
Conditional Diffusion Based on Discrete Graph
Structures for Molecular Graph Generation

Han Huang, Leilei Sun, Bowen Du, Weifeng Lv
SKLSDE, Beihang University

{h-huang, leileisun, dubowen, lwf}@buaa.edu.cn

Abstract

Learning the underlying distribution of molecular graphs and generating high-
fidelity samples is a fundamental research problem in drug discovery and material
science. However, accurately modeling distribution and rapidly generating novel
molecular graphs remain crucial and challenging goals. To accomplish these
goals, we propose a novel Conditional Diffusion model based on discrete Graph
Structures (CDGS) for molecular graph generation. Specifically, we construct a
forward graph diffusion process on both graph structures and inherent features
through stochastic differential equations (SDE) and derive discrete graph structures
as the condition for reverse generative processes. We present a specialized hybrid
graph noise prediction model that extracts the global context and the local node-
edge dependency from intermediate graph states. We further utilize ordinary
differential equation (ODE) solvers for efficient graph sampling, based on the
semi-linear structure of the probability flow ODE. Experiments on diverse datasets
validate the effectiveness of our framework. Particularly, the proposed method still
generates high-quality molecular graphs in a limited number of steps.

1 Introduction

Dating back to the early works of Erdős Rényi random graphs [1], graph generation has been
extensively studied for applications in biology, chemistry, and social science. Recent models for
molecular graph generation are notable for their success in representing molecule structures and
restricting molecule search space. In terms of the sampling process of graph generative models,
autoregressive generation constructs molecular graphs step-by-step with decision sequences [2–5],
whereas one-shot generation builds all graph components at once [6–8]. Recently, diffusion-based
models have been applied effectively to one-shot molecular graph generation [9], highlighting the
advantages of flexible model architectures and graph permutation invariant distribution modeling.

However, current diffusion models for molecular graphs still suffer from generation quality and
sampling speed issues. In [9], the generated graph distribution faces an obvious distance from the
true distribution of datasets. Furthermore, their sampling process relies heavily on extra Langevin
correction steps [10] to diminish approximation errors, which largely increases computational cost
and inference time, implying insufficient expressiveness of the graph score estimate model. We
argue that two major factors hinder the practice of diffusion-based models for molecular graph
generation. One is the focus on real-number graph formulation (i.e., representing molecules as node
feature and edge feature matrices) while neglecting the discrete graph structures. The other is that
a straightforward graph neural network design may not be strong enough to satisfy the complex
generation requirements, such as local chemical valency constraints, atom type proportion closeness,
and global structure pattern similarity.

To address these issues, we propose a novel Conditional Diffusion model based on discrete Graph
Structures (CDGS) for molecular graph generation. We find that considering graph discreteness

NeurIPS 2022 Workshop on Score-Based Methods.

···

···

Figure 1: (Left) Forward diffusion process that perturbs molecular graphs towards a known prior
distribution. A graph G0 is denoted by a node feature matrix X0 and a two-channel edge matrix
A0 for edge types and existence. (Right) Discretized reverse generative process with discrete graph
structure conditioning.

and designing suitable graph noise prediction models could boost the ability of diffusion models
in the graph domain, allowing for faster sampling and downstream applications. We develop a
simple yet effective method to incorporate discrete graph structures without the special discrete state
space. Along with variables for node and edge features, additional one-bit discrete variables are
added to indicate the potential existence of edges. We convert them to real numbers and determine
the quantization threshold. In our diffusion framework, the continuous forward process is applied
directly to edge existence variables, but for the reverse process, discrete graph structures are decoded
first and serve as the condition for each sampling step. We further develop a hybrid graph noise
prediction model composed of standard message passing layers on discrete graphs and attention-
based message passing layers on fully connected graphs. We employ stochastic differential equations
(SDEs) to describe the graph diffusion process. We can benefit from recent research on probability
flow ordinary differential equations (ODE) [11, 12] to promote fast graph sampling as we preserve
the real-number graph description. We also construct a useful pipeline for similarity-constrained
molecule optimization, based on latent space determined by the parameterized ODE and gradient
guidance from the graph property predictor.

2 Methodology

2.1 Conditional Graph Diffusion

The first step in constructing diffusion probabilistic models [13, 14, 10, 15] is to define a forward
process that perturbs data with a sequence of noise until the output distribution becomes a known
prior distribution. Assuming a continuous random variable x0 ∈ Rd and a well-defined forward
process {xt}t∈[0,T], we have

q0t(xt|x0) = N (xt|αtx0, σ
2
t I) , (1)

where αt, σt ∈ R+ are time-dependant differentiable functions. αt and σt are usually chosen to
ensure that qT (xT) ≈ N (0, I) with the decreasing signal-to-noise ratio α2

t /σ
2
t . By learning to

reverse such a process, the diffusion model generates new samples from the prior distribution.

It is a simple way to apply diffusion models to the graph domain by formulating graphs as high-
dimensional variables G ∈ RN×F × RN×N composed of N node features with F dimensions and
a edge type matrix [9]. We argue that overlooked discrete graph structures, including motifs like
rings and stars, can provide important clues for node-edge dependency modeling and graph denoising.
We propose to separate the edge existence matrix from the edge type matrix and utilize a one-bit
discrete variable representing the existence of a possible edge, forming Ā ∈ {0, 1}N×N for the
whole graph. Instead of designing special discrete state spaces for discrete variables like [16, 17],
we turn bits into real numbers and determine a quantization threshold. Thus, we can conveniently
apply continuous diffusion process to these variables and decode them with quantization back to
discrete graph structure Āt for t ∈ [0, T]. The discrete graph structures can be plugged into the
reverse process and function as conditions.

We redefine the graph G by real-number node features X ∈ RN×F and edge information A ∈
R2×N×N (one channel for edge existence which can be quantized to Ā and the other for edge types).
The forward diffusion process for graphs shown in Figure 1 can be described by the stochastic
differential equation (SDE) sharing the same transition distribution in Eq. 1 [15] with t ∈ [0, T] as

dGt = f(t)Gtdt+ g(t)dwt , (2)

2

where f(t) = d logαt

dt is the drift coefficient, g2(t) = dσ2
t

dt − 2d logαt

dt σ2
t is the diffusion coefficient,

and wt is a standard Wiener process. The reverse-time SDE from time T to 0 [10] is denoted as:
dGt = [f(t)Gt − g2(t)∇G log qt(Gt)]dt + g(t)dw̄t , (3)

where∇G log qt(Gt) is the graph score function and w̄t is the reverse-time standard Wiener process.
We further split the reverse-time SDE into two parts that share the drift and diffusion coefficients as{

dXt = [f(t)Xt − g2(t)∇X log qt(Xt,At)]dt + g(t)dw̄1
t

dAt = [f(t)At − g2(t)∇A log qt(Xt,At)]dt + g(t)dw̄2
t
. (4)

We use a neural network ϵθ(Gt, Āt, t) with discrete graph structure conditioning to parameter-
ize the σt-scaled partial scores in Eq. 4, where the node output of the neural network is de-
noted by ϵθ,X(Gt, Āt, t) to estimate −σt∇X log qt(Xt,At), and the edge output is denoted by
ϵθ,A(Gt, Āt, t) to estimate −σt∇A log qt(Xt,At). The model is optimized by

min
θ

Et{w(t)EG0
EGt|G0

[||ϵθ,X(Gt, Āt, t)− ϵX ||22 + ||ϵθ,A(Gt, Āt, t)− ϵA||22]} , (5)

where w(t) is a given positive weighting function, ϵX and ϵA are the sampled Gaussian noise, and
Gt = (αtX0 + σtϵX , αtA0 + σtϵA). With the optimized ϵθ and numerical solvers discretizing the
SDE trajectory, shown in the right of Figure 1, new graph samples can be generated.

