accuracy and unsupervised OOD
detection performance can be confirmed without in-distribution fine-tuning, we quantify the perfor-
mance of 25 pretrained models across 4 benchmarks (Fig. 2). CLIP models exhibit the strongest
positive correlation without fine-tuning across all benchmarks (R2 coefficient ≥ 0.92). Interest-
ingly, the features of CLIP ViT-G outperform the ones from supervised ImageNet pretraining on
ImageNet-based OOD detection.

• To adapt the representations of CLIP for OOD detection, we propose a simple and scalable method
called pseudo-label probing (PLP). The text-based pseudo-labels are computed using its text encoder
based on the maximum image-text feature similarity. We leverage the obtained text-based pseudo-
labels to train a linear layer on top of CLIP. Without modifying the weights of CLIP or training
separate text/image encoders, PLP surpasses the previous state-of-the-art (Ming et al., 2022) on 5
ImageNet benchmarks by an average AUROC gain of 1.8% and 3.4% for CLIP ViT-H and CLIP
ViT-G, respectively. Moreover, linear probing achieves superior performance on ImageNet-based
OOD benchmarks compared to fine-tuning, notably by a mean AUROC gain of 7.3% using CLIP
ViT-H.

• Finally, we show that a simple feature-based adversarial attack tailored for OOD detection can easily
fool CLIP ViT-G trained on billions of samples (86.2% → 50.3% AUROC deterioration) by changes
that are invisible to humans.

2 Related work

2.1 Supervised OOD detection methods

Supervised OOD detection methods rely on the fact that in-distribution classification accuracy is positively
correlated with OOD detection performance (Fort et al., 2021; Galil et al., 2023). For that reason, many OOD
detection methods derive anomaly scores from supervised in-distribution classifiers. Hendrycks & Gimpel
(2017) developed the maximum softmax probability (MSP) as OOD detection score, which is frequently
used, or its temperature scaled version (Liang et al., 2018). More recently developed scores based on the
logits of the in-distribution classifier are the maximum logit (Hendrycks et al., 2022) or the negative energy
scores by Liu et al. (2020). An alternative OOD detection score, which requires the in-distribution labels,
is the parametric Mahalanobis-based score (Lee et al., 2018). The Mahalanobis score assumes that the
representations from each class are normally distributed around the per-class mean and conform to a mixture
of Gaussians (Ren et al., 2021; Fort et al., 2021). Later on, Sun et al. (2022) established an important yet
simple OOD detection score, namely the k-nearest neighbors (NN) distance, without requiring the feature
norms (Tack et al., 2020) or temperature tuning (Rafiee et al., 2022). The k-NN distance has the advantage
of being non-parametric and model- and distribution-agnostic.

Supervised learning may not always produce sufficiently informative features for identifying OOD samples
(Winkens et al., 2020). To this end, additional tasks have been proposed to enrich the supervised-learned fea-
tures. Examples include determining the key in-distribution transformations and predicting them (Hendrycks
et al., 2019b) or contrastive learning. Mohseni et al. (2021) attempt to first learn the domain-specific
transformations for each in-distribution using Bayesian optimization. Zhang et al. (2020) present a two-branch
framework, where a generative flow-based model and a supervised classifier are jointly trained.

2.2 Unsupervised OOD detection methods

Unsupervised OOD detection methods rely on learning in-distribution features, typically accomplished with
contrastive or supervised contrastive learning (Sehwag et al., 2021; Khosla et al., 2020). Contrastive-based
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methods can be further enhanced by designing hand-crafted transformations that provide an estimate of
near OOD data (Rafiee et al., 2022) or by developing better OOD detection scores Tack et al. (2020). For
example, Tack et al. (2020) add a transformation prediction objective (i.e. rotation prediction such as
[0◦, 90◦, 180◦, 270◦]). Sehwag et al. (2021) define a simpler contrastive-based OOD detection method, where
the Mahalanobis distance is computed in the feature space using the cluster centers of k-means (Lloyd, 1982).

2.3 OOD detection methods using external data or pretrained models

Early works attempted to use external data to generate examples near the OOD decision boundary or
incorporate them for outlier exposure and negative sampling (Hendrycks et al., 2019a; Rafiee et al., 2022).
Nonetheless, disjointness between the in and out-distribution cannot be guaranteed, and applying shifting
transformations depends on the in-distribution (Mohseni et al., 2021), which limits the applicability of such
approaches.

