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ABSTRACT

Tabular data is common yet typically incomplete, small in volume, and access-
restricted due to privacy concerns. Synthetic data generation offers potential solu-
tions. Many metrics exist for evaluating the quality of synthetic tabular data; how-
ever, we lack an objective, coherent interpretation of the many metrics. To address
this issue, we propose an evaluation framework with a single, mathematical objec-
tive that posits that the synthetic data should be drawn from the same distribution
as the observed data. Through various structural decomposition of the objective,
this framework allows us to reason for the first time the completeness of any set of
metrics, as well as unifies existing metrics, including those that stem from fidelity
considerations, downstream application, and model-based approaches. Moreover,
the framework motivates model-free baselines and a new spectrum of metrics.
We evaluate structurally informed synthesizers and synthesizers powered by deep
learning. Using our structured framework, we show that synthetic data generators
that explicitly represent tabular structure outperform other methods, especially on
smaller datasets.

1 INTRODUCTION

Tabular data is among the most common and versatile data formats for data science and machine
learning. Compared to text and imagery, tabular data are often incomplete, imbalanced, and small in
volume because they can be expensive and difficult to collect. Even upon collection, the data may be
limited in access due to privacy concerns. Synthetic data generation can alleviate or even solve the
above problems. A good data synthesizer is a generative model that learns the actual data generating
process or distribution. As such, the data synthesizer can be queried to produce as much data as
desired. Furthermore, a desirable data synthesizer can predict the values (including missing values)
of any set of columns conditioned on any non-overlapping set. This ability allows the synthesizer to
generate balanced datasets, impute missing values, and debias the data.

To know whether a synthesizer is effective, it is crucial to have a coherent and complete set of
evaluation metrics. Figure 1A shows a modern taxonomy of the evaluation metrics. On the first
level, the metrics are arranged into model-based versus model-free. Model-based metrics, also called
“likelihood tests,” evaluate the synthetic data by computing its likelihood under the known, ground-
truth data generating process (e.g. in Xu et al., 2019). The model-free metrics are further divided
into resemblance fidelity and application fidelity (Dankar et al., 2022). The latter, often referred to as
“machine learning (ML) efficacy,” is the most popular type of metric. While this taxonomy provides
a methodological organization of the metrics, we still do not know how they are related (coherence)
and whether we are missing important aspects of the evaluation (completeness). To address this
issue, we propose a framework that interprets the metrics under a unifying objective and repositions
them along a spectrum of structure (Figure 1B).

Our framework stems from a formal objective that a synthesizer should produce samples from the
same joint distribution as the real data. We show how each metric can be derived from this core
objective by identifying the substructure of the joint distribution targeted by the metric. This analysis
reveals the relationships among the metrics and their completeness: that is, each metric targets a
particular aspect of the joint distribution, and the targeted aspects span the full range of distributions
from simple marginals to the full joint (Figure 1B). Without the objective and the structure, it is
unclear what even constiutues a complete set of evaluation metrics. The structured framework also
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Figure 1: (A) A modern taxonomy of the evaluation metrics. Some of the naming conventions
follow Dankar et al. (2022). (B) A structured framework of evaluation metrics. The metrics are
positions along a spectrum of structure, depending on the structure of distribution they target. This
spectrum is applied to both model-free and model-based metrics. The bottom row shows where the
metrics depicted in (A) are repositioned in the new framework.

motivates model-free baselines that are easy-to-interpret (Section 3.2). We further introduce a new
class of model-based metrics by using probabilistic cross-categorization (PCC) (Mansinghka et al.,
2016) to learn a generative model of the real tabular data. Leveraging the PCC as a surrogate to
the ground-truth data generating process, we form a new spectrum of metrics that readily spans all
substructures. The inherent advantage of the model-based technique over the model-free metrics
is that all the metrics in this class can be derived using the same underlying assumptions for any
substructure and data type. We show in Section 5 that PCC is a decent surrogate.

We demonstrate our structured framework by evaluating eight synthesizers on three datasets. The
eight synthesizers include GAN-based (Xu et al., 2019; Patki et al., 2016), autoencoder-based (Xu
et al., 2019; Patki et al., 2016), copula-based (Patki et al., 2016), transformer-based (Borisov et al.,
2022b), diffusion-based (Kotelnikov et al., 2023), and structure-based (PCC and Nowok et al., 2016)
methods. The three datasets span a wide range of data sizes and contain a mix of numeric and cate-
gorical columns, some with missing values. The experiments reveal that structure-based synthesizers
which explicitly represent the tabular structure (i.e., column distributions and dependencies) often
outperform deep-learning synthesizers that use an implicit representation (e.g., via the competition
between a generator and discriminator as in GAN).

In summary, the contributions of this paper are:

• A coherent and complete evaluation framework that for the first time allows one to reason
about the completeness and coherence of any set of metrics, and unifies existing metrics
based on a single, mathematical objective (Section 3).

• An open-source implementation of the evaluation framework1, featuring a new class of
metrics, a comprehensive set of baselines, a principled ordering of metrics that hightlist
the utility of the structural perspective, and a tabular data synthesizer (PCC) that allows
arbitrary conditioning with missing values (Sections 3.2, 3.3, and 5).

• We demonstrate the structured evaluation framework with a diverse set of 8 synthesizers
across 3 datasets of varying sizes, showing that synthesizers with an explicit representation
of the tabular structure outperform those without, especially on smaller datasets (Section 5).

2 RELATED WORK

Evaluation. Many evaluation metrics exist and have been taxonomized largely based on a mix
of methodology and structural concerns (Dankar et al., 2022; Afonja et al., 2023; Choi et al., 2017;
Zhao et al., 2021). Some work proposes baselines and an aggregate metric to simplify the evaluation
(Chundawat et al., 2022). Our work motivates these metrics and baselines from a single unifying
objective. See Appendix E for a detailed discussion.

Tabular data synthesizers. Approaches can be broadly categorized as: structured parametric, such
as Bayesian network models (Zhang et al., 2017; Kaur et al., 2021); structured nonparametric, in-
cluding probabilistic cross-categorization (Mansinghka et al., 2016) and methods originating from

1url TBA
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the field of statistical disclosure control that models the full joint distributions by a chain-rule de-
composition (Nowok et al., 2016); and non-structured over-parametric, encompassing most methods
powered by deep learning (Borisov et al., 2022a; Kotelnikov et al., 2023; Kim et al., 2022). One
feature we study in this paper is whether the explicit versus implicit representation of the tabular
structure affects the synthesizer’s performance.

Tabular data analysis. Recent works have shown that tree-based methods can outperform deep-
learning methods in tabular data analysis (Gorishniy et al., 2021). Grinsztajn et al. (2022) identified
three concrete failure modes: susceptibility to uninformative features, bias towards overly smooth
function, and negligence of data orientation. The second and third failure modes coincide with
known issues for deep-learning tabular data synthesizers, namely, the difficulties in modeling het-
erogeneous data types and the column dependency structure (Xu et al., 2019; Ma et al., 2020).

