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ABSTRACT
We consider the problem of testing the equality of conditional distributions of a response variable given a
vector of covariates between two populations. Such a hypothesis testing problem can be motivated from
various machine learning and statistical inference scenarios, including transfer learning and causal predictive
inference. We develop a nonparametric test procedure inspired from the conformal prediction framework.
The construction of our test statistic combines recent developments in conformal prediction with a novel
choice of conformity score, resulting in a weighted rank-sum test statistic that is valid and powerful under
general settings. To our knowledge, this is the first successful attempt of using conformal prediction for
testing statistical hypotheses beyond exchangeability. Our method is suitable for modern machine learning
scenarios where the data has high dimensionality and large sample sizes, and can be effectively combined
with existing classification algorithms to find good conformity score functions. The performance of the
proposed method is demonstrated in various numerical examples. Supplementary materials for this article
are available online.
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1. Introduction

Suppose we have two independent random samples

{(X1i, Y1i)}n1
i=1

iid∼ P1 and {(X2j, Y2j)}n2
j=1

iid∼ P2 ,

where P1, P2 are distributions on a product space X × Y . Here
we consider a regression or classification setting where X is the
free variable (covariate), and Y is the response variable. We allow
the spaces X , Y to be general, and do not assume specific forms
such as smoothness or parametric forms of P1, P2. For example,
X andY can be multi-dimensional Euclidean spaces, manifolds,
or discrete sets.

For j = 1, 2, let Pj(·|x) be the conditional distribution of Y
given X = x under Pj, and Pj,X(·) be the corresponding marginal
distribution of X. We are interested in testing whether these two
conditional distributions are the same.

H0 : P1(·|x) = P2(·|x) for all x ∈ X , versus H1 : otherwise.
(1)

We illustrate P1 and P2 in the two motivating examples below.

Example 1: Covariate shift in transfer learning. In traditional
machine learning, a central task is to build a predictor f̂ : X �→
Y from a training sample {(X1i, Y1i)}n1

i=1
iid∼ P1, and use it to

predict the unseen response Y2 given a future observation of
the covariate X2, where (X2, Y2) ∼ P2. A common assump-
tion is that the training data distribution P1 and testing data
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distribution P2 are the same. In many modern applications, it
is often the case that the testing data may come from a different
distribution, and classical methods developed for iid data need
to be modified to account for such distribution difference. Sub-
fields known as domain adaptation and transfer learning have
emerged to deal with scenarios in which the training data and
testing data may come from different but related distributions
(Pan and Yang 2009; Csurka 2017; Kouw and Loog 2018). To
avoid arbitrary changes in the distribution, one situation of
particular practical and theoretical interest assumes that the
conditional distribution of the response given the covariate
remains the same between the training and testing data while
the covariates may follow different marginal distributions. This
is the covariate shift assumption. It is mathematically equivalent
to the null hypothesis in (1), and enables us to obtain improved
predictive performance by weighting the training data according
to the marginal density ratio. This approach has been widely
studied in the machine learning literature. For examples, see
Shimodaira (2000), Sugiyama, Krauledat, and Müller (2007),
Sugiyama et al. (2008), Bickel, Brückner, and Scheffer (2009),
Gretton et al. (2009), and Sugiyama and Kawanabe (2012).
The two-sample conditional distribution testing problem is a
formal way to verify the covariate shift assumption, assuming
an independent sample {(X2j, Y2j) : 1 ≤ j ≤ n2} from P2
is also available. If we do not reject the null hypothesis, the
methods and theory based on the covariate shift assumption
may be plausible. Otherwise, those methods should be used with
caution.

© 2023 American Statistical Association
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Example 2: Causal predictive inference. In the literature of
causal inference, a causal predictive model is one that will
work equally well under different experimental or observa-
tional environments (Peters, Bühlmann, and Meinshausen 2016;
Bühlmann 2020; Li et al. 2021). Formally, a covariate vector
X is called causal for the prediction of Y if Y = h(X, ε),
for a fixed function h and an independent random variable
ε with a fixed distribution. This definition highlights the idea
that if X contains all the causal factors of Y , then the way X
affects Y does not depend on any other variables (potential
confounders). Therefore, the conditional distribution of Y given
X will remain the same under different experimental conditions,
regardless whether these conditions are fully controlled or sim-
ply observed. In this context, the two distributions P1 and P2
represent the joint distribution of (X, Y) under two different
experimental conditions. If we reject H0 in (1), then X is unlikely
to be causal for the prediction of Y .

Most existing methods for testing conditional distributions
follow one of two directions. The first is to test the equal-
ity of conditional moments, including semiparametric meth-
ods (Hardle and Marron 1990), nonparametric methods (Hall
and Hart 1990; Kulasekera 1995; Kulasekera and Wang 1997;
Neumeyer and Dette 2003), and second order moments (Pardo-
Fernández, Jiménez-Gamero, and El Ghouch 2015). However,
in many applications such as risk management and insurance,
it is not enough to just consider mean and variance terms,
and it is necessary to consider the whole conditional distri-
bution of the response given the covariates. Another direction
is to extend methods for unconditional distribution tests to
conditional distribution tests. Andrews (1997) extended the
Kolmogorov-Smirnov test to the conditional distribution case.
Zheng (2000) proposed a test statistic based on the first-order
linear expansion of Kullback-Leibler divergence. Fan, Li, and
Min (2006) proposed a bootstrap test. Bai (2003) and Corradi
and Swanson (2006) studied the problem of testing conditional
distributions in a dynamic model. Most of the aforementioned
methods rely on some assumptions that are hard to verify in a
data-driven manner, such as smoothness of density and regres-
sion functions, and/or correctly specified parametric models.
In addition, existing nonparametric methods usually involve
nonparametric density estimation as an intermediate step, mak-
ing them less feasible when the dimensionality is moderately
high.

Our new method for two-sample conditional distribution
test has three remarkable features. First, our test statistic is
inspired from conformal prediction (Vovk, Gammerman, and
Shafer 2005; Lei, Robins, and Wasserman 2013; Lei et al. 2018),
a framework of converting point estimators to prediction sets
by exploiting the symmetry of data. The Type I error control is
guaranteed by a weighted exchangeability that is tailored to the
null hypothesis, assuming an accurate estimate of the marginal
density ratio of the covariates is available. Second, our method
does not require estimating the density functions. Instead, it uses
a classification algorithm to estimate the density ratio, and can
incorporate almost any existing classification algorithms rang-
ing from classical parametric estimators to modern black-box
neural nets. In practice, the validity of the data-driven p-value
depends on the accuracy of the classifier, which can be empir-
ically validated. This makes our method particularly useful in

modern machine learning scenarios with high dimensionality
and large sample sizes. Third, the asymptotic null distribution
of our test statistic and its universal power guarantee are rig-
orously established under certain moment conditions on the
density ratios and the accuracy of classification algorithms. To
our knowledge, this is the first successful extension of conformal
prediction to statistical hypothesis testing beyond exchangeabil-
ity with provable size and power guarantees for a data-driven
procedure. These theoretical results are supported by our simu-
lation and real data examples.

Related work in conformal prediction. We provide a general
review of conformal prediction in Section 2.2. Roughly speak-
ing, conformal prediction uses a conformity score to determine
a sample point’s agreement, or conformity, with the current
dataset and fitting procedure, and the resulting prediction set
is the subset of the sample space with high conformity scores.
Conformal prediction in regression has been studied by Lei and
Wasserman (2014) in a nonparametric setting and Lei et al.
(2018) in the high dimensional setting, where the conformity
scores are chosen to be either the conditional density of Y given
X, or the absolute fitted residual. However, these conformity
scores do not guarantee power against general alternatives. A
main methodological contribution of this article is to show
that using the conditional likelihood ratio as the conformity
score can provide universal power guarantee against any alter-
natives. Such a choice of conformity score is partially inspired
by a recent work of conformal prediction in classification by
Guan and Tibshirani (2019). In the context of transfer learning,
under the covariate shift assumption the data points are often
exchangeable within the training set or the testing set alone,
but not exchangeable when the training and testing datasets are
merged together. This nonexchangeability issue can be treated
using the weighted conformal prediction method developed in
Tibshirani et al. (2019), who construct a valid p-value for a single
observation in the test sample assuming the marginal density
ratio is known. Our method combines these ideas, with further
theoretical development to allow the marginal density ratios and
conformity scores to carry estimation errors. Moreover, these
existing methods only consider prediction, and our method
transforms conformal prediction from a prediction tool to a
hypothesis testing tool.

There is a line of work on applying conformal inference in
other contexts, such as testing the global null for streaming data
(Vovk, Nouretdinov, and Gammerman 2003; Fedorova et al.
2012; Vovk 2019, 2020; Vovk et al. 2021) and outlier detection
(Bates et al. 2021). Although both the work of Bates et al. (2021)
and ours involve the conformal p-values and sample splitting,
they are different in various aspects. Bates et al. (2021) studied
the nonparametric outlier detection problem, which is different
from our goal of two-sample conditional distribution testing.
The score functions to construct the conformal p-values are
different. Specifically, they used the one-class classification score,
while we used the conditional density ratio. Moreover, the ways
to exploit the conformal p-values are distinct. They constructed
the p-values for the multiple-testing procedure, while we com-
bined the p-values to eventually perform a one sided mean test.
None of the three features of our method (testing conditional
distributions, conformity score function with universal power,
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and asymptotic error bounds for data-driven procedures) is
considered in these papers.

2. Background

2.1. Problem Formulation

If an x ∈ X is not in the support of P1,X or P2,X , then the
point x should not matter in testing the conditional distribution,
since the conditional distribution given this value of x can be
arbitrarily defined. Therefore, to facilitate discussion we assume
that P1,X and P2,X are equivalent to each other in the following
sense,

P1,X � P2,X , and P2,X � P1,X ,

where “�” stands for absolute continuity. We further assume,
without loss of generality, that P1,X , P2,X have density functions
f1,X , f2,X , respectively, under a common base measure. Now we
can formally state the null and alternative hypotheses as follows.

H0 : P1,X {P1(·|X) = P2(·|X)} = 1,
versus H1 : P1,X {P1(·|X) = P2(·|X)} < 1. (2)

Due to the assumed equivalence between P1,X and P2,X , the
hypotheses in (2) can be equivalently stated by replacing P1,X
with P2,X . For a similar consideration of avoiding triviality and
the ease of discussion, we also assume that P1(·|x) and P2(·|x)

are equivalent, with density functions f1(y|x) and f2(y|x) under
a common base measure.

2.2. Conformal Prediction

Here we briefly introduce conformal prediction in a regres-
sion setting. For conformal prediction in other contexts, such
as unsupervised learning, see (Vovk, Gammerman, and Shafer
2005; Lei, Robins, and Wasserman 2013; Lei, Rinaldo, and
Wasserman 2015).

Given iid data {(Xi, Yi)}m
i=1, conformal prediction converts

a point estimator of the regression function θ̂ : X �→ Y to
a prediction set Ĉ ∈ X × Y , with guaranteed finite-sample
expected prediction coverage:

P
{

Ym+1 ∈ Ĉ(Xm+1)
} ≥ 1 − α , (3)

where Ĉ(x) = {y ∈ Y : (x, y) ∈ Ĉ}, and the probability is taken
over the (m + 1)-tuple of iid data {(Xi, Yi) : 1 ≤ i ≤ m + 1}.