Hendrycks et al. (2020) show that large-scale models pretrained on diverse external datasets can boost OOD
detection performance. Recent OOD detection scores, which leverage pretrained models, deal with the large
semantic space by, for instance, grouping images with similar concepts into small groups as in Huang &
Li (2021). The majority of existing methods focus on supervised OOD detection (Sun et al., 2022; Galil
et al., 2023). Such approaches include fine-tuning the whole network or parts of it (Reiss et al., 2021).
Contrarily, Ren et al. (2021) showed that a Mahalanobis-based score could achieve comparable OOD detection
performance on small-scale benchmarks without fine-tuning.

Out of the limited label-free methods based on pre-trained models, a simple approach is the k-NN feature
similarity, which has not been studied systematically across pre-trained models (Sun et al., 2022). Another
unsupervised approach aims at initially detecting an a priori set of visual clusters. The obtained clusters
are subsequently used as pseudo-labels for fine-tuning (Cohen et al., 2023). Apart from unsupervised OOD
detection, CLIP models can additionally leverage in-distribution class names (Esmaeilpour et al., 2022),
and in-distribution prototypes can be obtained using the textual encoder, which has not been thoroughly
investigated. Esmaeilpour et al. (2022) extend the CLIP framework by training a text-based generator on
top, while Ming et al. (2022) compute the maximum softmax probability of image-text feature similarities.
Finally, Wang et al. (2023) hold the current large-scale OOD state-of-the-art using CLIP by training a
separate text encoder on 3 million auxiliary text-image pairs. Still, it is unknown whether this approach scales
on larger-scale CLIP models. Approaches that work with off-the-shelf-features without requiring external
image-text data (Wang et al., 2023), fine-tuning, or training of separate encoders (Wang et al., 2023) remain
relatively unexplored, especially in conjunction with CLIP models Wortsman et al. (2022).

2.4 OOD detection robustness

Hendrycks & Dietterich (2019) analyzed the robustness under corruptions and geometric perturbations, such
as Gaussian noise and brightness shift. Since it is not always clear which manually perturbed images are
present in the in-distribution (and which are not), attention has been given to adversarial robustness (Chen
et al., 2020a). Existing works have primarily focused on fooling supervised OOD detection methods on
small-scale benchmarks (Yin et al., 2021). Even though the zero-shot classification performance of CLIP
deteriorates significantly when the input images are constructed adversarially (Mao et al., 2023), their
adversarial OOD detection robustness has not been thoroughly investigated. Finally, even though adversarial
feature-based methods exist (Guo et al., 2018; Heng et al., 2018; Luo et al., 2022), they have not been applied
to OOD detection.

3 The proposed OOD detection setup

3.1 Considered pretrained models

Several supervised CNNs, such as ResNet50 (He et al., 2016), ConvNext (Liu et al., 2022) and ViT (Dosovitskiy
et al., 2021) models trained on ImageNet and ImageNet-21K (Deng et al., 2009; Russakovsky et al., 2015)
were utilized. Regarding Imagenet-pretrained self-supervised models, the DINO (Caron et al., 2021), MoCov3
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Architecture Images/ Number of
second Params (M)

ResNet50 2719 24
ConvNext-S 1576 49
ConvNext-B 1157 88
ConvNext-L 695 196
ConvNext-B wide 888 88
ConvNext-L deep 531 200
ConvNext-XXL 180 847
ViT-S/16 3210 22
ViT-B/16 1382 86
ViT-L/16 475 303
ViT-H/14 183 631
ViT-G/14 78 1843

Table 1: Number of parameters (in mil-
lions) and inference time (images per
second on a single GPU) for the uti-
lized network architectures.

Dataset Classes Train Validation
images images

Pretraining datasets
ImageNet 1K 1.28M -
ImageNet-21K 21K 14M -
OpenAI-400M - 400M -
LAION-2B - 2B -
In-distribution datasets
CIFAR10 10 50K 10K
CIFAR100 100 50K 10K
ImageNet 1K 1.28M 50K
Out-distribution datasets
iNaturalist 110 - 10K
SUN 50 - 10K
Places 50 - 10K
IN-O 200 - 2K
NINCO 64 - 5.88K
Texture 47 - 5.54K
CIFAR10-A 10 - 1000
CIFAR10-AS 10 - 1000

Table 2: An overview of the number of classes
and the number of samples on the considered
datasets.

(Chen et al., 2021), and MSN (Assran et al., 2022) were selected. Finally, CLIP-based models were either
trained on OpenAI-400M (Radford et al., 2021) or LAION-2B (Schuhmann et al., 2022), which consists of
400M and 2 billion image-text description pairs, respectively. Further information regarding the network
complexities is reported in Tab. 1. To quantify the complexity, we performed inference on a single GPU with
a batch size of 256 to compute the images per second that were processed at 224 × 224 resolution.