3 STRUCTURED EVALUATION FRAMEWORK

The objective. The goal of a data synthesizer is to produce samples that are statistically analogous
to the real data but not direct copies of them. A common assumption for tabular data is that the
rows are exchangeable, and thus, the data distribution is fully described by the joint distribution of
the columns. Let the columns be {cj | j = 1, · · · ,m}, the synthetic data distribution be Q, the
synthetic dataset be S, the real data distribution be P , and the real dataset be X . The objective of
the data synthesizer is then Q = P and S ̸= X . The first part means that joint distributions should
match, i.e., Q(c1, · · · , cm) = P (c1, · · · , cm). The second part means that S should be not a direct
copy of X but should be sampled from Q, just as X is a sample from P .

Sketch of analysis. To derive existing metrics from the main objective, we go through the following
general steps:

1. Identify a substructure of Q, denoted by q, and similarly p from P . Consider whether
q = p is necessary and sufficient for Q = P . The substructures we study include univariate
marginal distributions, pairwise joint distributions, leave-one-out conditional distributions,
the full-joint distribution, and the structure of missingness.

2. Form an estimate of the substructure from the data; that is, fq of q from S, and fp of p from
X . Identify whether fq = fp is necessary and sufficient for p = q. Each existing metric is
related to an estimate. Popular estimates include simple statistics (e.g., mean and support),
finite-sample probability mass functions, and distributions represented by ML models.

3. Compute a metric score t of how close fq and fp are. We design t to be within the range
[0, 1] so that t = 1 implies fq = fp.

4. Repeat steps 2 and 3 for all possible arrangements of the substructure (all combinations of
the columns) and then compute the average score.

Going backwards from steps 3 to 1, we form a chain of necessary and/or sufficiency conditions
from the metric score, to the estimates, to the substructures, and to the main objective. That is, we
analyze whether each relationship of the chain (t = 1) ⇔ (fq = fp) ⇔ (q = p) ⇔ (Q = P ) holds.
Sufficiency is desired, but in most cases only necessary conditions are satisfied. Table 1 summarizes
the substructure, estimates, and score of the metrics used in the paper.

3.1 THE SPECTRUM OF STRUCTURE

In this subsection we highlight the less obvious connections along the chain of necessary and suf-
ficient condiitons (e.g., that between machine learning efficacy and leave-one-out conditional dis-
tribution), and leave the more obvious ones (e.g., with the marginal and pairwise distributions) to
Appendix A. We focus on the model-free metrics here and leave the discussion of the model-based
(or PCC-based) metrics to Section 3.3.

Marginal and pairwise distribution. Equivalence between all univariate marginals is necessary
but not sufficient for the equivalence of the full joint distribution: Q = P ⇒ Q(cj) = P (cj) for j =
1, · · · ,m. The same statement holds for pairwise distributions: Q = P → Q(cj , ck) = P (cj , ck)
for all j ̸= k. The metrics used for the marginal substructure include estimates based on simple
statistics as well as probabilty mass/density functions. For the pairwise substructure, distributional
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Metric (data type) Estimate fq, fp Score t Implication

Marginal

TVComplement
(categorical)

PMF of S[cj ] 1 −
TV dist(fq, fp)/Z

t = 1 ⇔ Q(cj) =
P (cj) as n → ∞

KSComplement
(continuous)

CDF of S[cj ] 1−KS stat(fq, fp) same as above

Simple-statstics
based (either)∗

support, range, mean,
median, std of S[cj ]

fq/fp or 1 − |fq −
fp|/Z

t = 1 ⇐ Q(cj) =
P (cj)

PCC-Marginal
(both)⋆

empirical CDFs from
P̂ (Si,j)

1− 1
2 |ppe| t = 1 ⇐ Q(cj) =

P̂ (cj) as n → ∞
Pairwise

Contingency-Sim
(categorical)

PMF of S[cj , ck] 1− total variation
dist(fq, fp)/Z

t = 1 ⇔ Q(cj , ck) =
P (cj , ck) as n → ∞

Correlation-Sim
(continuous)

ρ(S[cj ], S[ck]) 1− |fq − fp|/Z t = 1 ⇐ Q(cj , ck) =
P (cj , ck)

MutualInformation-
Sim (both)⋆

MI(S[cj ], S[ck]) 1−
∑

|fq − fp|/Z same as above

PCC-Pairwise
(both)⋆

empirical CDFs from
P̂ (Si,(j,k))

1− 1
2 |ppe| t = 1 ⇐ Q(cj , ck) =

P̂ (cj , ck) as n → ∞
Leave-one-out (LOO)

ML efficacy (cate-
gorical)∗

fq:ML(S[cj ] |
S[{c−j}]); fp:X[cj ]

acc between argmax
fq(cj | X[{c−j}])
and X[cj ]

higher t generally im-
plies Q more similar
to P

Privacy metrics
(either)∗

fq:ML(S[{cα}] |
S[{cβ}]); fp : X[{cα}]

1 −
a(X[{cα}]; fq({cα} |
X[{cβ}]))

higher t generally
implies Q less similar
to P

PCC-LOO (ei-
ther)⋆

empirical CDFs from
P̂ (Si,j | Si,{−j})

1− 1
2 |ppe| t = 1 ⇐ Q = P̂ as

n → ∞

Full joint

ML-Detection
(both)∗

discriminator f of Q(r)
trained on S

2(1−ROC AUC) t = 1 ⇐ Q = P as
n → ∞

PCC-FullJoint
(both)⋆

empirical CDFs from
P̂ (Si)

1− 1
2 |ppe| t = 1 ⇐ Q = P̂ as

n → ∞

Missingness

MissingValue-Sim
(either)

fraction of missing values
in Sν [cj ]

1− |fq − fp| t = 1 ⇔ Qν(cj) =
Pν(cj) as n → ∞

Missing-
NotAtRandom-
Sim (both)⋆

correlation matrix formed
from column pairs in
Sν [{cν}]

1−
∑

|fq − fp|/Z t = 1 ⇐ Qν({cν}) =
Pν({cν})

Covariate-
DependentMissing-
Sim (both)⋆

correlation matrix formed
by correlating columns
in Sν [{cν}] with those in
Sν [{c−ν}]

1−
∑

|fq − fp|/Z t = 1 ⇐ Qν({cν} |
{c−ν}) = Pν({cν} |
{c−ν})

Table 1: A summary of the evaluation metrics in the structured evaluation framework. See main
text and Appendix A for description. Code is at TBA. In the Estimate column, we summarize the
construction of fq from the synthetic dataset S; fp is contructed from the real dataset X in the same
way but left out for brevity, unless otherwise noted. A column c of a distribution is denoted by Q(c)
in paranthesis, while a column c of a dataset is denoted by S[c] in brackets. The symbol ⋆ denotes
newly introduced metrics, ∗ means the entry corresponds to multiple metrics.
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properties are estimated by contingency tables, correlation coefficients, and mutual information. For
the full chain of connection from metrics scores to substructures, see Appendices A.1–A.2.

