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Abstract

In this paper, we examine the performance of both Expectation Maximization (EM) and
Gradient Descent (GD) on unconstrained Gaussian Mixture Models when there is misspeci-
fication. Our simulation study reveals a previously unreported class of inferior clustering
solutions, different from spurious solutions, that occurs due to asymmetry in the fitted
component variances. We theoretically analyze this asymmetry and its relation to misspecifi-
cation. To address the problem, we design a new functional penalty term for the likelihood
based on the Kullback Leibler divergence between pairs of fitted components. Closed form
expressions for the gradients of this penalized likelihood are difficult to derive but GD can
be done effortlessly using Automatic Differentiation. The use of this penalty term leads to
effective model selection and clustering with misspecified GMMs, as demonstrated through
theoretical analysis and numerical experiments on synthetic and real datasets.

1 Introduction

The well-established paradigm of model-based clustering assumes data to be generated by a finite mixture
model where each component represents a cluster. Gaussian Mixture Models (GMM), in particular, are
widely used in a variety of applications (McLachlan & Peel, 2000). Expectation Maximization (EM) and its
variants are, by far, the most popular methods to obtain Maximum Likelihood Estimates (MLE) of GMM
parameters (Dempster et al., 1977; McLachlan & Krishnan, 2007).

The one-to-one correspondence between fitted components and clusters, that makes model-based clustering
appealing, assumes that the underlying model is correctly specified and each data cluster can be viewed as
a sample from a mixture component. In real data, the true distribution is rarely known and further, data
may be contaminated by noise or outliers from a distribution different from the assumed model. In such
misspecified settings, MLE may fail to recover the underlying cluster structure (Farcomeni & Greco, 2016).

The behaviour of EM for misspecified GMMs was recently studied by Dwivedi et al. (2018; 2020) who
theoretically quantify the bias in estimates under univariate settings and specific cases, e.g., under- and
over-specified number of components. They also characterize the convergence of EM iterates, which, for
misspecified GMMs, converge to the Kullback-Leibler projection of the data-generating distribution onto the
fitted model class, instead of approximating the true model parameters. Others have studied misspecifcation
in the Bayesian setting, e.g., to find a modified likelihood that is robust to mild perturbations from the model
(Miller & Dunson, 2018; Masegosa, 2020), to find the number of components (Miller & Harrison, 2018; Jitta &
Klami, 2018) and to find identifiability conditions and consistency guarantees (Aragam et al., 2020). In this
work, we study misspecified GMMs in a frequentist parametric setting, with the practical aim of improving
clustering accuracy, i.e., inferring correct labels.

It is well known that MLE, even in the absence of misspecification, may give rise to spurious solutions that
are local maximizers of the likelihood but without adequate interpretability of cluster structure (Ingrassia,
2004; García-Escudero et al., 2014). It is a consequence of the unboundedness of the GMM likelihood function
for unrestricted component covariance matrices (Day, 1969), that results in solutions from EM with fitted
‘degenerate’ component(s) having very small variance corresponding to a cluster containing very few closely
located data points; in the case of multivariate data, there are components with very small generalized
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variance, lying in a lower-dimensional subspace and close to the boundary of the parameter space (Peel
& McLachlan, 2000). Previous approaches to avoid spurious solutions include multiple restarts (Peel &
McLachlan, 2000) and restricting the parameter space in EM to avoid degeneracy (Ingrassia, 2004; Ingrassia
& Rocci, 2007; Chen & Tan, 2009; Ingrassia & Rocci, 2011).

Contamination through noise or outliers, which may be from a population different from the assumed model,
may also lead to spurious solutions. Approaches to fit contaminated mixtures include trimming and restricting
the parameter space (Cuesta-Albertos et al., 1997; Ruwet et al., 2013; García-Escudero et al., 2014). In
addition, constrained GMMs have been proposed to tackle spurious solutions and contamination (Banfield
& Raftery, 1993; Celeux & Govaert, 1995; Fraley & Raftery, 2002; Punzo & McNicholas, 2016); typical
constraints enforce varying degrees of homoscedasticity across the component covariance matrices in terms of
volume, orientation and/or shape. Such constrained models reduce the number of parameters to be estimated,
and thereby enable efficient implementations, e.g., in Mclust (Scrucca et al., 2016). However, imposing such
hard modeling constraints may be too stringent and can degrade clustering performance as they do not take
into account feature dependencies that can vary across the clusters, and may lead to incorrect orientations or
shapes of the inferred clusters. As a result, pre-determined constraints on means or covariance matrices are
discouraged and a more data-dependent discovery of cluster structure is recommended, e.g., by Zhou et al.
(2009); Fop et al. (2019).

In a different line of work, that, to our knowledge, has not studied misspecification, gradient-based methods
for MLE of GMMs have been investigated (Redner & Walker, 1984; Boldea & Magnus, 2009; Montanari &
Viroli, 2011; Alexandrovich, 2014). In general, EM has numerous advantages over gradient-based methods
as discussed in Xu & Jordan (1996). More recently, there has been considerable development of Automatic
Differentiation for Gradient Descent (AD-GD), that obviate the need to derive closed-form expressions of
gradients and thereby facilitate inference in complex models such as deep neural networks as well as mixture
models (Maclaurin et al., 2015; Kasa & Rajan, 2022).

In our study, we first compare the clustering performance – in terms of Adjusted Rand Index (ARI) (Hubert
& Arabie, 1985) – of GD and EM with misspecified GMMs. Our simulations reveal a previously unreported
class of poor clustering solutions, with both EM and GD. These solutions, that we call inferior, occur
frequently in MLE procedures (irrespective of the initialization), have asymmetric fitted covariances that
vary in their sizes and have poor cluster interpretability. Thus, they differ in their characteristics from
spurious solutions. More details are given in section 3. Our theoretical analysis on a specific setting of
univariate mixtures and under-specified number of components yields evidence on the connection between
asymmetry of fitted components and misspecification. It also motivates the design of a new penalty term,
based on the Kullback Leibler divergence between pairs of fitted component Gaussians, to avoid inferior
clusterings. Closed forms for the gradients of this penalized likelihood are difficult to derive and we leverage
AD-GD to develop algorithms1for clustering (SIA) and a model selection criterion (MPKL). Our functional
regularization approach, that enforces soft constraints tunable by varying the hyperparameters, avoids both
spurious solutions and shortcomings of imposing hard modeling constraints. Our extensive experiments
demonstrate the advantage of our methods in clustering with misspecified GMMs.

To summarize, our contributions in this paper are:

• We conduct an empirical analysis to compare the clustering performance of GD and EM inference on
unconstrained and misspecified GMMs.

• We identify and characterize the problem of inferior clusterings that have high likelihood and low
ARI, similar to spurious solutions, in both EM and GD. Unlike spurious solutions, these solutions
have fitted components that are markedly asymmetric with respect to their orientation and sizes,
and occur frequently with many different initializations. We theoretically examine how asymmetry of
fitted components varies with misspecification.

• We propose a new penalty term that is designed to avoid inferior solutions and prove that the
penalized likelihood is bounded and hence avoids degeneracy. Using this penalty term, we develop
MPKL, a model selection criterion and SIA, an AD-GD based clustering algorithm.

1Python implementation given in Supplementary Material
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• Experiments on synthetic and real datasets demonstrate the advantages of SIA, over previous
clustering methods with both constrained and unconstrained GMMs, in cases of misspecification.

2 Background

Let f(x; θ) be the density of a K-component mixture model. Let fk denote the kth component density with
parameters θk and weight πk. The density of the mixture model is given by f(x; θ) =

∑K
k=1 πkfk (x; θk) ,

where
∑K

k=1 πk = 1 and πk ≥ 0 for k = 1, . . . , K and θ denotes the complete set of parameters. In a GMM,
each individual component fk is modeled using a multivariate Gaussian distribution N (µk, Σk) where µk

and Σk are its mean and covariance respectively. Appendix A lists all the symbols used herein.

Given n independent and identically distributed (iid) instances of p-dimensional data, [xij ]n×p where index i
is used for observation, and j is used for dimension, Maximum Likelihood Estimation (MLE) aims to find
parameter estimates θ̂ from the overall parameter space Θ of f(θ) such that probability of observing the
data samples x1, . . . , xn is maximized, i.e., θ̂ = arg maxθ∈Θ L(θ), where, L(θ) = 1

n

∑
i log f(xi; θ) is the

empirical expected loglikelihood.

Following White (1982), if the observed data are n iid samples from a probability distribution P (η∗) (where
η∗ denotes the true set of parameters) and the fitted model has the same functional form P (.), then the
model is said to be correctly specified. Otherwise, the model is said to be misspecified. Note that when the
number of dimensions are greater than the number of datapoints (p > n), there are not enough datapoints to
determine if the fitted model and data-generating distribution are parameterized by the same model, even
along a single dimension and so, the notion of misspecification is moot. Appendices B and C give an overview
of, respectively, spurious solutions and likelihood-based model selection criteria (such as Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC)).

Recent reviews on Automatic Differentiation (AD) can be found in Baydin et al. (2018); Margossian (2019); a
brief review is in Appendix D. To obtain MLE of GMMs, EM elegantly solves 3 problems: (1) Intractability
of evaluating the closed-forms of the derivatives, (2) Ensuring positive definiteness of the covariance estimates
Σ̂k, and (3) Ensuring the constraint on the component weights (

∑
k π̂k = 1). Problem 1 is inherently solved

by the use of AD. Problems 2 and 3 can be addressed through simple reparametrizations in the form of
matrix decomposition and the log-sum-exp trick respectively (Salakhutdinov et al., 2003; Kasa & Rajan,
2022). Details are in Appendix D. Constraints used in EM to mitigate spurious solutions and contamination
can also be used in AD-GD through changes in the update equations.

3 Inferior Clustering Solutions

In this section, we illustrate inferior clustering solutions through an empirical comparison of EM and AD-GD
in cases of misspecification. We also theoretically analyze the role of asymmetric fitted components in
misspecified Gaussian mixture models.

3.1 Simulation Study

We study the clustering solutions obtained by fitting misspecified GMM on Pinwheel data, also known as
warped GMM, with 3 components and 2 dimensions (Iwata et al., 2013). Pinwheel data is generated by
sampling from Gaussian distributions, and then stretching and rotating the data. The centers are equidistant
around the unit circle. The variance is controlled by parameters r, the radial standard deviation and t,
the tangential standard deviation. The warping is controlled by a third parameter, s, the rate parameter.
Thus, the extent of misspecification (i.e., the deviation of the data from the assumed Gaussian distributions
in GMM) can be controlled using these parameters. An example is shown in Fig. 1. We generate 1800
Pinwheel datasets with different combinations of parameters. In addition, we also simulate 1800 3-component,
2-dimensional datasets from GMM with varying overlap of components (to analyze as a control case where
there is no misspecification in fitting a GMM). For each dataset we obtain two clustering solutions, one
each using EM and AD-GD. We run both the algorithms till convergence, using the same initialization
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and stopping criterion. We use ARI to evaluate performance where higher values indicate better clustering.
Details are in Appendix E.

Our experiments on these 3600 datasets show that EM outperforms AD-GD in both cases – when there is
misspecification and no missspecification. However, when there is misspecification, we find that for both
EM and AD-GD, there are many inferior solutions that have low ARI and unequal fitted covariances, often
with one fitted component having relatively large covariance, resulting in a high degree of overlap between
components. We illustrate this using Pinwheel data generated with parameters r = 0.3, t = 0.05 and s = 0.4.
Both EM and AD-GD are run with 100 different initializations. We group the solutions into 4 sets based on
AIC as shown in Table 1, which also shows the average AIC and ARI obtained by AD-GD and the number of
EM and AD-GD solutions in each set. Table 27 (in Appendix E) show the statistics for EM solutions which
are very similar. We visualize the clustering for one solution from each of these sets in Fig. 1.

Table 1: Summary statistics of clustering solutions over 100 random initializations on the Pinwheel dataset
(see Fig. 1), grouped into 4 sets based on AIC ranges. Mean (Standard Deviation) of parameter estimates
from AD-GD, EM estimates (in Appendix E) are similar.

Set AIC AD-GD # Solutions
Range AIC ARI π1 π2 π3 |Σ1| |Σ2| |Σ3| EM AD-GD

1 771-773 771.9
(6e-8)

0.625
(2e-16)

0.257
(3e-6)

0.265
(3e-6)

0.477
(1e-6)

0.0002
(1e-9)

0.0005
(4e-9)

0.123
(4e-7)

24 19

2 781-782 781.1
(3e-6)

0.912
(0)

0.306
(1e-5)

0.341
(3e-5)

0.352
(1e-5)

7e-4
(5e-9)

0.01
(5e-9)

0.01
(5e-7)

4 3

3 786-787 786.8
(2e-7)

0.652
(0)

0.257
(5e-6)

0.267
(3e-6)

0.475
(3e-6)

2e-4
3e-9

5e-4
(3e-9)

0.156
(2e-6)

16 27

4 788-850 815.0
(17.84)

0.806
(0.06)

0.28
(0.015)

0.315
(0.010)

0.403
(0.024)

6e-4
(4e-4)

3e-3
(1e-3)

0.047
(0.018)

56 51

(a) Set 1 - (0.625,771.94) (b) Set 2 - (0.912,781.05) (c) Set 3 - (0.651,786.82) (d) Set 4 - (0.941,813.40)

Figure 1: 4 clustering solutions obtained with AD-GD using different initializations on Pinwheel data; Sets refer to groups in
Table 1; in parentheses: (ARI, AIC), best values in bold.