Let D denote the sample {(Xi, Yi) : 1 ≤ i ≤ m}, and D−i
the sample obtained by removing (Xi, Yi) from D. A conformal
prediction set Ĉ is constructed using a conformity score function
v : (X × Y)m+1 �→ R that is symmetric in its first m inputs.
For a given dataset D, a new Xm+1 for which a prediction of
the corresponding Ym+1 is wanted, and a y ∈ Y , let D(y) be
the augmented dataset with the (m + 1)th data point being
(Xm+1, y), and D−i(y) the corresponding m-tuple dataset with
the ith sample removed, where the (m+1)th sample is (Xm+1, y).
Let

Vi(y) = v(D−i(y) , (Xi, Yi)), i = 1, . . . , m,
Vm+1(y) = v(D , (Xm+1, y)) (4)

be conformity scores for each sample point in the augmented
data D(y). The conformal prediction set using the conformity
score function v(·) is

Ĉ(Xm+1)

=
{

y ∈ Y :
m+1∑
i=1

1
[
Vi(y) ≤ Vm+1(y)

] ≥ 	(m + 1)α

}

. (5)

The finite sample coverage (3) can be easily derived from the iid
assumption, the symmetry of v(·), and the construction of Ĉ in
(5). To see this, if we replace y by Ym+1, then the iid assumption
and symmetry of v(·) implies exchangeability of (Vi(Ym+1) :
1 ≤ i ≤ m + 1). Thus, the rank of Vm+1 being lower than
	(m + 1)α
 has probability no more than α.

Although the finite sample coverage guarantee only requires
v(·) to satisfy a symmetry condition, its choice will have a crucial
impact on the quality of the resulting prediction set. A good
choice of v(·) needs to reflect the structure of the underlying
distribution of (X, Y) and be able to tell whether a sample point
is likely drawn from this distribution. Such a function v(·) is
often constructed from a point estimate θ̂ of the regression func-
tion. For example, in nonparametric regression, one can choose
v(D, (x, y)) = f̂ (y|x), where f̂ (·|·) is an estimated conditional
density function of y given x using the sample D ∪ {(x, y)}
(Lei and Wasserman 2014). In high dimensional regression, one
can use v(D, (x, y)) = −|y − θ̂ (x)| where θ̂ is an estimated
regression function using D ∪ {(x, y)}. More recently, some
conformal prediction methods adaptive to heteroscedasticity
based on quantile regression have been proposed (Romano,
Patterson, and Candes 2019; Kivaranovic, Johnson, and Leeb
2020; Sesia and Romano 2021; Chernozhukov, Wüthrich, and
Zhu 2021). In this work, we develop a new conformity score
based on conditional density ratios, which is particularly suited
for the two-sample conditional testing problem.

The definition of Ĉ in (5) is only conceptual and not practical
if Y is infinite, as it requires to evaluate Vi(y) for all y and all
1 ≤ i ≤ m + 1. For practical implementation of conformal
prediction, we refer to Lei et al. (2018) and Barber et al. (2019).
However, in our hypothesis testing problem, we do not need
to actually construct a prediction set. Instead, we only need
to compute the corresponding p-values for a subset of sample
points, and evaluate their deviance from the null distribution.
The details are given in the next section as we develop our testing
procedure.

3. A Conformal Test of Two-Sample Conditional
Distributions

3.1. The Conformal p-value

Now we put the conformal prediction method described in
Section 2 under the context of our two-sample testing problem.
Consider a subset of the data D(1) = {(X1i, Y1i) : 1 ≤ i ≤ n11}
iid from P1, and just a single pair (X21, Y21) ∼ P2. Here n11 < n1
is a subsample size, whose value will be specified later. With the
correspondence m = n11, (Xi, Yi) = (X1i, Y1i) for 1 ≤ i ≤ n11
and (Xn11+1, Yn11+1) = (X21, Y21), the conformal prediction
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procedure described in the previous section implies that, under
the simplified scenario that P1,X = P2,X , the ranking statistic

Ũ = 1
n11 + 1

n11+1∑
i=1

1(Vi(Y21) ≤ Vn11+1(Y21)) (6)

has an approximately U(0, 1) distribution under H0.
With a random tie-break we can make Ũ have the exact

U(0, 1) distribution. Let R− = 1 + ∑n11+1
i=1 1(Vi(Yn11+1) <

Vn11+1(Yn11+1)) and R+ = ∑n11+1
i=1 1(Vi(Yn11+1) ≤

Vn11+1(Yn11+1)). Let R be uniformly and independently sampled
from the integers in [R−, R+]. Now we can construct a uniform
random variable

U = R − 1 + ζ

n11 + 1
(7)

where ζ ∼ U(0, 1) is independent of everything else. By
exchangeability R has a uniform distribution on {1, . . . , n11 +1},
and hence U has a uniform distribution on [0, 1]. This U can be
viewed as a continuous version of Ũ in (6), and can serve as a
p-value for our testing problem. Thus, we call the statistic U a
conformal p-value.

In order to develop this idea into a useful test procedure, we
need to resolve the following three issues.

1. How to choose a conformity score function v?
2. How to allow for P1,X �= P2,X?
3. How to make use of multiple data points from P2 to have

increased power under H1?

These three issues are addressed in the next three sections,
respectively.

3.2. A Choice of v that Separates H0 and H1

For now we still make the assumption P1,X = P2,X . A good
choice of v(·) will be such that the conformal p-value U con-
structed in (7) has a nonuniform distribution under the alter-
native hypothesis H1. Common existing choices such as con-
ditional density and absolute residual do not satisfy this. Our
choice of v(·) is the conditional Radon-Nikodym derivative
between P1 and P2:

v(x, y) = dP1(y|x)

dP2(y|x)
= f1(y|x)

f2(y|x)
.

This v function is different from the conformity score functions
introduced in (4), as it only involves a single data pair (x, y). This
is not a real problem as we can let v be independent of the first
m arguments and treat the input (x, y) as the last argument.

Remark 1. The function v involves the unknown density ratio
f1(y|x)/f2(y|x). Our method will need to use an empirical ver-
sion of v:

v̂(x, y) =
̂f1(·|·)

f2(·|·) (x, y) ,

where f̂1(·|·)
f2(·|·) is an estimate of the conditional density ratio, inde-

pendent of {(X1i, Y1i) : 1 ≤ i ≤ n11} and (X21, Y21). A remark-
able advantage of our choice of v and v̂ is that the density ratio

f1(·|·)/f2(·|·) can be conveniently estimated using classification
algorithms, which is both theoretically and practically much eas-
ier than estimating the density functions themselves. There is a
rich literature on classification and density ratio estimation, with
many powerful algorithms even in high dimensional settings.
Further discussion of estimating the conditional density ratio is
provided in Section 3.5 when we summarize our algorithm.

The ability of v(x, y) to separate H0 and H1 is established by
the following lemma.

Lemma 1 (Separation of H0 and H1 by v under equal X-marginal).
If P1,X = P2,X and v(x, y) = f1(y|x)

f2(y|x)
, then under H1, EU = 1

2 −
1
4E|v(X2, Y2) − v(X′

2, Y ′
2)| < 1

2 for all values of n11 ≥ 1, where
(X2, Y2), (X′

2, Y ′
2) are iid realizations from P2.

Lemma 1 can be viewed as a special case of Lemma 2(c),
for which a complete proof is provided in Appendix D. Under
H0, v(x, y) ≡ 1. Under H1, the conditional likelihood ratio
v(X2, Y2) cannot be degenerate, so E|v(X2, Y2) − v(X′

2, Y ′
2)| is

strictly positive and hence we have EU < 1/2 under H1. This
also suggests a simple one sided rejection rule for our test.

Remark 2. The choice of v is motivated from an information the-
oretical perspective. It can be directly verified that EP1 v(X, Y)−
EP2 v(X, Y) = EP1

[
Dχ2(f1(·|X), f2(·|X))

]
, where Dχ2(f1, f2) =∫

f 2
1 /f2 −1 is the Neyman’s χ2 divergence between two densities

f1, f2. As a result, EP1 v(X, Y) − EP2 v(X, Y) ≥ 0 with equality
holds if and only if H0 is true. This suggests that under the
alternative, v(X, Y) tends to take larger values under P1 than
under P2. A more involved argument is needed in order to carry
over this intuition rigorously to analyze the rank of Vn11+1(Y21)
in (6) and the continuous version in (7). It is made clear in
(11), Section 4.2, that the conformal p-value based on v(x, y) =
f1(y|x)/f2(y|x) is closely related to the expected conditional total
variation distance between P1 and P2.

3.3. Allowing for P1,X �= P2,X Using Weighted
Conformalization

Now we drop the assumption of equal marginal distribution
of X under P1 and P2. Recall the notation (Xi, Yi)

n11+1
i=1 , with

(Xi, Yi) ∼ P1 for 1 ≤ i ≤ n11 and (Xn11+1, Yn11+1) ∼ P2.
Now the (n11 +1)-tuple used to construct U in (7) are no longer
exchangeable under the null hypothesis and the distribution of
U will in general not be uniform. Here we use the “weighted
conformal prediction” idea developed in Tibshirani et al. (2019)
to obtain a modified version of U with valid uniform sampling
distribution under H0. The key idea is to condition on a ran-
domly permuted data sequence.

In the subsequent discussion, we will focus on the conformity
score functions v that only depends on the last argument, and
write Vi = v(Xi, Yi).

We begin by imagining that the data Z = (Xi, Yi)
n11+1
i=1

are stored in two parts: a randomly permuted sequence Z̃ =
(X̃i, Ỹi)

n11+1
i=1 , and the permutation σ : [n11+1] �→ [n11+1] with

the correspondence (Xi, Yi) ↔ (X̃σ(i), Ỹσ(i)). By construction,
the vector (Vi : 1 ≤ i ≤ n11 + 1) is a deterministic function
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of (̃Z, σ). Given Z̃, Vn11+1 may take n11 + 1 possible values, and
Vn11+1 = v(X̃i, Ỹi) if σ(n11 + 1) = i.

Now we are ready to derive the conditional distribution of
Vn11+1 given Z̃, construct the uniformly distributed weighted
conformal p-value, and establish its ability to separate H0
and H1.

Lemma 2. (a) Under H0, for any choice of v(x, y) we have

(Vn11+1 |̃Z) ∼
n11+1∑

i=1
pi(Z)δVi

with

pi(Z) =
f2,X(Xi)
f1,X(Xi)∑n11+1

l=1
f2,X(Xl)
f1,X(Xl)

, i = 1, . . . , n11 + 1 ,

where fk,X(·) denotes the marginal density function of X
under Pk (k = 1, 2), and δv denotes the point mass at v.

(b) For any choice of v(x, y), the randomized statistic

U =
n11+1∑

i=1
pi(Z)1(Vi < Vn11+1) + ζ

n11+1∑
i=1

pi(Z)1(Vi = Vn11+1)

(8)
has a uniform distribution under H0, where ζ is a U(0, 1)

random variable independent of everything else.
(c) Under H1, if v(x, y) = f1(y|x)/f2(y|x), there exist δ > 0 and

m0 > 0, depending only on P1 and P2, such that EU ≤
1/2 − δ when n11 ≥ m0.

The definitions of U in (8) and (7) are compatible, as the
construction with random tie-breaking in (7) can be viewed as
a special case of (8) with pi(Z) = (n11 + 1)−1.

Part (a) of Lemma 2 is due to Tibshirani et al. (2019), who first
considered weighted conformal prediction under the covariate
shift assumption. Part (b) is a simple consequence of part (a),
which can be viewed as a discrete version of the CDF transform.
The most non-obvious part of the proof is that of part (c), which
exploits the form of v(x, y) = f1(y|x)/f2(y|x). The detailed
proofs are given in Appendix D.

The conformal p-value U will exhibit a constant difference
from the null distribution once the ranking sample size n11
exceeds a finite threshold. Such a separation between the null
and alternative hypotheses can be amplified using multiple such
weighted conformal p-values, as we discuss in the next section.

3.4. Incorporating Multiple Testing Sample Points for
Better Power

So far we have only focused on obtaining a single conformal p-
value from a single sample point in P2. Such a single p-value
often has limited power in distinguishing H1 from H0. To have
a consistent test that rejects H0 under the alternative hypothesis
with probability tending to 1 as the sample size increases to ∞,
we must consider multiple testing sample points: {(X2j, Y2j) :
1 ≤ j ≤ n21}, where n21 is a subsample size whose relationship
with the original sample size n2 will be discussed later.