Leave-one-out conditional (LOO) distribution. The full joint distributions are equal if and
only if all the leave-one-out conditional (LOO) distributions are equal: Q = P ⇔ Q(cj |
{c−j}) = P (cj | {c−j}) for j = 1, · · · ,m, where {c−j} denotes all columns except the jth

one. Necessity holds because the LOO conditional is a subset of the full joint. Sufficiency holds
because the complete set of the LOO conditionals fully specifies the complete factorization of
the full joint under the chain rule. Mathematically, the chain-rule factorization of the full joint
is: Q = Q(cm | c1, · · · , cm−1)Q(cm−1 | c1, · · · , cm−2) · · ·Q(c2 | c1)Q(c1). Then observe
that for each target column (the LHS of a conditional), the conditions (the RHS of the condi-
tional) of the factor are always a subset of the conditions in the LOO conditional distribution, i.e.,
{c1, · · · , cj−1} ⊆ {c−j}. Thus, given the same target column, the specification of the LOO condi-
tional also fully specifies the corresponding factor in the chain-rule expression.

The popular metric of machine learning (ML) efficacy belongs to this substructure.2 The idea of
ML efficacy is that an ML algorithm trained on the synthetic data should perform as well as one
trained on the real data. By identifying the training features or regressors as the conditions on the
LHS of the LOO conditional, and the training labels or response variable as the target column on the
RHS of the LOO conditional, we see that the trained ML is an estimate fq of the LOO distribution:
Q(cj | {c−j}). The estimate fq approaches the distribution as ntrain → ∞ if the ML model is a
universal approximator and the training algorithm provably converges to the global minimum. The
estimate fp of the real LOO distribution is replaced by the real dataset, which consists of samples
from the distribution. The score takes the form of the accuracy between the real label and the
predictions of the ML model, which is trained on the synthetic data and tested on the real data.
Mathematically, t(fq) = a(X[cj ], argmaxfq(cj | X[{c−j}])), where a(·) denotes an accuracy
function, X[cj ] the real labels, and fq(cj | X[{c−j}]) the ML model’s prediction given the test
features/regressors. Note that because fp is a set of samples, the argmax prediction may not attain
maximum score even if Q = P ; thus, neither sufficiency nor necessity hold. See Appendix A.3 for
the implementation details, how the SELF baseline promote necessity, and a variant metric called
column-wise prediction (Choi et al., 2017; Engelmann & Lessmann, 2021).

The full joint. The likelihood of any row of data is the same under the two models if and only if
the full joint distributions are equal: Q = P ⇔ Q(r) = P (r) for any row of data r. Instead of
tackling the tall task of explicitly estimating Q(r) and P (r), one way to get at Q(r) = P (r) is by
learning a discriminator f between Q(r) and P (r) from S and X , respectively. Metrics that learn
an ML model to discriminate between rows of the real data from rows of the synthetic data fall
under this category. A perfect f (resulting from a poor synthesizer) would have an ROC AUC of
1, and a random f (resulting from Q = P ) would have an ROCAUC of 1/2. Thus, the score is
t = 2(1−ROC AUC). As ntest → ∞, t = 1 is necessary for Q = P . Sufficiency likely does not
hold because there may be multiple ways that the implicit fq and fp can produce a discriminator f
to achieve perfect score. See Appendix A.4 for implementation details.

Missingness. Consider the missingness of each entry of a table as a binary variable. We can then
construct a binary table of missingness Sν from the synthetic dataset S. Just as S is a sample
from Q, we say Sν is a sample from Qν . Since missingness is a property of the data generating
process, Qν = Pν is necessary but not sufficient for Q = P . In Appendix A.5, we consider three
substructures of the objective Qν = Pν . (1) The marginals are equivalent: Qν(cj) = Pν(cj) for all
j. (2) The joint distributions of columns with missing values are equivalent: Qν({cj}) = Pν({cj}),
where {cj} is the set of columns with missing values. This leads to a novel metrics related to
missing-not-at-random. (3) The distributions of missing values conditioned on non-missing values
are equivalent: Qν({cj} | {ck}) = Pν({cj} | {ck}), where {ck} are the set of columns without any
missing value. This leads to another novel metric related to covariate-dependent missingness. Note
that all three conditions above are necessary but generally not sufficient for Qν = Pν .

Privacy. While we would like to have Q = P , we do not want the synthesizer to simply memorize
the training data, resulting in S = X . Metrics on privacy against inference punishes memorization.
Given sensitive columns {cα} and insensitive columns {cβ}, a privacy attacker is trained on the
synthetic data and predicts the sensitive columns in the real data given the insensitive columns. If

2Our use of ML efficacy is a slight generalization of its usual version in that we loop through all the columns.

5



Under review as a conference paper at ICLR 2024

S = X , the attacker can simply find the row in the synthetic data with insensitive values cloest to
the insensitive values in the real data, and predict the real sensitive value by reading off the sensitive
value in the synthetic data. Privacy attack can be expressed in terms of conditional distributions: the
attacker learns an estimate fq of Q({cα} | {cβ}), and then use fq to predict the sensitive columns of
X conditioned on the insensitive columns of X , akin to the estimate fq in ML efficacy. The privacy-
against-inference score is t = 1 − a(X[{cα}], fq({cα} | X[{cβ}])), where a(·) is an accuracy
function. From this perspective, it is clear that the ML efficacy and privacy against inference metrics
are anti-correlated, posing a tradeoff between learning the real distribution P and guarding against
inference of P (Figure S4). See Appendix A.6 for implementation details.

3.2 BASELINES

In this subsection we introduce baselines that provide empirical upper and lower bounds on the
metrics by using the real data as the synthetic data. The first baseline, SELF, motivated by the
fidelity part of the objective Q = P , simply use a direct copy of the real data as the synthetic data,
or S = X . This baseline provides an upper bound for all the metrics, except for the privacy metrics,
for which it provides a lower bound. The substructure of marginal distribution motivates the PERM
baseline: the synthetic data is constructed by permuting each column of X independently. This
baseline preserves a high score for metrics in the marginal group and provides a reasonable lower
bound for the metrics related to higher-order substructures. A data synthesizer that learns any form
of column dependency should outperform the PERM baseline. The full objective Q = P and S ̸= X
motivates the HALF baseline, where the real data is split in half, with one half representing X , and
the other half representing S. Such splitting ensures that both S and X are sampled from P . Aside
from variations due to smaller sample size, this baseline provides realistic target values for all the
metrics and represents the performance of a good data synthesizer.

3.3 MODEL-BASED / SURROGATE METRICS

The idea of this class of metrics is to learn a surrogate model of the true data-generating distribution.
This surrogate model should have the property of arbitrary conditioning, i.e., the ability to output
the probability of any set of columns given any non-overlapping set, including the empty set. This
property allows direct evaluation of any targeted substructure. Furthermore, unlike the model-free
metrics which requires different estimators and scores for different datat type and structural proper-
ties as exemplified in Table 1, this class of mode-based metrics can use the same estimator and score
for all data type and substructure, as demonstrated below.