We observe that both EM and AD-GD obtain very similar solutions in terms of AIC and ARI for this dataset.
The best average ARI is that of set 2 (row 2 of Table 1). These solutions are obtained in less than 5% of the
cases. The overall best ARI, of 0.941, is from a solution in set 4 that has a high AIC value of 813.4 as shown
in Fig. 1 (d). The best AIC, of 771.9, is obtained by a solution from set 1 which has considerably lower ARI
of 0.625 as shown in Fig. 1 (a). Thus, we see solutions with high likelihood and low ARI. We observe that
there are many such inferior solutions in sets 1, 3 and 4 having a fitted component with large variance, also
seen in the specific solutions in Fig. 1.

In cases of misspecification, inferior clusterings from both EM and AD-GD, are found to have fitted covariances
that differ considerably in their orientations and sizes. We observe this in the solutions in Fig. 1 and through
the summary statistics in Table 1. We find that such inferior solutions in misspecified models occur frequently
with many different initializations, and typically when there is a component with large variance. This is
different from the characterization of spurious solutions (see Appendix B) that are found to occur rarely, only
with certain initializations and due to a component with small variance (McLachlan & Peel, 2000).

We find similar inferior solutions with low ARI and low AIC in cases where Gaussian components are
contaminated by a Student’s-t distribution and random noise (details in Appendix F). Further, we have
observed similar effects of misspecification in higher dimensions as well. Illustrations in datasets of up to 100
dimensions are in Appendix F.
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3.2 Misspecification and Asymmetric Components

We now theoretically examine how asymmetry of fitted components varies with misspecification in the case of
univariate mixtures, following the setting of Balakrishnan et al. (2017); Dwivedi et al. (2018; 2020).

Let the true data generating distribution be G∗ = πN (−µ, σ2) + πN (µ, σ2) + (1 − 2π)N (µ, b2σ2), with
0 < π ≤ 0.5. Without loss of generality, we assume µ > 0. When π = 0.5, the true distribution is a symmetric
2-component GMM, with the component means equidistant on either side of the real line as shown in Fig. 2a.
In this case, it has been shown that under some identifiability conditions, fitting a 2-component GMM (i.e.,
without any misspecification) on the data sampled from the true distribution using MLE leads to symmetric
fitted components whose parameters converge to that of the true distribution White (1982); Xu & Jordan
(1996). As π is reduced from 0.5, an additional Gaussian component with mean µ (that coincides with one
of the component means) and variance b2σ2 is introduced. Fitting a 2-component GMM in the case when
π < 0.5 leads to a misspecified model. We analyze the asymmetry of the fitted components for π < 0.5 with
varying misspecification (b).

−µ µ

πN (−µ, σ2) πN (µ, σ2)

(1 − 2π)N (µ, (bσ)2)

(a) (b)

Figure 2: a) True distribution is a GMM and a contamination . We fit a 2-component (misspecified)
GMM . b) Empirical comparison of τ(θ̄) and its upper bound with varying b.

Let the fitted misspecified distribution be G′(θ̄) = (1− π̄)N (µ̄1, σ̄2
1)+ π̄N (µ̄2, σ̄2

2), where θ̄ = (µ̄1, σ̄2
1 , µ̄2, σ̄2

2 , π̄)
and θ̄ ∈ arg minθ∈Θ KL (G∗, G′(θ)). Note that this is a projection to the fitted model and is the best possible
estimator (Dwivedi et al., 2018). Let erf be the Gauss error function (Chang et al., 2011) which is an
odd function, whose values lies in (−1, 1) and is related to the CDF of a standard normal distribution as
Φ(x) = 1

2

[
1 + erf

(
x√
2

)]
.

When misspecification is small, the means of fitted components µ̄1, µ̄2 typically have opposite signs, as the
true components flank the y-axis. When there is misspecification, we expect erf

(
µ̄1√
2σ̄1

)
and erf

(
µ̄2√
2σ̄2

)
to

have unequal and opposite signs. We define an asymmetry coefficient:

τ(θ̄) = (π̄) erf( µ̄2√
2σ̄2

) + (1 − π̄) erf( µ̄1√
2σ̄1

).

τ(θ̄) measures a form of asymmetry in µ
σ of the fitted components when there is misspecification. When

there is no misspecification, since MLE estimates converge to the true parameters asymptotically, τ(θ̄) also
converges to zero. However, when there is misspecification, the variance of one of the components, say σ1,
tends to be much larger than that of the other component (as seen in table 1); in such cases, erf

(
µ1√
2σ1

)
would

be much closer to zero compared to the error function for the other component and τ(θ̄) would converge to a
non-zero value. We derive bounds on τ(θ̄) as follows (proof in Appendix G):
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Theorem 1. Let the true data generating distribution be G∗ = πN (−µ, σ2)+πN (µ, σ2)+(1−2π)N (µ, b2σ2),
with 0 < π ≤ 0.5. Let the fitted misspecified distribution be G′(θ̄) = (1 − π̄)N (µ̄1, σ̄2

1) + π̄N (µ̄2, σ̄2
2),

with asymmetry coefficient τ(θ̄), where θ̄ = (µ̄1, σ̄2
1 , µ̄2, σ̄2

2 , π̄) and θ̄ ∈ arg minθ∈Θ KL (G∗, G′(θ)). Let
C2 := (1 − 2π)(− log b + 0.5b2 − 0.5) + π 2µ2

σ2 and Cw := 1−2w
2 erf

(
−µ√

2σ

)
. Then,

−
√

2C2 + 2Cw ≤ τ(θ̄) ≤
√

2C2 + 2Cw.

Note that C2 and Cw depend only on the true parameters (π, µ, σ, b) and are constants with respect to
the fitted model. Assuming that the true parameters are known, these bounds provide a certification on
whether the fitted parameters θ̄ indeed correspond to the maximum likelihood, thus helping to filter out
fitted parameters corresponding to spurious solutions and undesirable local optima.

We empirically compare the upper bound and observed value of τ(θ̄) when µ = 5.0, σ = 10, π = 0.35 by
varying the values of b (the behaviour of the lower bound is qualitatively similar). For a given value of
b ∈ {0.1, 0.2, . . . , 6}, we simulate 50 datasets and pick the maximum of τ(θ̄) among these 50 output solutions.
The upper bound and the observed maximum are plotted in Fig. 2b. At around b = 1 (when there is no
misspecification), the upper bound reaches its minimum. As b moves away from 1, the upper bound increases
which illustrates that as misspecification increases, the asymmetry in the fitted components also increases.
Additional plots for other values of (µ, σ, π) are in Appendix G. We observe that, if one of the components
has a relatively large variance, then many datapoints may be wrongly assigned to this component leading to
poor clustering.

4 A Penalized Clustering Method

4.1 A New Penalty Term

Our analysis in the previous section naturally leads to the goal of reducing the asymmetry in the fitted
components to improve clustering with misspecified GMMs. To this end, we develop a new functional penalty
term that (i) penalizes differences in orientations and sizes of the fitted components to avoid inferior solutions
and (ii) bounds the penalized likelihood to avoid spurious solutions during ML estimation.

Our penalty term is based on the KL-divergence between component Gaussians. Let Nk denote the multivariate
Gaussian distribution N (µk, Σk). The KL-divergence KL (N1, N2) is given below where each term can
provide useful penalties:

1
2 [log

|Σ2|
|Σ1|︸ ︷︷ ︸
A

+ tr{Σ−1
2 Σ1} − p︸ ︷︷ ︸

B

+ (µ2 − µ1)T Σ−1
2 (µ2 − µ1)︸ ︷︷ ︸

C

]

A: Penalizes the difference in size of the covariance matrices of the two components. Even if the
directions of principal axes of the two covariance matrices are different, this term will tend to zero if
the component determinants are similar, since log(1) = 0.

B: Penalizes the difference in orientations, i.e., if the directions of principal axes of the component
covariance matrices are vastly different. When Σ1 and Σ2 are equal, this penalty term becomes zero.

C: Penalizes the assignment of a single cluster to faraway outlier points which have an extremely low
likelihood of being observed. If some outlier points are assigned a single cluster, then the cluster
center, µ1, would be different from the cluster center µ2 of non-outlier data, and so, the Mahalonobis
distance between the cluster centers, ∥µ1 − µ2∥, would be high, with higher penalization.

KL-divergence is not symmetric about Σ1 and Σ2. If there is an order of magnitude difference in the
covariance matrices Σ1 and Σ2, it can be detected through the values of KL (N1, N2) and KL (N2, N1). The
difference in their values primarily stems from the difference between the terms (µ2 − µ1)T Σ−1

2 (µ2 − µ1)
and (µ2 − µ1)T Σ−1

1 (µ2 − µ1), and tr{Σ−1
2 Σ1} and tr{Σ−1

1 Σ2}. The difference in these two KL divergence
values provides signal about the overlap or asymmetry of the two Gaussians. This notion is generalized to
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a K-component GMM, through the combinatorial KL divergences, KLF (forward) and KLB (backward),
where 1 ≤ k1, k2 ≤ K: KLF :=

∑
k1<k2

KL (Nk1 , Nk2) ; KLB :=
∑

k2<k1
KL (Nk1 , Nk2).Well separated

clusters typically have equal and similar values of KLF and KLB. We denote both the values by KLDivs =
{KLF, KLB}. We note that these two sums (KLF + KLB) together give the sum of Jeffrey’s divergence
between all components Budka et al. (2011). In the clustering outputs shown in Fig. 1, we see that in solution
(c) from set 3, where clustering is poor, KLF= 258 and KLB= 494 (the difference is high), while in solution
(d) from set 4, which has better clustering, KLF= 127 and KLB= 64 (with low difference).

Our proposed penalty term is a weighted sum of the KLF and KLB terms: −w1 × KLF − w2 × KLB, with
negative weights (−w1, −w2). With positive weights GD will further shrink the smaller clusters. Negative
weights lead to reduced overlap as well as clusters of similar volume. In our experiments, we found that
choosing w1 = w2 works in almost all cases. Further, choosing w1 = w2 makes the penalized objective
invariant to permutation in the component labels.

Optimization of likelihood with these penalty terms can be implemented effortlessly through AD-GD where
gradients in closed forms are not required. However, the use of such complex penalties is difficult within EM.
We cannot obtain closed forms of the covariance estimates. Closed forms for the mean update can be derived
(Appendix H) but is laborious and each mean update depends on means for all other components, and hence
cannot be parallelized in EM.

4.2 Sequential Initialization Algorithm (SIA)

SIA consists of two steps. In Step I of SIA, we use the loglikelihood L as the objective and run EM or AD-GD
to fit a GMM. Typically, the output at the end of Step I will have unequal KL-divergences for misspecified
models. The parameters at the end of Step I are used to initialize the algorithm in step II where we modify
the objective function to:

M = L − w1 × KLF − w2 × KLB (1)

After the second optimization step the likelihood decreases but the KL-divergence values, KLF and KLB,
come closer. The complete algorithm is presented in Algorithm 1.

Algorithm 1 SIA
Input: Data: n × p dimensional matrix, number of clusters K, learning rate ϵ, convergence tolerance γ.
Initialize at t = 0: µ̂0

k, α̂k’s using K-Means or random initialization; Û0
k (for GMM) as identity matrices.

Step I: Run either AD-GD or EM with Likelihood L as objective
Step II:
Set M (Eq. 1) as the objective
Initialize: Use Output of Step I
REPEAT: At every iteration t + 1:

α̂t+1
k := α̂t

k + ϵ
∂M
∂αk

; π̂t+1
k := eα̂t+1

k∑
k′ e

α̂t+1
k

′
; µ̂t+1

k := µ̂t+1
k + ϵ

∂M
∂µk

;

Ût+1
k := Ût

k + ϵ
∂M
∂Uk

; Σ̂
t+1
k := Ût+1

k Ût+1T

k

UNTIL: convergence criterion |Mt+1 − Mt|< γ is met

In SIA, after Step I we know the likelihood and model parameters of the unpenalized fitted model. In Step II,
we choose w1, w2 in such a way that the overall likelihood of the model doesn’t reduce drastically, to find
solutions (with less dissimilar covariances) close to the solution after Step I. In our experiments, the values
of w1, w2 have been kept equal and chosen from {0, 0.25, 0.5, 1, 1.25} using the MPKL criterion (described
below).
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4.3 SIA Objective is Bounded

We consider maximum likelihood estimation of parameters θ of a two-component GMM, from n samples,
each of p-dimensions, using SIA. We prove that our penalized log-likelihood M is bounded, and thus SIA
alleviates the problem of degeneracy and spurious solutions in unconstrained GMMs.
Theorem 2. Let C denote a constant dependent only on p, n, w1, w2, c and independent of θ. Assume that
the spectral norm of the generalized variances obtained using MLE, Σ1, Σ2, is bounded by c < ∞ (as a
regularity condition) and, without loss of generality, assume |Σ1|≤ |Σ2| and that the loglikelihood L → ∞
when the first component collapses on a datapoint, i.e., |Σ1|→ 0. For non-negative weights w1, w2, and any
iteration t, SIA objective function M is always bounded:

M ≤ −n

2 (1 + w2)
(

log(| w2

1 + w2
Σ2|) + p

)
+ C.