2.2 Graph Noise Prediction Model

Since ϵθ(Gt, Āt, t) can be considered to predict the noise that is added to the original graph data, we
refer to it as the graph noise prediction model. The design of noise prediction models plays a key
role in diffusion-based generation, but it is still an open problem for the graph domain. In the case
of molecular graphs, the model should focus on local node-edge dependence for chemical valency
rules and also attempt to recover global graph patterns like edge sparsity, frequent ring subgraphs,
and even atom type distribution.

To meet these challenges, we propose a hybrid message passing block (HMPB) consisting of two
different kinds of message passing layers. One is a standard message passing layer like GINE [18] to
aggregate local neighbor node-edge features, relying on the decoded discrete graph structures. The
other one is a fully-connected attention-based message passing layer to focus on global information
extraction and transmission. We denote the node and edge update process in the l-th HMPB as

H l+1,El+1 = HMPBl(H l,El, Ā),

with M l+1 = GINEl(H l,El, Ā) + ATTNl(H l,El),

H l+1 = FFNl
0(M

l+1),

El+1
i,j = FFNl

1(M
l+1
i +M l+1

j),

(6)

where H l ∈ RN×d and El ∈ RN×N×d are node and edge inputs; M l+1 ∈ RN×d is the aggregated
message for nodes, El+1

i,j ∈ Rd is the (i,j)-indexed edge output; ATTNl is the full-connected
attention layer; FFNl is Feed Forward Network composed of the multilayer perceptron (MLP) and
normalization layers. Here, the time t and residual connections are omitted for clarity. In particular,
different from [19–21], our attention layer takes edge features as the gate for both the message and
dot-product calculation to thoroughly interact with node features and bias the message passing. The
key attention mechanism is denoted by

ai,j = softmax(
(tanh(ϕ0(Ei,j)) ·Qi)K

⊤
j√

d
), ATTNi(H,E) =

N−1∑
j=0

ai,j(tanh(ϕ1(Ei,j)) · Vj), (7)

where Q,K, V are projected from node feature H; E is the corresponding edge feature, ϕ0 and ϕ1

are learnable projections, and tanh is the activation layer.

For the initial features H0 and E0, we not only consider Xt and At, but also extract structural
encodings and relative positional encodings from Āt. Using the m-step random walk matrix from
the discrete adjacency matrix, we adopt the arrival probability vector as node features and obtain the
shortest-path distance from the same matrix as edge features. Time information is also added to the
initial features with the sinusoidal position embedding [22]. The final node and edge representations
are respectively input to MLPs for graph noise prediction.

For the sampling process, we provide the details on the ODE samplers (denoted as GDPMS) in Ap-
pendix. We also introduce the solvers with gradient guidance for similarity-constrained optimization.

3

Table 1: Generation performance on ZINC250k (Up) and QM9 (Down). The novelty metric on QM9
dataset denoted with ⋆ is debatable due to its contradiction with distribution learning.

Method
VALID w/o
check (%) ↑ NSPDK ↓ FCD ↓ VALID (%) ↑ UNIQUE (%) ↑ NOVEL (%) ↑

Train - 5.91e-5 0.985 - - -

Autoreg.

GraphAF 68.00 0.044 16.289 100.00 99.10 100.00
GraphAF+FC 68.47 0.044 16.023 100.00 98.64 99.99

GraphDF 89.03 0.176 34.202 100.00 99.16 100.00
GraphDF+FC 90.61 0.177 33.546 100.00 99.63 100.00

One-shot

MoFlow 63.11 0.046 20.931 100.00 99.99 100.00
GraphCNF 96.35 0.021 13.532 100.00 99.98 100.00
EDP-GNN 82.97 0.049 16.737 100.00 99.79 100.00
GraphEBM 5.29 0.212 35.471 99.96 98.79 100.00

GDSS 97.01 0.019 14.656 100.00 99.64 100.00
GDSS-EM 15.97 0.075 24.310 100.00 100.00 100.00

GDSS-VP-EM 33.01 0.048 24.471 100.00 100.00 100.00
CDGS-EM 98.13 7.03e-4 2.069 100.00 99.99 99.99

CDGS-GDPMS-200 96.19 0.001 3.037 100.00 99.98 99.99
CDGS-GDPMS-50 95.56 0.002 3.567 100.00 99.98 99.99
CDGS-GDPMS-30 93.49 0.003 4.498 100.00 99.99 99.99

Method
VALID w/o
check (%) ↑ NSPDK ↓ FCD ↓ VALID (%) ↑ UNIQUE (%) ↑ NOVEL (%) ⋆

Train - 1.36e-4 0.057 - - -

Autoreg.

GraphAF 67.00 0.020 5.268 100.00 94.51 88.83
GraphAF+FC 74.43 0.021 5.625 100.00 88.64 86.59

GraphDF 82.67 0.063 10.816 100.00 97.62 98.10
GraphDF+FC 93.88 0.064 10.928 100.00 98.58 98.54

One-shot

MoFlow 91.36 0.017 4.467 100.00 98.65 94.72
EDP-GNN 47.52 0.005 2.680 100.00 99.25 86.58
GraphEBM 8.22 0.030 6.143 100.00 97.90 97.01

GDSS 95.72 0.003 2.900 100.00 98.46 86.27
GDSS-EM 66.01 0.016 5.112 100.00 90.05 94.24

GDSS-VP-EM 86.02 0.013 4.588 100.00 89.03 88.63
CDGS-EM 99.68 3.08e-4 0.200 100.00 96.83 69.62

CDGS-GDPMS-200 99.54 3.68e-4 0.269 100.00 97.20 72.52
CDGS-GDPMS-50 99.47 3.85e-4 0.289 100.00 97.27 72.38
CDGS-GDPMS-30 99.18 4.13e-4 0.326 100.00 97.42 72.52

3 Experiment

We compare our CDGS with several autoregressive and one-shot molecular graph generative models,
including GraphAF [4], GraphDF [5], MoFlow [6], GraphCNF [7], EDP-GNN [23], GraphEBM
[8], and GDSS [9]. GraphAF+FC and GraphDF+FC are the modified versions considering formal
charges for fair comparison. GDSS-EM is the result sampled with the EM solver, and GDSS-VP-EM
is retrained with VPSDE, sharing the same SDE parameters with our model.