There are multiple ways to make use of such a surrogate model for evaluation. Here, we present
a simple way that involves only the surrogate model of the original data (but not of the synthetic
data), the original dataset X , and the synthetic dataset S. We begin the description with the full
joint distribution, which then readily extends to all substructures. First compute the likelihood of the
real data samples under the surrogate model one row at a time, forming a set of likelihoods, denoted
by {P̂ (Xi) | i = 1, · · · , n}, where Xi is the ith row of X . Compute the same quantity from the
synthetic dataset to obtain {P̂ (Si) | i = 1, · · · , n}. Construct an empirical CDF from each list,
forming fq and fp. Plot the two CDFs against each other as in a probability-probability plot. If the
two CDFs are equal, the plot will coincide with the x = y line. Thus, the metric socre is one minus
the deviation from the x = y line. More precisely, t = 1 − 1

2 |ppe|, where ppe is the difference
between the pp-plot and the line y = x for x = [0, 1]. Maximum t is necessary and sufficient for
the equivalence of the two empirical CDFs by design: t = 1 ⇔ fq = fp. Given that the surrogate
model is not a uniform distriubtion over the variables, as n → ∞, the equivalence of the CDFs is
necessary but not sufficient for the equivalence of the synthetic and real distribution as modeled by
the surrogate: fq = fp ⇐ Q = P̂ . Sufficiency does not hold because there may be multiple ways
to obtain the same empirical CDFs. The extension to a substructure is done by replacing a full row
with certain entries of a row conditioned on other entries of the same row.

For the surrogate model, we used an optimized version of probabilistic cross-categorization (PCC)
(Mansinghka et al., 2016). PCC is a Bayesian nonparametric model that learns the distributional
property of each column as well as the dependencies among the columns and rows. This structured
representation of tabular data allows us to extract conditional distributions of any set of columns
given any non-overlapping set, including the empty set. Below we give a brief description of PCC.
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Probabilistic cross-categorization. Probabilistic Cross-Categorization (PCC; Mansinghka et al.
(2016)) is a hierarchical Bayesian nonparametric architecture designed for tabular data. Given a
table with n rows and m features, PCC uses a Dirichlet process mixture model (Antoniak, 1974) to
cluster features into between 1 and m views, and within each view, uses another Dirichlet process to
cluster rows into between 1 and n categories. To allow features to take on different types, including
missing values, features are modeled independently.

The generative process is as follows: the Chinese Restaurant Process (CRP Aldous (1985)) discount
parameter, α, is drawn from a Gamma distribution for both the view assignment and the category
assignments. The view assignment, v, is drawn from CRP (αv;m). For each view, the assignment
of rows to categories within that view is drawn from CRP (αcu ;n). A prior distribution, ϕj for each
column, j, is drawn from a hyper prior, Hj . The mixture distribution component model parameters
for category k in column j, θk,j is drawn from ϕj . To summarize:

αv ∼ Gamma(1, 1) v ∼ CRP (αv;m) ϕj ∼ Hj

αc1 , . . . , αc|v| ∼ Gamma(1, 1) cu ∼ CRP (αcu ;n) θk,j ∼ p(θ|ϕj)

xi,j ∼ p(x|θcvj,i,j)

where v is an m-length vector with vj being the index of the view to which column j is assigned;
cu is an n-length vector with cu,i being the index of the category to which row i is assigned under
view u; Hj is the hyper prior on column j; ϕj is the prior on column j; θk,j are the parameters of
the kth component of the mixture distribution for column j; and xi,j is the datum at cell (i, j). The
joint distribution is

p(αv)p(v|αv)

|v|∏
u=1

p(αu)p(cu|αu)
∏

{j;vj=u}

[
p(θj |ϕj)p(ϕj |Hj)

n∏
i=1

p(xij |θcu,i,j)

] . (1)

See Appendix B for implementation details.

4 EXPERIMENT

Synthesizers. We evaluate 8 methods: PCC, synthpop (Nowok et al., 2016), DDPM (Kotelnikov
et al., 2023), GReaT (Borisov et al., 2022b), GaussianCopula, TVAE (Xu et al., 2019), CTGAN
(Xu et al., 2019), and CopulaGAN. Synthpop and PCC model tabular structure explicitly. DDMP
is based on deep diffusion models, and GReaT on large language models, TVAE on variational
autoencoders, and CTGAN and CopulaGAN on generative adversarial networks. GaussianCopula
is a copula model that captures pairwise statistics. We also provide three model-free baselines: SELF,
PERM, and HALF (Section 3.2). See Appendix C for implementation details.

Datasets. The evaluation is run on three datasets curated in SDV.3 We select datasets that contain
missing values and have a good mix of categorical and numeric columns. The three datasets used
are: student (215 rows, 7 categorical columns, 7 numeric columns, 2 time-stamp columns, and 4
columns with missing value), expedia (1000 rows, 16 categorical columns, 5 numeric columns, 3
time-stamp columns, and 1 column with missing value), and census (299285 rows, 29 categorical
columns, 12 numeric columns, and 1 column with missing value).

Metrics. We gathered a total of 32 evaluation metrics: 9 are marginal-based; 4 are pairwise-based;
7 are based on the leave-one-out conditional; 3 are full-joint-based; 4 concerns missingness; and 5
relates to privacy. Out of the 32, we introduced and implemented 7 novel metrics. The remaining 25
are implemented in SDMetrics (Dat, 2022). See Appendix A for full details.

The evaluation procedures are as follows: (1) Train the synthesizer models on the original data. (2)
For each synthesizer and baselines, generate a synthetic dataset. (3) Compute the 32 metrics given
the synthetic dataset and real dataset. Computation of the metrics is always done on all possible
combinations of column subsets. For example, for the pairwise-based metrics, we compute a score
for every column pair; for the metrics based on leave-one-out conditionals, we loop through all
columns as the target column. (4) Repeat steps 2 and 3 five times, each time with a newly synthesized
dataset. The code to reproduce the results is at TBA.

3Downloaded from http://sdv-datasets.s3.amazonaws.com/index.html
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5 EVALUATION RESULTS

Natural ordering of the metrics. The structured framework assigns a natural ordering to the metrics
based on the complexity of the substructure, from univariate marginal, to pairwise joint, to leave-
one-out (LOO) conditionals, and to the full joint distribution. We position the missingness group
before the marginal group because missingness of the table translates to a binary table, which is
structurally much less complex than the original table. Figure 2 shows that the scores generally
decrease as the complexity of the substructure increases. This is expected because there is less
statistical information to be learned from a simpler substructure (e.g., univariate marginal) than
from a more complex one (e.g., the leave-one-out distribution).

Validation of PCC-based metrics. The main validation criterion is that the PCC-based metrics
exhibit the same trend as the model-based metrics. Figures S1–S3 confirm that the orderings of
the different synthesizer and baselines are similar under the PCC-based and model-free metrics.
The second criterion is that PCC is a good surrogate model of the data generating process. This is
confirmed by the PCC being among the highest performing methods according to the model-free
metrics. Note that while the synthpop may be a better surrogate model, it does not allow arbitrary
conditioning nor computes the likelihoods like PCC does (see Section 3.3); thus, it cannot be used to
generate the model-based metrics described. Furthermore, PCC-based evaluation is more robust, as
evidenced by its smoother trend and smaller error bars relative to model-free evaluation (Figures S1–
S3). In particular, the robustness helps stabilize the baselines. Once a PCC model is trained on the
original data, the PCC-based metrics are also faster to compute than the model-free ones.

Comparison of synthesizers. Figure 2 shows the structured evaluation of the synthesizers and
baselines across the 3 datasets. We first observe that all the methods exhibit the general trend of
score decreasing as a function of substructure complexity; that is, the non-monotonicity is small
compared to the overall decrease. We also observe that the spread of synthesizers’ scores increase
as the complexity of the substructure increases, allowing one to differentiate the performance of the
methods. These observations confirm that this structural perspective is useful for evaluation.