Now assume that we have obtained estimates ĝ and v̂ for the
marginal and conditional density ratios g(x) ≡ f2,X(x)/f1,X(x)

and v(x, y) = f1(y|x)/f2(y|x), respectively. Given (X1i, Y1i)
n11
i=1

from P1 and (X2j, Y2j)
n21
j=1 from P2, we can repeat the procedure

used to obtain U in (7) for each sample point (X2j, Y2j) for
1 ≤ j ≤ n21, resulting in (Ûj : 1 ≤ j ≤ n21). If the function
estimates ĝ and v̂ are accurate enough, then approximately each
EÛj = 1/2 under H0 and EÛj < 1/2 under H1. However,
these Ûj’s are dependent as they use the same set of ranking
sample (X1i, Y1i)

n11
i=1 from the first population. To obtain a valid

p-value for one-sided mean test over the Ûj’s, we must take their
dependence into account. To this end, we redefine Ûj as

Ûj =
1

n11

∑n11
i=1 ĝ(X1i)D̂ij

1
n11

∑n11
i=1 ĝ(X1i)

, j = 1, . . . , n21 ,

where D̂ij = {1(V̂1i < V̂2j)+ζj1(V̂1i = V̂2j)}, V̂1i = v̂(X1i, Y1i)

and V̂2j = v̂(X2j, Y2j). Such a Ûj can be viewed as an approximate
plug-in version of the conformal p-value in (8), with estimated
versions of g and v, and omitting the vanishing terms ĝ(X2j)/n11.

The key observation is that despite the dependence due
to a common ranking sample, the average of these p-values
n−1

21
∑n21

j=1 Ûj is a two-sample U-statistic conditioning on the
estimated density ratios ĝ, v̂, whose asymptotic distribution can
be readily estimated using plug-in estimators.

Formally, we use statistic

T̂ =
1
2 − 1

n21

∑n21
j=1 Ûj

σ̂ /
√n11

(9)

where σ̂ is the estimated asymptotic standard deviation of√n11n−1
21
∑n21

j=1 Ûj.
Let F̂n be the empirical CDF of {V̂2j : 1 ≤ j ≤ n21}, and

F̂n,1/2 = (̂Fn + F̂n,−)/2 where F− is the left limit of a function F.
The asymptotic variance used in T̂ can be estimated as follows.

σ̂ 2 = σ̂ 2
1 + n11

12n21
+ 1

4
σ̂ 2

2 − ρ̂12 , (10)

where σ̂ 2
1 is the empirical variance of {̂g(X1i)[1 − F̂n,1/2(V̂1i)] :

1 ≤ i ≤ n11}, σ̂ 2
2 is the empirical variance of {̂g(X1i) : 1 ≤ i ≤

n11}, and ρ̂12 is the empirical covariance between {̂g(X1i)[1 −
F̂n,1/2(V̂1i)] : 1 ≤ i ≤ n11} and {̂g(X1i) : 1 ≤ i ≤ n11}. The
derivation of the asymptotic variance is provided in Theorem 1
and Lemma 7.

Remark 3. The asymptotic variance of T̂ can be alternatively
estimated using ĝ(X2j) and [1 − F̂n,1/2(V̂2j)] using an impor-
tance sampling technique. This provides a larger sample size
for asymptotic variance estimation. Practically, we found using
the harmonic mean of the original estimate and the importance
sampling estimate to have good performance in simulations.
The details of the importance sampling estimate are given in
Appendix A.

3.5. The Conformal Conditional Distribution Test
Algorithm

Given the ideas and methods presented in the previous sections,
we can now describe the full testing procedure in Algorithm 1.
The algorithm assumes availability of two classification subrou-
tines: (i) a marginal classification algorithm A1 that takes input
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two labeled samples {X1i : n11 + 1 ≤ i ≤ n1}, {X2j : n21 + 1 ≤
j ≤ n2} with sample sizes n12 = n1 − n11, n22 = n2 − n21,
respectively, and outputs an estimate of the marginal density
ratio g = f2,X/f1,X ; and (ii) a joint classification algorithm A2
that takes input two labeled samples {(X1i, Y1i) : n11 + 1 ≤
i ≤ n1} and {(X2j, Y2j) : n21 + 1 ≤ j ≤ n2}, and outputs
an estimate of the conditional density ratio v = f1(y|x)/f2(y|x).
Our numerical experiments use a equal split ratio: (n11, n21) =
(n1/2, n2/2), which yields reasonable performance in all the
scenarios considered.

Given A1, A2, the testing procedure first splits the sample,
applying the density ratio estimation subroutines A1, A2 on one
part to obtain approximate versions of the density ratios. Then
the other part is used to obtain the final test statistic T̂.

Algorithm 1 Two-sample test of conditional distribution
Require: Training data (X1i, Y1i)

n1
i=1; testing data (X2j, Y2j)

n2
j=1;

density ratio estimation subroutines A1, A2
For k = 1, 2, randomly split {1, . . . , nk} into subsets Ik1 =
{1, . . . , nk1}, Ik2 = {nk1 + 1, . . . , nk}
ĝ(·) = A1[{X1i, i ∈ I12, X2j, j ∈ I22}]
v̂(·, ·) = A2[{(X1i, Y1i), i ∈ I12, (X2j, Y2j), j ∈ I22}]
for j ∈ I21 do

Generate ζj ∼ U(0, 1), independent of everything else
D̂ij = 1(V̂1i < V̂2j) + ζj1(V̂1i = V̂2j), where V̂ki =
v̂(Xki, Yki)
Ûj =∑n11

i=1 ĝ(X1i)D̂ij/
∑n11

i=1 ĝ(X1i)
end for
T̂ = (1/2 − n−1

21
∑n21

j=1 Ûj)/(̂σ/
√n11), where σ̂ 2 is given in

(10)
Reject H0 if T̂ ≥ 
−1(1 − α) (
 is the CDF of N(0, 1), α is
the nominal Type I error level)

Simplification when the marginals are equal. Sometimes it is
plausible to assume that the marginal distributions f1,X , f2,X
are equal. This can happen, for example, when the sampling
schemes and environments of X are known to be the same,
or they come from the same experimental design. In this sce-
nario, the algorithm becomes much simpler, as we know that
f1,X/f2,X ≡ 1. As a result, the algorithm does not need to use
the marginal density ratio subroutine A1 and g ≡ 1.

Choice of classification algorithms. As mentioned in Remark 1,
our method does not require estimating the densities fk,X(·)
or conditional densities fk(·|·) for k = 1, 2. Instead, it only
requires estimating the marginal density ratio f1,X(x)/f2,X(x),
and the conditional density ratio f1(y|x)/f2(y|x) only needs to be
estimated up to a monotone transform, since only the ranking
information is needed in the test statistic. Estimating density
ratios is often easier than estimating the density functions them-
selves, and has been well studied in the statistics and machine
learning literature, including moment matching approach (Gret-
ton et al. 2009), the ratio matching approach (Sugiyama et al.
2008; Kanamori, Hido, and Sugiyama 2009; Tsuboi et al. 2009),
and probabilistic classification approach (Qin 1998; Cheng and
Chu 2004; Bickel, Brückner, and Scheffer 2007).

Our algorithm can be implemented with any available density
ratio estimators. Here we provide some further detail about
the probabilistic classification estimator due to its simplicity.
In the case of f1,X = f2,X , we only need to consider a single
classification problem over the joint distribution (X, Y), where
class “1” represents the subsample {(X1i, Y1i) : i ∈ I12},
and class “2” represents the subsample {(X2j, Y2j) : j ∈ I22}.
Let η(x, y) be the true conditional probability P(1|x, y), then
η(x, y)/(1 − η(x, y)) ∝ f1(x, y)/f2(x, y), which also equals
f1(y|x)/f2(y|x) since f1,X = f2,X . When f1,X �= f2,X , we can
consider an additional classification problem using only X. Let
η(x) = P(1|x), then f2,X(x)/f1,X(x) = n12(1 − η(x))/(n22η(x)).
With probabilistic classifiers providing η̂(x, y) and η̂(x), the cor-
responding joint and marginal density ratios can be estimated
by plugging in η̂(x, y) and η̂(x). The conditional density ratio
can be obtained by taking a further ratio between the joint
and marginal density ratios. Many commonly used classification
methods offer a probability output, including the classical linear
and quadratic discriminant analysis, logistic regression, popular
machine learning algorithms such as random forest and support
vector machines (Sollich 2000), and modern deep neural nets.

4. Asymptotic Properties

In this section, we investigate the theoretical properties of the
testing procedure described in Algorithm 1 under (i) a standard
fixed population asymptotic framework, and (ii) a local alterna-
tive perspective. Since the test statistic is constructed from the
ranking subsamples, we assume that the two ranking subsample
sizes are proportional: n11/n21 stays bounded and bounded away
from 0 as n11 → ∞. The asymptotic behavior of our test will
depend on the estimated functions ĝ and v̂, which depends on
the fitting sample sizes (n12, n22). It is natural to have (n12, n22)
increasing with the ranking sample size (n11, n21). We quantify
the required accuracy of the density ratio estimates ĝ, v̂ in
Assumption 2. Designing a high quality density ratio estimator
is a rich and context-dependent topic, and is beyond the scope
of this article.

4.1. Fixed Population Asymptotics

We first consider the classical setting where the two distributions
P1, P2 are fixed, and study the limiting behavior of the test statis-
tic as the ranking sample size n11 grows to infinity and n11/n21
stays bounded and bounded away from 0. A local alternative
analysis with varying signal strength is presented in Section 4.2.

Recall that we use the notation g(x) = f2,X(x)/f1,X(x) and
v(x, y) = f1(y|x)/f2(y|x). For k = 1, 2, let Gki = g(Xki) and
Vki = v(Xki, Yki). Let Dij = 1(V1i < V2j) + ζj1(V1i = V2j)
where ζj’s are auxiliary U(0, 1) random variables independent
of everything else. Define Ĝki, V̂ki and D̂ij similarly as Gki,
Vki and Dij using the estimated functions ĝ, v̂. For a random
variable Z and constant q > 0, ‖Z‖q denotes the �q norm
of Z: ‖Z‖q

q = E(|Z|q). Much of our analysis will involve the
estimation errors in ĝ, v̂ reflected through the random variables
Ĝ11 − G11 and D̂11 − D11. We use E∗(·), var∗(·), and ‖ · ‖q,∗ to
denote the conditional expectation, variance, and �q norm given
the density ratio estimates v̂, ĝ (or, equivalently, given the fitting
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subsample). For example, E∗(̂v(X1, Y1)) = E(̂v(X1, Y1)|̂v), and
‖Ĝ11 − G11‖2,∗ = [E(̂g(X11) − g(X11))

2 |̂g]1/2.
Our first assumption puts some moment conditions on the

marginal density ratio g(·).

Assumption 1. The marginal likelihood ratio g(x) =
f2,X(x)/f1,X(x) satisfies ‖G11‖2 < ∞.

Our next assumption is on the asymptotic accuracy of the
density ratio estimators.

Assumption 2. (a) ‖Ĝ11 − G11‖2,∗ = oP(1).
(b)

∣∣E∗(Ĝ11 − G11)D̂11 − E∗(Ĝ11 − G11)E∗(G11D̂11)
∣∣ =

oP(1/
√n11).

To help understand the notation, consider Assumption 2(a)
for example. By construction and the definition of ‖·‖2,∗, we have
‖Ĝ11−G11‖2,∗ = [E(̂g(X11)−g(X11))

2 |̂g]1/2, which is a random
quantity, whose randomness comes from ĝ, which is itself a
function of the fitting subsamples. Therefore, Assumption 2(a)
requires that with high probability over the randomness of the
fitting subsamples, the estimate ĝ is close to g when their distance
is measured using the �2 norm of ĝ − g under f1,X . Notation in
part (b) of Assumption 2 is interpreted accordingly.

Assumption 2(a) requires consistent estimation of the
marginal density ratio f1,X(x)/f2,X(x), which is mild. Assump-
tion 2(b) deserves further discussion, which is deferred after the
presentation of the main theorem on the asymptotic behavior of
the test statistic output by Algorithm 1.

Theorem 1. Suppose that Assumptions 1 and 2 hold. The test
statistic T̂ output by Algorithm 1 converges in distribution to
the standard normal as n11 → ∞ under H0.

