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HARMONICA: HARMONIZING TRAINING AND

INFERENCE FOR BETTER FEATURE CACHE IN DIFFU-
SION TRANSFORMER ACCELERATION

Anonymous authors
Paper under double-blind review

“A tranquil forest clearing bathed in soft, magical light, filled with fairies dancing 
among the flowers. The pastel chalk drawing style gives the image a delicate, almost 

ethereal quality, with soft, smudged edges and gentle, powdery colors blending seamlessly.”

(a) PIXART-Σ w/o feature cache (b) HarmoniCa (×1.68)

Figure 1: High-resolution 2048 × 2048 images generated using PIXART-Σ (Chen et al., 2024a)
with a 20-step DPM-Solver++ sampler (Lu et al., 2022b). Our proposed feature cache framework
achieves a substantial ×1.68 speedup. More visualization results can be found in Sec. T.

ABSTRACT

Diffusion Transformers (DiTs) have gained prominence for outstanding scalabil-
ity and extraordinary performance in generative tasks. However, their consider-
able inference costs impede practical deployment. The feature cache mechanism,
which involves storing and retrieving redundant computations across timesteps,
holds promise for reducing per-step inference time in diffusion models. Most
existing caching methods for DiT are manually designed. Although the learning-
based approach attempts to optimize strategies adaptively, it suffers from discrep-
ancies 1 between training and inference, which hampers both the performance and
acceleration ratio. Upon detailed analysis, we pinpoint that these discrepancies
primarily stem from two aspects: (1) Prior Timestep Disregard, where training
ignores the effect of cache usage at earlier timesteps, and (2) Objective Mismatch,
where the training target (align predicted noise in each timestep) deviates from the
goal of inference (generate the high-quality image). To alleviate these discrepan-
cies, we propose HarmoniCa, a novel method that harmonizes training and infer-
ence with a novel learning-based caching framework built upon Step-Wise Denois-
ing Training (SDT) and Image Error Proxy-Guided Objective (IEPO). Compared

1In this paper, the discrepancy between training and inference denotes the mismatch or the inconsistency
between these two processes.
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to the traditional training paradigm, the newly proposed SDT maintains the con-
tinuity of the denoising process, enabling the model to leverage information from
prior timesteps during training, similar to the way it operates during inference.
Furthermore, we design IEPO, which integrates an efficient proxy mechanism to
approximate the final image error caused by reusing the cached feature. Therefore,
IEPO helps balance final image quality and cache utilization, resolving the issue
of training that only considers the impact of cache usage on the predicted output
at each timestep. Extensive experiments on class-conditional and text-to-image
(T2I) tasks for 8 models and 4 samplers with resolutions ranging from 256× 256
to 2048 × 2048 demonstrate the exceptional performance and speedup capabili-
ties of our HarmoniCa. For example, HarmoniCa is the first feature cache method
applied to the 20-step PIXART-α 1024×1024 that achieves over 1.5× speedup in
latency with an improved FID compared to the non-accelerated model. Remark-
ably, HarmoniCa requires no image data during training and reduces about 25%
of training time compared to the existing learning-based approach.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021) have recently gained increasing pop-
ularity in a variety of generative tasks, such as image (Saharia et al., 2022; Esser et al., 2024) and
video generation (Blattmann et al., 2023; Ma et al., 2024a), due to their ability to produce diverse
and high-quality samples. Among different backbones, Diffusion Transformers (DiTs) (Peebles &
Xie, 2023) stand out for offering exceptional scalability. However, the extensive parameter size and
multi-round denoising nature of diffusion models bring tremendous computational overhead during
inference, limiting their practical applications. For instance, generating one 2048×2048 resolution
image using PixArt-Σ (Chen et al., 2024a) with 0.6B parameters and 20 denoising rounds can take
up to 14 seconds on a single NVIDIA H800 80GB GPU, which is unacceptable.

