
Global-Local Graph Neural Networks for Node-Classification

Moshe Eliasof
Computer Science Department,

Ben-Gurion University of the Negev, Israel
eliasof@post.bgu.ac.il

Eran Treister
Computer Science Department,

Ben-Gurion University of the Negev, Israel
erant@cs.bgu.ac.il

Abstract

The task of graph node-classification is often approached using a local Graph
Neural Network (GNN), that learns only local information from the node input
features and their adjacency. In this paper we propose to benefit from global and
local information through the form of learning label- and node- features to improve
node-classification accuracy. We therefore call our method Global-Local-GNN
(GLGNN). To learn proper label features, for each label, we maximize the similarity
between its features and nodes features that belong to the label, while maximizing
the distance between nodes that do not belong to the considered label. We then use
the learnt label features to predict the node-classification map. We demonstrate our
GLGNN using GCN and GAT as GNN backbones, and show that our GLGNN
approach improves baseline performance on the node-classification task.

1 Introduction
The field of Graph Neural Networks (GNNs) has gained large popularity in recent years [1–5] in a wide
variety of fields and applications such as computer graphics and vision [5–9], Bioinformatics [10, 11],
node-classification [3, 12, 13] and others. In the context of node-classification, most of the methods
consider only nodal (i.e., local) information by performing local aggregations and 1× 1 convolutions,
e.g., [3, 12–14]. In this paper we propose to incorporate label (i.e., global) information to improve
the training of GNNs. In particular, we propose to learn a feature vector for each label (class) in the
data, which is then used to determine the final prediction map and is mutually utilized with the learnt
node features. Because our method is based on learning global features that scale as the number of
labels in the dataset, our method does not add significant computational overhead compared to the
backbone GNNs. We show the generality of this approach by demonstrating it on GCN [3] and GAT
[12] on a variety of node-classification datasets, both in semi- and fully-supervised settings. Our
experiments reveal that our GLGNN approach is beneficial for all the considered datasets, and we
also illustrate the learnt global features with respect to the node features for a qualitative assessment
of our method. Our contributions are as follows:

• We propose to learn label features to capture global information of the input graph.

• We fuse label- and node- features to predict a node-classification map.

• We demonstrate our method qualitatively by illustrating the learnt label features in Fig. 1 and
quantitatively by demonstrating the benefit of using GLGNN approach on 6 real-world datasets.

2 Related Work
2.1 Graph Neural Networks

Typically, graph neural networks (GNNs) are categorized into spectral [1] and spatial [3, 5, 15–17]
types. While the former learns a global convolution kernel, it scales as the number of nodes in the
graph, n, and is of a higher computational complexity. To obtain local convolutions, spatial GNNs
formulate a local-aggregation scheme is usually implemented using the Message-Passing Neural

M. Eliasof et al., Global-Local Graph Neural Networks for Node-Classification (Extended Abstract). Presented
at the First Learning on Graphs Conference (LoG 2022), Virtual Event, December 9–12, 2022.



Global-Local Graph Neural Networks for Node-Classification

Network mechanism [17], where each node aggregates features (messages) from its neighbours,
according to some policy. In this work we follow the latter, whilst adding a global mechanism by
learning label features to improve accuracy on node-classification tasks.

2.2 Improved training of GNNs

To improve accuracy performance, recent works introduce new training policies, objective functions
and augmentations. A common trick for training on small datasets like Cora, Citeseer and Pubmed
is the incorporation of Dropout [18] after every GNN layer, which has become a standard practice
[3, 13, 14, 19]. Other methods suggest to randomly alternate the data rather than the GNN neural
units. For example, DropEdge [20] and DropNode [21] randomly drop graph edges and nodes,
respectively. In the work PairNorm [22], the authors propose a normalization layer that alleviate the
over-smoothing phenomenon in GNNs [23]. Another approach is the Mixup technique that enriches
the learning data, and has shown success in image classification [24, 25]. Following that, the work
GraphMix [26] proposed an interpolation-based regularization method by parameter sharing of GNNs
and point-wise convolutions and [27] proposed a graph mixup policy based on graph topology and
subgraphs.