Let 
 = −E∗(Ĝ11 −G11)D̂11 +E∗(Ĝ11 −G11)E∗(G11D̂11)+
E∗G11(D̂11 − D11). If there exists a constant c > 0 such that

P
[

 < (1/4)E|v(X2, Y2) − v(X′

2, Y ′
2)| − c

]→ 1 ,

where (X2, Y2) and (X′
2, Y ′

2) are iid realizations from P2, then
under H1, T̂ → ∞ in probability.

Now we discuss Assumption 2(b), which is needed to ensure
that the approximation error in the estimated weights does not
break the central limit theorem. Consider the following two
scenarios.

1. √n11‖Ĝ11 − G11‖2,∗ = oP(1). In this case Assumption 2(b)
follows immediately from boundedness of D̂ and Cauchy-
Schwartz, regardless of v̂, the estimated conditional density
ratio. This reflects the typical validity guarantee for conformal
methods: when the weights are accurate enough, the Type I
error is always controlled for all conformity score functions.
However, in order to achieve such a convergence rate of
‖Ĝ11 − G11‖2,∗, we typically will need the fitting subsample
size n12 to be much larger than the ranking subsample size
n11. In the special case where we have side information f1,X =
f2,X , then there is no need to estimate ĝ, and ĝ ≡ 1 and
Assumption 2 holds trivially.

2. √n11‖Ĝ11 − G11‖2,∗ does not converge to 0 in probability.
This is more likely to be the case when n12 � n11, and is
of major practical interest. In this case, the convergence of

Ĝ11 − G11 alone is not enough to control the approximation
error in the weights. In order for Assumption 2(b) to hold
we will need the random variable D̂11, which involves the
estimated conditional density ratio v̂, to behave reasonably.
Specifically, after some simple algebra, the left hand side of
Assumption 2(b) equals

|cov∗(Ĝ11 − G11, D̂11) − E∗(Ĝ11 − G11)cov∗(G11, D̂11)| ,

which is upper bounded by (ignoring constant factors)
ρ‖Ĝ11 − G11‖2,∗, with

ρ = max
(|corr∗(Ĝ11 − G11, D̂11)|, |corr∗(G11, D̂11)|

)
.

There is good reason to expect corr∗(Ĝ11 − G11, D̂11) and
corr∗(G11, D̂11) to be close to 0, because for a good estimate
v̂, the randomness in v̂(X11, Y11) will be mostly from the
conditional randomness of Y11 given X11, which is inde-
pendent of X11 itself. But both Ĝ11 and G11 are functions
of X11, so we should expect v̂(X11, Y11) (and hence D̂11) to
be nearly independent of Ĝ11 and G11. Consider a simple
Gaussian mean shift example, where X11 ∼ N(−δ/2, 1),
(Y11|X11) ∼ N(X11 − μ/2, 1), X21 ∼ N(δ/2, 1), (Y21|X21) ∼
N(X21 + μ/2, 1). Suppose all functions are estimated using
the parametric maximum likelihood, then D̂11 = 1[μ̂(Y11 −
X11) > μ̂(Y21 − X21)], which is independent of X11, because,
by construction and joint Gaussianity, Y11 − X11 is indepen-
dent of X11. This example can be extended to more complex
versions, such as heteroscedastic responses. We expect that
a weak dependence between D̂11 and X11 also holds true
for other good conditional density ratio estimators. In our
numerical experiments, we observe that such weak depen-
dence assumption is indeed plausible in many settings. See
Appendix B.2 for detailed empirical evidences. In practice,
if we are confident about the density ratio estimate, such
as when using a correctly specified parametric model, then
an equal-sized sample split for fitting and ranking is rec-
ommended. Otherwise, one could use a larger sample size
for fitting and a smaller sample size for ranking. We report
empirical results for different fitting-ranking split ratios in
Appendix B.1.

The asymptotic power guarantee only requires D̂11 and Ĝ11
to be within a constant distance from their corresponding pop-
ulation versions. This is because when there is a constant sepa-
ration between the data distribution and the null model, a small
constant distortion in the test statistic will not remove all the
signal. Below we provide a more delicate analysis under a local
alternative framework.

4.2. A Local Alternative Analysis

Now we consider a local alternative scenario such that the
two joint distributions (P1, P2) may change with the sample
size (n11, n21). This provides a more refined view of different
sources of the approximation error and the accumulation of
signal strength when the sample size increases.

Following Theorem 1 and Lemma 2(c), we use the following
quantity to quantify the deviation from the null,

δ = δ(P1, P2) = E|v(X2, Y2) − v(X′
2, Y ′

2)| ,
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where (X2, Y2), (X′
2, Y ′

2)
iid∼ P2. By construction Ev(X2, Y2) =

1 and δ = 0 if and only if P(v(X2, Y2) = 1) = 1, which is
equivalent to H0. A larger value of δ indicates the conditional
density ratio f1(Y|X)/f2(Y|X) is likely to be far away from 1. In
fact, using the triangle inequality and Jensen’s inequality we can
show that

EX∼f2,X Dtv(f1(·|X), f2(·|X)) = 1
2
E|v(X2, Y2) − 1| ∈ [δ/4, δ/2] ,

(11)
where Dtv is the total variation distance between two distribu-
tions. A detailed proof of this claim is given in Appendix D.

Under a slightly stronger technical condition than those in
Theorem 1, we have the following local alternative result.

Proposition 1. In addition to Assumptions 1 and 2, sup-
pose that

∣∣E∗G11(D̂11 − D11)
∣∣ = oP(n−1/2

11 ), v̂(X21, Y21) −
v(X21, Y21) = oP(1), and v(X21, Y21) has a continuous distri-
bution with bounded density. Then, we have

T̂ =
√n11δ

4σ
(1 + oP(1)) + Z + oP(1) ,

where σ is the population version of σ̂ in (10) using the true
density ratios g and v, and Z � N(0, 1) as n11 → ∞.

The most nontrivial additional assumption here is∣∣E∗G11(D̂11 − D11)
∣∣ = oP(n−1/2

11 ), whereas only a constant
error bound is required in Theorem 1 for the test to be
powerful against a constant alternative. This is because the local
alternative is very close to the null, while in the fixed population
analysis considered in Theorem 1, the difference between
the null and alternative is much larger. This more stringent
assumption can still be realistic for the same reason explained
in the discussion after Theorem 1. Numerical evidences are
provided in Appendix B.2. The continuity of v(X2, Y2) and
bounded density allow us to provide more refined control on
the difference between indicators D̂11 − D11.

Proposition 1 suggests the following local asymptotic behav-
ior of our test statistic.

1. If δ
√n11 → ∞, then T̂ → ∞ in probability.

2. If δ
√n11 → a ∈ [0, ∞), then T̂ � N(a/(4σ), 1).

As a result, in the asymptotic regime considered here, the
power is mostly determined by δ

√n11.

5. Simulation Study

In this section, we illustrate the performance of our method in
several simulation settings. For brevity, we focus on the more
challenging and interesting case where the X-marginals are dif-
ferent. Denote xi = (xi(1), . . . , xi(p))T, and Ip is a p × p identity
matrix. We first consider three prototypical regression models
with p = 5 that are similar to those in Lei et al. (2018) and Zheng
(2000). A higher dimensional case is presented in Section 5.2.

Model A (Gaussian, linear). Let y�i = α� + βTx�i + ε�i, i =
1, . . . , n�, � = 1, 2, where x1i

iid∼ N(0, Ip), x2i
iid∼ N(μ, Ip) where

μ = (1, 1, −1, −1, 0)T, and ε1i, ε2i
iid∼ N(0, 1), independent of

the features. Set α1 = α2 = 0 under the null and α1 = 0, α2 =
0.5 under the alternative.

Model B (Gaussian mixture, nonlinear, heavy-tailed). Let
y�i = α� + β1x�i(1) + β2x�i(2) + β3x2

�i(3) + β4x2
�i(4) +

β5x3
�i(5)+ ε�i, i = 1, . . . , n�, � = 1, 2, where x1i

iid∼ 0.5N(0, Ip)+
0.5N(μ, Ip), x2i

iid∼ 0.5N(0, Ip) + 0.5N(0, 1.5Ip) where μ =
(0.5, 0.5, −0.5, −0.5, 0)T, and ε1i, ε2i

iid∼ t(5), the student’s t-
distribution with 5 degrees of freedom, independent of the
features. Set α1 = α2 = 0 under the null and α1 = 0, α2 = 0.5
under the alternative.

Model C (Gaussian mixture, additive spline, heteroscedastic).
Let y�i = θ(x�i) + ε�i, i = 1, . . . , n�, � = 1, 2, where θ(x) =
E(y|x) is an additive function of B-splines of covariates, x1i

iid∼
0.5N(0, Ip) + 0.5N(μ, Ip), x2i

iid∼ 0.5N(0, Ip) + 0.5N(0, 1.5Ip)

where μ = (0.5, 0.5, −0.5, −0.5, 0)T. Set ε�i ∼ N(0, 4/(1 +
x2
�i(1))), � = 1, 2, under the null and ε1i ∼ N(0, 4/(1 + x2

1i(1))),
ε2i ∼ N(0, 2/(1+x2

2i(1))) under the alternative. Here the noises
are not independent of the covariates.

In order to make density ratio estimation stable, we remove
sample points whose marginal density ratio f1,X(x)/f2,X(x) or
the joint density ratio f1(x, y)/f2(x, y) are outside of the interval
[1/100, 100].

5.1. The Low-Dimensional Case

We first consider low-dimensional cases with p = 5, setting the
entries of β to ±1 with random signs in Models A and B. In
Model C, we multiply the coefficients to the B-spline transforma-
tion of predictors: θ(x) = ∑5

j=1
∑4

l=1 βjlbl(x(j)), where bl’s are
B-spline functions and βjl = ±1 with randomly chosen signs.
We consider sample sizes n1 = n2 ∈ {200, 500, 1000, 2000}
and randomly split each sample into two equal-sized subsets
for the fitting and ranking steps. Results for other split ratios
are deferred to Appendix B.1. In addition, we use four different
probabilistic classification methods including Linear Logistic
(LL), Quadratic Logistic (QL), Neural Network (NN) and Kernel
Logistic Regression (KLR). Let L be the class label such that
L1i = 1 for i ∈ I12 and L2i = 0 for i ∈ I22. The KLR
method (Zhu and Hastie 2005) learns a kernel logistic regression
classifier by minimizing

−
∑

k∈{1,2}

∑
i∈Ik2

[
Lkiθ(xki; β) − log{1 + exp(θ(xki; β))}]+ λ

2
‖θ‖2

HK
,

where HK is the Reproducing Kernel Hilbert Spaces (RKHS)
generated by the kernel K(x, y) = exp(−‖x−y‖2/σ 2), θ(x; β) =
β0 +∑k∈{1,2}

∑
i∈Ik2

βkiK(xki, x) and η(x; β) = P(L = 1|x) =
1/[1 + exp{−θ(x; β)}]. Then we obtain the marginal ratio esti-
mator ĝ(x) = n12{1−η(x; β̂)}/ {n22η(x; β̂)

}
. The joint classifier

is obtained similarly using (xi, yi). For the KLR method, the
tuning parameter σ 2 = 200 is used in all settings. The more
important tuning parameter λ is chosen by minimizing the out-
of-sample cross entropy loss. For large sample sizes such data-
driven tuning is time-consuming to run for all repetitions. To
reduce the overall running time for large sample sizes (n2 =
1000, 2000), we use data-driven out-of-sample cross entropy
loss to select λ in first 20 repetitions, and then use the median of
these 20 λ values for the rest of the simulation. Specifically, when
n2 = 1000, 2000, we use λ = 0.05 for both joint and marginal
ratio estimates in Model A, λ = 0.0002 for joint estimates and
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λ = 0.015 for marginal estimates in Model B, λ = 0.015 for
joint estimates and λ = 0.02 for marginal estimates in Model C.
For the neural network method, we use the sigmoid activation
function and the stochastic gradient descent algorithm, and two
hidden layers are used in all considered models. Moreover, we
compare with the parametric Likelihood Ratio Test (LRT) for
hypotheses H0 : α1 = α2 versus H1 : α1 �= α2 under the model
(Y�|X) ∼ N(α� + βTX, σ 2), � = 1, 2. Such a model is correctly
specified under model A, where we expect LRT to have the best
performance. Under models B, C, this is misspecified. The code
for the simulation is available to ensure reproducibility.