The proof, in Appendix G, also clarifies that the result generalizes to arbitrary number of components. The
bound is given in terms of w2 because we assume |Σ1|≤ |Σ2| (the objective is not symmetric with respect to
w1 and w2). Hence, w1 does not appear in the theorem statement. Also note that, w1 and w2 are the only
controllable hyper-parameters. By setting w2 = 0, we can see that the maximum of unpenalized likelihood
is unbounded. If a Σ collapses, the log-likelihood may increase but the trace term and the determinant
in the penalization will explode. Hence, by having negative weights −w1, −w2 we can ensure that M is
bounded and control the behavior of the algorithm. Note that both |Σ1|, |Σ2| will not collapse to zero in a
maximum-likelihood estimation approach because if both collapse the log-likelihood goes to negative infinity
(which is easy to verify). A visualization of the likelihood surface, with and without penalty terms, is shown in
Appendix I. The fact that there exists an upper bound to the penalized likelihood (even when the generalized
variance of one of the components collapses to zero), irrespective of its tightness, is sufficient to show that
SIA avoids degenerate and spurious solutions.

4.4 MPKL: A Model Selection Criterion

We define the Maximum absolute Pairwise difference between KL divergence values (MPKL) for a K-
component GMM as:

max
1≤k1,k2≤K

|KL (Nk1 , Nk2) − KL (Nk2 , Nk1) | (2)

MPKL is an indicator of how well the clusters are separated. It is invariant to permutation in cluster labels
and can be used as a criterion for selecting the number of clusters. For a chosen range of number of clusters
(2, . . . , L), we compute MPKL for each value and choose K that minimizes MPKL: argminK∈[2,...,L]MPKL.
Note that MPKL criterion is independent of SIA and can be potentially useful for any GMM-based method,
even in the absence of suspected misspecification. In our experiments (§6 and Appendix L.2), we show that
use of MPKL aids both GD and EM based methods.

4.5 Computational Complexity

The computational complexity is dominated by evaluating KLF and KLB which involves O(K2) matrix
inversion steps (O(p3)). Therefore, the overall time complexity of both SIA and MPKL is O(K2p3). This is
comparable to most GMM inference methods (e.g., EM) due to the O(p3) matrix inversion step. Wall-clock
times of EM, AD-GD and SIA implementations are compared in Appendix J.

4.6 Illustrative Examples

Fig. 3 shows the clustering solution (set 3) obtained on the Pinwheel data discussed in §3, after steps I and
II of SIA. After step II, compared to the clustering after step I, the likelihood decreases, both the KLF and
KLB values decrease, the ARI increases, and the clusters have less overlap. The same is observed for the
other three sets of clustering solutions. Similar illustrations on datasets contaminated with Student’s-t and
random noise are in Appendix F.
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(a) After Step 1: ARI = 0.65, KLDivs
= {258,494}, LL = -376

(b) After Step 2: ARI = 0.96, KLDivs
= {37,36}, LL = -437

Figure 3: Clustering using SIA: compare with Fig. 1.

5 Simulation Studies

We simulate over 2000 datasets from mixtures with non-Gaussian components and with varying (i) cluster
separation (ii) covariance structures and imbalance across component sizes and (iii - iv) number of components.
In all these settings, we vary the dimensionality as well. Table 2 shows a summary of all the settings and the
sections (§) in which the experiments are discussed. Experiments to evaluate MPKL as a model selection
criterion are in Appendix L.2.

Table 2: Summary of Simulation Experiments; K: no. of components, p: dimensionality, n: no. of data
points, r: ratio of weights, µ: means, Σ: covariances. In each case we use p = 2 . . . 20.

Condition(s) varied K µ Σ r n §
1 Cluster Separation 3 varied unit 1 300p 5.1

2 Covariance and
mixture weights 2 fixed varied {0.2,

0.5, 1}
{120p,
150p, 200p} 5.2

3 #components under-specified fixed unit 1 150 L.1.1
4 #components over-specified fixed unit 1 100 L.1.2

We evaluate the clustering performance of misspecified GMM using four inference techniques – EM , AD-GD,
MClust (that implements EM for GMMs with 14 different, including equi-covariance, constraints) and our
SIA algorithm. Note that in SIA, EM and AD-GD, the same model (unconstrained GMM) is fitted; the
difference lies only in the inference approach. MClust fits different models (constrained GMMs) altogether.
We use it as a baseline method to compare the performance of the softer regularization-based approach in
SIA with the harder constraint-based approach in MClust, two different ways of providing inductive bias to
the models.

All the algorithms are initialized using K-Means and are run till convergence. In MClust, instead of the
default initialization with model-based agglomerative clustering, we use K-Means for a fair comparison; the
best among its 14 internal models are selected using BIC.

5.1 Varying Cluster Separation

We simulate data from p-dimensional mixture model with 3 Gaussian components, N (0.5λ (1, . . . , 1)p, Ip),
N ((0, . . . , 0)p, Ip), N (−0.5λ(1, . . . , 1)p, Ip), where λ is a scaling factor which controls the cluster separation
and I2 is a unit covariance matrix. We evaluate the performance for λ values in {3, 4, 5, 7} and p values in
{2, 3, 5, 10, 20}. For each value of p, we sample 100 × p datapoints from each of the 3 components. These
sampled datapoints are cubed so that none of the components is normally distributed. 50 datasets are
simulated for each setting. The results for different values of p are given in Tables 3, 4, 5, 6 and 7. At higher
values of p, SIA outperforms all other methods and at lower values of p, SIA outperforms EM and GD. When
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the dimensionality is small and the cluster separation is poor, we find that the performance of Mclust is
slightly better than that of SIA.

Table 3: ARI (mean and SD) on varying λ and p = 2

λ 3 4 5 7
SIA 0.021

(0.052)
0.073
(0.147)

0.135
(0.270)

0.281
(0.325)

AD-GD 0.021
(0.052)

0.064
(0.146)

0.129
(0.218)

0.278
(0.334)

EM 0.024
(0.042)

0.043
(0.060)

0.111
(0.206)

0.284
(0.355)

Mclust 0.104
(0.019)

0.189
(0.038)

0.226
(0.036)

0.447
(0.224)

Table 4: ARI (mean and SD) on varying λ and p = 3

λ 3 4 5 7
SIA 0.119

(0.081)
0.213
(0.090)

0.399
(0.099)

0.881
(0.069)

AD-GD 0.105
(0.059)

0.198
(0.073)

0.381
(0.094)

0.873
(0.071)

EM 0.075
(0.038)

0.221
(0.117)

0.395
(0.178)

0.632
(0.358)

Mclust 0.139
(0.018)

0.228
(0.041)

0.290
(0.081)

0.731
(0.228)

Table 5: ARI (mean and SD) on varying λ and p = 5

λ 3 4 5 7
SIA 0.163

(0.110)
0.504
(0.129)

0.757
(0.103)

0.926
(0.036)

AD-GD 0.178
(0.075)

0.451
(0.088)

0.678
(0.089)

0.908
(0.048)

EM 0.143
(0.116)

0.316
(0.195)

0.527
(0.297)

0.856
(0.254)

Mclust 0.184
(0.013)

0.321
(0.154)

0.610
(0.262)

0.839
(0.169)

Table 6: ARI (mean and SD) on varying λ and p = 10

λ 3 4 5 7
SIA 0.559

(0.109)
0.836
(0.130)

0.893
(0.239)

0.983
(0.015)

AD-GD 0.553
(0.109)

0.773
(0.220)

0.846
(0.235)

0.949
(0.038)

EM 0.340
(0.189)

0.477
(0.325)

0.571
(0.412)

0.835
(0.294)

Mclust 0.265
(0.052)

0.626
(0.270)

0.727
(0.259)

0.829
(0.237)

Table 7: ARI (mean and SD) on varying λ and p = 20

λ 3 4 5 7
SIA 0.850

(0.162)
0.893
(0.172)

0.947
(0.469)

0.966
(0.441)

AD-GD 0.846
(0.058)

0.843
(0.279)

0.861
(0.491)

0.926
(0.441)

EM 0.684
(0.234)

0.750
(0.345)

0.879
(0.263)

0.995
(0.005)

Mclust 0.328
(0.008)

0.747
(0.256)

0.779
(0.250)

0.796
(0.249)

5.2 Varying Covariance structures and Unbalanced mixtures

We sample from a 2 component p-dimensional GMM whose means are (−0.5, . . . , −0.5)p and (0.5, . . . , 0.5)p

and covariances matrices are Σk = (Σ1/2
k (Σ1/2

k )T ). The parameters of Σ1/2
k are sampled randomly to capture

different covariance structures. We demonstrate in Appendix N that this sampling approach indeed yields
diverse covariance structures. The simulated datapoints are then cubed (for misspecification). Keeping the
number of data points (N1 × p) in cluster 1 constant at 100 × p, we vary the number of datapoints (N2 × p)
in cluster 2 as {20 × p, 50 × p, 100 × p}. We simulate 50 different datasets for each setting. We vary the
dimensionality p as {2, 3, 5, 10, 20}. The results are given in Tables 8, 9 and 10. We observe that when the
dimensionality is low, clustering performance is better at higher imbalance. Appendix K shows an illustration.
At higher values of p, clustering performance is better at lower imbalance. Overall, we find that SIA performs
on par or better than EM, AD-GD and MClust.

6 Evaluation on Real Datasets

We evaluate SIA on real datasets: (I) Wine (Forina et al., 1986), (II) IRIS (Fisher, 1936), (III) Abalone
(Nash et al., 1994)), (IV) Urban Land cover (Johnson & Xie, 2013), (V) LUSC RNA-Seq (Kandoth et al.,
2013)), (VI) Breast Cancer Wolberg et al. (1995), (VII) Crabs Campbell & Mahon (1974), (VIII) Wholesale
Cardoso (2014), (IX) Ceramics mis (2019), and (X) HTRU Lyon (2017).
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Table 8: ARI (mean and SD) for different p and N2 = 20

p 2 3 5 10 20
SIA 0.192

(0.333)
0.128
(0.241)

0.077
(0.086)

0.048
(0.056)

0.0311
(0.035)

AD-GD 0.168
(0.328)

0.122
(0.244)

0.020
(0.079)

0.001
(0.007)

0.001
(0.01)

EM 0.162
(0.343)

0.084
(0.234)

0.064
(0.088)

0.0344
(0.054)

0.030
(0.035)

MClust 0.168
(0.329)

0.086
(0.181)

0.052
(0.079)

0.045
(0.028)

0.035
(0.015)

Table 9: ARI (mean and SD) for different p and N2 = 50

p 2 3 5 10 20
SIA 0.163

(0.259)
0.117

(0.170)
0.099
(0.102)

0.086
(0.055)

0.245
(0.215)

AD-GD 0.122
(0.259)

0.112
(0.171)

0.068
(0.101)

0.052
(0.066)

0.208
(0.242)

EM 0.158
(0.258)

0.105
(0.173)

0.078
(0.095)

0.070
(0.054)

0.061
(0.061)

MClust 0.154
(0.322)

0.102
(0.148)

0.052
(0.088)

0.025
(0.028)

0.017
(0.015)

Table 10: ARI (mean and SD) for different p and N2 = 100

p 2 3 5 10 20
SIA 0.088

(0.073)
0.134

(0.105)
0.089

(0.112)
0.108
(0.077)

0.474
(0.221)

AD-GD 0.066
(0.075)

0.125
(0.106)

0.081
(0.114)

0.094
(0.084)

0.538
(0.260)

EM 0.084
(0.070)

0.108
(0.098)

0.073
(0.088)

0.089
(0.078)

0.078
(0.075)

MClust 0.131
(0.240)

0.110
(0.087)

0.057
(0.079)

0.012
(0.014)

0.003
(0.006)

The datasets are diverse with respect to values of n, p and K and such that their underlying clusters do not
appear to be Gaussian or well-separated (as seen through their scatter-plots). EM, AD-GD, MClust and SIA
are initialized using K-Means, with 10 different random initializations within K-Means, and the best result
obtained is reported.