Other methods consider the training of GNNs from an information and entropy point of view
following the success of mutual information in CNNs [28]. For example, DGI [29] learns a global
graph vector and considers its correspondence with local patch vectors. However, it does not consider
label features as in our work. In the work InfoGraph [30] the authors learn a discriminative network
for graph classification tasks, and in [31] a consistency-diversity augmentation is proposed via an
entropy perspective for node and graph classification tasks.

3 Notations
We denote an undirected graph by the tuple G = (V, E) where V is a set of n nodes and E is a set of
m edges, and by f (l) ∈ Rn×c the feature tensor of the nodes V with c channels at the l-th layer. The
adjacency matrix is defined by A ∈ Rn×n, where Aij = 1 if there exists an edge (i, j) ∈ E and 0
otherwise, and the diagonal degree matrix is denoted D where Dii is the degree of the i-th node.

Let us also denote the adjacency and degree matrices with added self-edges by Ã and D̃, respectively.
Using this notation, for example, the propagation operator from GCN [3] is obtained by P̃ =

D̃− 1
2 ÃD̃− 1

2 , and its architecture is given by

f (l+1) = ReLU(P̃f (l)K(l)), (1)

where K(l) is a 1× 1 convolution matrix.

We consider the node-classification task with k labels. We denote the ground-truth labels by y ∈
Rn×k and the node-classification prediction by applying SoftMax to the output of the network fout

ŷ = SoftMax(fout) ∈ Rn×k. (2)

4 Method
We now describe the local and global feature extraction mechanism and our objective functions.

Local features. The local information is obtained by learning node features f ∈ Rn×d using some
backbone denoted by GNN. In our experiments, we evaluate our method with GNN being a GCN
[3] as in Eq. (1) or a GAT [12]. Note that our GLGNN approach does not assume a specific GNN
backbone and thus can possibly be utilized with other GNNs.

Global features. Our global information mechanism learns label features g ∈ Rk×d. Specifically,
to obtain the global features we consider the concatenation of initial nodes-embedding f (0) and
the last GNN layer node features f (L) denoted by

[
f (0) ⊕ f (L)

]
. We then perform a single 1 × 1

convolution denoted by Kg, followed by a ReLU activation, and feed it to a global MaxPool readout
function to obtain a single vector s ∈ Rd. Formally:

s = MaxPool
(
ReLU

(
Kg

[
f (0) ⊕ f (L)

]))
. (3)

2



Global-Local Graph Neural Networks for Node-Classification

Using the global vector s, we utilize k (the number of labels) multi-layer perceptrons (MLPs) that
are implemented as an inverted bottleneck [32], and in particular resembles the squeeze-and-excite
mechanism from [33]. Each MLP is comprised of the following:

gi = Ks (ReLU (Kes)) , (4)
where Ke,Ks are an expanding (from d to e× d) and shrinking (from e× d to d) 1× 1 convolutions,
and the expansion rate e is a hyper-parameter which is set e = 12 in our experiments. Note that this
operation can be efficiently implemented using a grouped convolution to obtain g = [g0, . . . ,gk−1]
in parallel. Also, because s is a vector, the computational overhead is rather low compared to the
total complexity of the backbone GNN.

Node-classification map. To obtain a node-classification prediction map, we consider matrix-vector
product of the final GNN output f (L) ∈ Rn×d with each of the label features gi ∈ Rd in (4). More
formally for each label we obtain the following node-label correspondence vector:

zi = f (L) · gi ∈ Rn. (5)
By concatenating the k correspondence vectors and applying the SoftMax function, we obtain a
node-classification map

ŷ = SoftMax (z0 ⊕ . . .⊕ zk−1) ∈ Rn×k, (6)
which is the final output of our GLGNN.

Objective functions. To train our GLGNN we propose to minimize the following objective function:
L = LCE + αLGL, (7)

where LCE denotes the cross-entropy loss between ground-truth y and predicted node labels ŷ from
Eq. (6). α is a positive hyper-parameter, and LGL denotes a global-local loss that considers the
relationship between the label and node features by demanding the similarity of nodes that belong to
a respective label while requiring the dis-similarity of node features that do not belong to that label
and its features, as follows

LGL =

k−1∑
l=0

∑
yi=l

∥gl − f
(L)
i ∥22 −

∑
yi ̸=l

min
(
∥gl − f

(L)
i ∥22, r

) , (8)

where min(·, ·) is a clamping function that returns the minimal values of its arguments, and r is
a positive hyper-parameter,as is standard with contrastive losses [34]. In our experiments we set
r = 10.