Among the four classification methods and three model set-
tings considered, LL and QL rely on parametric models, which
is correctly specified under model A, but incorrectly specified
under models B and C, where the marginal distributions of X are
Gaussian mixtures, and the corresponding density ratios cannot
be expressed as a logit transform of second order polynomials
of X. Moreover, the noise distribution is non-Gaussian under
model B, and Gaussian but heteroscedastic in model C. The
KLR and NN methods do not rely on any parametric model
specification. We summarize the model specification scenarios
in Table 1.

All the simulation results in the following are computed over
500 repetitions with nominal Type I error level α = 0.05. The
results are summarized in Table 2. In Model A, the LL estimator
is the correctly specified parametric method, and has very good
performance even with small sample sizes. QL has relatively
inaccurate empirical size for very small sample size n2 = 200,
because this model involves more parameters including all the
linear and quadratic terms. The NN and KLR estimators are
fully nonparametric, but still yield satisfying control of the Type

Table 1. The model misspecification for all methods: “�”means the estimator uses
a correctly specified parametric model to estimate the (conditional) density ratio;
“✗” means that the estimator uses a misspecified parametric model to estimate the
(conditional) density ratio; “−”means that the estimator is nonparametric and does
not rely on any parametric model specification.

Task ĝ v̂

Method LRT LL QL KLR NN LRT LL QL KLR NN

Model A � � � − − � � � − −
Model B ✗ ✗ ✗ − − ✗ ✗ ✗ − −
Model C ✗ ✗ ✗ − − ✗ ✗ ✗ − −

I error even under moderate sample sizes. When the alterna-
tive hypothesis is true, the power increases as the sample size
increases. The NN and KLR methods yield comparable or larger
power against the LL approach even when the sample size is
small, thanks to accurately estimated density ratios v and g. The
QL estimator requires a larger sample size to obtain reasonable
power. The performance using the estimated v̂, ĝ is indeed close
to using the true functions v, g, which is presented in Table 3.

Models B and C represent more challenging scenarios where
the marginal and joint ratios are nonparametric. The parametric
methods such as LL and QL fail to yield correct Type I error
control or have limited ability to capture the difference under the
alternative in at least one model setting, which demonstrates the
limitation of such parametric approaches. The nonparametric
methods NN and KLR both provide robust Type I and II error
control, with empirical Type I error rate close to the nominal
level. Moreover, the simulation results demonstrate that the
data-driven tuning by minimizing out-of-sample cross entropy
can have good practical performance.

Note that in Model A, α1 = α2 under the null and α1 �= α2
under the alternative hypothesis, while in Models B and C, the
parametric assumption for the LRT is violated. As shown in
Table 2, the LRT method performs the best in Model A, which
makes sense since it maximizes the usage of known information
about the data and does not require sample splitting. In Model
B, the LRT is not correctly specified because the true conditional
distribution of Y given X is t-distribution and the conditional
mean is not a linear function. Although it shows some ability to
capture the distributional difference, it also has inflated Type I
error due to model misspecification. Further, the LL, KLR, and
NN have comparable power with the LRT, demonstrating the
advantage of the proposed approach by efficiently aggregating
multiple conformal p-values, which reduces the impact of the
sample splitting. Moreover, in Model C, the LRT method fails
to control the Type I error, and is significantly less powerful
than the QL, NN and KLR methods, demonstrating the benefit
brought by the flexibility of our method in choosing the estima-
tion algorithms in nonparametric models.

5.2. The High-Dimensional Case

The flexibility of choosing probabilistic classification algorithms
makes our method applicable in high-dimensional problems.

Table 2. Percentage of rejections over 500 repetitions using methods LL, QL, NN, and KLR under the split ratio 0.5 and the Likelihood Ratio Test (LRT) with α = 0.05.

Null Alternative

LL QL NN KLR LRT LL QL NN KLR LRT

Model A n2 = 200 0.038 0.022 0.066 0.038 0.054 0.354 0.082 0.416 0.406 0.992
n2 = 500 0.044 0.020 0.058 0.066 0.054 0.654 0.392 0.644 0.698 1.000

n2 = 1000 0.042 0.038 0.058 0.056 0.032 0.898 0.770 0.866 0.912 1.000
n2 = 2000 0.048 0.056 0.068 0.068 0.038 0.980 0.974 0.990 0.990 1.000

Model B n2 = 200 0.044 0.058 0.052 0.062 0.054 0.200 0.116 0.180 0.224 0.236
n2 = 500 0.058 0.046 0.076 0.062 0.040 0.456 0.268 0.470 0.506 0.478

n2 = 1000 0.056 0.074 0.024 0.024 0.044 0.726 0.586 0.722 0.802 0.764
n2 = 2000 0.066 0.062 0.038 0.026 0.080 0.946 0.936 1.000 0.994 0.970

Model C n2 = 200 0.080 0.066 0.056 0.064 0.090 0.074 0.204 0.062 0.300 0.088
n2 = 500 0.070 0.036 0.066 0.040 0.096 0.080 0.624 0.504 0.796 0.116

n2 = 1000 0.098 0.046 0.030 0.064 0.142 0.088 0.964 0.900 0.988 0.144
n2 = 2000 0.110 0.050 0.080 0.064 0.182 0.094 0.998 1.000 1.000 0.176
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Table 3. Percentage of rejections using methods LL, QL, NN, and KLR with α = 0.05 under different sample splitting ratios for Model A.

Null Alternative

LL QL NN KLR Oracle LL QL NN KLR Oracle

n2 = 200 r=0.3 0.024 0.024 0.034 0.046 0.042 0.282 0.092 0.338 0.336 0.300
r=0.5 0.038 0.022 0.066 0.038 0.052 0.354 0.082 0.416 0.406 0.444
r=0.8 0.034 0.010 0.136 0.042 0.042 0.350 0.010 0.398 0.408 0.578

n2 = 500 r=0.3 0.050 0.026 0.034 0.052 0.038 0.550 0.382 0.496 0.534 0.580
r=0.5 0.044 0.020 0.058 0.066 0.038 0.654 0.392 0.644 0.698 0.720
r=0.8 0.032 0.024 0.086 0.042 0.066 0.770 0.216 0.822 0.752 0.864

n2 = 1000 r=0.3 0.048 0.044 0.068 0.044 0.024 0.744 0.672 0.730 0.770 0.754
r=0.5 0.042 0.038 0.058 0.056 0.050 0.898 0.770 0.866 0.912 0.902
r=0.8 0.048 0.030 0.088 0.070 0.054 0.962 0.700 0.932 0.974 0.980

n2 = 2000 r=0.3 0.042 0.052 0.050 0.066 0.040 0.938 0.902 0.920 0.932 0.934
r=0.5 0.048 0.056 0.068 0.068 0.070 0.980 0.974 0.990 0.990 0.986
r=0.8 0.064 0.044 0.088 0.066 0.064 1.000 0.968 0.994 0.998 1.000

Here we illustrate its performance in a high-dimensional sce-
nario, which is similar to Model A in the low dimensional case
but with ambient dimensionality p = 500 and signal dimension-
ality s = 5. The additional coordinates of X are generated by
iid standard normal, and the corresponding coefficients of β are
filled with zeros. Here we focus on a sparse linear classifier and
investigate the effect of tuning and regularization. Letting L be
the class label with L = 1 for training data and L = 0 for testing
data, we learn a sparse logistic regression model by minimizing

− 1
n12 + n22

∑
k∈{1,2}

∑
i∈Ik2

[
Lki log η(xki; β)

+ (1 − Lki) log{1 − η(xki; β)}]+ λ‖β‖1 ,
where β = (β0, β1, . . . , βp) and η(x; β) = P(L = 1|x) =
1/[1 + exp{−β0 −∑p

j=1 βjx(j)}]. Then we obtain the marginal
ratio estimator with ĝ(x) = n12{1 − η(x; β̂)}/ {n22η(x; β̂)

}
. In a

similar manner, we can the estimate the joint density ratio and
hence the conditional density ratio.

We consider sample sizes n1 = n2 = 1000 and 2000. The
empirical rejection frequency and estimation errors of the con-
formal weights, Err̂g = n−1

11
∑

i |Ĝ1i/
∑

i Ĝ1i −G1i/
∑

i G1i|, are
shown in Figure 1. Since the estimation errors are not observable
in practice, we plot the out-of-sample marginal cross entropy
error (MCEntropy, defined as −L log p̂ − (1 − L) log(1 − p̂))
in the classification problem involved in estimating ĝ (the solid
lines with star-shaped marks). Moreover, under the alternative,
we also report the empirical out-of-sample estimation error of
the conditional density ratio v, defined by Err̂v = (n11 +
n21)

−1
{∑

i(V̂1i − V1i)2 +∑j(V̂2j − V2j)2
}

.
Again, when the true marginal density ratios are used, the

empirical sizes are close to the nominal level α = 0.05 as
expected. When the marginal density ratios are estimated, the
Type I error is well controlled for a wide range of tuning parame-
ter values, indicating good robustness of validity. The plot of out-
of-sample marginal cross entropy error suggests that in practice
one can choose the tuning parameter value near the elbow of
the error plot. Under the alternative hypotheses, the power is
maximized at tuning parameter values corresponding to the
smallest estimation error in v̂, which can also be chosen using its
out-of-sample cross entropy error plot (not shown in the plots).
Practically one can also use separate tuning parameters for the
marginal classification and joint classification.

6. A Synthetic Data Example

We consider the airfoil dataset from the UCI Machine Learn-
ing Repository (Dua and Graff 2019), which has n = 1503
observations of a response Y (scaled sound pressure level of
NASA airfoils), and a covariate X with p = 5 dimensions (log
frequency, angle of attack, chord length, free-stream velocity,
and suction side log displacement thickness). This dataset has
been used by Tibshirani et al. (2019), who first studied weighted
conformalization.

The original data does not have a two-sample separation. We
consider five experiments based on different ways to generate
the two populations.

(i) Random partition. We randomly partition the dataset with
n1 = 751 and n2 = 752.

(ii) Random partition and exponential tilting. We first ran-
domly partition the data into twosets D1, D̃2. Then follow-
ing Tibshirani et al. (2019), we construct D2 by sampling
25% of the points from D̃2 with replacement, with proba-
bilities proportional to

w(x) = exp(xTα), where α = (−1, 0, 0, 0, 1) .

The final sample sizes are n1 = 301 and n2 = 301.
(iii) Chord-based partition. We split the dataset into two subsets

where the values of the “chord” variable in D1 are smaller
than the 50% quantile and exclude the “chord” variable in
subsequent analyses, resulting in n1 = 778 and n2 =
725. To avoid singularity between the two populations, we
randomly select 0.05n1 samples inD1 and the same amount
of samples in D2 to flip their groups.

(iv) Velocity-based partition. We partition the dataset into two
subsets where the values of the “velocity” variable in D1
are smaller than the 50% quantile and remove the covariate
“velocity” from subsequent analyses, with n1 = 761 and
n2 = 742. We randomly select 0.05n1 samples in D1 and
the same amount of samples in D2 to flip their groups.

(v) Response-based partition. We split the data according to
the value of the response variable, where the first group
contains the sample points with smaller response values,
while D2 contains the rest, with n1 = 752 and n2 = 751. A
similar label flipping is applied to avoid singularity.
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Figure 1. Performance of empirical rejection frequency in Model A with p = 500, s = 5 under the null (top) and alternative (bottom) over 500 repetitions, across a variety
of regularization parameters using sparse LL with α = 0.05 and split ratio 0.5.

Table 4. Percentage of rejections (PR) and average classification error of estimating
g in Airfoil dataset for cases (i–ii) using methods LL and NN over 500 repetitions,
with α = 0.05 and split ratio 0.5.