Table 11: Clustering performance (ARI and RI) on ten real datasets

ARI RI
Dataset n p K SIA EM AD-GD MClust SIA EM AD-GD MClust

I 178 13 3 0.63 0.462 0.375 0.62 0.835 0.742 0.721 0.829
II 150 4 3 0.92 0.90 0.90 0.90 0.965 0.957 0.957 0.957
III 4177 8 3 0.130 0.121 0.089 0.072 0.587 0.582 0.577 0.566
IV 168 148 9 0.11 - 0 - 0.613 - 0 -
V 130 206 2 0.023 - 0 -0.01 0.513 - 0 0.496
VI 569 30 2 0.610 0.593 0.213 0.593 0.805 0.797 0.621 0.797
VII 200 5 4 0.822 0.818 0 0.322 0.933 0.931 0 0.744
VIII 400 6 6 0.188 0.116 0.112 0.132 0.651 0.626 0.599 0.548
IX 88 17 2 0.866 0.783 0.9101 1.0 0.933 0.891 0.955 1.0
X 17898 8 2 0.402 0.349 0.348 0.344 0.770 0.739 0.738 0.736

Table 11 shows the dataset statistics and the ARI obtained (using the provided ground truth) by each method.
In datasets IV and V, the number of observations is lesser than the dimensions (n < p), EM fails to run and
AD-GD assigns all the points to a single cluster.

Case Study

The Wine dataset contains the results of a chemical analysis of wines, yielding 13 features, from 3 different
cultivars. We use this dataset, without the labels of wine types, and fit EM, AD-GD, MClust and SIA for
K ∈ {2, 3, 4}. The log-likelihood (LL), MPKL, KLDivs, AIC and ARI values are shown in table 12. For each
K we show the results for multiple runs with different initializations.

For K = 2, among the 3 EM solutions, while clustering S1 has better LL, its MPKL is higher (worse) than
those obtained by the other clustering outputs (S2 and S3). So, even among EM solutions, by trading off
likelihood for an improvement in MPKL, we can choose better clustering solutions with higher accuracy. The
LL of SIA is better than that of AD-GD (which was used in step 1 of SIA) indicating that its penalty term
can aid in escaping local maxima. The ARI from SIA (S5) is comparable to the best results from EM. We
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Table 12: Clustering Results for Wine dataset

S K Algorithm LL AIC KLF KLB MPKL ARI
1 2 EM -2983.6 6385.3 86.3 39.5 46.8 0.46
2 2 EM -3117.4 6652.9 17.2 14.8 2.3 0.57
3 2 EM -3083.0 6584.0 22.2 17.36 4.8 0.59
4 2 AD-GD -3081.6 6581.2 56.1 29.6 26.5 0.55
5 2 SIA -3072.0 6562.0 42.1 27.5 14.6 0.57
6 3 EM -2901.0 6430.0 321.29 91.44 229.8 0.46
7 3 EM -2915.7 6459.4 93.25 118 51.68 0.62
8 3 AD-GD -3030.04 6688.8 165.9 152.1 50.7 0.38
9 3 SIA -2921.45 6470.9 57.7 60.8 14.66 0.63
10 4 EM -2637.7 6113.4 2.86e8 407.7 134e8 0.52
11 4 EM -2660.7 6158.0 513e7 362.1 513e7 0.52
12 4 AD-GD -2910.7 6659.4 1192.4 364.0 486.65 0.35
13 4 SIA -2850.5 6539.0 519.0 304.9 214.05 0.67

Table 13: Results for
the best model for
each K (S3, S9, S13
in Table 12). 1⃝, 2⃝,
3⃝: 3 wine types.

K 1⃝ 2⃝ 3⃝

2 59 40
71 8

3
56 6

56 7
3 9 41

4

35 3
63 0

75 5 48
17

observe similar trends for K = 3. Among EM solutions (S6 and S7), the solution with better MPKL (S7)
achieves a better ARI. Again, the LL of SIA (S9) is better than that of AD-GD (S8), which was used in step
1 of SIA. The best ARI is achieved by SIA which also has the lowest MPKL value. For K = 4, we observe
that AD-GD solution (S12) does not have high LL, nor does it have a low MPKL value. When SIA step-2 is
initialized with the output of EM (S13), we observe a decrease in MPKL and an improvement in ARI over
both EM and AD-GD. The confusion matrices of models with the best MPKL values for each K is in Table
13. Misspecification of the components is evident in the data scatterplot and S9 visually has the most well
separated clusters (both in Appendix M).

7 Conclusion

In this paper, we illustrate and discuss the problem of inferior solutions that occur while clustering with
misspecified GMMs. They differ in their characteristics from spurious solutions in terms of the asymmetry
of component orientation and sizes, and frequency of occurrence. Our theoretical analysis highlights a new
relation between such asymmetry of fitted components and misspecification. Further investigation of this
connection would be interesting to explore in the future.

We propose a new penalty term based on the Kullback Leibler divergence between pairs of fitted components
that, by design, avoids inferior solutions. We prove that the penalized likelihood is bounded and avoids
degeneracy. Gradient computations for this penalized likelihood is difficult but Automatic Differentiation can
be done effortlessly. We develop algorithms SIA for clustering and MPKL for model selection, and evaluate
their performance, on clustering synthetic and real datasets with misspecified GMMs. Our simulation study
reveals that SIA works well in several cases of misspecification that we examine, particularly when the cluster
separation is low. At high cluster separation, the effect of misspecification on clustering is less acute and other
methods, like MClust, also perform well, and the performance of SIA is comparable. Although the penalty
term in SIA is designed to penalize component asymmetry, SIA performs well even when there are significant
differences with respect to orientations and sizes of the true components in our simulation study. This is
because SIA does not use hard constraints on the orientations and sizes and the functional penalization
approach enables a data-dependent discovery of the underlying clusters. Nevertheless, it is possible in some
cases for SIA to fit symmetric components when the underlying clusters have covariances with different
orientations and sizes. The use of our proposed MPKL criterion in conjunction with other likelihood-based
criteria like AIC or BIC, as discussed in our case study, can guide the user to find good clustering solutions in
such cases. Statistical guarantees with this penalized likelihood approach and extensions to high-dimensional
settings require further work and would be of theoretical and practical interest.
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Appendix

A Symbols and Notation

Symbol Meaning
f overall probability density from which data is sampled
g misspecified model for data sampled from f
fi probability density of the i-th component
πi mixing proportions or weight of the i-th component
θi parameters of i-th mixture component
θ all parameters of the model
θ∗ true parameters of the model from which data is sampled
Θ set of all possible parameters i.e. the entire parameter space
Fi factors associated with i-th datapoint
K total of number of components in the model

k, k
′
, k1, k2 indices over the total number of components K
Xi i-th random datapoint
xi i-th observed datapoint
X all the n random datapoints
x all the n observed datapoints
n Total number of iid datapoints considered
p Total number of dimensions or features of the data
pe Total number of free parameters in the model

L(θ) Log-Likelihood of observing x if the parameters were θ
M(θ) Penalized SIA Log-Likelihood if the parameters were θ

N density of multi-variate Gaussian distribution
B Bernoulli distribution

µi, µij mean of i-th component of a GMM and its value of along j-th dimension respectively
Σi, Σijk Covariance matrix of i-th component of a GMM and its jk-th element respectively

Ui square-root of i-th covariance matrix Σi

ât Estimate of parameter a at the end of iteration t
c, C Constants independent of model parameters
λ factor controlling the cluster separation in simulations
λk hyperparameter controlling the fitted component covariance
I Identity matrix
ϵ learning rate in the vanilla gradient descent step
γ convergence threshold for stopping criterion
b factor controlling the variance of the contaminating component

τ(θ̄) Asymmetry coefficient for inferred GMM parameters θ̄
C2 constant dependent on the true model parameters

D, D′ Discrete measures
Π(D, D′) Set of all Couplings between D, D′

h a coupling between D, D′

G∗ 3-Component corrupted GMM
G 2-Component GMM being fit to G∗

Table 14: Symbols used in the paper
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B Spurious Solutions

Spurious solutions are local maximizers of the likelihood function but lack real-life interpretability and hence
do not provide a good clustering of the data. It is a consequence of the unboundedness of the GMM likelihood
function for unrestricted component covariance matrices. As discussed in McLachlan & Peel (2000), spurious
solutions may be obtained when:

• a fitted component has very small non-zero variance for univariate data or generalized covariance, i.e.,
the determinant of the covariance matrix, for multivariate data. Such a component corresponds to a
cluster containing very few data points close together or, for multivariate data, in a lower dimensional
subspace.

• the model fits a small localized random pattern in the data instead of an underlying group structure.
Such solutions have very few points in one cluster with little variation, compared to other clusters, in
the cluster’s axes, or for multivariate data, small eigenvalues for the component covariance matrix.

• where the likelihood increases by fitting the covariance matrix of a component on just one or a few
datapoints distant from the other samples.

In some cases, e.g., when a component is fitted over very few datapoints, spurious solutions lead to singularities
in the component covariance matrices that can be detected during EM inference. There are other cases as
well, when the parameters lie close to the boundary of the parameter space, when the component covariance
matrices are not singular but may be close to singular for some components.

McLachlan & Peel (2000) observed that convergence to spurious solutions happen rarely; they are dependent
on initialization – often occurring only for some initializations; and convergence to non-spurious global
maxima becomes difficult with increasing dimensionality.

C Model Selection

Information Criterion-based model selection methods are designed to favor parsimony in modeling, by
penalizing overfitting of the model(Konishi & Kitagawa, 2008). Common likelihood-based criteria include
Akaike Information Criterion (AIC):

AIC := 2pe − 2L(θ̂),

and Bayesian Information Criterion (BIC):

BIC := pe ln(n) − 2L(θ̂),

where pe is the number of parameters to be estimated in the model.

Traditional likelihood based model selection criteria such AIC and BIC cannot used reliably when there is
misspecification as they assume that the model has been rightly specified (Konishi & Kitagawa, 2008; Lv &
Liu, 2014). There exists more generalized information criteria such as Takeuchi Information Criteria Takeuchi
(1976) which can accomodate misspecified models; however their practical use is limited by the requirement
to evaluate Hessians with respect to model parameters. It has been pointed out that MLE based criteria
such as AIC and BIC are based on asymptotic normality and hence, cannot be used for model selection in
high-dimensions where n << p (Amari et al., 2006; Akaho & Kappen, 2000; Giraud, 2014). Moreover, in
high dimensions, it has been observed that BIC tends to underestimate the number of components whereas
AIC overestimates the number of components (Melnykov et al., 2010).
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D Automatic Differentiation based Gradient Descent

The contents of this section are from our previous work Kasa & Rajan (2022), with examples from Baydin
et al. (2018).

D.1 Gradient Descent and Automatic Differentiation

Automatic Differentiation (AD) (also known as algorithmic differentiation) is a suite of computational
techniques for efficient and accurate evaluation of derivatives of numeric functions. In traditional GD based
inference, gradients are required in closed form which becomes laborious or intractable to derive as the model
complexity increases, e.g., for MFA. To automate the computation of derivatives three classes of techniques
have been developed: (a) Finite Differentiation (FD) (b) Symbolic Differentiation (SD) and (c) Automatic
or Algorithmic Differentiation (AD). Although easy to code, FD is slow at high dimensions and susceptible
to floating point errors. SD provides exact symbolic expressions of derivatives but has high computational
complexity, in both time and memory and cannot be used when functions are defined using programmatic
constructs such as conditions and loops. The complexity and errors in both FD and SD increase for the
computation of higher derivatives and partial derivatives of vector-valued functions. AD overcomes all these
limitations of FD and SD. It provides efficient and accurate numerical evaluation of derivatives without
requiring closed form expressions.

The numerical computation of a function can be decomposed into a finite set of elementary operations.
These operations most commonly include arithmetic operations and transcendental function evaluations.
The key idea of AD is to numerically compute the derivative of a function by combining the derivatives of
the elementary operations through the systematic application of the chain rule of differential calculus. The
efficiency of the computation is improved by storing evaluated values of intermediate sub-expressions that
may be re-used. Backpropagation, used to train neural networks, is a specific form of AD which is more
widely applicable. We refer the reader to recent surveys (Baydin et al., 2018; Margossian, 2019) for more
details.

Efficient implementations of AD are available in several programming languages and frameworks, e.g. Python
(Maclaurin et al., 2015), R (Pav, 2016), Pytorch (Paszke et al., 2017) and Stan (Carpenter et al., 2015).
Many first and second order gradient-based optimization algorithms are implemented in these libraries. In
this paper, we use Adam, a first order method that computes individual adaptive learning rates for different
parameters from estimates of first and second moments of the gradients (Kingma & Ba, 2015).

D.2 Illustration of Automatic Differentiation

In symbolic differentiation, we first evaluate the complete expression and then differentiate it using rules
of differential calculus. First note that a naive computation may repeatedly evaluate the same expression
multiple times, e.g., consider the rules:

d

dx
(F (x) + G(x)) ; d

dx
F (x) + d

dx
G(x) (3)

d

dx
(F (x) g(x)) ;

(
d

dx
F (x)

)
G(x) + F (x)

(
d

dx
G(x)

)
(4)

Let H(x) = F (x)G(x). Note that H(x) and d
dx H(x) have in common: F (x) and G(x), and on the right

hand side, F (x) and d
dx F (x) appear separately. In symbolic differentiation we plug the derivative of F (x)

and thus have nested duplications of any computation that appears in common between F (x) and d
dx F (x).