5 Experiments
We now demonstrate GLGNN on semi- and fully-supervised node-classification. Our GLGNN
consists of an embedding layer (1× 1 convolution), a series of GNN backbone layers and the label
features MLPs as described in Sec. 4. As GNN backbones, we consider GCN [3] and GAT [12]. We
elaborate on the specific architecture in Appendix A. We use the Adam [35] optimizer, and perform
a grid-search to choose the hyper-parameters (see Appendix B for more information). Our code is
implemented using PyTorch [36] and PyTorch-Geometric [37], trained on an Nvidia Titan RTX GPU.

We show that for all the considered tasks and datasets, our GLGNN offers a consistent improvement
over the baseline methods, and besides the obtained accuracy we report the relative accuracy improve-
ment compared to the baseline GCN and GAT methods. Also, we find that our GLGNN is competitive
with recent state-of-the-art methods. We provide further datasets information in Appendix C.

5.1 Semi-Supervised Node-Classification

We consider Cora, Citeseer and Pubmed [38] datasets and their standard, public train-
ing/validation/testing split as in [39], with 20 nodes per class for training. We follow the training
and evaluation scheme of [13] and consider various GNN models like GCN, GAT, superGAT [40],
APPNP [41], JKNet [42], GCNII [13], GRAND [43], PDE-GCN [44], pathGCN [45], EGNN[14]
and superGAT [40]. We also consider other improved training techniques P-reg [46], GraphMix [26]
and NASA [31]. We summarize the results in Tab. 1 and illustrate the learnt labels and nodes features
in Fig. 1, revealing the clustering effect of learning label nodes.

3



Global-Local Graph Neural Networks for Node-Classification

Table 1: Semi-supervised node-classification ac-
curacy (%).

Method Cora Citeseer Pubmed

GCN 81.1 70.8 79.0
GAT 83.1 70.8 78.5

APPNP 83.3 71.8 80.1
JKNET 81.1 69.8 78.1
GCNII 85.5 73.4 80.3
GRAND 84.7 73.6 81.0
PDE-GCN 84.3 75.6 80.6
pathGCN 85.8 75.8 82.7
EGNN 85.7 – 80.1
superGAT 84.3 72.6 81.7
GraphMix 84.0 74.7 81.1
P-reg 83.9 74.8 80.1
NASA 85.1 75.5 80.2

GLGCN (ours) 84.2(+3.8%) 73.3 (+3.5%) 81.5 (+3.1%)

GLGAT (ours) 84.5(+1.6%) 72.6(+2.5%) 81.2(+3.4%)

Nodes
Labels

Figure 1: tSNE embedding of learnt label- and
node-features of Cora. The similarity of the
label features and the corresponding node fea-
tures shows the clustering effect of incorporating
global information.

Table 2: Fully-supervised node-classification
accuracy (%) on homophilic datasets.

Method Cora Citeseer Pubmed
Homophily 0.81 0.80 0.74

GCN 85.77 73.68 88.13
GAT 86.37 74.32 87.62

Geom-GCN 85.27 77.99 90.05
APPNP 87.87 76.53 89.40
JKNet (Drop) 87.46 75.96 89.45
GCNII 88.49 77.08 89.57
WRGAT 88.20 76.81 88.52
GCNII* 88.01 77.13 90.30
GGCN 87.95 77.14 89.15
H2GCN 87.87 77.11 89.49

GLGCN (ours) 88.47(+3.1%) 77.72 (+5.4%) 88.61 (+0.05%)

GLGAT (ours) 88.65(+2.6%) 77.37 (+4.1%) 88.74 (+0.1%)

Table 3: Fully-supervised node-classification
accuracy (%) on heterophilic datasets.