PRLL PRNN MCELL MCENN

case (i) 0.048 0.056 0.500 0.500
case (ii) 0.052 0.068 0.208 0.208

As in the simulation study, we split each group into two
equal-sized subsets, and conduct the two-sample conditional
distribution test at significance level α = 0.05. Linear LL and NN
are used to estimate the density ratios. The neural network uses
two hidden layers with ten nodes in all cases. Each experiment
is repeated for 500 trials.

For experiments (i) and (ii), which are clearly under the
null hypothesis, we can regenerate the data by repeating the
random generation of the two subsamples. With these repeatedly
generated datasets, we can compute the empirical frequency of
rejections. As shown in Table 4, the Type I errors are close to the
nominal level.

Table 5. Median p-values (Pval) and average classification error of estimating g in
Airfoil dataset for cases (iii–v) using methods LL and NN over 500 random splits, with
α = 0.05 and split ratio 0.5.

PvalLL PvalNN MCELL MCENN

case (iii) 0.005 0.472 0.160 0.053
case (iv) 0.000 0.412 0.444 0.066
case (v) 0.000 0.002 0.233 0.136

For experiments (iii)–(v) (Table 5), we can only have a single
deterministic generation of the training and testing data, except
a small fraction of group flipping, and only a single p-value can
be computed. We use these experiments to illustrate the effect
of multiple realizations of auxiliary randomization. Recall that
our method uses auxiliary randomization to split the datasets
into fitting and ranking subsamples. Such auxiliary random-
ization may lead to different results on the same dataset if the
inference is carried out independently by different researchers.
To mitigate this effect, one can obtain multiple p-values using
multiple realizations of auxiliary randomization. Although each
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single p-value has asymptotically valid null distribution, their
dependence requires a careful aggregation of these p-values.
Here we use a median p-value approach in DiCiccio, DiCiccio,
and Romano (2020). Formally, suppose we repeat the auxiliary
randomization B times, obtaining p-values p̂1, . . . , p̂B. Then p̂ =
1 ∧ [2 × Median(̂p1, . . . , p̂B)

]
is a valid p-value.

In all experiments (i–v), we use out-of-sample Marginal Clas-
sification Error (MCE) as a proxy of the accuracy of marginal
density ratio estimation. In experiment (iii), both LL and NN
methods give large p-values, and the NN method also has small
marginal classification errors. Thus, there is no strong evidence
against the covariate shift assumption. In experiment (iv), the
LL method gives small p-values while the NN method suggests
otherwise. But the marginal classification errors indicate that
the NN method is likely to be more accurate in estimating the
marginal density ratios, and hence, provides more trustworthy
p-values. In experiment (v), both methods agree to reject the null
hypothesis, which is the correct decision by the construction of
training and testing samples. The neural net method also gives
marginal classification errors comparable to those in the null
cases, further confirming the validity of p-value.

7. Discussion

In applications it is often the case that the training data
(X1i, Y1i)

n1
i=1 has a large sample size, whereas the testing data

(X2j, Y2j)
n2
j=1 has a limited sample size. As our theory and exper-

iments have demonstrated, a valid Type I error control of the
proposed test only depends on the accuracy of marginal density
ratio estimation. Our method would be particularly useful in
the semi-supervised scenario, where unlabeled testing sample
points X2j are easy to obtain. In this case we can use these
unlabeled testing sample points to estimate the marginal density
ratio, and save the scarce labeled testing sample to estimate the
joint density ratio.

The use of sample splitting and auxiliary randomization for
valid and efficient statistical inference has been studied by many
authors in the high dimensional regression literature (Wasser-
man and Roeder 2009; Meinshausen, Meier, and Bühlmann
2009; Rinaldo, Wasserman, and G’Sell 2019), and more recently
in the conformal inference literature (Kuchibhotla and Ramdas
2019; Kim, Xu, and Barber 2020). The theory in Kim, Xu,
and Barber (2020) also required an inflated noncoverage by a
factor of two after aggregating multiple subsamples. It is unclear
whether such a loss of coverage is unavoidable. It would be
interesting and important to better understand the dependence
between the p-values from multiple splits, and improve the
current conservative inflation method when combining multiple
p-values.

Conformal methods are initially developed without sample
splitting, but in a leave-one-out manner. The validity of such
conformal p-values comes from the symmetry among the data
points. A straightforward leave-one-out version of our method
would be to leave out each pair of sample points (X1i, Y1i),
(X2j, Y2j) for i ∈ [n1] and j ∈ [n2], and fit ĝ, v̂ using all remaining
data. Such an implementation will require n1n2 refitting of ĝ,
v̂, which is computationally prohibitive. Some efficient imple-
mentation of leave-one-out update or warm start techniques

would be necessary. Also, the complex dependencies among the
resulting conformity scores bring further theoretical challenges
in understanding the aggregated conformal p-values. Given the
potential improved sample efficiency, these questions may be
investigated in future works.

Appendix A: Asymptotic Variance Using Importance
Sampling

We illustrate the importance sampling idea for estimating the asymp-
totic variance using the samples from P2. For simplicity we focus on
the ideal statistic T which uses the true density ratio functions. The
same idea can be directly carried over to the actual statistic that uses
estimated density ratios.

Recall that the asymptotic variance of √n11n−1
21
∑

j Uj is given
by σ 2 = σ 2

1 + n11/(12n21) + σ 2
2 /4 − ρ12 where σ 2

1 =
var
[
G11{1 − F1/2(V11)}

]
, σ 2

2 = var(G11) and ρ12 = cov[G11{1 −
F1/2(V11)}, G11].

Note that under H0,

σ 2
1 =

∫ f 2
2 (z)

f 2
1 (z)

{1 − F1/2(v(z))}2f1(z)dz − 1
4

=
∫ f2(z)

f1(z)
{1 − F1/2(v(z))}2f2(z)dz − 1

4

=EG21{1 − F1/2(V21)}2 − 1
4

.

Analogously, we have
σ 2

2 = EG21 − 1 ,

ρ12 = EG21{1 − F1/2(V21)} − 1/2 .
Essentially, the change of base measure allows us to represent the

expectations under P1 to corresponding expectations under P2. So we
can use the sample (X2j, Y2j)

n21
j=1 to estimate the asymptotic variance.

The consistency of the importance sample estimate follows the same
strategy as the proof for the original estimate and is omitted.

Appendix B: More Simulation Results

B.1. Additional Simulation Results Under Different
Splitting Ratios

To investigate the effect of the splitting ratio on the performance of the
test, we consider r = 0.3, 0.5, and 0.8, respectively, where n11 = �n1∗r�
and n21 = �n2 ∗ r�. We provide the results for Models A, B, and C
in Tables 3–7. Additionally, the results of the proposed approach with
the true functions g, v are also included in these tables, denoted by
“Oracle". We should note that the “Oracle" requires no estimation, thus,
it achieves higher power as r increases while still controlling the Type I
error. By contrast, when r increases, the sample size of the fitting data
decreases, and the estimation algorithms may produce estimates with
limited accuracy for the testing procedure. For example, as shown in
Table 3, the NN fails to control the Type I error in model A under
n2 = 200 and r = 0.8. Moreover, a larger splitting ratio r may lead
to lower power due to the inaccurate estimates. From Tables 6 and 7,
when n2 = 2000, the NN achieves lower power under r = 0.8 than
r = 0.5. In contrast, a smaller r will lead to more accurate estimates,
but the test may suffer from power loss because less data are used for
constructing the test statistic. More specifically, when r = 0.3, though
the Type I error is well controlled for NN and KLR in all considered
models, the power is lower than r = 0.5 especially for the small sample
size. Overall, we suggest using r = 0.5, and a smaller r is allowed if one
is not very confident in the resulting estimators in practice.



1148 X. HU AND J. LEI

Table 6. Percentage of rejections using methods LL, QL, NN, and KLR with α = 0.05 under different sample splitting ratios for Model B.

Null Alternative

LL QL NN KLR Oracle LL QL NN KLR Oracle

n2 = 200 r=0.3 0.064 0.048 0.056 0.044 0.060 0.176 0.128 0.192 0.178 0.680
r=0.5 0.044 0.058 0.052 0.062 0.066 0.200 0.116 0.180 0.224 0.858
r=0.8 0.066 0.032 0.032 0.112 0.052 0.194 0.068 0.086 0.302 0.970

n2 = 500 r=0.3 0.070 0.056 0.050 0.042 0.058 0.338 0.246 0.356 0.352 0.942
r=0.5 0.058 0.046 0.076 0.062 0.044 0.456 0.268 0.470 0.506 0.994
r=0.8 0.058 0.070 0.038 0.152 0.064 0.518 0.206 0.458 0.560 0.998

n2 = 1000 r=0.3 0.052 0.054 0.030 0.030 0.056 0.584 0.514 0.714 0.728 1.000
r=0.5 0.056 0.074 0.024 0.024 0.054 0.726 0.586 0.722 0.802 1.000
r=0.8 0.062 0.066 0.180 0.024 0.052 0.774 0.390 0.774 0.608 1.000

n2 = 2000 r=0.3 0.064 0.050 0.054 0.054 0.062 0.822 0.858 0.998 0.986 1.000
r=0.5 0.066 0.062 0.038 0.026 0.060 0.946 0.936 1.000 0.994 1.000
r=0.8 0.056 0.078 0.054 0.022 0.064 0.952 0.810 0.866 0.972 1.000

Table 7. Percentage of rejections using methods LL, QL, NN, and KLR with α = 0.05 under different sample splitting ratios for Model C.

Null Alternative

LL QL NN KLR Oracle LL QL NN KLR Oracle

n2 = 200 r=0.3 0.074 0.064 0.048 0.062 0.050 0.062 0.190 0.072 0.202 0.530
r=0.5 0.080 0.066 0.056 0.064 0.046 0.074 0.204 0.062 0.300 0.760
r=0.8 0.062 0.022 0.040 0.098 0.060 0.062 0.118 0.040 0.230 0.908

n2 = 500 r=0.3 0.080 0.042 0.038 0.054 0.038 0.062 0.580 0.468 0.684 0.900
r=0.5 0.070 0.036 0.066 0.040 0.036 0.080 0.624 0.504 0.796 0.984
r=0.8 0.074 0.034 0.056 0.074 0.044 0.060 0.366 0.132 0.702 0.994

n2 = 1000 r=0.3 0.092 0.044 0.032 0.056 0.034 0.070 0.906 0.866 0.950 0.994
r=0.5 0.098 0.046 0.030 0.064 0.058 0.088 0.964 0.900 0.988 1.000
r=0.8 0.116 0.052 0.102 0.066 0.052 0.090 0.800 0.626 0.972 1.000

n2 = 2000 r=0.3 0.100 0.046 0.068 0.046 0.062 0.090 0.994 1.000 0.998 1.000
r=0.5 0.110 0.050 0.080 0.064 0.044 0.094 0.998 1.000 1.000 1.000
r=0.8 0.138 0.048 0.044 0.050 0.030 0.092 0.990 0.974 1.000 1.000

B.2. Error Quantities

Let ρ1 = |corr∗(Ĝ11 − G11, D̂11)|, ρ2 = |corr∗(G11, D̂11)||E∗(Ĝ11 −
G11)|/‖Ĝ11 − G11‖1,∗ and ρ3 = |E∗G11(D̂11 − D11)|. As discussed
in Section 4, to control the Type I error asymptotically, the ρ1 and ρ2
should be sufficiently small. To guarantee the consistency of the test, we
require the ρ3 to be small enough so it does not destroy the signal in the
data. Since it is hard to verify if these quantities converges theoretically
because of the complex interactions of the variables in the simulation
studies, we provide the empirical estimation of the quantities for the LL
and KLR, see Figure 2. Note that ρ1,LL denotes the empirical estimate of
ρ1 with the estimators obtained by the LL. Other quantities are defined
similarly.

In Model A, the LL leads to smaller estimation error compared to the
KLR method, which makes sense since the LL is the correctly specified
parametric method. The error quantities for both LL and KLR decreases
to nearly zero as the sample size increases, which provides empirical
support for the assumptions. In Model B, though the LL and KLR
are not correct models, they perform decently. Under the alternative,
the ρ̂3,LL converges slower than ρ̂3,KLR, which agrees with the power
performance that the power of the LL is a bit lower than the KLR for
the large sample size. In Model C, the ρ̂1,LL is larger than ρ̂1,KLR for
large sample sizes, which explains why the empirical Type I error of the
LL is large. Under the alternative of Model C, ρ̂3,LL is not convergent,
and the error seems too large that it destroys the signal. It explains the
phenomenon that the LL barely shows any power in this case.