The molecular graph generation quality benchmark results on ZINC250k and QM9 are reported in
Table 1. In the first three non-trivial metrics across two different molecule datasets, CDGS with
the EM solver markedly outperforms state-of-the-art molecular graph generative models. The high
validity rate before valency checking shows that CDGS learns the chemical valency rule successfully
and avoids unrealistically frequent valency correction. Furthermore, with much lower NSPDK and
FCD values, CDGS learns the underlying distribution more faithfully in both graph and chemical
space. CDGS achieves such performance without any Langevin correction steps in sampling, while
previous diffusion-based GDSS drops off obviously with the pure EM solver. Using the same SDE
parameters, the performance gap between GDSS-VP-EM and CDGS-EM further demonstrates the
effectiveness of our framework design. Equipped with the 3rd-order GDPMS, our proposed model
maintains excellent generation ability with limited NFE decreasing from 200 to 30.

We also point out that the novelty metric on the QM9 dataset seems debatable because the QM9
dataset is almost an exhaustive list of molecules that adhere to a predetermined set of requirements
[24, 25]. Therefore, a molecule that is thought to be novel violates the constraints, which means the
model is unable to capture the dataset properties. This metric is kept for experiment completeness.

4 Conclusion

We present a novel conditional diffusion model for molecular graph generation that takes advantage
of discrete graph structure conditioning and delicate graph noise prediction model design. Our model
markedly outperforms existing molecular graph generative methods in both graph space and chemical
space for distribution learning, and also performs well for efficient graph sampling.

4

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China (62272023
and 51991395).

References
[1] Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung.

Acad. Sci, 5(1):17–60, 1960.

[2] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay S. Pande, and Jure Leskovec. Graph convolutional
policy network for goal-directed molecular graph generation. In NeurIPS, pages 6412–6422,
2018.

[3] Wengong Jin, Regina Barzilay, and Tommi S. Jaakkola. Junction tree variational autoencoder
for molecular graph generation. In Jennifer G. Dy and Andreas Krause, editors, ICML, pages
2328–2337, 2018.

[4] Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf:
a flow-based autoregressive model for molecular graph generation. In ICLR, 2020.

[5] Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular
graph generation. In ICML, pages 7192–7203, 2021.

[6] Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs.
In SIGKDD, pages 617–626, 2020.

[7] Phillip Lippe and Efstratios Gavves. Categorical normalizing flows via continuous transforma-
tions. In ICLR, 2021.

[8] Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. Graphebm: Molecular graph genera-
tion with energy-based models. arXiv preprint arXiv:2102.00546, 2021.

[9] Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via
the system of stochastic differential equations. In ICML, pages 10362–10383, 2022.

[10] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In ICLR,
2021.

[11] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential
integrator. arXiv preprint arXiv:2204.13902, 2022.

[12] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A
fast ODE solver for diffusion probabilistic model sampling in around 10 steps. arXiv preprint
arXiv:2206.00927, 2022.

[13] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In ICML, pages 2256–2265, 2015.

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
NeurIPS, 2020.

[15] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In
NeurIPS, 2021.

[16] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax
flows and multinomial diffusion: Learning categorical distributions. In NeurIPS, pages 12454–
12465, 2021.

[17] Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg.
Structured denoising diffusion models in discrete state-spaces. In NeurIPS, pages 17981–17993,
2021.

5

[18] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In ICLR, 2020.

[19] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

[20] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? In NeurIPS,
pages 28877–28888, 2021.

[21] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. In NeurIPS, volume 34, 2021.

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

[23] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon.
Permutation invariant graph generation via score-based generative modeling. In AISTATS, pages
4474–4484, 2020.

[24] Clement Vignac and Pascal Frossard. Top-n: Equivariant set and graph generation without
exchangeability. In ICLR, 2022.

[25] Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3d. In ICML, pages 8867–8887, 2022.

[26] Marlis Hochbruck and Alexander Ostermann. Explicit exponential runge-kutta methods for
semilinear parabolic problems. SIAM J. Numer. Anal., 43(3):1069–1090, 2005.

[27] Marlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta Numer., 19:
209–286, 2010.

[28] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central science, 4(2):268–276, 2018.

[29] Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational
autoencoder. In ICML, pages 1945–1954, 2017.

[30] Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed variational
autoencoder for structured data. In ICLR, 2018.

[31] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs
using variational autoencoders. In ICANN, pages 412–422. Springer, 2018.

[32] Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L. Gaunt. Constrained graph
variational autoencoders for molecule design. In NeurIPS 2018, pages 7806–7815, 2018.

[33] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular
graphs. arXiv preprint arXiv:1805.11973, 2018.

[34] Rim Assouel, Mohamed Ahmed, Marwin H. S. Segler, Amir Saffari, and Yoshua Bengio.
Defactor: Differentiable edge factorization-based probabilistic graph generation. arXiv preprint
arXiv: 1811.09766, 2018.

[35] Sungsoo Ahn, Binghong Chen, Tianzhe Wang, and Le Song. Spanning tree-based graph
generation for molecules. In ICLR, 2022.

[36] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. In NeurIPS, volume 32, 2019.

[37] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A
geometric diffusion model for molecular conformation generation. In ICLR, 2022.

6

[38] Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi S. Jaakkola. Torsional
diffusion for molecular conformer generation. arXiv preprint arXiv:2206.01729, 2022.

[39] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models
on manifolds. In ICLR, 2022.

[40] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. In NeurIPS, 2018.

[41] David Rogers and Mathew Hahn. Extended-connectivity fingerprints. J. Chem. Inf. Model., 50
(5):742–754, 2010.

[42] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In ESWC, pages
593–607, 2018.

[43] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[44] Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn,
and Dietmar Schomburg. Brenda, the enzyme database: updates and major new developments.
Nucleic acids research, 32(suppl_1):D431–D433, 2004.

[45] Leslie O’Bray, Max Horn, Bastian Rieck, and Karsten Borgwardt. Evaluation metrics for graph
generative models: Problems, pitfalls, and practical solutions. In ICLR, 2022.

[46] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In ICML, pages 5708–5717, 2018.

[47] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, William L. Hamilton, David Duvenaud,
Raquel Urtasun, and Richard S. Zemel. Efficient graph generation with graph recurrent attention
networks. In NeurIPS, pages 4257–4267, 2019.

[48] Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, and Graham W. Taylor. On
evaluation metrics for graph generative models. In ICLR, 2022.