In this manner symbolic differentiation can produce exponentially large symbolic expressions which take
correspondingly long to evaluate. This problem is called expression swell. To illustrate the problem, consider
the following iterations of the logistic map ln+1 = 4ln(1 − ln), l1 = x and the corresponding derivatives of ln
with respect to x. Table 15 clearly shows that the number of repetitive evaluations increase with n.

If the symbolic form is not required and only numerical evaluation of derivatives is required, computations can
be simplified by storing the values of intermediate sub-expressions. Further efficiency gains in computation can
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Table 15: Iterations of the logistic map ln+1 = 4ln(1 − ln), l1 = x and the corresponding derivatives of ln
with respect to x, illustrating expression swell (from Baydin et al. (2018))

n ln
d

dx
ln

d
dx

ln (Simplified form)

1 x 1 1
2 4x(1 − x) 4(1 − x) − 4x 4 − 8x
3 16x(1 − x)(1 − 2x)2 16(1 − x)(1 − 2x)2 −

16x(1−2x)2−64x(1−
x)(1 − 2x)

16(1 − 10x + 24x2 − 16x3)

4 64x(1 − x)(1 − 2x)2 (1 − 8x + 8x2)2 128x(1 − x)(−8 +
16x)(1−2x)2(1−8x+
8x2) + 64(1 − x)(1 −
2x)2(1 − 8x + 8x2)2 −
64x(1 − 2x)2(1 − 8x +
8x2)2 − 256x(1 −
x)(1 − 2x)(1 − 8x +
8x2)2

64(1 − 42x + 504x2 − 2640x3 + 7040x4 −
9984x5 + 7168x6 − 2048x7)

be achieved by interleaving differentiation and simplification steps. The derivative of ln+1 = 4ln(1− ln) can be
found using the chain rule dln+1

dln

dln

dln−1
. . . dl1

dlx
which simplifies to 4(1 − ln − ln)4(1 − ln−1 − ln−1) . . . 4(1 − x − x).

Note that evaluation in AD is computationally linear in n (because we add only one (1 − ln − ln) for each
increase by 1). This linear time complexity is achieved due to ‘carry-over’ of the derivatives at each step,
rather than evaluating the derivative at the end and substituting the value of x.
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The Python code below shows the simplicity of the implementation for this problem.

from autograd import grad
def my_func(x,n):

p = x
y = x * (1 - x)
for i in range(n):

y = y*(1 - y)

return y
grad_func = grad(my_func)
grad_func(0.5,4)

Consider the following recursive expressions: l0 = 1
1+ex , l1 = 1

1+el0 , ....., ln = 1
1+eln−1 We evaluate the

derivative of ln with respect to x and compare the runtime in Mathematica (SD) vs PyTorch (AD) for various
values of n. As n increases, it is expected that runtime also increases. It can be seen from the results in Table
16 that runtime increases linearly for AD (using PyTorch) whereas it increases exponentially for SD (using
Mathematica).

Table 16: Average runtime (over 1000 runs)
n AD SD
1 0.00013 0.00000
5 0.00030 0.00005
10 0.00051 0.00023
50 0.00293 0.00437
100 0.00433 0.15625
200 0.00917 1.45364

D.3 Reparametrizations for AD-GD inference on GMMs

As mentioned in section 2, EM solves three main problems in GMM inference. In AD-GD, Problem 1 is
solved inherently because we do not need to express the gradients in closed form by virtue of using AD.
Further, the second-order Hessian matrix may also be evaluated using AD, enabling us to use methods with
faster convergence. To tackle Problem 2, instead of gradients with respect to Σk, we compute the gradients
with respect to Uk, where Σk = UkUT

k . We first initialize Uk as identity matrices. Thereafter, we keep
adding the gradients to the previous estimates of Ût+1

k , i.e.

Ût+1
k := Ût

k + ϵ
∂L

∂Uk
; Σ̂

t+1
k := Ût+1

k Ût+1T

k (5)

where ϵ is the learning rate and superscripts t, t + 1 denote iterations in GD. If the gradients are evaluated
with respect to Σk directly, there is no guarantee that updated Σ̂

t+1
k = Σ̂

t

k + ϵ ∂L
∂Σk

will still remain PD.

However, if the gradients are evaluated with respect to Uk, by construction Σ̂
t+1
k will always remains PD.

Cholesky decomposition for reparameterizing Σk can also be used (Salakhutdinov et al., 2003). Problem 3 is
solved by using the log-sum-exp trick (Robert, 2014). We start with unbounded αk as the log-proportions:
log πk = αk − log(

∑K
k′ =1 eα

k
′ ). We need not impose any constraints on αk as the final computation of πk

automatically leads to normalization, because πk = eαk∑K

k
′ =1

e
α

k
′ . Therefore, we reparametrize a constrained

optimization problem into an unconstrained one (without using Lagrange multipliers) and we can update π̂k

as follows:

α̂t+1
k := α̂t

k + ϵ
∂L
∂αk

; π̂t+1
k := eα̂t+1

k∑K
k′ =1 e

α̂t+1
k

′
(6)
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E Performance of EM and AD-GD on Misspecified GMM: Empirical Results

E.1 EM and AD-GD: A comparison of clustering performance

We compare the clustering performance of AD-GD and EM on pure GMM data as well as non-GMM
(misspecified) data. We do so by simulating 3600 datasets as described below and running both the algorithms
with matching settings with respect to random initialization, number of iterations (maximum of 100 iterations)
and convergence threshold (1e-5). The details of the simulations and results are given below.

Pure GMM data : We simulate datasets from 36 different 2–dimensional 3–component Gaussian Mixture
Models that differ in their means and covariance matrices. This is to test different types of data - from
well-separated components to highly overlapping components. The GMM parameters are varied as follows:

• First, we construct a 2 × 1 vector vk and a 2 × 2 matrix Zk for each of these 3 components, where
each element of the vectors and matrices are sampled from a standard normal distribution.

• The mean vector of the kth component is obtained by multiplying vk by a factor kµ i.e. µk = kµvk.
This factor kµ is varied from 0.25 to 1.5 in steps of 0.25, i.e., the factor kµ takes one of the six values
in {0.25, 0.5, 0.75, 1, 1.25, 1.5}. Higher the value of kµ, more the separation between the means of
components.

• The Zk vector is added to the 2 × 2 Identity matrix I (This step ensures the PD of the covariance
matrix that is computed in the later steps).

• We multiply the matrix Zk + I by kΣ to obtain Uk. The scaling factor kΣ is varied from 0.05 to
0.65 in steps of 0.1, i.e., the scaling factor takes one of the six values in {0.05, 0.15, 0.25, 0.35, 0.45,
0.55}. The covariance matrix of the kth component is Σk = UkUT

k . Higher the scaling factor kΣ,
more the inter-component overlap.

By choosing six different values of kµ and kΣ each, we simulate 36 (6x6) GMM parameters with varying
cluster separation. For each these 36 GMM parameters, we simulate 50 different datasets each containing 300
samples, for a total of 1800 datasets. Both the methods (EM and AD-GD) are run on each dataset with 50
random initializations and average ARI is computed for each combination of (kµ, kΣ).

(a) Radial - 0.05; Tangential - 0.05 (b) Radial - 0.05; Tangential - 0.55 (c) Radial - 0.25; Tangential - 0.55

(d) Radial - 0.55; Tangential - 0.25 (e) Radial - 0.55; Tangential - 0.05 (f) Radial - 0.55; Tangential - 0.55

Figure 4: Data with completely different shapes can be simulated by varying the tangential and radial
parameters of pinwheel dataset.
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Misspecified datasets: The pinwheel data is generated by sampling from Gaussian distributions and
then stretching and rotating the data in a controlled manner. The centers are equidistant around the unit
circle. The variance is controlled by two parameters r and t, the radial standard deviation and the tangential
standard deviation respectively. The warping is controlled by a third parameter, s, the rate parameter. A
datapoint (x, y) belonging to component or arm k is generated as follows:

(x′, y′) ∼ N (0, I) (7)
(x, y) = ((rx′ + 1) cos θk + ty′ sin θk, −(rx′ + 1) sin θk + ty′ cos θk), (8)

where θk = k
2π

K
+ s × erx′+1

The MATLAB 2 and Python3 codes for generating pinwheel datasets are available online. We simulated 36
different pinwheel configurations by varying the radial and tangential components for 3-component mixture
models using the Autograd package in Python. The rate parameter s of warping is fixed at 0.4 for all the 36
different combinations. This is to test multiple combinations – clusters with heavy tails to warped mixtures
as shown in figure 4. The parameters of pinwheel datasets are chosen as follows:

• The radial parameter r is chosen to be one of the six values {0.05, 0.15, 0.25, 0.35, 0.45, 0.55}

• The tangent parameter t is chosen to be one of the six values {0.05, 0.15, 0.25, 0.35, 0.45, 0.55}

By choosing different values of r and t, we simulate 36 (6x6) set of pinwheel parameters. For each these 36
pinwheel parameters, we simulate 50 different datasets each with 300 samples, for a total of 1800 datasets.
Please refer to figure 4 to see the various kinds of component shapes and separations that have been generated.

The tables below show the difference in average ARI between clusterings obtained by EM and those from
AD-GD on GMM (table 17) and Pinwheel (table 18) datasets. The remaining tables (Tables 22 –29) show
the mean and standard deviations over the GMM and Pinwheel datasets for both EM and AD-GD. From
the results in tables 17 and 18, we observe that in both the cases (misspecification and nomisspecification),
EM inference outperforms AG-GD inference. Alexandrovich (2014)’s work on exact Newton’s method using
analytical derivatives also report similar results for non misspecified cases.

Table 17: Difference in average ARI of GMM datasets

kµ | kΣ 0.05 0.15 0.25 0.35 0.45 0.55
0.25 0.56 0.52 0.44 0.40 0.37 0.36
0.5 0.43 0.55 0.49 0.44 0.41 0.40
0.75 0.36 0.51 0.52 0.48 0.46 0.42

1 0.36 0.48 0.55 0.53 0.50 0.50
1.25 0.30 0.47 0.55 0.58 0.54 0.54
1.5 0.33 0.51 0.58 0.60 0.61 0.56

Table 18: Difference in average ARI of Pinwheel
datasets

r | t 0.05 0.15 0.25 0.35 0.45 0.55
0.05 0.18 0.30 0.41 0.50 0.51 0.08
0.15 0.47 0.50 0.56 0.58 0.57 0.24
0.25 0.51 0.58 0.61 0.62 0.61 0.47
0.35 0.30 0.39 0.45 0.53 0.49 0.43
0.45 0.12 0.17 0.20 0.24 0.27 0.30
0.55 0.05 0.08 0.12 0.16 0.18 0.19

2https://github.com/duvenaud/warped-mixtures/blob/master/data/pinwheel.m
3https://github.com/HIPS/autograd/blob/master/examples/data.py
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Table 19: Average ARI of GMM datasets using EM

kµ | kΣ 0.05 0.15 0.25 0.35 0.45 0.55
0.25 0.78 0.63 0.52 0.46 0.42 0.41
0.5 0.81 0.79 0.68 0.59 0.53 0.51
0.75 0.84 0.84 0.78 0.70 0.64 0.57

1 0.84 0.85 0.83 0.77 0.70 0.67
1.25 0.84 0.86 0.84 0.82 0.75 0.71
1.5 0.83 0.86 0.86 0.83 0.81 0.74

Table 20: Average ARI of GMM datasets using AD-GD

kµ | kΣ 0.05 0.15 0.25 0.35 0.45 0.55
0.25 0.23 0.11 0.08 0.06 0.06 0.05
0.5 0.38 0.24 0.18 0.15 0.12 0.11
0.75 0.47 0.33 0.26 0.21 0.18 0.16

1 0.48 0.37 0.28 0.24 0.20 0.17
1.25 0.54 0.39 0.29 0.24 0.21 0.17
1.5 0.50 0.35 0.28 0.23 0.20 0.18

Table 21: Average ARI of Pinwheel datasets using EM

r | t 0.05 0.15 0.25 0.35 0.45 0.55
0.05 0.95 1.00 1.00 1.00 0.95 0.48
0.15 0.95 0.97 1.00 0.98 0.93 0.58
0.25 0.88 0.95 0.95 0.94 0.91 0.74
0.35 0.60 0.69 0.73 0.78 0.72 0.64
0.45 0.36 0.41 0.41 0.44 0.45 0.46
0.55 0.23 0.26 0.28 0.31 0.32 0.32

Table 22: Average ARI of Pinwheel datasets using AD-
GD

r | t 0.05 0.15 0.25 0.35 0.45 0.55
0.05 0.77 0.70 0.59 0.50 0.44 0.40
0.15 0.48 0.47 0.44 0.40 0.36 0.34
0.25 0.37 0.37 0.34 0.32 0.29 0.27
0.35 0.30 0.30 0.28 0.25 0.23 0.21
0.45 0.24 0.24 0.22 0.20 0.18 0.16
0.55 0.19 0.18 0.17 0.15 0.14 0.12