Appendix C: Auxiliary Lemmas

In the rest of the Appendix we provide proofs of main results and
related auxiliary lemmas. The notation will mostly follow the main
text, although some proofs involve their own notation. Throughout

the proofs, we use C to denote a constant whose value only depends
on (P1, P2) but not the sample sizes (n1, n2). The value of C may also
change from line to line.

Our first auxiliary lemma provides an analogous CDF transforma-
tion for discrete random variable.

Lemma 3. Let V be a discrete random variable with finite support.
Let F(·) be the CDF of V , with F−(·) being its left limit. Let p(·) be
the corresponding probability mass function. Let ζ be an independent
U(0, 1) random variable. Then U = F−(V) + ζp(V) ∼ U(0, 1).

Proof of Lemma 3. Let v1 < · · · < vs be the support of V . Let q0 = 0,
qj = p(v1) + · · · + p(vj) for j = 1, . . . , s. Then qs = 1. For 1 ≤ j ≤ s,
it is direct to verify that the density of U on (qj−1, qj) is a constant.
Moreover, the length of this interval is qj − qj−1 = p(vj), which is the
same as the probability of U falling in (qj−1, qj). So the density of U
on this interval is 1. Since this holds for each j, we conclude that U ∼
U(0, 1).

The next lemma is useful in establishing separation between H0 and
H1 when the correct V function is used. Lemma 4 provides a “change-
of-variable” trick to simplify an integral involved in calculating EU, the
expected value of the conformal p-value given in (8).

Lemma 4. Let (Xj, Yj) ∼ Pj be independent for j = 1, 2, and (X′
2, Y ′

2)

be another independent draw from P2. Let v(x, y) = f1(y|x)

f2(y|x)
and g(x) =

f2,X(x)/f1,X(x). Define V1 = v(X1, Y1), V2 = v(X2, Y2), and V ′
2 =

v(X′
2, Y ′

2). Let v̂ : X × Y �→ R be an arbitrary nonrandom function
and define V̂1, V̂2, V̂ ′

2 similarly as V1, V2, V ′
2 using v̂. We have

Eg(X1)1(V̂1 < V̂2) = EV ′
21(V̂ ′

2 < V̂2)
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Figure 2. Error quantities under LL and KLR for all models with p = 500, s = 5 over 500 repetitions with α = 0.05 and the split ratio r = 0.5.
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and

Eg(X1)1(V̂1 ≤ V̂2) = EV ′
21(V̂ ′

2 ≤ V̂2) .

Proof. By definition,

Eg(X1)1(V̂1 < V̂2)

= E

{
f2(X1, Y1)
f1(X1, Y1)

f1(Y1|X1)
f2(Y1|X1)

1(V̂1 < V̂2)
}

=
∫

f2(x2, y2)
∫

v̂(x1,y1)<̂v(x2,y2)
f2(x1, y1)v(x1, y1)dx1dy1dx2dy2

= E{V ′
21(V̂ ′

2 < V̂2)} .

The proof of the second equation is identical.

Lemma 5. Let σ̂ 2 = σ̂ 2
1 + n11/(12n21) + σ̂ 2

2 /4 − ρ̂12 be defined
as in (10), and σ̃ 2 = σ̃ 2

1 + n11/(12n21) + σ 2
2 /4 − ρ̃12 where σ̃ 2

1 =
var∗[G11{1 − F̂1/2(V̂11)}], σ 2

2 = var(G11) and ρ̃12 = cov∗(G11{1 −
F̂1/2(V̂11)}, G11). Then we have σ̃ /σ̂ = 1 + op(1) under Assump-
tions 1, 2.

Proof. Recall that F̂ is the CDF of v̂(X2, Y2) by treating v̂ as fixed. Let
F̂n be the empirical CDF of v̂(X2, Y2) from the ranking sample. Because
the ranking sample and v̂ are independent, we have

‖̂Fn − F̂‖∞ = OP(n−1/2
21 ) .

Consider the estimate

σ̂ 2
1 = 1

n11

∑
i

Ĝ2
1i
{

1 − F̂n,1/2(V̂1i)
}2

−
[

1
n11

∑
i

Ĝ1i{1 − F̂n,1/2(V̂1i)}
]2

.

Then we have

σ̂ 2
1 − σ̃ 2

1

= 1
n11

∑
i

Ĝ2
1i
{

1 − F̂n,1/2(V̂1i)
}2 − E∗

[
G2

11
{

1 − F̂1/2(V̂11)
}2]

+E
2∗[G11{1 − F̂1/2(V̂11)}] −

[
1

n11

∑
i

Ĝ1i{1 − F̂n,1/2(V̂1i)}
]2

= I + II.

To control the term I, we have

I = 1
n11

∑
i

(Ĝ2
1i − G2

1i){1 − F̂n,1/2(V̂1i)}2

+ 1
n11

∑
i

G2
1i
[
{1 − F̂n,1/2(V̂1i)}2 − {1 − F̂1/2(V̂1i)}2

]
+ 1

n11

∑
i

G2
1i{1 − F̂1/2(V̂1i)}2 − E∗

[
G2

11
{

1 − F̂1/2(V̂11)
}2]

= I1 + I2 + I3.

Due to the fact that {1 − F̂n,1/2(V̂1i)}2 ≤ 1 and by Assumption 2(a),

|I1| ≤ 1
n11

∑
i

|G2
1i − Ĝ2

1i| = oP(1) .

To control the term I2, we have

|I2| ≤ 2‖̂Fn − F̂‖∞
n11

∑
i

G2
1i = OP(n−1/2

21 ).

Controlling the term I3 follows from the Weak Law of Large Numbers
(WLLN), which gives |I3| = oP(1). Putting these pieces together, we
obtain I = oP(1). In a similar way, we conclude that II = oP(1).

Analogously, we could establish that σ 2
2 − σ̂ 2

2 = oP(1) and ρ̃12 −
ρ̂12 = oP(1). We complete the proof by using the continuous mapping
theorem.

Lemma 6. Let σ̂ 2 and σ̃ 2 be defined as in (10) and Lemma 5. Let σ 2 =
σ 2

1 + n11/(12n21) + σ 2
2 /4 − ρ12 be the ideal version of σ̃ 2 using the

true conditional density ratio v. If |E∗G11(D̂11 − D11)| = oP(n−1/2
11 ),

then we have σ/σ̂ = 1 + op(1).

Proof. According to Lemma 5 and Slutsky’s theorem, it suffices to prove
that σ/σ̃ = 1 + oP(1).

Note that

σ 2
1 − σ̃ 2

1 =E∗G2
11
[
{1 − F1/2(V11)}2 − {1 − F̂1/2(V̂11)}2

]
+ E

2∗G11{1 − F̂1/2(V̂11)} − E
2G11{1 − F1/2(V11)}

=I + II.

To bound the terms I and II, we have

|I| ≤ 2E∗G2
11|F1/2(V11) − F̂1/2(V̂11)| ,

|II| ≤ 2EG11E∗G11|F1/2(V11) − F̂1/2(V̂11)| .

An application of Hölder’s inequality implies that |I| = oP(1) and II =
oP(1). Analogously, we obtain ρ̃12 −ρ12 = oP(1), which completes the
proof.

Lemma 7. Let U′
j =

(
n−1

11
∑n11

i=1 G1iD̂ij
)

/
(

n−1
11
∑n11

i=1 G1i
)

, and

T′ =
1
2 − 1

n21

∑n21
j=1 U′

j
σ̂ /

√n11
.

Then, under Assumptions 1, 2,

T̂ −T′ = E∗(Ĝ11 − G11)D̂11 − E∗(Ĝ11 − G11)E∗(G11D̂11)
σ̂ /

√n11
+oP(1) ,

where the expectation is taken over the ranking subsample while ĝ and
v̂ are treated as fixed. Moreover, we have T′ � N(0, 1) as n11 → ∞
under H0.

Proof of Lemma 7. Note that

Ûj − U ′
j =

1
n11

∑
i(Ĝ1i − G1i)D̂ij
1

n11

∑
i Ĝ1i

+
1

n11

∑
i G1iD̂ij

1
n11

∑
i G1i

( 1
n11

∑
i G1i

1
n11

∑
i Ĝ1i

− 1

)
.

By law of large numbers, we have n−1
11
∑

i G1i = 1 + oP(1). Under
Assumption 2(a), we obtain n−1

11
∑

i Ĝ1i = 1+oP(1) and n−1
11
∑

i(G1i−
Ĝ1i) = E∗(G11−Ĝ11)+oP(n−1/2

11 ). Since |D̂ij| ≤ 1 and |n−1
21
∑

j D̂ij| ≤
1, we have (n11n21)−1∑

i,j(Ĝ1i − G1i)D̂ij = E∗(Ĝ11 − G11)D̂11 +
oP(n−1/2

11 ) and n−1
11
∑

i G1iD̂ij = E∗G11D̂11 + OP(n−1/2
11 ).

Thus, by continuous mapping theorem,

1
n21

∑
j

(Ûj − U′
j ) =

1
n11n21

∑
i,j(Ĝ1i − G1i)D̂ij

1
n11

∑
i Ĝ1i

+
1

n11n21

∑
i,j G1iD̂ij

1
n11

∑
i G1i

( 1
n11

∑
i G1i

1
n11

∑
i Ĝ1i

− 1

)
=
[
E∗(Ĝ11 − G11)D̂11 + oP(n−1/2

11 )
]
(1 + oP(1))
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+
[
E∗G11D̂11 + OP(n−1/2

11 )
]

[
E∗(G11 − Ĝ11) + oP(n−1/2

11 )
]
(1 + oP(1)).

Then we have

T̂ − T′ =E∗(Ĝ11 − G11)D̂11 − E∗(Ĝ11 − G11)E∗(G11D̂11)
σ̂ /

√n11
+ oP(1) .

Next, we prove T′ � N(0, 1) as n11 → ∞ under H0. Define

T′′ =
1
2 − 1

n21

∑n21
j=1 U′

j
σ̃ /

√n11
,

where σ̃ 2 is defined as in Lemma 5.
Recall that F̂ is the conditional CDF of V̂21 given v̂, F̂− its left limit,

and F̂ζ = (1 − ζ )̂F− + ζ F̂ for ζ ∈ [0, 1].
Using the marginal projection of a two sample U-statistic, we have

1
n11n21

∑
i,j

G1iD̂ij = 1
n11

n11∑
i=1

Ĥ1i + 1
n21

n21∑
j=1

Ĥ2j + 1
2

+ R (12)

where

Ĥ1i =E∗
[
G1iD̂ij|(X1i, Y1i)

]− 1/2 = g(X1i){1 − F̂1/2(V̂1i)} − 1/2 ,

Ĥ2j =E∗
[
G1iD̂ij|(X2j, Y2j), ζj

]− 1/2 = F̂ζj(V̂2j) − 1/2 ,

and R is a remainder term to make (12) hold, which satisfies

E∗R2 = 1
n2

11n2
21

∑
i,j,i′,j′

E∗H̃ijH̃i′j′ ,

where H̃ij = G1iD̂ij − Ĥ1i − Ĥ2j − 1/2. By construction, E∗H̃ijH̃i′j′ is
nonzero only if (i, j) = (i′, j′), and E∗R2 reduces to

E∗R2 = 1
n2

11n2
21

∑
i,j

E∗H̃2
ij = O((n11n21)

−1) .

Now we can write the main part of the numerator of T′′ as

1
n21

n21∑
j=1

U′
j =

1
n11

∑n11
i=1 Ĥ1i + 1

n21

∑n21
j=1 Ĥ2j + 1

2 + R
1

n11

∑n11
i=1 G1i

.