For the student dataset, synthpop, PCC, DDPM, and GaussianCopula form a group of top per-
formers. Using the baselines, we identify that the data generated from CTGAN and CopulaGAN are
similar to the PERM version of the real data, meaning that they captured the column-wise statistics
but not the column dependencies. For the expedia dataset, synthpop is the clear winner, with
PCC, TVAE, and GReaT as runner-ups. Note that GReaT has the lowest missingness score because
it generates missing values in columns that do not have any missing values in the original data.
DDPM is the worst performer here because it only generates one value for each categorical column
(see Appendix C for training details). For the larger census data, all methods evaluated, except
for GaussianCopula, reach a good performance, while synthpop is still the best. Overall, we see that
synthesizers which model structure explicitly (synthpop and PCC) performs well consistently, even
on smaller datasets. On the contrary, methods that do not explicitly make use of the tabular structure
(especially CTGAN and CopulaGAN) require more data and careful optimization to reach similar
performance. The performance of GaussianCopula decreases as data size increased likely because
the method is not desinged to capture the full joint. See Figure S5 for correlations among the metric
groups.

To quantify the performance, we compute the quality score of each synthesizer. The HALF baseline
is the closest model to the main objective of sampling from a distribution Q that is equal to P .
Thus, we compute the quality score by taking the absolute difference between a synthesizer’s score
trace and that of the HALF baseline, then averaging over the substructures. The quality scores are
presented in Table 2, along with the training and sampling time of each method. All times are wall
clock time in seconds as recorded on a 2021 MacBook Pro with the 32GB Apple M1 Pro chip.

Practical utility. The structured evaluation shows the degree and extent to which the full joint
is mimicked, allowing users to select synthesizer with confidence. The metric groups with the
baselines show where along the structural spectrum a data synthesizer falls short, signaling where
developers can improve the synthesizer. The framework presents evaluation results in a meaningful,
coherent ordering to help human evalutors identify strange behaviors more easily. The structured
spectrum, the analysis of the necessity and sufficiency chain, and the fluctuations of the metric
values along the spectrum can aid the design of new metrics (e.g., 3-way interactions and leave-n-
out), improvement of the metric estimators, and identification of metric shortcomings, respectively.
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Figure 2: Structured evaluation on datasets of different sizes. The scores shown are the model-
free and PCC-based scores. The error bars are combined assuming independence. For the census
data, we omitted DDPM and GReaT for their poor quality and computational cost, respectively.

student expedia census

Model Qual Train + Sample Qual Train + Sample Qual Train + Sample

synthpop 0.99 0.097 0.98 0.48 0.99 35.97
PCC 0.97 18.00 + 0.0011 0.85 26.97 + 0.013 0.89 4446 + 5
DDPM 0.94 464.73 + 5.93 0.49 1397 + 50 — 2270 + 17544
GReaT 0.85 1262 + 37 0.68 14099 + 1819 — >90000
GaussianCopula 0.91 0.11 + 0.021 0.66 0.33 + 0.082 0.65 25.94 + 12.01
TVAE 0.82 2.19 + 0.039 0.74 25.57 + 0.092 0.92 4213 + 10
CTGAN 0.72 13.37 + 0.044 0.69 146.21 + 0.14 0.89 14756 + 16
CopulaGAN 0.68 13.08 + 0.056 0.66 147.21 + 0.17 0.89 15618 + 19

Table 2: Synthesizer quality and speed. “Sample” refers to the time to sample a dataset of the
same size as the training set. For the census data, we omitted DDPM and GReaT because of poor
quality and computational cost, respectively.

6 CONCLUSION

We describe a framework that evaluates the degree to which tabular data synthesizers produce sam-
ples from the real data distribution via a structural lens. The framework unifies existing metrics,
motivates baselines, inspires novel metrics, and offers the most coherent and complete evaluation to
date. Applying the evaluation to a variety of synthesizers, we observe that the explicit representation
of the tabular structure is advantageous. Limitations of the paper and future works include using the
structured framework (1) to improve model-free metrics, (2) to study differential privacy, and (3)
to understand the adverse effects of augmenting ML training with synthetic data (Shumailov et al.,
2023; Alemohammad et al., 2023).
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A METRICS

All metrics implemented by SDMetrics are documented at https://docs.sdv.dev/
sdmetrics/metrics/metrics-glossary. We follow the naming convention in SDMet-
rics’ documentation. The metric scores for all the metrics range between [0, 1].

A.1 MARGINAL

We use 9 metrics for the marginal substructure. Two are for categorical columns: CategoryCov-
erage, TVComplement; six are for numeric columns: BoundaryAdherence, KSComplement,
MeanSimilarity, MedianSimilarity, RangeCoverage, StdSimilarity; and PCC-Marginal is for
either. All these metrics are implemented by SDMetrics, except for PCCMarginal. Each categorical
(numeric) metric is run on every categorical (numeric) column in the dataset and then averaged.

The estimates fq computed on column j of S is denoted by S[cj ], and fp is the estimate computed
on X[cj ]. Among the above metrics, the estimate used in TVComplement is the finite-sample prob-
ability mass functions (PMF), and the estimate used in KSComplement is finite-sample cumulative
distribution functions (CDF). As the number of samples n approaches infinity, fq = fp is necessary
and sufficient for Q(cj) = P (cj), because the estimates approach the target marginals. A typical
form of the score is t = 1 − dist(fq, fp)/Z, where dist(·) is some distance function measuring
the difference between the input sampling distributions. Distance functions used here are the Kol-
mogorov–Smirnov statistic and the total variation distance for CDF and PMF, respectively. Since
both distances are zero only then the distributions being compared are equal, t = 1 is sufficient and
necessary for fq = fp.

As described in the main text, for PCC-Marginal, the estimate fq is the empirical CDF constructed
from the probability of row i and column j under the PCC model for each row in the synthetic
dataset, or mathematically, {P̂ (Si,j) | i = 1, · · · , n}. Similarly, the estimate fp is the empirical
CDF constructed on the real dataset X: {P̂ (Xi,j) | i = 1, · · · , n}. The score is t = 1 − 1

2 |ppe|,
where |ppe| is area of the absolute difference between the pp-plot and the line y = x in the domain
x = [0, 1]. The pp-plot is the plot constructed from (x = fq, y = fp). By design, t = 1 ⇔ fq = fp.
As the number of sample approach infinity, fq = fp ⇐ Q = P̂ because two equal distributions
would generate the same CDF.

The rest of the metrics use simple statistics as the estimates – support, range, mean, median, and
standard deviation – of each column. Because these statistics are not sufficient statistics, fq = fp
is necessary but not sufficient for Q(cj) = P (cj). For these estimates, the score typically takes the
form of t = 1 − |fq − fp|/Z(X[cj ]), where Z(X[cj ]) is an appropriate normalizer computed on
X[cj ] such that t ∈ [0, 1]. Here, t = 1 is necessary and sufficent for fq = fp, since the mapping
between the score and the absolute difference of the two estiamtes is one-to-one.

A.2 PAIRWISE

We use 4 metrics for the pairwise substructure: ContingencySimilarity for categorical column
pairs, CorrelationSimilarity for numeric column pairs, and MutualInformationSimilarity and
PCC-Pairwise for both types. The first two metrics are implemented by SDMetrics. Note that
metrics based on pairwise distributions cover more structure than the ones above, but do not speak
to multi-way interactions.