3.2 Datasets and metrics

We denote the in-distribution as Din, and the out-distribution as Dout. The corresponding train and test splits
are indicated with a superscript. To design a fair comparison between vision and vision-language models, we
define unsupervised OOD detection without having access to the set of Din label names. Following Huang &
Li (2021), we use ImageNet as Din for large-scale OOD detection benchmarks and CIFAR for small-scale
benchmarks.

For the large-scale benchmarks, we use the following 5 OOD datasets: Imagenet-O (IN-O) (Hendrycks et al.,
2021b), a flower-based subset of iNaturalist (Van Horn et al., 2018), Texture (Cimpoi et al., 2014), a subset
of the SUN scene database (Xiao et al., 2010), a subset of Places (Zhou et al., 2017). IN-O contains 2K
samples from ImageNet-21K, excluding ImageNet. It is worth noting that Places, Textures, and IN-O have a
class overlap of 59.5%, 25.6%, and 20.5% with ImageNet, according to Bitterwolf et al. (2023). Therefore, we
additionally use the newly proposed NINCO Bitterwolf et al. (2023), which contains 5879 samples belonging
to 64 classes with zero class overlap with ImageNet’s classes. Dataset information is summarized in Tab. 2.

To quantify the OOD detection performance, the area under the receiver operating characteristic curve
(AUROC) and the false positive rate at 95% recall (FRP95) are computed between Dtest

out test and Dtest
in .

Below, we present the used OOD detection scores, given a pretrained backbone model g.
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1-NN. For the unsupervised evaluations, we use the maximum of the cosine similarity (Sun et al., 2022)
between a test image x′ and xi ∈ Dtrain

in = {x1, x2 . . . , xN } as an OOD score:

sNN(x′) = max
i

sim(g(x′), g(xi)), (1)

where sim(·) is the cosine similarity and N the number of Dtrain
in samples .

Mahalanobis distance (MD). The MD can be either applied directly on the feature space of the pre-trained
model, zi = g(xi) or on the trained linear head, zi = h(g(xi)). However, MD assumes that the in-distribution
labels yi ∈ {y1, . . . , yN } are available. We denote the class index c ∈ {1, . . . , C}, with C being the number of
Din classes and Nc the number of samples in class c. For each class c, we fit a Gaussian distribution to the
representations z (Lee et al., 2018). Specifically, we first compute the per-class mean µc = 1

Nc

∑
i:yi=c zi and

a shared covariance matrix

Σ = 1
N

C∑
c=1

∑
i:yi=c

(zi − µc)(zi − µc)⊤. (2)

The Mahalanobis score is then computed for each test sample as

MDc(z′) =
(
z′ − µc

)
Σ−1(

z′ − µc

)⊤
, (3)

sMD(x′) = − min
c

MDc(z′) . (4)

MD can also be applied with cluster-wise means, for instance, using the k-means cluster centers computed on
the feature space of g (Sehwag et al., 2021). We denote this score as k-means MD and use the number of
ground truth Din classes to compute the cluster centers.

Relative Mahalanobis distance (RMD). Given the in-distribution mean µ0 = 1
N

∑N
i zi, we additionally

compute Σ0 = 1
N

∑N
i (zi − µ0)(zi − µ0)⊤ to compute MD0 analogously to Eq. (3). Subsequently, the RMD

score Ren et al. (2021) can be defined as

sRMD(x′) = − min
c

(
MDc(z′) − MD0(z′)

)
. (5)

Energy. As in Liu et al. (2020), negative free energy is computed over the logits z of an Din classifier as

senergy(x′) = T · log
C∑
i

ez′
i/T , (6)

where T = 1 is a temperature hyperparameter.

3.3 Pseudo-Label Probing (PLP) using CLIP’s textual encoder

The pseudo-MSP baseline. Ming et al. (2022) proposed a simple visual OOD detection method to leverage
the text encoder of CLIP by feeding the Din class names in parallel with computing the image representations
using the image encoder of CLIP. A set of captions such as “a photo of a {label}” is used to produce the
text representations. The text-based representations are averaged after L2 normalization. Subsequently,
L2 normalized text-image cosine similarities for each test image are computed. The maximum softmax
probability (MSP) is used as an OOD score for text-image similarities. This is conceptually similar to using
MSP on the logits of a supervised Din classifier. We use pseudo-MSP as a baseline.

PLP. We propose a simple method called pseudo-label probing (PLP) that extends pseudo-MSP. After
computing the image-text similarity, we derive a pseudo-label for each Dtrain

in image using argmax, the class
index that corresponds to the maximum image-text similarity. To enhance the predictions of CLIP to assign
high probabilities to Dtrain

in , a linear layer is then trained with the obtained pseudo-labels on the features of
g. During the OOD detection evaluation stage, the RMD or energy score is used, namely PLP + RMD and
PLP + Energy.
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(a) (b) (c) (d) (e) (f)

Figure 1: Generating an adversarial OOD example of a deer that is close enough in the feature
space to an in-distribution image of an apple. From left to right: a) the original OOD image from the
CIFAR10 test set, b) the adversarial example without smoothing, c) the adversarial example with smoothing,
d) the randomly sampled in-distribution target image from CIFAR100, e) the per-pixel Euclidean distance
between the original image and perturbed image, and f) the distance between the original and the smoothly
perturbed image.