[49] Han Huang, Leilei Sun, Bowen Du, Yanjie Fu, and Weifeng Lv. Graphgdp: Generative diffusion
processes for permutation invariant graph generation. In ICDM, 2022.

[50] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[51] Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Günter Klambauer.
Fréchet chemnet distance: A metric for generative models for molecules in drug discovery. J.
Chem. Inf. Model., 58(9):1736–1741, 2018.

[52] John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G. Coleman.
ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model., 52(7):1757–1768,
2012.

[53] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data, 1, 2014.

[54] Greg Landrum. Rdkit: Open-source cheminformatics software. 2016. URL http://www.
rdkit.org.

7

http://www.rdkit.org
http://www.rdkit.org

A ODE Solvers for Few-step Graph Sampling

To generate graphs from the parameterized SDE in Eq. 4, the SDE trajectory needs to be stimulated
with numerical solvers. The Euler-Maruyama (EM) solver is one of the simple and general solvers
for SDEs. Although our diffusion-based model can generate high-fidelity graphs in 200 steps (a.k.a.,
number of function evaluation (NFE)) using the EM solver shown in Figure 2, such a solver still
needs relatively long steps to achieve convergence in the high-dimensional data space and fails to
meet the fast sampling requirement. Since we preserve the continuous real-number graph diffusion
formulation, one promising fast sampling method is to use the mature black-box ODE solvers for
the probability flow ODE [10] that shares the same marginal distribution at time t with the SDE.
Accordingly, the parameterized probability flow ODE for graphs is defined as

dGt/dt = f(t)Gt +
g2(t)

2σt
ϵθ(Gt, Āt, t) . (8)

Recent works [11, 12] claim that the general black-box ODE solvers ignore the semi-linear structure
of the probability flow ODE and introduce additional discretization errors. Therefore, new fast solvers
are being developed to take advantage of the special structure of the probability flow ODE.

For our graph ODE in Eq. 8, we further extend fast solvers based on the semi-linear ODE structure to
generate high-quality graphs within a few steps. By introducing λt := log(αt/σt) and its inverse
function tλ(·) that satisfies t = tλ(λ(t)), we change the subscript t to λ and get Ĝλ := Gtλ(λ),
ϵ̂θ(Ĝλ, Ā

′
λ, λ) := ϵθ(Gtλ(λ), Ātλ(λ), λ). We can derive the exact solution of the semi-linear

probability flow ODE from time s to time t [12] as

Gt =
αt

αs
Gs − αt

∫ λt

λs

e−λϵ̂θ(Ĝλ, Ā
′
λ, λ)dλ . (9)

With the analytical linear part, we only need to approximate the exponentially weighted integral of ϵ̂θ .
This approximation can be achieved by various methods [26, 27], and we follow the derivation from
[12] to apply DPM-Solvers to graphs (denoted as GDPMS). Given the initial graph sampled from
the prior distribution G̃t0 := GT = (XT ,AT) with the predefined time step schedules {ti}Mi=0, the
sequence {G̃ti = (X̃ti , Ãti)}Mi=1 is calculated iteratively by the first-order GDPMS as follows:{

X̃ti =
αti

αti−1
X̃ti−1

− γiϵ̂θ,X(G̃ti−1
, Ā′

ti−1
, ti−1)

Ãti =
αti

αti−1
Ãti−1

− γiϵ̂θ,A(G̃ti−1
, Ā′

ti−1
, ti−1)

, (10)

where γi = σti(e
λti

−λti−1 − 1), and discrete graph structure Ā′
ti−1

is decoded from G̃ti−1
. The

final graph sample is derived from G̃tM with discretization.

B ODE-based Graph Optimization

Besides efficient sampling, the probability flow ODE offers latent representations for flexible data
manipulation [10]. Based on the latent space determined by the parameterized ODE and the graph
DPM-Solvers assisted by gradient guidance, we propose a useful optimization pipeline for the
meaningful similarity-constrained molecule optimization task.

Specifically, we first train an extra time-dependent graph property predictor Rψ(Gt, t) on noised
graphs. Then we setup a solver for the parameterized ODE in Eq. 8 to map the initial molecular
graphs at time 0 to the latent codes Gtξ at the time tξ ∈ (0, T]. Following the common optimization
manipulation on latent space like [3, 6], we use the predictor to predict properties on the graph
latent representation and lead the optimization towards molecules with desired properties through the
gradient ascent, producing a latent graph sequence {Gk

tξ
}Kk=0. Instead of using the same ODE as in

the forward encoding process, we introduce the gradient-guided ODE to further drive the sampling
process to the high-property region during the decoding process from the latent space to the molecular
graph space. The ODE with guidance can be modified from Eq. 8 as{

dXt/dt = f(t)Xt +
g2(t)
2σt

[ϵθ,X − rσt∇∗
XRψ]

dAt/dt = f(t)At +
g2(t)
2σt

[ϵθ,A − rσt∇∗
ARψ]

, (11)

8

where r is the guidance weight,∇∗ refers to the unit normalized gradients, and the input (Gt, Āt, t)
for ϵθ and (Gt, t) for Rψ are omitted for simplicity. Notably, the GDPMS in Eq. 10 can still work
for the gradient-guided ODE by constructing the ϵ̂θ with the predictor gradients accordingly. The
proposed pipeline can also be flexibly extended for multi-objective optimization by expanding the
gradient guidance from multiple property prediction networks.

C Related Work

C.1 Molecule Generation

Early attempts for molecule generation introduce sequence-based generative models and represent
molecules as SMILES strings [28–30]. Besides the challenge from long dependency modelling, these
methods may exhibit low validity rates since the SMILES string does not ensure absolute validity.
Therefore, graphs are more commonly used to represent molecule structures in recent studies. Various
graph generative models have been proposed to construct graphs autoregressively or in a one-shot
form, based on different types of generative models, including variational auto-encoders [31, 32],
generative adversarial networks [33, 34], and normalizing flows [4, 5, 7, 6]. Compared to these
models, our diffusion-based model advances in stable training and adaptable model architecture to
consider the discrete graph structure for dependency modelling. In addition, [3, 35] adopt an effective
tree-based graph formulation for molecules, while our method keeps the general graph settings and
models permutation invariant distributions.

C.2 Diffusion Models

This new family of generative models [13, 14] correlated with score-based models [10, 36] has
demonstrated great power in the generation of high-dimensional data such as images. For molecule
science, in addition to molecular graph generation [9], diffusion models have also been applied to
generate molecular conformations [37, 38] and 3D molecular structures [25]. Our framework greatly
differs from the previous diffusion-based molecule generation in the conditional reverse process and
the unified model design instead of separate models for nodes and edges. Moreover, we promote
efficient molecular graph generation with training-free samplers, which is primarily investigated in
the image domain [39, 11, 12].