For ContingencySimilarity, the estimate for fq is the finite-sample PMF formed from a pair of
columns from the synthetic dataset, S[cj , ck]. Similarly, fp is formed from X[cj , ck]. These PMF es-
timates are contingency tables, and fq = fp is necessary and sufficient for Q(cj , ck) = P (cj , ck) as
n → ∞. The score is one minus a normalized total variation distance between the PMFs. Maximum
score is necessary and sufficient for fq = fp because the total variation distance have a one-to-one
relationship with the metric score.

For CorrelationSimilarity, the estimate fq is the correlation coefficient between two columns of the
synthetic data, denoted by ρ(S[cj ], S[ck]). Similarly, fp = ρ(X[cj ], X[ck]). Because there are
infinite ways to arrive at the same correlation coefficient, fq = fp is necessary but not sufficient
for Q(cj , ck) = P (cj , ck). The score is t = 1 − |fq − fp|/Z. Maximum score is necessary and
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sufficient for fq = fp because the absolute difference of the two estiamtes is one-to-one with the
metric score by desgin. Note that limitations of correlation are less in play here: we expect roughly
linear relationships between column pairs, although outliers could still bias the score.

A shortcoming of the implementation of ContingencySimilarity and CorrelationSimilarity is that
they do not apply when the two columns are of different data types. To fill this gap, we propose
a novel model-free metric: MutualInformationSimilarity. The estimate fq is the mutual informa-
tion between any pair of columns in the synthetic data, i.e., MI(S[cj ], S[ck]). Similarly, fp =
MI(X[cj ], X[ck]). The mutual information is computed using sklearn (Pedregosa et al., 2011). Be-
cause of the multiplicity of ways to achieve the same mutual information, fq = fp is necessary but
not sufficient for Q(cj , ck) = P (cj , ck). The score is constructed as follows: First, construct a mu-
tual information matrix, where the entry at position [j, k] is assigned the value MI(D[cj ], D[ck]),
for D = S or X . Then, zero the main diagonal and normalize the matrix so that it sums to one to
produce matrices MS and MX . Finally, the score is t = 1−

∑
j,k |MS [j, k]−MX [j, k]|/2, which

ranges from [0, 1]. This score does not require the third general step of averaging, as the average is in
the sum already. Maximum score is necessary and sufficent fq = fp for the same reason mentioned
in the paragraph above.

A further description of the implementation of MutualInformationSimilarity is as follows: If both
columns are categorical, we use the mutual info classif function in the scikit-learn package to es-
timate the mutual information; if both columns are numeric, we use the mutual info regression
function; if the column pair is mixed in type, we take the average of the two functions. Computing
the mutual information of every column pair, we obtain two mutual information matrices, one for
the real data and one for the synthetic data. The metric score is the sum of the absolute element-wise
difference between these two matrices, normalized to range between [0, 1]. To restrict computational
cost, if the dataset contains more than 10000 rows, we randomly sample 10000 rows from it. Pilot
experiments show that, as a function of row number, the change in MutualInformationSimilarity
begins to diminish around this dataset size.

The implementation of PCC-Pairwise is as follows: The estimate fq is the empirical CDF con-
structed from the probability of row i and any column pair (j, k) under the PCC model for each row
in the synthetic dataset, or mathematically, {P̂ (Si,(j,k)) | i = 1, · · · , n}. Similarly, the estimate fp

is the empirical CDF constructed from {P̂ (Xi,(j,k)) | i = 1, · · · , n}, which is on the real dataset
X . The rest of the steps are the same as described in PCC-Marginal. The reasoning for the chain of
necessity is also as described in PCC-Marginal. For this metric, if the number of rows of the dataset
exceeds 10000, we randomly sample 10000 rows for the evaluation.

A.3 LOO

We use 7 metrics for the leave-one-out conditional (LOO) substructure. Six for binary/categorical
columns: BinaryAdaBoostClassifier, BinaryDecisionTreeClassifier, BinaryLogisticRegression,
BinaryMLPClassifier, MulticlassDecisionTreeClassifier, MulticlassMLPClassifier, and one for
either: PCC-LOO Except for PCC-LOO, all other metrics are implemented by SDMetrics.

We perform three types of preprocessing to ensure that the ML efficacy metrics would run smoothly.
First, we ensure that the set of unique values in the train set (synthetic data) is exactly the same as
the set of unique values in the test set (real data) by removing values that are outside the intersection
of the two sets. Second, to control for computational cost, we restrict both the train and test sets
to be at most 15000 rows. Pilot experiments show that the metrics stabilize around this size. For
datasets exceeding 15000 rows, we use stratified sampling to ensure that every unique value in the
data set is covered. Lastly, we impute all missing values by replacing them with random samples of
non-missing values from their respective columns. Given a metric for a data type, the target column
is a column of that type in the real dataset, and the feature columns are all the remaining categorical
and numeric columns in the synthetic dataset. Each metric is repeated on each admissible target
column and associated feature columns, then averaged.

The implementation of PCC-LOO is as follows: The estimate fq is the empirical CDF constructed
from the conditional probability of row i and column j, given row i and all columns except for
j, under the PCC model for each row in the synthetic dataset. Mathematically, fq = {P̂ (Si,j |
Si,{−j}) | i = 1, · · · , n}. In like manner, the estimate fp is the empirical CDF constructed from the
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real dataset: {P̂ (Xi,j | Xi,{−j}) | i = 1, · · · , n}. The rest of the steps and the chain of necessity are
as described in PCC-Marginal. For this metric, if the number of rows of the dataset exceeds 10000,
we randomly sample 10000 rows for the evaluation.

Following the same steps of computing ML efficacy as outlined in the main text, we see that the
SELF baseline provides an estimate fp by training the ML model on the real dataset. Note that even
as ntrain → ∞, the SELF baseline score t(fp) does not guarantee t is capped because the argmax
prediction may not always match the sample. However, in the large training data limit, t(fp) does
provide the attainable upper bound, if the ML is a universal approximator and the training attains to
the global minimum. Thus, as ntest → ∞, t(fq) = t(fp) is necessary for Q(cj | {c−j}) = P (cj |
{c−j}). Note that this comparison is a variant of the general steps outlined in the sketch of analysis,
as the comparison is between scores rather than estimates.

Column-wise prediction as presented and used in Choi et al. (2017) and Engelmann & Lessmann
(2021) is a close variate to ML efficacy. The difference between dimension-wise prediction and ML
efficacy is the following: Let the ML model trained on the synthetic data be fq , and the ML model
trained on the real data be fp. In column-wise prediction, the accuracy is computed between the
predictions of fq and fp, whereas in ML efficacy the accuracy is computed between the predictions
of fq and the corresponding column of the real data. Also, ML efficacy does not require splitting
the data into a train and a test set, while the dimension-wise prediction uses a split. The chain of
necessity holds for the same reason as that a comparison between fq and the SELF baseline promotes
necessity.

A.4 FULL JOINT

We use 3 metrics for the full-joint (sub)structure: LogisticDetection, SVCDetection, and PCC-
FullJoint. The former two are implemented by SDMetrics. To control for their computational cost,
we use stratified sampling to sample roughly 4500 rows from each of the real and synthetic datasets.
Pilot experiments show that the change in metric values begin to diminish above this dataset size.
We also ensure that the real dataset and synthetic dataset have exactly the same set of unique values.