Similar to pseudo-MSP, PLP remains OOD data-agnostic and assumes no prior information on Dout. PLP is
conceptually similar to self-training Xie et al. (2020). Differently from standard self-training, we only train a
linear layer using the text-based prototype that is closest to each Din image in feature space derived from the
textual encoder of CLIP. Finally, while both pseudo-MSP and PLP do not modify the parameters of CLIP or
train external image/text encoders Esmaeilpour et al. (2022); Wang et al. (2023), we show that PLP scales
better with larger-scale models (Section 4) while training a linear layer adds minimal overhead compared to
pseudo-MSP.

We additionally consider supervised linear probing as an alternative to the existing paradigm of fine-tuning
visual feature extractors. Linear probing refers to training a linear head on the features of the backbone g,
using the Dtrain

in labels and acts as an upper bound for PLP. Subsequently, RMD or Energy is computed.
This is in contrast to existing approaches (Fort et al., 2021; Huang & Li, 2021) that typically fine-tune the
visual backbone, which is significantly slower, computationally more expensive, and may lead to catastrophic
forgetting (Kemker et al., 2018).

3.4 Feature-based adversarial OOD data manipulation

The unsupervised OOD detection performance of CLIP ViT-G, combined with its known classification
robustness against natural distribution shifts, raises the question of whether these models are also adversarially
robust OOD detectors. To expose the vulnerability of CLIP as an OOD detector, we develop a feature-based
adversarial data manipulation tailored for OOD detection similar to Guo et al. (2018); Heng et al. (2018); Luo
et al. (2022). We solely aim to test adversarial OOD detection; thus, we do not compare it with feature-based
methods that can be modified for OOD detection.

For a test image x′ ∈ Dtest
out , we randomly choose an in-distribution image x ∈ Dtrain

in as the target. Instead of
maximizing the OOD scores directly (Azizmalayeri et al., 2022; Chen et al., 2020a), we create an adversarial
perturbation ρ with the same dimensions as x′ that maximizes the cosine similarity between the in-distribution
feature g(x) and g(x′ + ρ). We use the Adam optimizer to compute ρ by minimizing − sim(g(x), g(x′ + ρ)),
starting with Gaussian noise ρ ∼ N (0, 10−3) and clipping x′ + ρ to the pixel range [0, 1] after every update
step, similar to Yin et al. (2021). We emphasize that we do not directly restrict the perturbation size and
only limit the number of steps, as opposed to Yin et al. (2021).

We experimentally observe that in the case of ViTs, the perturbations are quite visible along the edges of
the transformer patches (Fig. 1). To create more natural appearing adversarial examples, we enforce the
smoothness of the perturbation by regularizing the allowed perturbation difference between neighboring pixels.
We compute the image gradient ∂ρ/∂h and ∂ρ/∂w in the horizontal and vertical direction, respectively. The
image gradients have the same shape as the image, 3 × H × W , and we define the regularization term as

ℓsmooth(ρ) = 1
3HW

∑
ijk

(
∂ρ

∂h

)2

ijk

+
(

∂ρ

∂w

)2

ijk

, (7)
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Method
OOD Dataset

iNaturalist Plants SUN IN-O Texture NINCO
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CLIP ViT-B
Ming et al. (2022) 30.91 94.61 37.59 92.57 - - 57.77 86.11 - -
Pseudo-MSP† 52.10 89.55 40.34 91.92 78.20 79.47 55.28 86.82 83.09 72.44
PLP + Energy 47.70 93.36 58.15 88.69 79.00 80.72 54.63 86.44 81.93 75.65

CLIP ViT-L
Ming et al. (2022) 28.38 94.95 29.00 94.14 - - 59.88 84.88 - -
Pseudo-MSP† 48.37 90.98 29.85 93.91 72.15 81.49 57.92 85.42 74.72 78.47
PLP + Energy 27.24 95.40 44.99 91.05 64.70 85.81 46.75 88.22 71.95 83.83

CLIP ViT-H (LAION-2B)
Pseudo-MSP† 60.35 90.45 42.92 91.50 59.65 87.00 46.95 89.67 74.24 82.99
PLP + Energy 48.61 93.02 40.90 91.78 52.50 89.24 35.00 91.96 71.9 84.88