D Additional Experiments

D.1 Fast Sampling

1014 20 50 100 200 1000
NFE

0

70

84
88
93
98

VA
LI

D
w/

o
ch

ec
k

%
(

)

1014 20 50 100 200 1000
NFE

2
4
6
9

15

40

FC
D

(
)

EM dopri5 rk4 GDPMS3 GDPMS2 GDPMS1

Method GraphAF GraphDF MoFlow GDSS CDGS-50 CDGS-30 CDGS-10

Time (s) 2.89e2 3.19e3 1.54 1.42e2 3.79e1 2.38e1 8.38

Figure 2: (Up) Few-step molecular graph sampling results
for various numerical solvers. (Down) The wall-clock time
taken to generate 512 molecular graphs.

To explore fast and high-quality few-
step molecular graph sampling, we
compare the sampling quality of
CDGS with different types of numer-
ical solvers, including GDPMS with
different orders, the EM solver, and
black-box ODE solvers. For black-
box ODE solvers, we pick out an
adaptive-step and a fixed-step neu-
ral ODE solver implemented by [40],
that is, Runge-Kutta of order 5 of
Dormand-Prince-Shampine (dopri5)
and Fourth-order Runge-Kutta with
3/8 rule (rk4). As shown in Figure
2, based on our conditional diffusion
framework, the EM solver generates
high-quality graphs between 200 NFE
and 1000 NFE, but fails to converge
under fewer NFE. The black-box neural ODE solvers can obtain acceptable quality at around 50 NFE.
The GDPMS displays clear superiority in the range below 50 NFE. Notably, the 1st-order GDPMS
still generates reasonable molecular graphs with 10 NFE. For the running time comparison, CDGS

9

equipped with GDPMS takes much less time compared to autoregressive GraphAF and GraphDF, and
makes an obvious improvement towards GDSS. MoFlow spends the least time but fails to generate
high-fidelity samples according to Table 1. In conclusion, benefiting from the framework design and
the ODE solvers utilizing the semi-linear structure, we achieve great advancement in fast sampling
for complex molecular graphs.

D.1.1 Ablation Studies

W-ADJ GINE ATTN 64ch 128ch 256ch
88

90

92

94

96

98

VA
LI

D
w/

o
ch

ec
k

%
(

)

VALID w/o check %()

2

4

6

8

10

12

14

16

18

FC
D

(
)

FCD ()

Figure 3: Ablation on ZINC250k.

We conduct ablation analysis on the ZINC250k dataset
to verify the effectiveness of our framework. In Figure 3,
with the goal to generate high-quality molecular graphs
efficiently, we report the results using GDPMS with 50
NFE, which is sufficient to obtain converged samples. Tak-
ing CDGS with 64 hidden dimensions (64ch) as reference,
we first remove the discrete graph structure related com-
ponents and remain with our edge-gated attention layers
(ATTN), then further remove the edge existence variable
(W-ADJ). The variant using GINE without attention lay-
ers is denoted as GINE.

We emphasize that VALID w/o check and FCD metrics
are complementary and should be combined to assess
molecule generation quality, because the former only reflects the valency validity of local atom and
bond connections, whereas the latter is obtained after valency corrections and focuses more on global
molecule similarity. It can be observed from Figure 3 that: (1) Compared to 64ch, ATTN has a
lower validity rate and gets a close FCD after more undesirable corrections, while GINE achieves
high validity rates but fails to capture more global information. It proves that the proposed attention
module is crucial for global distribution learning and that discrete graph structures greatly help to
capture the chemical valency rule. (2) The comparison of W-ADJ and ATTN shows that separating
the edge existence in the formulation also makes contributions to molecule validity. In addition,
W-ADJ outperforms GDSS-VP-EM in Table 1, showing the effectiveness of explicitly interacting
node and edge representations using a unified graph noise prediction model. (3) It is necessary to
increase hidden dimensions (128ch, 256ch) to better handle the complexity of drug-like molecules in
the ZINC250k dataset.

D.1.2 Similarity-constrained Property Optimization

Table 2: Similarity-constrained molecule property
optimization performance. The values above and
below arrows in visualizations denote similarity
scores and improvements.

GraphAF-RL MoFlow
δ Improvement Success Improvement Success

0.0 13.13±6.89 100% 8.61±5.44 99%
0.2 11.90±6.86 100% 7.06±5.04 97%
0.4 8.21±6.51 100% 4.71±4.55 86%
0.6 4.98±6.49 97% 2.10±2.86 58%

GraphEBM CDGS
δ Improvement Success Improvement Success

0.0 15.75±7.40 99% 12.83±7.01 100%
0.2 8.40±6.38 94% 11.70±6.84 100%
0.4 4.95±5.90 79% 9.56±6.33 100%
0.6 3.15±5.08 45% 5.10±5.80 98%

+18.48

0.68

+21.59

0.70

We also show how our diffusion framework
can be used for similarity-constrained prop-
erty optimization. Following [4, 6], we select
800 molecules with low p-logP scores (i.e., the
octanol-water partition coefficients penalized by
synthetic accessibility and number of long cy-
cles) as initial molecules for optimization. We
aim to generate new molecules with a higher
p-logP while keeping similarity to the original
molecules with a threshold δ. The similarity
metric is defined as Tanimoto similarity with
Morgan fingerprints [41]. The property predic-
tor is composed of 6 hybrid message passing
blocks with RGCN [42] as the non-attention
layer for differentiation. We pretrain the time-
dependent predictor on perturbed graphs of the
ZINC250k for 200 epochs. Each initial molec-
ular graph is encoded into latent codes at the
middle time tξ = 0.3 through the forward-time
ODE solver. After 50 gradient ascent steps,
all latent codes are decoded back to molecules
with another gradient-guided reverse-time ODE
solver. This procedure is repeated 20 times with

10

a different number of atoms to search for the highest property molecule that satisfies the similarity
constraint.

Results for the similarity-constrained optimization are summarized in Table 2. GraphAF-RL is the
representative method combined with reinforcement learning, MoFlow is a flow-based method, and
GraphEBM is an energy-based method for molecule optimization. With the similarity constraint
(δ > 0), CDGS outperforms MoFlow and GraphEBM in terms of success rate and mean property
improvement, showing competitive performance to the RL-based method. Since RL-based methods
require heavy property evaluator calls, which is unrealistic in some optimization scenarios, our
framework could serve as a useful supplement for drug discovery tasks.

Table 3: Generation performance on generic graph datasets. The better results are indicated by a
closer value with the performance of training graphs, and the best results are in bold.