Method Corn. Texas Wisc.
Homophily 0.30 0.11 0.21

GCN 52.70 52.16 48.92
GAT 54.32 58.38 49.41

Geom-GCN 60.81 67.57 64.12
JKNet (Drop) 61.08 57.30 50.59
GCNII 74.86 69.46 74.12
GCNII* 76.49 77.84 81.57
GRAND 82.16 75.68 79.41
WRGAT 81.62 83.62 86.98
GGCN 85.68 84.86 86.86
H2GCN 82.70 84.86 87.65
GraphCON-GCN 84.30 85.40 87.80
GraphCON-GAT 83.20 82.20 85.70

GLGCN (ours) 74.86 (+42.0%) 70.27 (+34.7%) 65.29 (+33.4%)

GLGAT (ours) 75.67 (+39.3%) 70.01 (+19.9%) 65.88 (+33.3%)

5.2 Fully-Supervised Node-Classification

To further validate the efficacy of our method, we employ fully-supervised node-classification on
6 datasets, namely, Cora, Citeseer, Pubmed, Cornell, Texas and Wisconsin using the 10 random
splits from [47] with train/validation/test split of 48%, 32%, 20% respectively, and report their
average accuracy. In all experiments, we use 64 channels and perform a grid-search to determine
the hyper-parameters. We compare our accuracy with methods like GCN, GAT, Geom-GCN [47],
APPNP, JKNet [42], WRGAT [48], GCNII [13], DropEdge [20], H2GCN [49], GGCN [50] and
GraphCON [51]. We distinguish between homophilic and heterophilic datasets, and report the results
of the former in Tab. 2, and of the latter in Tab. 3, where we also report the homophily score of each
dataset (adapted from [47]). We see an improvement across all benchmarks and types of datasets
compared to the baseline methods of GCN and GAT and competitive results on homophilic datasets
with recent state-of-the-art methods.

6 Conclusion
In this paper we propose GLGNN, a method to leverage global information for semi- and fully-
supervised node-classification. By learning and fusing global label features and local node features,
we show that it is possible to cluster the nodes in a way that enables improved classification accuracy
and demonstrate that our method outperforms baseline models by a significant margin. Future
research directions include the evaluation of this method on graph classification datasets and exploring
additional possible methods of global label information extraction and incorporation.

4



Global-Local Graph Neural Networks for Node-Classification

References
[1] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally

connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013. 1
[2] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks

on graphs with fast localized spectral filtering. In Advances in neural information processing
systems, pages 3844–3852, 2016.

[3] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016. 1, 2, 3, 9

[4] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34
(4):18–42, 2017.

[5] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M Bronstein. Geometric deep learning on graphs and manifolds using mixture model
cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5115–5124, 2017. 1

[6] Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein. Learning shape
correspondence with anisotropic convolutional neural networks. 05 2016.

[7] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph cnn for learning on point clouds. arXiv preprint arXiv:1801.07829,
2018.

[8] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel Cohen-Or.
Meshcnn: a network with an edge. ACM Transactions on Graphics (TOG), 38(4):90, 2019.

[9] Moshe Eliasof and Eran Treister. Diffgcn: Graph convolutional networks via differential
operators and algebraic multigrid pooling. 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada., 2020. 1

[10] Alexey Strokach, David Becerra, Carles Corbi-Verge, Albert Perez-Riba, and Philip M. Kim.
Fast and flexible protein design using deep graph neural networks. Cell Systems, 11(4):402
– 411.e4, 2020. ISSN 2405-4712. doi: https://doi.org/10.1016/j.cels.2020.08.016. URL
http://www.sciencedirect.com/science/article/pii/S2405471220303276. 1

[11] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.
1

[12] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ. 1, 2, 3, 9

[13] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks. In Hal Daumé III and Aarti Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 1725–1735. PMLR, 13–18 Jul 2020. URL http://proceedings.
mlr.press/v119/chen20v.html. 1, 2, 3, 4

[14] Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu.
Dirichlet energy constrained learning for deep graph neural networks. Advances in Neural
Information Processing Systems, 34, 2021. 1, 2, 3

[15] Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional
neural networks on graphs. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3693–3702, 2017. 1

[16] Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. Geodesic con-
volutional neural networks on riemannian manifolds. In Proceedings of the IEEE international
conference on computer vision workshops, pages 37–45, 2015.