CLIP ViT-G (LAION-2B)
Pseudo-MSP† 56.49 90.55 38.69 92.75 55.50 88.11 46.95 89.70 71.30 83.38
PLP + Energy 23.51 96.01 34.41 92.90 42.80 91.39 30.38 92.74 59.32 88.65

Table 3: OOD detection performance metrics using CLIP models and label names for ImageNet-1K as
in-distribution. We report the best metric in bold across different ViTs. The symbol † indicates our reproduction of
Ming et al. (2022).

where i, j, k run over image dimensions. We then minimize the loss

ℓadv = − sim(g(x), g(x′ + ρ)) + λℓsmooth(ρ), (8)

with respect to the pertubation ρ, where λ is a hyperparameter. During the evaluation, we remove the chosen
target image, x, from Dtrain

in to show that the adversarial example, x′ + ρ, cannot be detected as OOD from
the remaining in-distribution examples. As a proof of concept, we create two adversarial OOD datasets1 for
the CIFAR100 → CIFAR10 benchmark, namely CIFAR10-A (λ = 0) and its smoothened version CIFAR10-AS
(λ > 0). The generation of an adversarial example is shown in Fig. 1. More adversarial examples can be
found in the supplementary material.

3.5 Experimental evaluations

First, we benchmark 25 publicly available pretrained models on common ImageNet and CIFAR OOD detection
benchmarks, as illustrated in Fig. 2. Second, we compare PLP against the aforementioned baselines on
ImageNet benchmarks in Tab. 3. For a fair comparison with Ming et al. (2022), we use the CLIP ViT-B and
ViT-L trained on OpenAI-400M Radford et al. (2021), but also report results with the recently released CLIP
ViT-G trained on LAION-2B (Cherti et al., 2022). In contrast to Huang & Li (2021), we remove the Places
OOD subset due to its high class overlap of 59.5% with ImageNet (Bitterwolf et al., 2023); instead, we add
IN-O and NINCO. Third, in Tab. 4, we compare linear probing on CLIP’s visual representations to standard
supervised fine-tuning for OOD detection. Fourth, in Tab. 5, we conduct further OOD detection evaluations
with CLIP ViT-G, based on the availability of Din class names or (few-shot) labeled images and different
detection scores. In Tab. 6, we compare linear probing to fine-tuning for ImageNet-21K pretrained models.
Finally, we study the robustness against the adversarially created OOD samples (CIFAR10-A, CIFAR10-AS)
using CIFAR100 as Din.

3.6 Implementation details

Since probing and PLP only train a linear layer on precomputed representations, it is more scalable and
significantly faster than fine-tuning while having minimal overhead compared to pseudo-MSP. We used
the Adam optimizer (Kingma & Ba, 2014) with a mini-batch size of 256 for CIFAR10 and CIFAR100 and
8192 for ImageNet and trained for 100 epochs with a weight decay of 10−3. The learning rate is set to
10−3 · (mini-batch size)/256 with a linear warm-up over the first ten epochs and cosine decay after that. All

1https://drive.google.com/drive/folders/1pYGEPQwagRzdKlPqMQv7sRH6C9MV5vNF
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Method
OOD Dataset

iNaturalist Plants SUN Places Texture NINCO
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CLIP ViT-B
Finetune + Energy 42.60 83.95 60.87 73.12 64.39 69.65 61.16 73.18 67.57 70.36
Finetune + MSP 36.80 90.49 60.53 81.72 63.29 80.54 54.42 82.60 63.70 80.94
Probing + Energy 24.36 95.72 50.30 90.03 50.26 88.60 50.97 88.10 78.31 79.23

CLIP ViT-L
Finetune + Energy 30.35 88.75 46.75 79.42 54.60 74.11 53.03 76.37 55.70 77.70
Finetune + MSP 31.33 91.90 51.33 84.97 55.68 82.90 48.68 84.52 56.79 84.27
Probing + Energy 8.65 97.89 41.42 91.91 43.05 90.81 44.14 90.27 67.05 86.32

CLIP ViT-H (LAION-2B)
Finetune + Energy 27.99 90.07 39.77 83.27 49.66 77.84 42.37 81.52 51.62 78.18
Finetune + MSP 26.70 92.90 49.19 85.69 54.51 83.28 46.66 84.70 55.48 83.90
Probing + Energy 6.46 98.28 32.42 93.47 38.89 91.68 26.45 93.93 55.39 89.79

CLIP ViT-G (LAION-2B)
Probing + Energy 6.29 98.27 32.21 93.27 37.16 92.02 24.63 94.31 49.35 90.4

Table 4: Supervised OOD detection performance on ImageNet-1K using CLIP: linear probing outper-
forms fine-tuning on average, especially for larger-scale models, while being computationally cheaper
and significantly faster to train. The best method for each model architecture is bolded, excluding CLIP ViT-G.
The reported results from fine-tuning are based on our evaluations using publicly available CLIP weights fine-tuned
on ImageNet-1K from timm Wightman (2019).

the experiments were carried out in a single NVIDIA A100 with 40GB VRAM. Moreover, we emphasize that
the standard deviation of probing and PLP is less than 0.01%, measured over 10 independent runs. To create
the adversarial datasets CIFAR10-A and CIFAR10-AS, we perform 250 steps with the Adam optimizer with
a learning rate of 10−3 on 1K OOD images. We set λ to 5 · 103 when applying smoothing (Eq. 8).