Community-small Ego-small Enzymes Ego
|V |max = 20, |E|max = 62 |V |max = 17, |E|max = 66 |V |max = 125, |E|max = 149 |V |max = 399, |E|max = 1071

|V |avg ≈ 15, |E|avg ≈ 36 |V |avg ≈ 6, |E|avg ≈ 9 |V |avg ≈ 33, |E|avg ≈ 63 |V |avg ≈ 145, |E|avg ≈ 335

Deg. Clus. Spec. GIN. Deg. Clus. Spec. GIN. Deg. Clus. Spec. GIN. Deg. Clus. Spec. GIN.
Train 0.035 0.067 0.045 0.037 0.025 0.029 0.027 0.016 0.011 0.011 0.011 0.007 0.009 0.009 0.009 0.005
ER 0.300 0.239 0.100 0.278 0.200 0.094 0.361 0.230 0.844 0.381 0.104 0.808 0.738 0.397 0.868 0.118

VGAE 0.391 0.257 0.095 0.360 0.146 0.046 0.249 0.089 0.811 0.514 0.153 0.716 0.873 1.210 0.935 0.520
GraphRNN 0.106 0.115 0.091 0.353 0.155 0.229 0.167 0.472 0.397 0.302 0.260 1.495 0.140 0.755 0.316 1.283

GraphRNN-U 0.410 0.297 0.103 0.970 0.471 0.416 0.398 0.915 0.932 1.000 0.367 1.263 1.413 1.097 1.110 1.317
GRAN 0.125 0.164 0.111 0.196 0.096 0.072 0.095 0.106 0.215 0.147 0.034 0.069 0.594 0.425 1.025 0.244

GRAN-U 0.106 0.127 0.083 0.164 0.155 0.229 0.167 0.094 0.343 0.122 0.041 0.242 0.099 0.170 0.179 0.128
EDP-GNN 0.100 0.140 0.085 0.125 0.026 0.032 0.037 0.031 0.120 0.644 0.070 0.119 0.553 0.605 0.374 0.295

GDSS 0.102 0.125 0.087 0.137 0.041 0.036 0.041 0.041 0.118 0.071 0.053 0.028 0.314 0.776 0.097 0.156
CDGS-EM 0.052 0.080 0.064 0.062 0.025 0.031 0.033 0.025 0.048 0.070 0.033 0.024 0.036 0.075 0.026 0.026

CDGS-GDPMS-30 0.100 0.121 0.084 0.120 0.116 0.064 0.141 0.052 0.140 0.127 0.041 0.040 0.157 0.109 0.153 0.064

D.2 Generic Graph Generation

D.2.1 Experimental Setup

To display the ability of graph structure distribution learning, we validate CDGS on four common
generic graph datasets with various graph sizes and characteristics: (1) Community-small, 100 two-
community graphs generated by the Erdős-Rényi model (E-R) [1] with p = 0.7, (2) Ego-small,
200 one-hop ego graphs extracted from Citeseer network [43], (3) Enzymes, 563 protein graphs
with more than 10 nodes from BRENDA database [44], (4) Ego, 757 three-hop ego graphs also
extracted from Citeseer network [43]. We use 8 : 2 as the split ratio for train/test. We generate 1024
graph samples for evaluation on Community-small and Ego-small, and generate the same number
of graphs as the test set on Enzymes and Ego. We follow the advice from [45] to evaluate the
distribution of discrete graph structures. Three graph-level structure descriptor functions are selected:
the degree distribution (Deg.), the clustering coefficient distribution (Clus.) and the Laplacian
spectrum histograms (Spec.). We use MMD with the radial basis function kernel (RBF) to calculate
the distance on features extracted by graph descriptors. To accurately evaluate distribution distance,
different from [46, 47, 23] using a static smoothing hyperparameter for MMD, we provide a set
of parameters and report the largest distance like [48, 49]. We also consider a well-established
comprehensive neural-based metric (GIN.) from [48].

D.2.2 Baselines

Apart from scored-based models (EDP-GNN and GDSS), we compare CDGS with a classical method
(ER [1]), a VAE-based method (VGAE [50]), and two strong autoregressive graph generative models
(GraphRNN [46], GRAN [47]). GraphRNN-U and GRAN-U are trained with uniform node
orderings to alleviate the bias from specific ordering strategies.

D.2.3 Sampling Quality

Table 3 displays that, among four datasets, CDGS consistently achieves better performance than
score-based models and autoregressive models. Especially for the large Ego dataset, CDGS still
generates graphs with high fidelity while the diffusion-based GDSS fails in Deg. and Clus. metrics.
The GDPMS is also supported for quick graph structure generation with acceptable quality. Thanks
to the appropriate framework design and the emphasis on evolving discrete graph structures during
the generative process, CDGS effectively captures the underlying distribution of graph topology.

11

E Experimental Details

E.1 Hyperparameters

The hyperparameters used for our CDGS in the experiments are provided in Table 5. In particular, we
set the SDE to the default parameters of Variance Preserving SDE (VPSDE) without any sweeping,
keeping the small signal-to-noise ratio at GT . Different from GDSS [9], we adopt the unified SDE
setting for X and A and utilize the simple EM solver, avoiding complex parameter tuning.

E.2 Molecular Graph Generation

The dataset information is summarized in Table 4.

Table 4: Molecular dataset information.
Dataset Number of molecules Number of nodes Number of node types Number of edge types

ZINC250k 249,455 6 ≤ |V | ≤ 38 9 3
QM9 133,885 1 ≤ |V | ≤ 9 4 3

Table 5: Hyperparameters of CDGS used in graph generation experiments.
Hyperparameter ZINC250k QM9 Community-small Ego-small Enzymes Ego

Data Edge initial scale [−1.0, 1.0] [−1.0, 1.0] [−1.0, 1.0] [−1.0, 1.0] [−1.0, 1.0] [−1.0, 1.0]
Node initial scale [−0.5, 0.5] [−0.5, 0.5] - - - -

ϵθ Number of message passing blocks 10 6 6 3 6 3

Hidden dimension 256 64 64 64 64 64

Number of attention heads 8 8 8 8 8 8

Number of Random Walks 20 8 16 8 24 20

SDE Type VP VP VP VP VP VP

Number of EM sampling steps 1000 1000 1000 1000 1000 1000

βmin 0.1 0.1 0.1 0.1 0.1 0.1

βmax 20.0 20.0 20.0 20.0 20.0 20.0

Train Optimizer Adam Adam Adam Adam Adam Adam

Learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 2e-4

Batch size 64 128 64 64 48 8

Number of training steps 1.25M 1.0M 1.0M 0.8M 1.0M 0.8M

EMA 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

E.3 Molecular Graph Generation Setup

E.3.1 Metrics

Fréchet ChemNet Distance (FCD) [51] calculates the distance between the reference molecule
set and the generated set with the activations of the penultimate layer of ChemNet. Lower FCD
values indicate higher similarity between the two distributions. Neighborhood subgraph pairwise
distance kernel (NSPDK) is the distance measured by mean maximum discrepancy (MMD), which
incorporates node and edge features along with the underlying graph structure. FCD and NSPDK,
one from the perspective of molecules and the other from the perspective of graphs, are crucial for
the evaluation of molecular graph distribution learning [9]. VALID w/o check is the percentage of
valid molecules without post-hoc valency correction. Here, we follow the setting of [6, 9] to consider
the formal charges for valency checking. We also report the results of three metrics that are used
commonly but have obvious marginal effects, i.e., the ratio of valid molecules (VALID), the ratio
of unique molecules (UNIQUE), and the ratio of novel molecules with reference to the training set
(NOVEL).