The implementation of PCC-FullJoint is as follows: The estimate fq is the empirical CDF con-
structed from the probability of the entire row i under the PCC model for each row in the synthetic
dataset: fq = {P̂ (Si | i = 1, · · · , n}. Similarly, the estimate fp is the empirical CDF constructed
from real dataset: fp = {P̂ (Xi) | i = 1, · · · , n}. The rest of the steps and the chain of necessity are
the same as described in PCCMarginal.

A.5 MISSING

We use 4 metrics for the missingness substructure: MissingValueSimilarityCat, MissingValueS-
imilarityNum, MissingNotAtRandomSimilarity, and CovariateDependentMissingSimilarity.
The first two are implemented by SDMetrics. The latter two are novel model-free metrics.

The MissingValueSimilarityCat and MissingValueSimilarityNum metrics concern the univariate
marginals of the missing distribution:Q = P ⇒ Qν(cj) = Pν(cj) for all j. The estimate fq is
simply the fraction of missing values in S[cj ], and similarly for fp. As n → ∞, fq = fp ⇔
Qν(cj) = Pν(cj). The score is t = 1 − |fq − fp|. Maximum score is necessary and sufficent for
fq = fp because the absolute difference and the score have a one-to-one relationship. In words,
these two metrics compute the fraction of missing values in a column and report how closely this
fraction matches between the real and synthetic datasets. The two metrics are applied to every
categorical and numeric column and then averaged.

The MissingNotAtRandomSimilarity metric concerns only columns with missing values {cν} and
the joint distribution over them: Q = P ⇒ Qν({cν}) = Pν({cν}). This joint distribution fully
specifies how data are missing not at random, i.e., how missing values in a column depends on
missing values in other columns. The estimate fq is a correlation matrix with each entry being a
correlation coefficient between a column pair of the binary missingness matrix constrcuted from the
synthetic data set, using only columns with missing values. This part of the missingness matrix is
denoted by Sν [{cν}]. The same goes for fp. The equivalence fq = fp is necessary but not sufficient
for Qν({cν}) = Pν({cν}). The score is t = 1−

∑
|fq − fp|/Z, where the

∑
is over the elements
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of the matrix, the difference is element-wise, and Z is a normalizer to make t ∈ [0, 1]. Maximum
score is necessary and sufficent for fq = fp because the absolute difference and the score have a
one-to-one relationship. The implementation of this metric is as follows: We compute the Pearson
correlation coefficient between all pairings of columns with missing values. These computations
form two matrices, and the metric score is the sum of the absolute element-wise difference between
these two matrices, normalized to range between [0, 1].

The CovariateDependentMissingSimilarity metric concerns the missing columns conditioned on the
non-missing columns: Q = P ⇒ Qν({cν} | {c−ν}) = Pν({cν} | {c−ν}), where {c−ν} denotes
the set of columns that do not have any missing value. This conditional distribution describes how
the missing value depends on non-missing values. For this novel metric, the estimate fq is also
the correlation matrix, formed by correlating columns of the missingness matrix that have missing
values in the actual matrix Sν [{cν}], with columns of the actual matrix without missing values
S[{c−ν}]. The property of fq = fp and the score for this metric is the same as that for missing-not-
at-random similarity. The implementation of this metric is as follows: We compute the correlation
between a column with missing values and a categorical or numeric column without missing values.
The column with missing value is represented as a binary column, where each element is either
missing or non-missing. If the other column is categorical, we compute Cramer’s V between the
column pair; if the other column is numeric, we compute the Pearson correlation coefficient. These
computations form two matrices, one for the real data and one for the synthetic data. The score is
the sum of the absolute element-wise difference between these two matrices, normalized to range
between [0, 1].

A.6 PRIVACY.

We use 5 metrics for the privacy group. Two are for categorical target columns: CategoricalCAP,
CategoricalNB; and three are for numeric target columns: NumericalLR, NumericalMLP, Nu-
mericalSVR. All of them are implemented by SDMetrics. As is for the LOO metrics, each metric is
repeated on each admissible target column and then averaged. Although the privacy metrics are also
under the leave-one-out conditional substructure, they are more computationally expensive than the
ML efficacy metrics because of the additional search step to find similar records between the two
real and synthetic datasets. To restrict the computational cost, we use stratified sampling to sample
about 4500 rows from each of the real and synthetic datasets. Pilot experiments show that the change
in metric values begin to diminish above this dataset size.

B PCC

In our PCC implementation, inference proceeds via Markov chain Monte Carlo (MCMC). Col-
umn reassignment combines the slice sampler described in Ge et al. (2015) with a parallel version
of the standard Gibbs sampler (Neal, 2000). Row reassignment combines the slice sampler with
sequentially-allocated merge-split proposals (Dahl, 2003). We can achieve better mixing by requir-
ing columns to use component distributions with conjugate priors and closed-form posteriors, which
allows the component parameters, θ, to be marginalized. For example, we model continuous features
with Gaussian component models with Gaussian prior on the mean and scaled inverse chi-squared
prior on the variance; and we model categorical features with categorical component models with a
symmetric Dirichlet prior on the category weights.

To compute or sample from conditional distributions, p(x|y), where y is a set of conditions on
features other than those in x, we use

p(x|y) =
|v|∏
u=1

|cu|∑
k=1

πu({yj ; vj = u}|k)
∏

{j;vj=u}

f(xj |θk,j)

 ,

where πu(y|k) ∝ |{i; cu,i = k}|
∏
yj∈y

p(yj |θk,j).

To simulate x without conditions, we proceed as we would with any mixture model: we choose
a component, k, with probability proportional to the number of data assigned to it, then for each
feature, j, we draw from θk,j . To simulate x with conditions y, we draw the component index, k,
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with probability proportional to the number of data assigned to the component multiplied by the
likelihood of the conditional under that component.

Inference of missing-not-at-random values is implemented by coupling a parent column to a binary
column modeled as a mixture of Bernoulli distributions. The binary data in the Bernoulli column
indicates the presence of the datum in each cell of the parent column. To compute the probability that
cell (i, j) is missing, one computes the likelihood of false under component cvj ,i of the Bernoulli
column attached to feature j.

C DATA SYNTHESIZERS

C.1 SYNTHPOP

Synthpop (Nowok et al., 2016) can be downloaded at https://www.synthpop.org.uk/.
We adapted the examples in the documentation to generate synthetic data. All categorical columns
are preprocessed by a re-encoding into integer values. Columns with larger than 30 categories are
converted to numeric columns to keep the computational time feasible. After training and data
synthesizing, the values are decoded back to their original form.

C.2 PCC

Our implementation of the PCC can be downloaded from urlTBA. For the expedia dataset, nu-
meric columns that record integer counts are treated as categorical columns. Columns with missing
values are manually marked in the codebook to learn the missingness distribution.