4 Experimental results

Unsupervised OOD detection. In Fig. 2, we initially investigate whether there is a connection between
the Dtest

in classification accuracy and unsupervised OOD detection AUROC by benchmarking 25 feature
extractors. Out of them, CLIP models exhibit the strongest correlation (R2 coefficient ≥ 0.92) independent
of their network architecture (i.e. ConvNext, ViTs, etc). CLIP’s best instances (ViT-G, ConvNext-XXL)
are currently the best-performing unsupervised OOD detectors, aligning with recent results from Galil et al.
(2023). The features of CLIP ViT-G even outperform the ones from supervised training on ImageNet as Din.
Moreover, we observe that when the Dpretrain is different from Din (CIFAR benchmarks), a positive correlation
can still be identified for self-supervised and supervised models pretrained on ImageNet (R2 = 0.82), yet not
as strong as CLIP (R2 = 0.95).

Large-scale OOD detection with access to class names. We report absolute gains and AUROC
scores. In Tab. 3, we compare pseudo-MSP, based on our reproduction of Ming et al. (2022), to PLP on all
five large-scale benchmarks and find an average improvement of 2.81%, 1.85%, 3.44% AUROC for CLIP
ViT-L, ViT-H, and ViT-G, respectively. The reported gains are computed using the energy score, which is
slightly superior to RMD on average and significantly faster to compute. Interestingly, PLP has consistent
improvements on the newly proposed NINCO dataset, wherein all samples have been visually verified to be
semantically different from Din, with an average AUROC gain of 3.93% across CLIP models. We highlight
that the discrepancy between our reproduction and the reported results of Ming et al. (2022) using ViT-B
and ViT-L is not due to different CLIP weights. We provide a detailed analysis of our reproduction in the
supplementary and show that we were not able to get the same results with Ming et al. (2022).

Large-scale supervised OOD detection. As shown in Tab. 4, fine-tuning CLIP models is often unnecessary
for supervised OOD detection. More precisely, probing on larger models such as CLIP ViT-H consistently
outperforms fine-tuning by a large margin of 7.34% on average. The performance discrepancy of CLIP ViT-L
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Figure 2: In-distribution test accuracy using k=20 nearest neighbours (k-NN) (x-axis)
versus unsupervised out-of-distribution (OOD) detection score (AUROC %) (y-axis) for
ImageNet→ImageNet-O, CIFAR100→CIFAR10, ImageNet→NINCO and CIFAR10→CIFAR100
Deng et al. (2009); Hendrycks et al. (2021b); Krizhevsky et al. (2009). CLIP models Radford et al. (2021);
Cherti et al. (2022) exhibit a strong dependence between OOD performance and in-distribution test accuracy
even without fine-tuning. The black dotted line is fitted using the CLIP models (starred datapoints), where a
coefficient R2 > 0.92 for all benchmarks was found. The OOD detection score is computed using the top-1
NN cosine similarity. Different colors are utilized for different architectures (ViT Dosovitskiy et al. (2021),
ConvNeXt Liu et al. (2022), ResNet He et al. (2016)) while symbol sizes roughly indicate architecture size (i.e.
Small, Base, Large, Huge, Giga). IN indicates ImageNet and IN21K indicates ImageNet-21K Russakovsky
et al. (2015). Best viewed in color.
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CLIP ViT-G/14 Din Din:CIFAR100 CIFAR10 ImageNet ImageNet
labels/names Dout:CIFAR10 CIFAR100 IN-O NINCO

k-means MD ✗/ ✗ 72.8 89.5 87.6 80.7
1-NN ✗/ ✗ 87.6 98.2 88.0 84.0
Pseudo-MSP ✗/ ✓ 94.2 97.3 88.1 83.4
PLP + MSP ✗/ ✓ 92.7 97.9 86.6 86.7
PLP + RMD ✗/ ✓ 97.1 98.3 91.9 88.4
PLP + Energy ✗/ ✓ 95.0 98.5 91.4 88.7
MD ✓/ ✓ 73.1 91.1 88.1 81.5
RMD ✓/ ✓ 96.3 98.8 92.4 89.3
Few-shot p = 10 + MSP ✓/ ✓ 89.4 96.5 88.1 84.8
Few-shot p = 10 + Energy ✓/ ✓ 90.9 96.6 90.8 83.0
Probing + MSP ✓/ ✓ 94.1 98.7 88.1 89.1
Probing + RMD ✓/ ✓ 97.3 98.8 92.5 89.5
Probing + Energy ✓/ ✓ 96.3 99.1 92.9 90.4