E.3.2 Implementation Details

We train and evaluate models on two molecule datasets, ZINC250k [52] and QM9 [53]. Before
converting to graphs, all molecules are processed to the kekulized form using RDKit [54], where

12

hydrogen atoms are removed and aromatic bonds are replaced by double bonds. We evaluate
generation quality on 10, 000 generated molecules with the following widely used metrics.

For each molecule, we represent it with one-hot atom types {0, 1}N×F , ordinal edge types
{0, 1, 2, 3}N×N (i.e., single, double, or triple bonds) and edge existence {0, 1}N×N . We convert
these variables to real numbers and obtain G = (X,A). Scaling and shifting are also used to adjust
the initial number scale, making them simpler for neural networks to process. As our method focuses
on undirected graphs, we keep the adding noise and the output of edges symmetrical. We first sample
the number of atoms from the probability mass function on the training graphs’ atom number before
the reverse generative process. After sampling through numerical solvers, we first move and shift
the matrices back to their original scale and make quantization to obtain graph samples. We remain
the biggest connected-subgraphs for those molecular graphs that are disconnected. The valency
correction procedure from [6] are adopted to further ensure molecular validity. As for baselines, we
report the performance from [9], and re-sample or retrain GDSS with its official code.

E.4 Generic Graph Generation

E.4.1 Implementation Details

We directly use adjacency matrices {0, 1}N×N to represent generic graphs. We still convert variables
to real numbers and adjust their scale. For the MMD metrics (Deg., Clus., and Spec.) used in graph
structure distribution evaluation, we choose a efficient positive definite kernel function, i.e., an RBF
kernel with a smoothing parameter υ denoted as

k(xi, xj) = exp(
−||xi − xj ||2

2υ2
). (12)

It is important to choose υ to accurately measure the distribution distance. We report the largest
MMD values using a set of υ parameters. 50 candidate log υ values are selected evenly between
[10−5, 105]. We take 100 bins for the histogram conversion of clustering coefficient and 200 bins for
the conversion of Laplacian spectrum.

As for the baselines, ER [1] is implemented by the edge probability estimated by maximum likelihood
on training graphs. VGAE [50] is a variational auto-encoder implemented by a graph convolution
network encoder and a simple MLP decoder with inner product computation for edge existence. For
GraphRNN [46], GRAN [47], and EDPGNN [23], we utilize their official code to train the models
with the same data split and generate graphs for evaluation.

F Algorithms of GDPM-Solvers

We show the optimizing procedure in Algorithm 1 and the EM sampling procedure in Algorithm
2. Moreover, we provide the implementation details of fast ODE solvers of different orders for in
Algorithm 3, 4, 5, mainly derived from [12]. The solvers can be equipped with the gradient guidance
from time-dependent molecule property predictor conveniently like Algorithm 6.

Algorithm 1 Optimizing CDGS
Require: original graph data G0 = (X0,A0), graph noise prediction model ϵθ, schedule function
α(·) and σ(·), quantized function quantize(·)

1: Sample t ∼ U(0, 1], ϵX ∼ N (0, I), ϵA ∼ N (0, I)
2: Gt = (Xt,At)← (α(t)X0 + σ(t)ϵX , α(t)A0 + σ(t)ϵA)
3: Āt ← quantize(At)
4: ϵXθ , ϵAθ ← ϵθ(Gt, Āt, t)
5: Minimize ||ϵXθ − ϵX ||22 + ||ϵAθ − ϵA||22

G Visualization

We visualize the reverse generative process on the QM9 dataset in Figure 4. We provides the
visualization of generated graphs on different datasets: ZINC250k (in Figure 5), QM9 (in Figure 6),
Enzymes (in Figure 7), Ego (in Figure 8), and Community-small (in Figure 9).

13

Algorithm 2 Sampling from CDGS with the Euler-Maruyama method
Require: number of time steps N , graph noise prediction model ϵθ, drift coefficient function
f(·), diffusion coefficient function g(·), schedule function σ(·), quantized function quantize(·),
post-processing function post(·)

1: Sample initial graph G← (X ∼ N (0, I),A ∼ N (0, I)),
2: ∆t = T

N
3: for i← N to 1 do
4: Ā← quantize(A)
5: ϵX ∼ N (0, I), ϵA ∼ N (0, I)
6: t← i∆t
7: ϵXθ , ϵAθ ← ϵθ(G, Ā, t)

8: X ←X − (f(t)X + g(t)2

σ(t) ϵ
X
θ)∆t+ g(t)

√
∆tϵX

9: A← A− (f(t)A+ g(t)2

σ(t) ϵ
A
θ)∆t+ g(t)

√
∆tϵA

10: return post(X,A)

Algorithm 3 Graph DPM-Solver 1
Require: initial graph GT = (XT ,AT), time step schedule {ti}Mi=0, graph noise prediction model
ϵθ, quantized function quantize(·), post-processing function post(·)

1: def GDPMS-1(X̃ti−1
, Ãti−1

, ti−1, ti)
2: hi ← λti − λti−1

3: Ā′
ti−1
← quantize(Ãti−1

)

4: ϵ̃Xti−1
, ϵ̃Ati−1

← ϵθ((X̃ti−1
, Ãti−1

), Ā′
ti−1

, ti−1)

5: X̃ti ←
αti

αti−1
X̃ti−1

− σti(e
hi − 1)ϵ̃Xti−1

6: Ãti ←
αti

αti−1
Ãti−1 − σti(e

hi − 1)ϵ̃Ati−1

7: return X̃ti , Ãti

8: X̃t0 , Ãt0 ←XT ,AT
9: for i← 1 to M do

10: X̃ti , Ãti ← GDPMS-1(X̃ti−1
, Ãti−1

, ti−1, ti)

11: return post(X̃tM , ÃtM)

Figure 4: Molecular graph normalized visualization at different steps in the reverse generative process
from a model trained on QM9. X is the node feature matrix, A0 is the edge type matrix, and A1 is
the quantized edge existence matrix.