C.3 DDPM

The code for TabDDPM (Kotelnikov et al., 2023) can be downloaded from https://github.
com/yandex-research/tab-ddpm. We made slight modifications to the code to make it run
on the Mac M1 chip. The training process required splitting the original data into a train set, a valida-
tion set, and a test set; we used a 3-1-1 random split. To instantiate a model, we followed the template
of the house dataset in the repository (see https://github.com/yandex-research/
tab-ddpm/blob/main/exp/house/config.toml). We made minimal modifications: (1)
changed the variables num numerical features, device, and d in to correspond to our
datasets and GPU; and (2) changed the normalization from “quantile” to “minmax” to avoid
an error in the training that may be Mac-M1 specific. These settings allowed the training and sam-
pling to run to completion, and we did not optimize further. The training step was set to 10,000.
For the expedia and census datasets, the MLoss was NaN throughout the training, giving rise
to poor synthetic data, where the same value populated the column for all categorical columns, and
values very positive or negative populated the numeric columns.

C.4 GREAT

The code for GReaT (Borisov et al., 2022b) can be downloaded from https://github.com/
kathrinse/be_great. We made slight modifications to the code to make it run on the Mac
M1 chip. For preprocessing, we encoded categories into integers. For training, we used the
distilgpt2 backbone as suggested in the Quickstart. Batch size and epochs were set to 32 and
150, respectively. For data generation, we used a max length of 500. For post-processing, we de-
code the integers back to the categories and replace any unknown categories with the most frequent
category. Note that without the preprocessing, GReaT generated more out-of-category samples. For
example, it could generate the entry 2014-for-19 for a date column.

C.5 GAUSSIANCOPULA, TVAE, CTGAN, COPULAGAN

These four methods are implemented by Synthetic Data Vault (SDV) (Patki et al., 2016), which
can be downloaded from https://docs.sdv.dev/sdv/. Since the three datasets used in this
paper are also from SDV, no preprocessing was performed. We followed the documentation to train
and generate samples.
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D EXTENDED RESULTS
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Figure S1: Model-free and PCC-based evaluation on the student dataset. (A) model-free eval-
uation of the synthesizers; (B) PCC-based evaluation of the synthesizers; (C) model-free evaluation
of the baselines; and (D) PCC-based evaluation of the baselines. The x-axis shows the metric groups
by substructure. The y-axis is the average metric score of the metrics in the group. Error bars are
standard error gathered across synthetic datasets.
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Figure S2: Model-free and PCC-based evaluation on the expedia dataset. See caption of
Figure S1.
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Figure S3: Model-free and PCC-based evaluation on the census dataset. See caption of Fig-
ure S1.
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Figure S4: Tradeoff between the LOO and privacy metric groups. The privacy metrics target the
LOO distribution but with the aim to penalize accurate inference; thus, its objective is opposite to that
of the LOO metric group (Section 3). This figure confirms the almost linearly inverse relationship
between the two metric groups, suggesting a strong tradeoff (student: r = −0.94; expedia:
r = −0.90; census: r = −0.94). The LOO score shown is the average of the model-free and
PCC-based scores, while the privacy score contains only the model-free scores.
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Figure S5: Correlation between metric groups. The correlation between missingness and the
structured groups (marginal, pairwise, LOO, and full joint) is lower than the correlations among
the strucutured groups themselves because the missingness metric is derived mostly from from the
missingness matrix and not directly from the actual data. Furthermore, the correlation between
missingenss and the structured groups tend to increase with structural complexity, potentially be-
cause missingness is more of a global metric. The correlation between the marginal and the other
structured groups (pairwise, LOO, and full joint) tend to decrease, implying the existance of depen-
dencies among the columns. Correlation values generally decrease as the dataset size increases.

E EXTENDED RELATED WORK

In this section we provide a detailed comparison with previous work (Dankar et al., 2022; Afonja
et al., 2023) that also provide some structural organization of evaluation metrics to make clear this
works novel, theoretical contributions.

Compare with the taxonomy provided by Dankar et al. (2022), we see the following similiarities:
Their “attribute fidelity” and “bivariate fidelity” match the semantics of our marginal group and
pairwise group, respectively. Two of their “population fidelity,” namely “Distinguishability type
metrics” and “The log-cluster metric,” fall under our joint-distribution group. In contrast, we point
out the following differences: (1) They do not define an overarching mathematical objective nor an
explicit spectrum of evaluation coverage. It is only with a clearly defined objective and spectrum
that one knows whether the evaluation covered the objective in full. (2) They place ML efficacy in its
own category as a Narrow application-specific measure, whereas we show that ML efficacy can be
interpreted as a Broad resemblance-based measure targeting a leave-one-out conditional distribution.
Without this interpretation, the evaluation may require trading off between multiple objectives. With
the reinterpretation, all the metrics can be ordered according to their structural complexity and be
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used together in the same space, as shown in Figure 2 in the main text. (3) They place both the “cross-
classification metric” and “Distinguishability type metrics” under the population fidelity, whereas we
would identify the former as targeting the LOO distribution and the latter as targeting the full-joint.
This distinction may be useful for metric selection and improvement. (4) They place the “Difference
in Empirical distributions type metrics” under population fidelity, but our framework points out
that this metric is really about the type of estimator used rather than the distributional property
targeted. Again, this distinction may be useful for metric selection and improvement. (5) They
place the “likelihood metrics” under population fidelity, whereas our framework has identified it as
an orthogonal dimension to distributional property, and has formed an entire model-based spectrum
of metrics out of it.

Compare with the taxonomy provided by Afonja et al. (2023), we see the following similiarities:
Their use of the words “marginal”, “pair”, and “join” coincides with how we use them in our paper.
Some of the “marginal” and “pair” metrics also match the metrics we use in the marginal and pair-
wise groups. In contrast, we point out the following differences: Same as points (1) and (2) in the
previous paragraph. (3) They do not have model-based metrics. Model-free metrics avoid the issues
of needing different estimators and scores for different data types and distributional properties, and
are hence more coherent. (4) Their joint measure of “distance to closest record” is an interesting
reinterpretation of what is typically used to evaluate privacy. Their measure of “likelihood approx-
imation” as an extension of “distance to closest record” to the test dataset is an interesting idea for
testing the joint distribution. We did not include distance-based metrics because their natural range
is not [0,1]. This makes it hard to combine them with the other metrics through an average.

In general, we omitted evaluation metrics based on distances because of the range issue mentioned
above, but they are surely valid metrics. To gain some insights on how distance-based metric in our
framework, we highlight similarities and differences between our model-based likelihood estimate
and that based on distance to closest record (DTCR) (Afonja et al., 2023). Empirically, being close
to a real data point and being a likely real data point is often not the same. Consider a normal
distribution. If a synthetic data point is very close to a real data point at the tail of the normal
distribution, DTCR would assign it a high likelihood, whereas a gaussian model would assign it low
likelihood. Conversely, if a synthetic data point is very close to the mode but there are no real data
points as close to the mode, the DTCR would assign a lower likelihood than the gaussian model
would. From a more theoretical perspective, the likelihood constructed from DTCR with Euclidean
distance is similar to that constructed from a model built using kernel density smoothing over the
training data with a Gaussian kernel of standard deviation 1. In contrast, the likelihood constructed
from PCC follows Equation 3.3 in the main text. For continuous variables, PCC learns a Dirichlet
Process Gaussian Mixture model with Gaussian prior on the mean and scaled inverse chi-squared
prior on the variance, which can be interpreted as performing Bayesian Occam razor on the kernel
density smoothing approach.
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