Now apply the Lindeberg-Feller CLT to the triangular array
{(Ĥ1i, G1i), 1 ≤ i ≤ n11, Ĥ2j : 1 ≤ j ≤ n21} indexed by n11,
combining with the delta method, we have for any v̂,

T′′|̂v � N(0, 1) .

Then, for any bounded continuous function f and Z ∼ N(0, 1), we have
E∗f (T′′) a.s.−→ Ef (Z) . According to the bounded convergence theorem,
Ef (T′′) → Ef (Z) . Thus, we conclude that T′′ � N(0, 1) as n11 → ∞.
Combining with Lemma 5 and Slutsky’s theorem yields T′ � N(0, 1)

as n11 → ∞ under H0.

Appendix D: Proofs of Main Results

Proof of Lemma 2. For part (a), the proof is a standard application of
the Bayes theorem, and is implicitly given in (Tibshirani et al. 2019,
eq. (6) and sec. 3.2). Here we provide the calculation for the readers’
convenience.

Recall that given Z̃, we have Vn11+1 = v(X̃i, Ỹi) if σ(n11 + 1) = i.
Thus,

(Vn11+1 |̃Z) ∼
∑
σ

P(σ |̃Z)δv(X̃σ(n11+1),Ỹσ(n11+1))

=
n11+1∑

i=1
P
[
σ(n11 + 1) = i|̃Z] δv(X̃i,Ỹi)

. (13)

Using Bayes rule,

P
[
σ(n11 + 1) = i|̃Z]
=

∑
σ(n11+1)=i �

n11+1
l=1 f1,X(X̃l)f (Ỹl|X̃l)

f2,X(X̃i)
f1,X(X̃i)∑n11+1

j=1
∑

σ(n11+1)=j �
n11+1
l=1 f1,X(X̃l)f (Ỹl|X̃l)

f2,X(X̃j)

f1,X(X̃j)

=
f2,X(X̃i)
f1,X(X̃i)∑n11+1

j=1
f2,X(X̃j)

f1,X(X̃j)

= pi(̃Z) .

As a result, (13) becomes

(Vn11+1 |̃Z) ∼
n11+1∑

i=1
pi (̃Z)δv(X̃i,Ỹi)

=
n11+1∑

i=1
pi(Z)δv(Xi,Yi) .

Part (b) follows directly by combining part (a) with Lemma 3.
For part (c), we use notation V1l = v(Xl, Yl) =

f1(Yl|Xl)/f2(Yl|Xl), l = 1, . . . , n11, and V2 = v(Xn11+1, Yn11+1) =
f1(Yn11+1|Xn11+1)/f2(Yn11+1|Xn11+1). Recall that g(x) =
f2,X(x)/f1,X(x).

For a given X2, we consider

2Eζ U =
∑n11

l=1 g(Xl)[1(V1l < V2) + 1(V1l ≤ V2)] + g(Xn11+1)∑n11
l=1 g(Xl) + g(Xn11+1)

,

where Eζ denotes expectation taken only over ζ , keeping everything
else as given. Because Eg(Xl) = 1 for 1 ≤ l ≤ n11, it can be
directly verified from the strong law of large numbers on the iid random
variables X1, . . . , Xn11 that

2Eζ U → E

[
g(X1)1(V11 < V2)

∣∣∣∣Xn11+1, Yn11+1

]
+ E

[
g(X1)1(V11 ≤ V2)

∣∣∣∣Xn11+1, Yn11+1

]
a.e. over (X1, . . . , Xn11 , Xn11+1) as n11 → ∞. By construction we have
U ∈ [0, 1]. By the dominated convergence theorem, we have

2E(U) → Eg(X11)1(V11 < V2) + Eg(X11)1(V11 ≤ V2) . (14)

Lemma 4 implies that the right hand side of (14) is (letting V ′
2 be an

iid copy of V2)

EV ′
21(V ′

2 < V2) + EV ′
21(V ′

2 ≤ V2)

= EV21(V2 < V ′
2) + 1 − EV ′

21(V ′
2 > V2)

= 1 − [EV ′
21(V ′

2 > V2) − EV21(V ′
2 > V2)

]
= 1 − E(V ′

2 − V2)1(V ′
2 > V2)

= 1 − 1
2
E|V ′

2 − V2| ,

which completes the proof.
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Proof of Theorem 1. Define

T′ =
1
2 − 1

n21

∑n21
j=1 U′

j
σ̂ /

√n11
,

where U′
j =

(
n−1

11
∑n11

i=1 G1iD̂ij
)

/
(

n−1
11
∑n11

i=1 G1i
)

and D̂ij =
1(V̂1i < V̂2j) + ζj1(V̂1i = V̂2j). Then Assumption 2(b) and Lemma 7
imply that T̂ = T′ + T̂ − T′ � N(0, 1) under H0.

Next we prove the asymptotic power under the alternative. Note
that, letting Zk1 = (Xk1, Yk1) for k = 1, 2,

var∗

⎧⎨⎩ 1
n11n21

∑
i,j

G1i(Dij − D̂ij)

⎫⎬⎭
=
(

1
n11

var∗[E∗{G11(D11 − D̂11)|Z11}]

+ 1
n21

var∗[E∗{G11(D11 − D̂11)|Z21, ζ1}]
)

(1 + oP(1))

≤
[

C
n11

var∗{G11(D11 − D̂11)}
]

(1 + oP(1)), (15)

due to Assumption 1 and the boundedness of F̂ζ and Fζ for any ζ ∈
[0, 1]. Thus, we have

1
n21

∑
j

(Uj − U′
j ) =

1
n11n21

∑
i,j G1i(Dij − D̂ij)

1
n11

∑
i G1i

={E∗G11(D11 − D̂11) + OP(1/
√

n11)}(1 + oP(1)).

Then,

T′ =
1
2 − 1

n21

∑
j U′

j
σ̂ /

√n11

=
1
2 − 1

n21

∑
j Uj

σ̂ /
√n11

+
1

n21

∑
j(Uj − U′

j )

σ̂ /
√n11

=
1
2 − 1

n21

∑
j Uj

σ̂ /
√n11

− E∗G11(D̂11 − D11)
σ̂ /

√n11
(1 + oP(1)) + OP(1)

=
1
2 − EG11D11

σ̂ /
√n11

+ EG11D11 − 1
n21

∑
j Uj

σ̂ /
√n11

− E∗G11(D̂11 − D11)
σ̂ /

√n11
(1 + oP(1)) + OP(1)

=
1
4 δ

σ̂ /
√n11

+ EG11D11 − 1
n21

∑
j Uj

σ/
√n11

σ

σ̂

− E∗G11(D̂11 − D11)
σ̂ /

√n11
(1 + oP(1)) + OP(1), (16)

where δ = E|v(X2, Y2) − v(X′
2, Y ′

2)|, and the last equality holds due
to the fact that δ/4 = 1/2 − EG11D11 as explained in the proof of
Lemma 2(c). Note that

EG11D11 − 1
n21

∑
j Uj

σ/
√n11

� N(0, 1)

and σ/σ̂ = OP(1). If there exists a constant c > 0 such that

P
[
E∗G11(D̂11 − D11) < (1/4)E|v(X2, Y2) − v(X′

2, Y ′
2)| − c

]→ 1 ,

where (X2, Y2) and (X′
2, Y ′

2) are iid realizations from P2, then we have
T′ → ∞ in probability. Together with T̂ −T′ = oP(1), we establish the
desired result.

Proof of Equation (11). First realize that

EP2 Dtv(f1(·|X), f2(·|X))

= 1
2

∫ ∫ ∣∣f1(y|x) − f2(y|x)
∣∣ dyf2(x)dx

= 1
2

∫ ∫ ∣∣∣∣ f1(y|x)

f2(y|x)
− 1
∣∣∣∣ f2(y|x)f2(x)dydx = 1

2
EP2 |v(X, Y) − 1| .

The lower bound follows from a conditional Jensen’s inequality:

E|v(X, Y) − 1| = E
∣∣v(X, Y) − Ev(X′, Y ′)

∣∣ ≤ E|v(X, Y) − v(X′, Y ′)| ,

where (X, Y), (X′, Y ′) are iid copies from P2.
The upper bound follows from triangle inequality:

E|v(X, Y) − v(X′, Y ′)| = E
∣∣v(X, Y) − 1 − [v(X′, Y ′ − 1)]∣∣

≤ E|v(X, Y) − 1| + E|v(X′, Y ′) − 1| = 2E|v(X, Y) − 1| .

Proof of Proposition 1. From (15), we have

var∗

⎧⎨⎩ 1
n11n21

∑
i,j

G1i(Dij − D̂ij)

⎫⎬⎭
≤
[

C
n11

var∗{G11(D11 − D̂11)}
]

(1 + oP(1)) .

Since |D11 − D̂11| ≤ 1,

var∗{G11(D11 − D̂11)} ≤ E∗G2
11(D11 − D̂11)2 ≤ E∗G2

11|D11 − D̂11|.
Now we study D̂11 − D11. Let ξ = V21 − V̂21 − (V11 − V̂11). Then,

for any ε > 0∣∣1(V̂11 < V̂21) − 1(V11 < V21)
∣∣

= 1(V11 + ξ < V21 ≤ V11, ξ < 0)

+ 1(V11 < V21 ≤ V11 + ξ , ξ > 0)

≤ 1(V11 − |ξ | ≤ V21 ≤ V11 + |ξ |)
≤ 1(V11 − ε ≤ V21 ≤ V11 + ε) + 1(|ξ | ≥ ε) .

The same upper bound holds for 1(V̂11 ≤ V̂21)−1(V11 ≤ V21) using
the same argument, and we conclude that

|D̂11 − D11| =
∣∣∣∣(1 − ζ1)

[
1(V̂11 < V̂21) − 1(V11 < V21)

]
+ ζ1

[
1(V̂11 ≤ V̂21) − 1(V11 ≤ V21)

] ∣∣∣∣
≤ (1 − ζ1)

∣∣1(V̂11 < V̂21) − 1(V11 < V21)
∣∣

+ ζ1
∣∣1(V̂11 ≤ V̂21) − 1(V11 ≤ V21)

∣∣
≤ 1(V11 − ε ≤ V21 ≤ V11 + ε) + 1(|ξ | ≥ ε) .

Therefore,

E∗G2
11|D̂11 − D11|

≤ E∗G2
111(V11 − ε ≤ V2 ≤ V11 + ε) + E∗G2

111(|ξ | ≥ ε)

≤ E∗
{

G2
11E∗ [1(V11 − ε ≤ V2 ≤ V11 + ε)|X11, Y11]

}
+ E∗G2

111(|ξ | ≥ ε)

≤ 2CεEG2
11 + E∗G2

111(|ξ | ≥ ε) ,

where the first term in the last inequality follows from the assumption of
bounded density of V21 with the constant C being a finite upper bound
of the density. Because ξ = oP(1) the support of 1(|ξ | ≥ ε) has vanish-
ing probability measure. The integrability of G2

11 implies it is uniformly
integrable. So we have E∗G2

111(|ξ | ≥ ε) = oP(1) for arbitrary ε > 0.
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Therefore, we conclude that E∗G2
11|D̂11 − D11| = oP(1). Combining

this variance bound with the mean bound |E∗G11(D̂11 − D11)| =
oP(1/

√n11) assumed in the proposition, we have

1
n21

∑
j

(Uj − U′
j ) =

1
n11n21

∑
i,j G1i(Dij − D̂ij)

1
n11

∑
i G1i

= oP(1/
√

n11).

As in the proof of Theorem 1, Assumption 2(b) and Lemma 7 imply
that T̂ − T′ = oP(1). According to (16) and Lemma 6, we have

T̂ = T̂ − T′ + T′

=
1
4 δ

σ̂ /
√n11

+ EG11D11 − 1
n21

∑
j Uj

σ/
√n11

σ

σ̂

+
1

n21

∑
j(Uj − U′

j )

σ̂ /
√n11

+ oP(1)

=
√n11δ

4σ
(1 + oP(1)) + Z + oP(1),

where Z � N(0, 1) as n11 → ∞.

Supplementary Materials

The supplementary materials contain data and code to conduct the experi-
ments in the article.
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