14

Algorithm 4 Graph DPM-Solver 2
Require: initial graph GT = (XT ,AT), time step schedule {ti}Mi=0, graph noise prediction model
ϵθ, quantized function quantize(·), post-processing function post(·), r1 = 0.5

1: def GDPMS-2(X̃ti−1
, Ãti−1

, ti−1, ti, r1)
2: hi ← λti − λti−1

3: si ← tλ(λti−1
+ r1hi)

4: Ā′
ti−1
← quantize(Ãti−1)

5: ϵ̃Xti−1
, ϵ̃Ati−1

← ϵθ((X̃ti−1 , Ãti−1), Ā
′
ti−1

, ti−1)

6: uXi ←
αsi

αti−1
X̃ti−1

− σsi(e
r1hi − 1)ϵ̃Xti−1

7: uAi ←
αsi

αti−1
Ãti−1

− σsi(e
r1hi − 1)ϵ̃Ati−1

8: uĀi ← quantize(uAi)

9: ϵ̃Xsi , ϵ̃
A
si ← ϵθ((u

X
i ,uAi),uĀi , si)

10: X̃ti ←
αti

αti−1
X̃ti−1

− σti(e
hi − 1)ϵ̃Xti−1

− σti

2ri
(ehi − 1)(ϵ̃Xsi − ϵ̃Xti−1

)

11: Ãti ←
αti

αti−1
Ãti−1 − σti(e

hi − 1)ϵ̃Ati−1
− σti

2ri
(ehi − 1)(ϵ̃Asi − ϵ̃Ati−1

)

12: return X̃ti , Ãti

13: X̃t0 , Ãt0 ←XT ,AT
14: for i← 1 to M do
15: X̃ti , Ãti ← GDPMS-2(X̃ti−1

, Ãti−1
, ti−1, ti, r1)

16: return post(X̃tM , ÃtM)

Algorithm 5 Graph DPM-Solver 3
Require: initial graph GT = (XT ,AT), time step schedule {ti}Mi=0, graph noise prediction model
ϵθ, quantized function quantize(·), post-processing function post(·), r1 = 1

3 , r2 = 2
3

1: def GDPMS-3(X̃ti−1
, Ãti−1

, ti−1, ti, r1, r2)
2: hi ← λti − λti−1

3: s2i−1 ← tλ(λti−1
+ r1hi), s2i ← tλ(λti−1

+ r2hi)

4: Ā′
ti−1
← quantize(Ãti−1

)

5: ϵ̃Xti−1
, ϵ̃Ati−1

← ϵθ((X̃ti−1
, Ãti−1

), Ā′
ti−1

, ti−1)

6: uX2i−1 ←
αs2i−1

αti−1
X̃ti−1 − σs2i−1(e

r1hi − 1)ϵ̃Xti−1

7: uA2i−1 ←
αs2i−1

αti−1
Ãti−1 − σs2i−1(e

r1hi − 1)ϵ̃Ati−1

8: uĀ2i−1 ← quantize(uA2i−1)

9: ϵ̃Xs2i−1
, ϵ̃As2i−1

← ϵθ((u
X
2i−1,u

A
2i−1),u

Ā
2i−1, s2i−1)

10: DX
2i−1 ← ϵ̃Xs2i−1

− ϵ̃Xti−1
, DA

2i−1 ← ϵ̃As2i−1
− ϵ̃Ati−1

11: uX2i ←
αs2i

αti−1
X̃ti−1

− σs2i(e
r2hi − 1)ϵ̃Xti−1

− σs2i
r2

r1
(e

r2hi−1
r2hi

− 1)DX
2i−1

12: uA2i ←
αs2i

αti−1
Ãti−1

− σs2i(e
r2hi − 1)ϵ̃Ati−1

− σs2i
r2

r1
(e

r2hi−1
r2hi

− 1)DA
2i−1

13: uĀ2i ← quantize(uA2i)

14: ϵ̃Xs2i , ϵ̃
A
s2i ← ϵθ((u

X
2i ,u

A
2i),u

Ā
2i, s2i)

15: DX
2i ← ϵ̃Xs2i − ϵ̃Xti−1

, DA
2i ← ϵ̃As2i − ϵ̃Ati−1

16: X̃ti ←
αti

αti−1
X̃ti−1

− σti(e
hi − 1)ϵ̃Xti−1

− σti

ri
(e

hi−1
h − 1)DX

2i

17: Ãti ←
αti

αti−1
Ãti−1

− σti(e
hi − 1)ϵ̃Ati−1

− σti

ri
(e

hi−1
h − 1)DA

2i

18: return X̃ti , Ãti

19: X̃t0 , Ãt0 ←XT ,AT
20: for i← 1 to M do
21: X̃ti , Ãti ← GDPMS-3(X̃ti−1 , Ãti−1 , ti−1, ti, r1, r2)

22: return post(X̃tM , ÃtM)

15

Algorithm 6 Graph DPM-Solver 1 with gradient guidance
Require: initial graph GT = (XT ,AT), time step schedule {ti}Mi=0, graph noise prediction
model ϵθ , quantized function quantize(·), post-processing function post(·), property predictor Rψ ,
guidance weight r

1: def GDPMS-1-GUIDE(X̃ti−1
, Ãti−1

, ti−1, ti, r)
2: hi ← λti − λti−1

3: Ā′
ti−1
← quantize(Ãti−1)

4: ϵ̃Xti−1
, ϵ̃Ati−1

← ϵθ((X̃ti−1 , Ãti−1), Ā
′
ti−1

, ti−1)

5: Rti−1 = Rψ((X̃ti−1 , Ãti−1), ti−1)

6: X̃ti ←
αti

αti−1
X̃ti−1 − σti(e

hi − 1)(ϵ̃Xti−1
− rσti−1∇∗

XRti−1)

7: Ãti ←
αti

αti−1
Ãti−1

− σti(e
hi − 1)(ϵ̃Ati−1

− rσti−1
∇∗
ARti−1

))

8: return X̃ti , Ãti

9: X̃t0 , Ãt0 ←XT ,AT
10: for i← 1 to M do
11: X̃ti , Ãti ← GDPMS-1-GUIDE(X̃ti−1

, Ãti−1
, ti−1, ti, r)

12: return post(X̃tM , ÃtM)

Figure 5: The generated samples from the model trained on the ZINC250k dataset.

Figure 6: The generated samples from the model trained on the QM9 dataset.

16

Figure 7: The generated samples from the model trained on the Enzymes dataset.

Figure 8: The generated samples from the model trained on the Ego dataset.

17

Figure 9: The generated samples from the model trained on the Community-small dataset.

18

	Introduction
	Methodology
	Conditional Graph Diffusion
	Graph Noise Prediction Model

	Experiment
	Conclusion
	ODE Solvers for Few-step Graph Sampling
	ODE-based Graph Optimization
	Related Work
	Molecule Generation
	Diffusion Models

	Additional Experiments
	Fast Sampling
	Ablation Studies
	Similarity-constrained Property Optimization

	Generic Graph Generation
	Experimental Setup
	Baselines
	Sampling Quality

	Experimental Details
	Hyperparameters
	Molecular Graph Generation
	Molecular Graph Generation Setup
	Metrics
	Implementation Details

	Generic Graph Generation
	Implementation Details

	Algorithms of GDPM-Solvers
	Visualization