Table 5: OOD detection AUROCs (%) for multiple evaluations and scores using CLIP ViT-G/14
trained on LAION-2B.

on Places and SUN compared to the other benchmarks is partially attributed to the class overlap. By contrast,
iNaturalist, Texture, and NINCO are sufficiently disjoint from ImageNet in terms of Din class overlap.

Adversarial OOD detection robustness. By evaluating CLIP ViT-G on the introduced
CIFAR100→CIFAR10-A benchmark, we found that it is possible to drop the AUROC score from 87.6%
→50.3% using 1-NN and 94.2%→49.5% using pseudo-MSP. Introducing the smoothness restriction (Eq. (8))
degrades performance to 55.8% and 51.9% AUROC on CIFAR100→CIFAR10-AS using 1-NN and pseudo-MSP,
respectively. Note that an AUROC score of 50% is a random guess’s score, meaning that CLIP ViT-G
performs slightly better than a random guess.

Ablation study for CLIP ViT-G for all OOD detection setups. In Tab. 5, we conduct additional
experimental evaluations using CLIP ViT-G for all three OOD detection scenarios (unsupervised, class names
are available, supervised). In the unsupervised case, k-means + MD yields an inferior AUROC compared to
1-NN, precisely lower by 6.8% on average. By incorporating the Din class names using CLIP’s text encoder,
we find that the PLP consistently outperforms pseudo-MSP with a mean improvement of 3.16% and 2.63%
over PLP+RMD and PLP+Energy respectively. In the supervised scenario, we highlight that RMD is a
strong baseline, surpassing MD by 10.75% AUROC on average, while our PLP+Energy marginally improves
RMD by 0.47%. MSP is constantly the worst choice as an OOD detection score after linear probing.

5 Discussion

Pixel-related features in CLIP’s learned representations. Similar to Mao et al. (2023) for image
classification, the OOD detection performance close to a random guess demonstrates that even the top-
performing CLIP models trained on billion-scale image-text pairs can be fooled by a visual signal manipulation
that is invisible to humans. This finding gives further evidence that besides label-related features, (local) pixel
information affects the learned representations and needs to be explored in greater depth (Park et al., 2023;
Dravid et al., 2023). Another possible research avenue is how adversarial OOD samples transfer between
different feature extractors, which is left for future work.

Does PLP improve Dtest
in accuracy? By comparing the Dtest

in accuracy on ImageNet of the trained
head with the pseudo-labels versus the zero-shot classification of CLIP ViT-G, we found a minor accuracy
improvement of 0.5% on ImageNet. However, accuracies deteriorate for CLIP ViT-B and CLIP ViT-L
on average, which suggests that their Din text-based pseudo-labels have less true positives. The fact that
PLP improves the OOD detection performance (compared to pseudo-MSP) without significantly increasing
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Finetuned Din:IN1K IN1K CIFAR100 CIFAR10
on Din Dout:NINCO IN-O CIFAR10 CIFAR100

ConvNext-B ✗ 95.4 94.9 93.0 98.0
ConvNext-B ✓ 88.8 85.8 90.8* 96.9*
ViT-L ✗ 95.2 95.3 89.8 94.3
ViT-L ✓ 91.3 92.1 97.9* 98.5*
ResNet50+ViT-B ✗ 95.9 95.8 89.2 96.6
ResNet50+ViT-B ✓ 92.9 92.1 96.2* 98.5*

Table 6: Comparing the OOD detection AUROC (%) of ImageNet-21K pretrained models:
linear probing versus fine-tuning. We use publicly available models with and without fine-tuning on
ImageNet from timm and evaluate them using the energy score. Following Fort et al. (2021), we use the MD
on CIFAR fine-tuned models (indicated with an asterisk), which is inefficient at the scale of ImageNet.

Dtest
in accuracy is a new direction left for future work. Another interesting avenue is whether the text-based

pseudo-labels from CLIP can be used with other, possibly smaller-scale, visual feature extractors.