To accelerate the generation process of diffusion models, previous methods are developed from
two perspectives: reducing the number of sampling steps (Liu et al., 2022; Song et al., 2020b) and
decreasing the network complexity in noise prediction of each step (Fang et al., 2023; He et al.,
2024). Recently, a new branch of research (Selvaraju et al., 2024; Yuan et al., 2024; Chen et al.,
2024b) has started to focus on accelerating sampling time per step by the feature cache mechanism.
This technique takes advantage of the repetitive computations across timesteps in diffusion models,
allowing previously computed features to be cached and reused in later steps. Nevertheless, most
existing methods are either tailored to the U-Net architecture (Ma et al., 2024c; Wimbauer et al.,
2024) or develop their strategy based on empirical observations (Chen et al., 2024b; Selvaraju et al.,
2024), and there is a lack of adaptive and systematic approaches for DiT models. Learning-to-
Cache (Ma et al., 2024b) introduces a learnable router to guide the cache scheme for DiT models.
However, this method induces discrepancies between training and inference, which always leads
to distortion build-up (Ning et al., 2023; Li et al., 2024b; Ning et al., 2024). The discrepancies
arise from two main factors: (1) Prior Timestep Disregard: During training, the model directly
samples a timestep and employs the training images manually added noise akin to DDPM (Hu et al.,
2021), ignoring the impact of the feature cache mechanism from earlier steps, which differs from the
inference process. (2) Objective Mismatch: The training objective minimizes noise prediction error
of each timestep, while the inference goal aims for high-quality final images, causing a misalignment
in objectives. We believe these inconsistencies hinder effective and efficient router learning.

To alleviate the above discrepancies effectively, we present harmonizing training and inference with
HarmoniCa, a novel cache learning framework featuring a unique training paradigm and a distinct
learning objective. Specifically, to mitigate the first disparity, we design Step-Wise Denoising Train-
ing (SDT), which aligns the training process with the full denoising trajectory of inference using a
student-teacher model setup. The student utilizes the cache while the teacher does not, effectively
mimicking the teacher’s outputs across all continuous timesteps. This approach maintains the reuse
and update of the cache at earlier timesteps, similar to inference. Additionally, to address the mis-
alignment in optimization goals, we introduce the Image Error Proxy-Guided Objective (IEPO),
which leverages a proxy to approximate the final image error and reduces the significant costs of
directly utilizing the error to supervise training. This objective helps SDT efficiently balance cache
usage and image quality. By combining SDT and IEPO, extensive experiments for text-to-image
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(T2I) and class-conditioned generation tasks show the promising performance and speedup ratio
of HarmoniCa, e.g., a ×1.51 speedup and even a lower FID (Nash et al., 2021) for PIXART-α
1024 × 1024 (Chen et al., 2023). In addition, HarmoniCa eliminates the requirement of training
with a large amount of image data and reduces about 25% training time compared to the existing
learning-based method (Ma et al., 2024b), further enhancing its applicability.

Our contributions are summarized as follows:

• We uncover two discrepancies between training and inference in the existing learning-based fea-
ture cache method: (1) Prior Timestep Disregard, indicating that the training process overlooks
the influence of preceding timesteps, which is inconsistent with the inference process. (2) Ob-
jective Mismatch, minimizing intermediate outputs error, instead of the final image error. These
discrepancies prevent the method from further performance and acceleration improvements.

• We propose a novel framework called HarmoniCa to alleviate the discovered discrepancies by:
(1) Step-Wise Denoising Training (SDT), which addresses the first discrepancy by capturing the
complete denoising trajectory, ensuring that the model learns to consider the impact of earlier
timesteps. (2) Image Error Proxy-Guided Optimization Objective (IEPO), which mitigates the
second discrepancy by using a proxy for the final image error, and thereby targets aligning the
training objective with the inference.

• Extensive experiments on NVIDIA H800 80GB GPUs for DiT-XL/2, PIXART-α, and PIXART-
Σ series–encompassing 8 models, 4 samplers, and 4 resolutions–proves the substantial efficacy
and universality of HarmoniCa. For instance, it outperforms previous state-of-the-art (SOTA) by
a 6.74 IS increase and 1.24 FID decrease with a higher speedup ratio on DiT-XL/2 256 × 256.
Notably, our image-free framework with much lower training cost exhibits superior efficiency and
applicability than the current learning-based method.

2 RELATED WORK

Diffusion models. Diffusion models, initially conceptualized with the U-Net architecture (Ron-
neberger et al., 2015), have achieved satisfactory performance in image (Rombach et al., 2022;
Podell et al., 2023) and video generation (Ho et al., 2022). Despite their success, U-Net models
struggle with modeling long-range dependencies in complex, high-dimensional data. In response,
the Diffusion Transformer (DiT) (Peebles & Xie, 2023; Chen et al., 2023; 2024a) is introduced,
leveraging the inherent scalability of Transformers to efficiently enhance model capacities and han-
dle more complex tasks with improved performance.