Table 23: Std. Deviation of ARI of GMM datasets
using EM

kµ | kΣ 0.05 0.15 0.25 0.35 0.45 0.55
0.25 0.30 0.27 0.25 0.24 0.22 0.23
0.5 0.29 0.25 0.26 0.27 0.26 0.25
0.75 0.26 0.23 0.25 0.26 0.26 0.27

1 0.25 0.23 0.22 0.26 0.26 0.26
1.25 0.25 0.24 0.23 0.22 0.26 0.26
1.5 0.24 0.23 0.22 0.23 0.22 0.26

Table 24: Std. Deviation of ARI of GMM datasets
using AD-GD

kµ | kΣ 0.05 0.15 0.25 0.35 0.45 0.55
0.25 0.21 0.13 0.09 0.08 0.07 0.05
0.5 0.26 0.21 0.17 0.15 0.12 0.10
0.75 0.25 0.23 0.21 0.19 0.16 0.14

1 0.28 0.23 0.21 0.19 0.17 0.15
1.25 0.29 0.24 0.21 0.18 0.16 0.15
1.5 0.27 0.25 0.23 0.20 0.18 0.16

Table 25: Std. Deviation of ARI of Pinwheel datasets
using EM

r | t 0.05 0.15 0.25 0.35 0.45 0.55
0.05 0.15 0.00 0.00 0.00 0.16 0.32
0.15 0.15 0.12 0.00 0.08 0.15 0.34
0.25 0.12 0.10 0.10 0.08 0.06 0.25
0.35 0.15 0.16 0.17 0.13 0.18 0.17
0.45 0.13 0.12 0.16 0.19 0.18 0.16
0.55 0.08 0.08 0.09 0.11 0.12 0.11

Table 26: Std. Deviation of ARI of Pinwheel datasets
using AD-GD

r | t 0.05 0.15 0.25 0.35 0.45 0.55
0.05 0.03 0.04 0.04 0.04 0.05 0.05
0.15 0.04 0.04 0.05 0.04 0.05 0.04
0.25 0.04 0.04 0.04 0.04 0.04 0.04
0.35 0.03 0.03 0.04 0.04 0.03 0.03
0.45 0.03 0.03 0.03 0.03 0.03 0.03
0.55 0.03 0.03 0.03 0.03 0.03 0.03

24



Under review as submission to TMLR

E.2 Summary statistics of solutions in sets 1–4 for EM

Table 27: Summary statistics of EM clustering solutions over 100 random initializations on the Pinwheel
dataset (shown in fig. 1), grouped into 4 sets based on AIC ranges. Mean and standard deviation of AIC,
ARI, component weights and covariance determinants, over solutions in each set.

Set AIC Range AIC ARI π1 π2 π3 |Σ1| |Σ2| |Σ3|
1 771-773 771.9

(0.0005)
0.625
(3e-16)

0.257
(5e-
4)

0.265
(7e-
5)

0.477
(1e-
4)

0.0002
(4e-
7)

0.0005
(1e-
7)

0.125
(1e-
4)

2 781-782 781.1
(2e-6)

0.912
(0)

0.306
(4e-
6)

0.341
(3e-
6)

0.352
(7e-
6)

7e-4
(1e-
7)

0.01
(4e-
7)

0.01
(2e-
6)

3 786-787 786.8
(0.001)

0.652
(0.002)

0.257
(5e-
5)

0.266
(4e-
4)

0.475
(4e-
4)

2e-4
2e-7

5e-4
(6e-
6)

0.157
(5e-
4)

4 788-850 810.7
(10.84)

0.840
(0.084)

0.287
(0.022)

0.319
(0.009)

0.393
(0.03)

3e-3
(1e-
3)

0.04
(0.02)

0.84
(0.084)
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F Additional Motivating Examples of Inferior Clusterings

F.1 Contamination with Student’s T Distribution

As another motivating example, we illustrate the case where misspecification arises due to contamination by
alternative distribution (Punzo & McNicholas, 2016). Consider a 2-dimensional GMM with 4 components,
each with a unit spherical covariance. The means of the four components are set as given in Table 28 with
β = 3. From each Gaussian component, we sample 50 datapoints. Next, we contaminate the sampled points

Table 28: Component (C) Means

C-1 C-2 C-3 C-4
µ1 -β 0 0 β
µ2 0 β -β 0

using a 2-dimensional 4-component multivariate t distribution with same means and covariance structures.
From each multivariate t component, we sample an additional 50 datapoints. Thus each component has 100
samples and a dataset has 400 samples. We thus have samples from a Gaussian mixture contaminated by
a Student t mixture, where the degree of contamination can varied by the Degrees of Freedom (D.o.F) of
the multivariate t distribution. When the degree of freedom is high, the contamination is negligible. When
the degree of freedom is low, the components based on t-distribution will have heavier tails, and thus the
contamination is higher. By varying the degrees of freedom we can control the contamination and hence the
misspecification.

We fit a 4-component GMM using EM (we obtain similar results using AD-GD as well). As seen from Fig. 5,
the components tend to overlap with increasing misspecification (decreasing D.o.F). We observe that when
the misspecification is high, some of the fitted components tend to have higher covariance compared to other
components. We repeat the same experiment of corrupting the GMM with a multivariate t-distribution but
with increasing the cluster separation by setting β = 5. The results are shown in Fig. 6 As seen, increasing
cluster separation mitigates the affect of misspecification. A similar experiment on contamination with
random noise is shown in Appendix F.2.

(a) D.o.F = 2 (b) D.o.F = 3 (c) D.o.F = 4 (d) D.o.F = 5 (e) D.o.F = 10

Figure 5: Illustration of GMM contaminated by Student t mixture with varying degree of freedom (D.o.F) at low cluster
separation. Lower the D.o.F., higher the misspecification, and greater is the difference in orientation and size of the components
fitted.

(a) D.o.F = 2 (b) D.o.F = 3 (c) D.o.F = 4 (d) D.o.F = 5 (e) D.o.F = 10

Figure 6: Illustration of GMM contaminated by Student t mixture with varying degree of freedom (D.o.F) at high cluster
separation. Misspecification does not seem to affect the fitted components much, only the orientation of the fitted components is
affected.
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(a) D.o.F = 2 (b) D.o.F = 3 (c) D.o.F = 4 (d) D.o.F = 5 (e) D.o.F = 10

Figure 7: SIA improves the clustering performance when the Gaussian components are corrupted by a
multivariate t-distribution - Refer to table 29

Table 29: Improvement in clustering performance before and after SIA step-2 for the contaminated case

Before SIA Step 2 After SIA Step 2
DoF LL KLF KLB MPKL ARI LL KLF KLB MPKL ARI

2 -1837.6 158.4 60.7 58.6 0.57 -1943.9 36.8 41.6 8.8 0.76
3 -1813.4 57.2 80.9 16.6 0.37 -1871.0 48.2 46.2 4.3 0.79
4 -1725.8 48.6 89.1 11.7 0.75 -1735.1 39.6 54.3 3.8 0.78
5 -1683.9 67.1 82.9 11.12 0.79 -1694.5 46.1 54.6 4.9 0.82
10 -1640.7 68.0 96.9 13.9 0.87 -1648.3 56.3 65.8 4.2 0.87

F.2 Contamination using uniform noise

We construct a four component GMM with unit covariances and means {(−3, 0), (0, 3), (0, −3), (3, 0)}.
We sample 50 datapoints from each component. We add datapoints sampled uniformly from the square
(−6, 6) × (−6, 6) as noise. We fit a 4-component GMM using EM in each case. Fig. 8 shows that as we
increase the number of noisy datapoints added to the our original data sampled from GMM, the adverse
effect of misspecification on EM increases. Fig. 10 shows that SIA performs well and obtains good clustering.
Table 30 shows the loglikelihood, KLF, KLB, MPKL and ARI values for each case, before and after step 2 of
SIA. We repeat the same experiment of adding noisy data samples, but with increased cluster separation
by choosing the means as {(−5, 0), (0, 5), (0, −5), (5, 0)}. Fig. 9 shows that increasing the cluster separation
mitigates the effect of misspecification with EM.

(a) # of noise sam-
ples = 10

(b) # of noise sam-
ples = 20

(c) # of noise sam-
ples = 30

(d) # of noise sam-
ples = 40

(e) # of noise sam-
ples = 50

Figure 8: As the number of noisy samples increases, the affect of misspecification also increases
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(a) # of noise sam-
ples = 10

(b) # of noise sam-
ples = 20

(c) # of noise sam-
ples = 30

(d) # of noise sam-
ples = 40

(e) # of noise sam-
ples = 50

Figure 9: Increasing the cluster separation mitigates the effect of uniform noise on specification

(a) # of noise sam-
ples = 10

(b) # of noise sam-
ples = 20

(c) # of noise sam-
ples = 30

(d) # of noise sam-
ples = 40

(e) # of noise sam-
ples = 50

Figure 10: SIA improves the clustering performance in the uniform noise case

Table 30: Improvement in clustering performance before and after SIA step-2 with increasing noisy samples
(10, . . . , 50)

Before SIA Step 2 After SIA Step 2
# of samples LL KLF KLB MPKL ARI LL KLF KLB MPKL ARI

10 -1676.9 75.6 85.2 4.4 0.91 -1681.3 69.0 70.6 1.2 0.92
20 -1719.6 85.2 68.2 8.4 0.87 -1737.8 51.3 45.0 2.4 0.89
30 -1761.1 64.0 87.2 6.9 0.88 -1778.4 44.2 52.8 2.3 0.89
40 -1806.2 78.1 67.3 5.6 0.87 -1815.9 55.2 51.7 2.2 0.89
50 -1839.6 79.4 67.1 6.2 0.87 -1845.5 70.2 65.7 2.0 0.88

F.3 Inferior Clusterings at High Dimensions: Corruption with a Student’s t distribution

In this section, we show that under misspecification using Student’s-t corruption, the asymmetric fitted
components observed in 2-dimensional settings are also present for higher dimensions. Our simulation setting
is as follows: There are 3 clusters whose means are given by (0, . . . , 0)p; (−3, . . . , −3)p; (3, . . . , 3)p and all of
them have unit covariances. For each cluster, 50 × p datapoints are simulated from a Gaussian distribution
and 50 × p datapoints are simulated from a Student’s-t distribution. The degrees of freedom of the Student’s-t
distribution is set to 2 or 10 depending on the degree of misspecification. We fit a 3 component GMM in
this misspecified setting. Since it is not possible to visualize in high dimensional settings, to capture the
asymmetry in the fitted components, we compute the maximum difference between the weights of the fitted
components ∆w, maximum difference between the determinants of fitted covariances ∆c, and the ARI of the
clustering solution. When the misspecification is small (D.o.F = 10), then the values of ∆c and ∆w should be
relatively small compared to when the misspecification is large (D.o.F = 2). The dimensionality p to chosen
from {2, 5, 10, 50, 100}. For each setting, we simulate 50 different datasets and the average results are given
in table 31. We can see that increasing dimensionality (while keeping the proportion of corrupted points the
same) increases the asymmetry of fitted components and the clustering performance deteriorates.

F.4 Inferior Clusterings at High Dimensions: Contamination with uniform noise
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Table 31: Inferior Clusterings at High Dimensions: Corruption with a Student’s t distribution

D.o.F = 2 D.o.F = 10
p ∆c ∆w ARI ∆c ∆w ARI
2 4e4 0.73 0.08 4e0 0.114 0.741
5 6e11 0.84 1e-4 8e2 0.497 0.271
10 8e21 0.83 0.0 2e5 0.569 0.024
50 4e101 0.78 0.0 8e24 0.656 0.0
100 1e189 0.77 0.0 1e47 0.658 0.0

In this section, we show that under misspecification using uniform noise, the asymmetric fitted components
observed in 2-dimensional settings are also present for higher dimensions. Our simulation setting is as follows:
There are 3 clusters whose means are given by (0, . . . , 0)p; (−3, . . . , −3)p; (3, . . . , 3)p and all of them have unit
covariances. For each cluster, 100 × p datapoints are simulated from a Gaussian distribution. We add un × p
datapoints sampled uniformly from the square (−6, . . . , −6)p × (6, . . . , 6)p as noise. The value of un is set to
10 or 50 to control for the degree of misspecification. We fit a 3 component GMM in this misspecified setting.
Since it is not possible to visualize in high dimensional settings, to capture the asymmetry in the fitted
components, we compute the maximum difference between the weights of fitted components ∆w, maximum
difference between determinants of fitted covariances ∆c, and the ARI of the clustering solution. When the
misspecification is small (un = 10), then the values of ∆c and ∆w should be relatively small compared to
when the misspecification is large (un = 50). The dimensionality p to chosen from {2, 5, 10, 50, 100}. For
each setting, we simulate 50 different datasets and the average results are given in table 32. We can see
that increasing dimensionality (while keeping the proportion of corrupted points the same) decreases the
asymmetry in fitted components’ weights and the clustering performance increases.