[17] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1263–1272. JMLR. org, 2017. 1, 2

5

http://www.sciencedirect.com/science/article/pii/S2405471220303276
https://openreview.net/forum?id=rJXMpikCZ
http://proceedings.mlr.press/v119/chen20v.html
http://proceedings.mlr.press/v119/chen20v.html


Global-Local Graph Neural Networks for Node-Classification

[18] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014. 2

[19] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km. 2

[20] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep
graph convolutional networks on node classification. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=Hkx1qkrKPr. 2, 4

[21] Tien Huu Do, Duc Minh Nguyen, Giannis Bekoulis, Adrian Munteanu, and Nikos Deligiannis.
Graph convolutional neural networks with node transition probability-based message passing
and dropnode regularization. Expert Systems with Applications, 174:114711, 2021. 2

[22] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=rkecl1rtwB. 2

[23] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. Proceedings
of the AAAI Conference on Artificial Intelligence, 34:3438–3445, 04 2020. doi: 10.1609/aaai.
v34i04.5747. 2

[24] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017. 2

[25] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-
Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states.
In International Conference on Machine Learning, pages 6438–6447. PMLR, 2019. 2

[26] Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala, and Jian
Tang. Graphmix: Improved training of gnns for semi-supervised learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pages 10024–10032, 2021. 2, 3

[27] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Mixup for node and graph
classification. In Proceedings of the Web Conference 2021, pages 3663–3674, 2021. 2

[28] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=Bklr3j0cKX. 2

[29] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=rklz9iAcKQ. 2

[30] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. arXiv
preprint arXiv:1908.01000, 2019. 2

[31] Deyu Bo, BinBin Hu, Xiao Wang, Zhiqiang Zhang, Chuan Shi, and Jun Zhou. Regularizing
graph neural networks via consistency-diversity graph augmentations. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages 3913–3921, 2022. 2, 3

[32] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4510–4520, 2018. 3

[33] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3.
In Proceedings of the IEEE/CVF international conference on computer vision, pages 1314–1324,
2019. 3

[34] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an
invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), volume 2, pages 1735–1742. IEEE, 2006. 3

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 3

6

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=Hkx1qkrKPr
https://openreview.net/forum?id=rkecl1rtwB
https://openreview.net/forum?id=rkecl1rtwB
https://openreview.net/forum?id=Bklr3j0cKX
https://openreview.net/forum?id=rklz9iAcKQ


Global-Local Graph Neural Networks for Node-Classification

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. 3

[37] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019. 3

[38] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008. 3

[39] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pages 40–48. PMLR,
2016. 3

[40] Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design
with self-supervision. In International Conference on Learning Representations, 2020. 3

[41] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Combining neural
networks with personalized pagerank for classification on graphs. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=H1gL-2A9Ym.
3

[42] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 5453–5462.
PMLR, 10–15 Jul 2018. URL http://proceedings.mlr.press/v80/xu18c.html. 3, 4

[43] Benjamin Paul Chamberlain, James Rowbottom, Maria Gorinova, Stefan Webb, Emanuele Rossi,
and Michael M Bronstein. Grand: Graph neural diffusion. arXiv preprint arXiv:2106.10934,
2021. 3

[44] Moshe Eliasof, Eldad Haber, and Eran Treister. PDE-GCN: Novel architectures for graph
neural networks motivated by partial differential equations. Advances in Neural Information
Processing Systems, 34:3836–3849, 2021. 3

[45] Moshe Eliasof, Eldad Haber, and Eran Treister. pathgcn: Learning general graph spatial
operators from paths. In International Conference on Machine Learning, pages 5878–5891.
PMLR, 2022. 3

[46] Han Yang, Kaili Ma, and James Cheng. Rethinking graph regularization for graph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
4573–4581, 2021. 3

[47] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geo-
metric graph convolutional networks. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=S1e2agrFvS. 4

[48] Susheel Suresh, Vinith Budde, Jennifer Neville, Pan Li, and Jianzhu Ma. Breaking the limit
of graph neural networks by improving the assortativity of graphs with local mixing patterns.
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
2021. 4

[49] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. Advances
in Neural Information Processing Systems, 33:7793–7804, 2020. 4

[50] Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of
the same coin: Heterophily and oversmoothing in graph convolutional neural networks. arXiv
preprint arXiv:2102.06462, 2021. 4

[51] T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael
Bronstein. Graph-coupled oscillator networks. In International Conference on Machine
Learning, pages 18888–18909. PMLR, 2022. 4

7

https://openreview.net/forum?id=H1gL-2A9Ym
http://proceedings.mlr.press/v80/xu18c.html
https://openreview.net/forum?id=S1e2agrFvS