Does linear probing lead to similar OOD detection performance compared to fine-tuning for
ImageNet-21K pretrained models? In Tab. 6, we compare linear probing versus fine-tuning for 3 publicly
available models, where there is a corresponding fine-tuned model on ImageNet. Even though fine-tuning
is the standard practice in supervised OOD detection Fort et al. (2021), the obtained results indicate that
it performs inferior to linear probing on the ImageNet OOD-related benchmarks even for ImageNet-21K
pretrained models. Fine-tuning is, however, still the best approach on the small-scale OOD benchmarks (e.g.
CIFAR10 → CIFAR100), given ImageNet21K pretraining. This explains why a simple and scalable approach
such as probing may have been overlooked. As suggested by Huang & Li (2021), we confirm that OOD
detection approaches tested on small-scale benchmarks do not always translate effectively into larger-scale
setups, where simpler methods need to be revisited. Combined with the results from Tab. 4, we validate that
the OOD-related information is readily available on large-scale foundational models, as recently stated in
Inkawhich et al. (2023); Oquab et al. (2023).

Is the choice of the best feature extractor consistent for smaller-sized models? Not in the scale of
ViT-B and CIFAR benchmarks. In Fig. 3, we keep the model architecture fixed (ViT-B) and visualize the
unsupervised OOD detection performance (1-NN) for different datasets (ImageNet, ImageNet21K, OpenAI-
400M, LAION-2B) and pretraining types (CLIP, supervised, self-supervised). The rationale behind using the
CIFAR-based benchmarks is to focus on feature transferability. We highlight that large pretraining datasets
such as LAION-2B are bottlenecked by the model size of ViT-B as explained in Cherti et al. (2022). Unlike
Fig. 2, we show that the ranking of backbones is not always consistent between different Din and Dout at this
scale. Finally, DINO ViT-B surpasses supervised ImageNet pretraining on both benchmarks, outlining the
transferability of features of self-supervised methods, which is consistent with the results of Ericsson et al.
(2021); Naseer et al. (2021); Adaloglou et al. (2023).

6 Conclusion

This work presented a thorough experimental study by leveraging pretrained models for visual OOD detection,
focusing on CLIP. It was demonstrated that CLIP models are powerful unsupervised OOD detectors,
outperforming even Din supervised models on large-scale OOD detection benchmarks. A fast, simple, OOD
data-agnostic, and scalable method called PLP that trains a linear layer based on Din text-based pseudo-labels
was introduced. PLP outperformed the previous state-of-the-art (pseudo-MSP) for most CLIP models and
ImageNet-based benchmarks while substantially improving the larger architectures (i.e. ViT-G achieves
a mean AUROC gain of 3.4%). Furthermore, it was demonstrated that probing can replace the costly
fine-tuning on CLIP and even ImageNet-21K models on large-scale benchmarks, where CLIP ViT-H exhibited
an average AUROC improvement of 7.3%. Finally, a simple feature-based adversarial OOD data manipulation
method showed that billion-scale feature extractors (CLIP ViT-G) are vulnerable to adversarial OOD attacks.

12



Published in Transactions on Machine Learning Research (03/2024)

M
AE-

IN

Su
p-
IN

21
K

M
oC

oV
3-
IN

M
SN

-IN

O
pe

nA
I-4

00
M

Su
p-
IN

DIN
O
-IN

LA
IO

N-2
B

50

60

70

80

90

A
U

R
O

C
(%

)

human

Din / Dout: CIFAR100 / CIFAR10

M
AE-

IN

Su
p-
IN

21
K

O
pe

nA
I-4

00
M

Su
p-
IN

M
SN

-IN

LA
IO

N-2
B

M
oC

oV
3-
IN

DIN
O
-IN

65

75

85

95

A
U

R
O

C
(%

)

Din / Dout: CIFAR10 / CIFAR100

M
AE-IN

Su
p-

IN
21

K

M
oC

oV
3-

IN

M
SN

-IN

O
pen

AI-4
00

M

Su
p-

IN

DIN
O

-IN

LAIO
N-2

B
50

60

70

80

90

A
U

R
O

C
(%

)

human

Din / Dout: CIFAR100 / CIFAR10

M
AE-IN

Su
p-

IN
21

K

O
pen

AI-4
00

M

Su
p-

IN

M
SN

-IN

LAIO
N-2

B

M
oC

oV
3-

IN

DIN
O

-IN
65

75

85

95

A
U

R
O

C
(%

)

Din / Dout: CIFAR10 / CIFAR100

Figure 3: AUROC values for unsupervised OOD detection using ViT-B/16 pretrained on different
datasets (IN, IN-21K, OpenAI-400M, LAION-2B) and pretext tasks. IN indicates ImageNet. The
performance of CLIP on LAION-2B is bottlenecked by the model size as reported in Cherti et al. (2022) and
larger networks are needed when scaling up to billion-scale datasets. The horizontal line indicates human-level
performance, as reported in Fort et al. (2021).
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