Table 32: Inferior Clusterings at High Dimensions: Contamination with uniform noise

un = 10 un = 50
p ∆c ∆w ARI ∆c ∆w ARI
2 0.56 0.015 0.93 2.88 0.038 0.92
5 0.98 0.004 0.99 17.65 0.025 0.99
10 1.15 0.002 0.99 42.21 0.014 0.99
50 1.42 0.00 1 104.80 0.003 1
100 1.19 0.00 1 101.25 0.001 1
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G Theoretical Results

G.1 Proof of Theorem 1

G.1.1 Upper bound on the KL-divergences between the true distribution and fitted distribution

Let true distribution be G∗ = πN (−µ, σ2) + πN (µ, σ2) + (1 − 2π)N (µ, b2σ2). WLOG, assume that µ > 0.
Let the fitted distribution be G′(θ) = (1 − π′)N (µ1, σ2

1) + π′N (µ2, σ2
2), where θ = (µ1, σ2

1 , µ2, σ2
2 , π′).

Let θ∗ = (µ, σ2, µ, σ2, π). Clearly, G′(θ∗) ̸= G∗ . Dwivedi et al. (2018) derive the upper bound on the
KL-divergence between true distribution and fitted (misspecified) distribution, when there is only one unknown
parameter; we follow a similar approach.

We give a brief definition of Couplings of discrete measures. We define two discrete measures D =
∑

k πkδηk

and D′ =
∑

k′ π′
k′δηk′ , where δη is the Dirac Delta function at η = (µ, σ2) ∈ R × R+. The set of Couplings

Π (D, D′) between two measures D and D′ is defined as

Π (D, D′) =
{

T ∈ Rk×k′

+ : T1k′ = π, T ⊤1k = π′
}

(9)

where π = (π1, . . . , πk)T
, π′ = (π′

1, . . . , π′
k′)T

, and 1k denotes a k -dimensional vector with all entries equal
to 1. In other words, Π (G, G′) is the set of all joint distributions T on the space [k] × [k′] such that the
marginals of the distribution T are equal to π and π′ (Dwivedi et al., 2018). Couplings can be viewed as a
discretized version of Copulae (Rajan & Bhattacharya, 2016; Kasa et al., 2019).

Lemma 1 of Nguyen et al. (2013) gives an upper bound on the KL-divergence of a two mixtures in terms of
their individual components as follows:

KL (G∗, G′(θ)) ≤ inf
h∈Π(D,D′)

∑
ij

hijKL
(
fi, f ′

j(θ)
)

(10)

where h is a coupling, and fi and f
′

j are individual components of the mixtures G and G′ respectively.

Define

Ḡ := G′(θ̄) where θ̄ ∈ arg min
θ∈Θ

KL (G∗, G′(θ)) (11)

Therefore, from equation 10, we have

KL
(
G∗, G′(θ̄)

)
= min

θ
KL (G∗, G′(θ)) ≤ min

θ
inf

h∈Π(D,D′)

∑
ij

hijKL
(
fi, f ′

j(θ)
)

≤ inf
h∈Π(D,D′)

∑
ij

hijKL
(
fi, f ′

j(θ∗)
)

(12)

Let h =

 π 0
π 0

1 − π̄ − 2π π̄


Substituting this in the RHS of the inequality 10 and setting θ = θ∗, we get

KL
(
G∗, G′(θ̄)

)
≤ (1 − 2π̄)(− log b + 0.5b2 − 0.5) + π̄

2µ2

σ2 =: C2 (13)

where, C2 is a known constant that depends only on the parameters of the true distribution.

G.1.2 Lower bound on the KL-divergence between the true distribution and fitted distribution

One approach to lower bound the KL-divergence is to use the proof ideas from Pinsker’s inequality (Pinsker,
1964; Lattimore & Szepesvári, 2020). In particular, we use the data processing inequality to derive a lower
bound on KL

(
G∗, G′(θ̄)

)
. Before we proceed with the proof, we need the following propositions.
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Proposition 1 (Pinsker’s inequality for Bernoulli Random Variables). Let p, q ∈ [0, 1] be the parameters of
two Bernoulli distributions P and Q. Then

KL (P,Q) ≥ 2(p − q)2. (14)

Proposition 2 (The BH Bound). Let m, m′ be univariate distributions with support on the real line R.

TV(m, m′) ≤
√

1 − e−KL(m,m′) . (15)

The proof of Proposition 1 can be found in Lattimore & Szepesvári (2020). Proposition 2 is a more stricter
alternative to Pinsker’s inequality using the Bertagonolle Huber bound (Bretagnolle & Huber, 1978) - refer
to Clement Canonne’s article for a more detailed review 4.

Consider the sets R−,R+ (i.e. the -ve and +ve real lines) in R. Let the random variable X be distributed
according to G∗ and the random variable Y be distributed according to G′(θ̄). Consider the random variables
Xb = IR−(X) and Yb = IR−(Y ), where I is the indicator function. Clearly, the random variable Xb has a
Bernoulli distribution with parameter 1

2 + Cw, where Cw = 1−2w
2 erf

(
−µ√

2σ

)
. The random variable Yb has a

Bernoulli distribution with parameter (1 − p̄)(0.5(1 + erf( µ̄1√
2σ̄1

))) + (p̄)(0.5(1 + erf( µ̄2√
2σ̄2

))). Then by using
the data processing inequality, we have

KL
(
G∗, G′(θ̄)

)
≥ KL

(
B(0.5 + Cw), B

(
(1 − p̄)(0.5(1 + erf( µ̄1√

2σ̄1
))) + (p̄)(0.5(1 + erf( µ̄2√

2σ̄2
)))
))

(16)

Next using proposition 1, we can write

KL
(
G∗, G′(θ̄)

)
≥ 2

(
Cw − 0.5(p̄erf( µ̄2√

2σ̄2
) + (1 − p̄)erf( µ̄1√

2σ̄1
))
)2

(17)

Combining this lower bound with the upper bound obtained in equation 13, we have

2
(

−
√

C2

2 + Cw

)
≤ τ(θ̄) ≤ 2

(√
C2

2 + Cw

)
(18)

where, τ(θ̄) :=
(

(p̄)erf( µ̄2√
2σ̄2

) + (1 − p̄)erf( µ̄1√
2σ̄1

)
)

Alternately, we can also use proposition 2 by noting that total variation distance of two Bernoulli distributions
P,Q with parameters p, q is |p − q|, and hence proposition 2 leads to the following inequality:

− log(1 − (p − q)2) ≤ KL(P,Q). (19)

Applying this inequality in (16) and (13), we have

C2 ≥ KL
(
G∗, G′(θ̄)

)
≥ − log

(
1 −

(
τ(θ̄)

2 − Cw

)2)
(20)

4https://github.com/ccanonne/probabilitydistributiontoolbox/blob/master/pinskers-and-beyond.pdf
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This can be rewritten as

2
(

−
√

1 − e−C2 + Cw

)
≤ τ(θ̄) ≤ 2

(√
1 − e−C2 + Cw

)
(21)

Next we empirically compare the bounds obtained using approach 1 and approach 2 for different (µ, σ, π)
for varying values of t. For a given value of t, we simulate 200 datasets and pick the maximum of τ(θ̄) =∣∣∣(p̄erf( µ̄2√

2σ̄2
) + (1 − p̄)erf( µ̄1√

2σ̄1
)
)∣∣∣ among these 200 output solutions. From figure 11, we see that the bound

is most effective when the separation of the components in the true distribution is low and proportion of the
contaminating distribution is high. Also, we note that approach -1 gives a tighter bound for most values of b
and hence we go with it in our theorem 1.

It is possible to generalise Theorem 1 to the multivariate case. Here we have considered this particular
univariate setup because of the availability of closed form expressions of KL-divergences. For general
settings, using this same approach, it is possible to compute similar bounds if the closed form expressions for
KL-divergences are available.

(a) µ = 2.0, σ = 20, π = 0.35 (b) µ = 5.0, σ = 20, π = 0.35

(c) µ = 5.0, σ = 20, π = 0.45 (d) µ = 5.0, σ = 20, π = 0.25

Figure 11: Empirical comparison of the bounds for different (µ, σ, π) for varying values of b

G.2 Proof of Theorem 2

First, we show the boundedness for the simple case of a univariate mixture model as it is straightforward to
follow and later proceed to the proof of the multivariate case.
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Proof. Univariate: With loss of generality, let the component 1 - N (x; µ1, σ2
1) - is the one that is fitting

over a single point and reducing its variance σ̂2
1 → 0; also, assume that σ̂2

1 ≤ σ̂2
2 ≤ c < ∞

First note that the value of likelihood satisfies the following inequality:

N (x; µ, σ2) ≤ 1√
2πσ

(22)

For one-dimensional case, the penalized likelihood of SIA for an observation xi can be written as follows:

log(π̂1N (xi; µ̂1, σ̂2
1)+π̂2N (xi; µ̂2, σ̂2

2)) − w1

(
log σ̂2

σ̂1
+ σ̂2

1 + (µ̂1 − µ̂2)2

2σ̂2
2

− 1
2

)
− w2

(
log σ̂1

σ̂2
+ σ̂2

2 + (µ̂1 − µ̂2)2

2σ̂2
1

− 1
2

)
(23)

(By using eq 22 and setting (w3 = w2(σ̂2
2 + (µ̂1 − µ̂2)2)), and leaving out -ve terms)

≤ log( π̂1

σ̂1
+ π̂2

σ̂2
) − w2 log σ̂1 − w3

2σ̂2
1

− log
√

2π + w2 log c (24)

≤ log( π̂1 + π̂2

σ̂1
) − w2 log σ̂1 − w3

2σ̂2
1

+ w2 log c(where w4 = 1 + w2)

≤ −w4 log σ̂1 − w3

2σ̂2
1

+ w2 log c (25)

(Differentiating wrt σ1 and setting to 0, we find σ∗
1 =

√
w3

w4
)

≤ −w4 log
√

w3

w4
− 0.5w4 + w2 log c (26)

The terms in equation 26 are all constants hence the SIA likelihood is bounded. It should be noted that since
we started with the assumption that only the first component becomes degenerate (i.e. σ2

1 → 0) while the
second component doesn’t, the same boundedness result can be trivially generalized to the case where there
are more than 2 components.

Multivariate: λ1(Σ̂1), λ1(Σ̂2) ≤ c1 where λp(.) and λ1(.) denotes the smallest and the largest eigenvalue of
the Rp×p matrix. The likelihood can be made unbounded by making the determinant of Σ̂1 close to zero i.e.
|Σ̂1|→ 0.

First, we bound the following terms:

0.5w2 log(|Σ̂2|) ≤ 0.5w2p log(c1) = C(some constant) (27)
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log(π̂1N (xi; µ̂1, Σ̂1) + π̂2N (xi; µ̂2, Σ̂2)) − 0.5 ∗ w1

(
log |Σ̂2|

|Σ̂1|
+ tr(Σ̂−1

2 Σ̂1) + (µ2 − µ1)T Σ̂−1
2 (µ2 − µ1)T

)

− 0.5 ∗ w2

(
log |Σ̂1|

|Σ̂2|
+ tr(Σ̂−1

1 Σ̂2) + (µ2 − µ1)T Σ̂−1
1 (µ2 − µ1)T

)
(28)

(By using eq 22 and 27, and leaving out -ve terms and absorbing the constants into C)

≤ 0.5 ∗ log( π̂1

|Σ̂1|
+ π̂2

|Σ̂2|
) − 0.5 ∗ w2 log(|Σ̂1|) − 0.5 ∗ w2tr(Σ̂−1

1 Σ̂2) (29)

= 0.5 ∗

(
log( π̂1 + π̂2

|Σ̂1|
) − w2 log(|Σ̂1|) − w2tr(Σ̂−1

1 Σ̂2)
)

(30)

= 0.5 ∗
(

− log(|Σ̂1|) − w2 log(|Σ̂1|) − w2tr(Σ̂−1
1 Σ̂2)

)
(31)

= 0.5 ∗
(

−w3 log(|Σ̂1|) − w2tr(Σ̂−1
1 Σ̂2)

)
(where w3 = 1 + w2) (32)

= 0.5 ∗
(

w3 log(|Σ̂−1
1 |) − w2tr(Σ̂−1

1 Σ̂2)
)

(33)

Note that equation 33 is concave in Σ−1
1 as log(|.|) is a concave function and trace is affine (Boyd &

Vandenberghe, 2004); hence, if a maximum exists, it is the global maximum. We can find the maximum by
differentiating with respect to Σ−1

1 and setting to zero;

∇Σ−1
1

(
w3 log(|Σ̂−1

1 |) − w2tr(Σ̂−1
1 Σ̂2)

)
= w3Σ̂1 − w2Σ̂2 = 0 (34)

=⇒ Σ̂1 = w2

w3
Σ̂2 (35)

Therefore, the final upper bound of the log-likelihood is given by

−0.5(1 + w2)
(

log(| w2

1 + w2
Σ̂2|) + p

)
+ C (36)

H Closed Forms

In this section, we illustrate the difficulty of deriving the closed form expressions of the gradients of the
penalized likelihood used in SIA. These closed form expressions are required to develop an EM algorithm for
inference. Consider the mean update in EM for the unpenalized loglikelihood:

∂ log L
∂µk

= −
n∑

i=1
γ(zik)Σ−1

k (xi − µk) (37)

where γ(zik) is defined as the responsibility and is equal to πkN (xi|µk,Σk)∑K

j=1
πjN (xi|µj ,Σj)

. Setting ∂ log L
∂µk

to zero, we

obtain µk =
∑n

i=1
γ(zik)xi∑n

i=1
γ(zik)

. Note that the computation of the mean update µk can be easily parallelized in
the M-step because it does not involve other mean terms µj where j ̸= k.