Global-Local Graph Neural Networks for Node-Classification

[52] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial intel-
ligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.
9

8



Global-Local Graph Neural Networks for Node-Classification

A Architecture
We now elaborate on the specific architecture used in our experiments in Sec. 5. Our network
architecture consists of an opening (embedding) layer (1 × 1 convolution), a sequence of GNN
backbones layers (see details below for specific aggregation rules for GCN and GAT), and a series of
1× 1 convolutions to learn the global labels features. We have a single type of architecture, based on
the scheme of GCN [3] for node-classification. The difference between our GLGCN and GLGAT
is the backbone of the GNN. We specify the node feature extraction architecture in Tab. 4, and the
label feature extraction architecture in Tab. 5. In what follows, we denote by cin and k the input and
output channels, respectively, and c denotes the number of features in hidden layers. We initialize the
embedding and label features related layers with the Glorot [52] initialization, and K(l) from Eq. (1)
is initialized with an identity matrix of shape c× c. We denote the number of GNN layers by L, and
the dropout probability by p.

The GCN [3] backbone is given by:

f (l+1) = ReLU(P̃f (l)K(l)). (9)
as described in Eq. (1) in the main text

GAT. The GAT [12] backbone defines the propagation operator:

α
(l)
ij =

exp
(
LeakyReLU

(
a(l)

⊤
[K̃(l)f

(l)
i ⊕ K̃(l)f

(l)
j ]

))∑
p∈Ni

exp
(
LeakyReLU

(
a(l)⊤ [K̃(l)f

(l)
i ⊕ K̃(l)f

(l)
p ]

)) , (10)

where a(l) ∈ R2c and K̃(l) ∈ Rc×c are trainable parameters and ⊕ denotes channel-wise concatena-
tion and the neighbourhood of the i-th node is denoted by Ni = {j|(i, j) ∈ E}.

By gathering all α(l)
ij for every edge (i, j) ∈ E into a propagation matrix S ∈ Rn×n we obtain the

GAT architecture:
f (l+1) = ReLU(S(l)f (l)K(l)). (11)

Table 4: The architecture used for node features extraction.

Input size Layer Output size

n× cin Dropout(p) n× cin
n× cin 1× 1 Convolution n× c
n× c ReLU n× c
n× c L× GNN backbone n× c

Table 5: The architecture used for label features extraction. The input of this architecture is the
output of Tab. 4

Input size Layer Output size

n× c MaxPool 1× c
1× c k × 1× 1 Convolutions k × 12 · c
k × 12 · c ReLU k × 12 · c
k × 12 · c k × 1× 1 Convolutions k × c

B Hyper-parameters
We perform a grid-search to determine the hyper-parameters values. In Tab. 6 we specify each hyper
parameter and the range of values that we considered.

C Datasets
The statistics of the datasets used in our experiments are provided in Tab. 7.

9



Global-Local Graph Neural Networks for Node-Classification

Table 6: Hyper-parameters and considered range for grid-search. LR and WD denote the learning
rate and weight decay of embedding and label feature extraction layers. LRGNN and WDGNN denote
the learning rate and weight decay of the GNN layers. α is the balancing coefficient from Eq. (7).

Hyper-parameter Values range

LR [1e-1, 1e-2, 1e-3, 1e-4]
LRGNN [1e-1, 1e-2, 1e-3, 1e-4]
WD [1e-3, 1e-4, 1e-5, 0]
WDGNN [1e-3, 1e-4, 1e-5, 0]
α [1e+2, 1e+1,1, 1e-1,1e-2]
p [0.5,0.6,0.7]

Table 7: Datasets statistics.

Dataset Classes Nodes Edges Features

Cora 7 2,708 5,429 1,433
Citeseer 6 3,327 4,732 3,703
Pubmed 3 19,717 44,338 500
Cornell 5 183 295 1,703
Texas 5 183 309 1,703
Wisconsin 5 251 499 1,703

10


	1 Introduction
	2 Related Work
	2.1 Graph Neural Networks
	2.2 Improved training of GNNs

	3 Notations
	4 Method
	5 Experiments
	5.1 Semi-Supervised Node-Classification
	5.2 Fully-Supervised Node-Classification

	6 Conclusion
	A Architecture
	B Hyper-parameters
	C Datasets