Now, consider the gradient of the penalized loglikelihood:

∂ log(L − w1 × KLF − w2 × KLB)
∂µk

= −
n∑

i=1
γ(zik)Σ−1

k (xi − µk) − w1
∑
j ̸=k

2Σ−1
j (µk − µj) − w2

∑
j ̸=k

2Σ−1
k (µk − µj)

(38)
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Setting the above expression to zero, we can obtain the expression for the mean µk as:

µk =

 n∑
i=1

γ(zik)Σ−1
k − (w1 + w2)(

∑
j ̸=k

(
Σ−1

j + Σ−1
k

)
)

−1

 n∑
i=1

γ(zik)Σ−1
k xi − (w1 + w2)(

∑
j ̸=k

(
Σ−1

j + Σ−1
k

)
µj)


(39)

As seen above, even though the process of obtaining the updates is straightforward, it is laborious. For the
update of covariance estimates, we could not find a closed form estimate for the penalized loglikelihood.
Further, note the mean update requires knowledge of other mean terms µj and hence cannot be parallelized.
EM based updates for the more flexible models such as MFA will be even more cumbersome.

In contrast, using Gradient Descent (GD) based inference using Automatic Differentiation (AD) avoids the
need to compute such laborious gradient updates by hand or to hard code them in the software program. AD-
GD based inference approach is model-agnostic as AD software are blackbox tools where we just need to input
the loglikelihood; they don’t require closed forms of the gradients. Thus the same software implementation
can be easily extended for more flexible models such as MFA, PGMM etc. This is not the case with the
traditional EM based inference where the updates have to be derived and re-implemented for each model.
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I Likelihood Surface Visualization

To understand how the penalization in (1) helps in clustering we visualize the log-likelihood surface using the
technique of Li et al. (2018) for neural network loss landscapes. Given two sets of parameters θ1, θ2, the
surface function S(α, β) = L (αθ1 + βθ2) where 0 ≤ α, β ≤ 1 is used to analyze the log-likelihood L.

As an illustration, we use the Pinwheel data described in section 3 with the parameters obtained for (g) and
(a) of fig. 1 as θ1 and θ2 respectively and plot the log-likelihood and penalized log-likelihood in fig. 12 (a)
and (b) respectively. It is evident in fig. 12 (a) that the log-likelihood has a significant plateau region which
has almost similar (unpenalized) likelihood. However, for SIA likelihood in (b), such a plateau does not exist
and there exists a clear maxima at (α = 1, β = 0). As expected θ1 ((g) of fig. 1) has a better clustering
output, despite having similar (unpenalized) likelihood as that of θ2.

Figure 12: (Left:) Side-view and Top-view of GMM Log-likelihood show a plateau region ; (Right:) Side-view
and Top-view of Penalized log-likelihood has no plateau and a clear peak corresponding to good clustering.

J Wallclock time

We benchmark the runtime of SIA with respect to AD-GD and EM. We do so by simulating 50 datasets,
each containing 100 datapoints sampled randomly, for each setting. We run all the algorithms to convergence
in likelihood (tolerance 1e-5) or a maximum of 50 iterations, which ever happens earlier. We evaluate with
the number of clusters K = {3, 5} and data dimensions p = {2, 5, 10, 50}. All experiments were run using
Autograd, Numpy and Sklearn packages in Python 3.7 on Dell Windows 10 machine (Intel i7-6700 quadcore
CPU@3.40GHz; 8 GB RAM; 500 GB HDD).

Table 33 shows the runtime of all the algorithms. We observed that with increasing dimensionality, the
number of iterations for EM reduced, and at p = 50, EM failed to go beyond iteration 1. As expected, SIA
takes roughly double the time taken by AD-GD.
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Table 33: Average Runtime in seconds with data dimensions 2, 5, 10, 50.

# of clusters Algorithm 2 5 10 50
3 SIA 7.900 7.926 8.037 11.508
3 AD-GD 4.471 4.467 4.529 6.50
3 EM 0.009 0.006 0.009 -
5 SIA 20.571 20.785 21.238 30.041
5 AD-GD 11.127 11.194 11.433 16.167
5 EM 0.036 0.025 0.014 -

K Illustration of unbalanced clusters on Pinwheel data

We illustrate the effect of unbalanced clusters on the same pinwheel data that is discussed in section 3. In
the first experiment, instead of (100,100,100) number of points respectively in the three clusters, we have
(100,50,20) number of points respectively for the three clusters. Please refer to fig. 13 (a) and (b) for the
clustering results with SIA with this dataset. In the second experiment we have (100,50,50) number of points.
Please refer to fig. 13 (c) and (d) for the results obtained from SIA.

(a) After Step 1: ARI
= 0.602

MPKL = 220.887
Loglikelihood = -139.4

(b) After Step 2: ARI
= 0.804

MPKL = 41.77,
Loglikelihood = -191.9

(c) After Step 1: ARI
= 0.606

MPKL = 279.769,
Loglikelihood = -228.2

(d) After Step 2: ARI
=0.847

MPKL = 39.251,
Loglikelihood = -261.52

Figure 13: Clustering using SIA for unbalanced pinwheel data. Componentwise number of datapoints:
{100, 50, 20} (a and b), {100, 50, 50} (c and d).

L Additional Experiments

L.1 Performance of SIA

We evaluate the performance of SIA in cases of under-specification and over-specification of number of
components. For these experiments, introducing misspecification by cubing the data points (as done in
simulations in section 5) lead to mixing of the components and does not allow us to study the effects
of over–/under-specification of components. So, we introduce misspecification through contamination by
t-distribution as described below.

L.1.1 Under-specified number of components

We sample 120 datapoints from 3-component p-dimensional GMMs (40 datapoints from each component)
with spherical covariances. The means of the components are (0, . . . , 0)p, (−1, . . . , −1)p and (1, . . . , 1)p. In
addition, we sample 30 datapoints from 3 component p-dimensional t-distribution mixture (10 datapoints
from each component), with the same means and covariances, with two degrees of freedom. Thus, there are
150 datapoints sampled from a contaminated GMM. The dimensionality of p is chosen from {2, 3, 5, 7, 10}.
We fit a misspecified 2-component GMM over these 150 datapoints. For each setting, we simulated 50 datasets
and compute ARI of the clustering output. The results are given in Table 34. We find that both EM and
MClust do not perform well when compared to AD-GD and SIA.
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L.1.2 Over-specified number of components

We sample 80 datapoints from 2 component p-dimensional GMMs (40 datapoints from each component) with
spherical covariances. The means of the components are (0, . . . , 0)p and (1, . . . , 1)p. In addition, we sample
20 datapoints from 2 component p-dimensional t-distribution mixture, with the same means and covariances,
with three degrees of freedom. Thus, the overall 100 datapoints are sampled from a contaminated GMM.
The dimensionality of p is chosen from {2, 3, 5, 7, 10}. We fit a misspecified 3-component GMM over these
100 datapoints. For each setting, we simulated 50 datasets and compute ARI of the clustering output. The
results are given in Table 35.

Table 34: Average (std. dev) ARI with increasing
dimensionality (p)
for under-specified mixtures

p: 2 3 5 7 10
SIA 0.240

(0.127)
0.279
(0.145)

0.330
(0.158)

0.306
(0.191)

0.328
(0.196)

AD-GD 0.238
(0.126)

0.277
(0.144)

0.323
(0.155)

0.302
(0.189)

0.323
(0.193)

EM 0.042
(0.103)

0.021
(0.074)

0.066
(0.118)

0.047
(0.115)

0.100
(0.167)

MClust 0.055
(0.121)

0.046
(0.114)

0.1289
(0.186)

0.092
(0.175)

0.125
(0.200)

Table 35: Average (std. dev) ARI with increasing
dimensionality (p)
for over-specified mixtures

p: 2 3 5 7 10
SIA 0.189

(0.090)
0.266
(0.124)

0.369
(0.166)

0.517
(0.182)

0.614
(0.205)

AD-GD 0.182
(0.089)

0.252
(0.122)

0.356
(0.160)

0.501
(0.179)

0.607
(0.203)

EM 0.059
(0.094)

0.081
(0.096)

0.129
(0.134)

0.147
(0.181)

0.359
(0.244)

MClust 0.074
(0.094)

0.168
(0.127)

0.381
(0.132)

0.523
(0.137)

0.666
(0.120)

L.2 Model Selection

In this section we compare the performance of MPKL with that of AIC and BIC, as model selection criteria,
on synthetic data. Note that MPKL is a general model selection criterion and can be used with any inference
technique and even when misspecification is not suspected.

We follow the setting used in Pan & Shen (2007); Guo et al. (2010) and simulate a 4 component 5-dimensional
datasets as shown in Table 36. We assume unit spherical covariance matrices for each component. The
parameters of each component across the 5 dimensions are varied as shown in Table 36 – all the components
have the same parameters in 2 dimensions (4 and 5), only dimensions 1, 2, 3 are discriminating for components
2,3,4 respectively. The value of λ controls the cluster separation. For each component we sampled ten
datapoints. Three different sets of simulated data with varying cluster separation are obtained by choosing
the value of λ to be 1, 5 and 10 respectively. This experiment is repeated with 10 different seeds for each
value of λ. We use SIA for clustering with each value of K ∈ {3, 4, 5}. We compare the number of clusters
selected using AIC, BIC and MPKL.

Table 36: Simulations for Model Selection for 5-
dimensional datasets. Along each dimension, each
component has unit variance. Means are given be-
low:

Features C-1 C-2 C-3 C-4
1 0 λ 0 0
2 0 0 λ 0
3 0 0 0 λ
4 0 0 0 0
5 0 0 0 0

Table 37: Number of times (in 10 reps) 3, 4, 5 components are selected
with each criterion – MPKL (M), AIC (A), BIC (B) – for a 4-component
5-dimensional dataset with 3 cluster separations (λ = 1, 5, 10).

λ: 1 5 10
#clusters M A B M A B M A B

3 0 7 10 0 0 0 0 0 0
4 10 3 0 10 10 10 10 10 10
5 0 0 0 0 0 0 0 0 0

The results are given in Table 37. When the dimensionality is low and cluster separation is small, both AIC
and BIC underestimate the number of components. MPKL correctly estimates the number of components in
all the cases.

We repeat the above experiment for p = 50; details of the experiments are given in Table 38. The parameters
of each component across the 50 dimensions are varied as shown in table 38, i.e., all the components have the
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same parameters for 35 dimensions, only dimensions 1-5, 5-10, 10-15 are discriminating for components 2,3,4
respectively. All other simulation settings are same as described above for the 5-dimensional case.

Table 38: Simulations for Model Selection for 50-
dimensional datasets. Along each dimension, each
component has unit variance. Means are given be-
low:

Features C-1 C-2 C-3 C-4
1-5 0 λ 0 0
5-10 0 0 λ 0
10-15 0 0 0 λ
15-50 0 0 0 0

Table 39: Number of times (in 10 reps) 3, 4, 5 components are selected
with each criterion – MPKL (M), AIC (A), BIC (B) – for a 4-component
50-dimensional dataset with 3 cluster separations (λ = 1, 5, 10).

λ: 1 5 10
#clusters M A B M A B M A B

3 10 10 10 1 10 10 1 0 10
4 0 0 0 7 0 0 8 10 0
5 0 0 0 2 0 0 1 0 0

Table 39 shows that at very low cluster separation (λ = 1), both the criteria do not select 4 clusters. At
moderate and high cluster separation (λ = 5, 10), BIC underestimates the number of clusters to 3, which is
consistent with previous findings (Melnykov et al., 2010). AIC, on the other hand, performs well only when
the cluster separation is very high. MPKL identifies 4 clusters in 7 out of 10 times at moderate separation
and 8 out of 10 times at high cluster separation.

M Additional details of Wine Case Study

We give the scatterplot matrix for the recommended model S9 here in figure 14.

Figure 14: Scatterplot matrix for the recommended model
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Figure 15: tSNE plots for the best model for each value of K (S. Nos. 3,9 and 13 in Table 12); Clusters
obtained for K = 2 (above), K = 3 (middle) and K = 4 (below).

N Generation of Covariance matrices

Consider a covariances matrix Σ = Σ1/2(Σ1/2)T . The parameters of Σ1/2 are sampled randomly from a
standard normal distribution to capture different covariance structures in Σ. We illustrate that this random
sampling gives different covariance structures by plotting 1000 datapoints sampled from N ((0, 0), Σ) for the
first 10 seeds as shown in table 16.

Figure 16: Different seeds give different covariances structures (seed value is mentioned above each subplot).
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