Efficent diffusion. Diverse methods have been proposed to tackle the poor real-time performance
of diffusion models. These techniques fall into two main categories: reducing the number of sam-
pling steps and decreasing the computational load per denoising step. In the first category, sev-
eral works utilize distillation (Salimans & Ho, 2022; Luhman & Luhman, 2021) to obtain reduced
sampling iterations. Furthermore, this category encompasses advanced techniques such as implicit
samplers (Kong & Ping, 2021; Song et al., 2020a; Zhang et al., 2022) and specialized differential
equation (DE) solvers. These solvers tackle both stochastic differential equations (SDE) (Song et al.,
2020b; Jolicoeur-Martineau et al., 2021) and ordinary differential equations (ODE) (Lu et al., 2022a;
Liu et al., 2022; Zhang & Chen, 2022), addressing diverse aspects of diffusion model optimization.
In contrast, the second category mainly focuses on model compression. It leverages techniques like
pruning (Fang et al., 2023; Zhang et al., 2024; Wang et al., 2024b) and quantization (Shang et al.,
2023; Huang et al., 2024; He et al., 2024) to reduce the workload in a static way. Additionally,
dynamic inference compression is also being explored (Liu et al., 2023; Pan et al., 2024), where dif-
ferent models are employed at varying steps of the process. In this work, we focus on the urgently
needed DiT acceleration through feature cache, a method distinct from the above-discussed ones.

Feature cache. Due to the high similarity between activations (Li et al., 2023b; Wimbauer et al.,
2024) across continuous denoising steps in diffusion models, recent studies (Ma et al., 2024c; Wim-
bauer et al., 2024; Li et al., 2023a) have explored caching these features for reuse in subsequent steps
to avoid redundant computations. Notably, their strategies rely heavily on the specialized structure
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of U-Net, e.g., up-sampling blocks 2 or SpatialTransformer blocks 3. Besides, FORA (Sel-
varaju et al., 2024) and ∆-DiT (Chen et al., 2024b) further apply the feature cache mechanism to
DiT. However, both methods select the cache position and lifespan in a handcrafted way. Learning-
to-Cache (Ma et al., 2024b) introduces a learnable cache scheme but fails to harmonize training and
inference. In this work, we design a new training framework, to alleviate the discrepancies between
the training and inference, which further enhances the performance and acceleration ratio for DiT.

3 PRELIMILARIES

Cache granularity. The noise estimation network of DiT (Peebles & Xie, 2023) is built on the
Transformer block (Vaswani, 2017), which is composed of an Attention block and a feed-forward
network (FFN). Each Attention block and FFN is wrapped up in a residual connection (He et al.,
2016). For convenience, we sequentially denote these Attention blocks and FFNs without residual
connections as {b0,b1, . . .bN−1}, where N is their total amount. Following Ma et al. (2024b), we
store the output of bi in cache as ci. The cache, once completely filled, is represented as follows:

cache = [c0,c1, . . . ,cN−1]. (1)

Cache router. The cache scheme for DiT can be formulated with a pre-defined threshold τ (0 ≤
τ < 1) and a customized router matrix:

Router = [rt,i]1≤t≤T,0≤i≤N−1 ∈ RT×N , (2)

where 0 < rt,i ≤ 1 and T is the maximum denoising step. At timestep t during inference, the
residual corresponding to bi is fused with oi defined as follows:

oi =

{
bi(hi, cs), rt,i > τ

ci, rt,i ≤ τ
, (3)

where hi is the image feature and cs represents the conditional inputs 4. Specifically, rt,i > τ
indicates computing bi(hi, cs) as oi. This computed output also replaces ci in the cache. Other-
wise, the model loads ci from cache without computation. Here we present a naive example of the
cache scheme as depicted in Fig. 2. To be noted, RouterT,: is set to [1]1×N by default to pre-fill
the empty cache.

Cache usage ratio (CUR). In addition, we define cache usage ratio (CUR) formulated as∑t=T
t=1

∑N−1
i=0 Irt,i≤τ

N×T in this paper to represent the reduced computation by reusing cached features.
For instance, CUR is roughly equal to 33.33% in Fig. 2.
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Figure 2: Generation process from a random Gaussian noise x4 to an image x0 using feature cache
(T = 4, N = 3). We omit the sampler (Ho et al., 2020; Song et al., 2020a) and conditional inputs.

2https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/
diffusionmodules/openaimodel.py#L626

3https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/
attention.py#L218

4For example, cs represents the time condition and textual condition for text-to-image (T2I) generation.
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4 HARMONICA

In this section, we first observe that the existing learning-based feature cache strategy shows dis-
crepancies between the training and inference (Sec. 4.1). Then, we propose a framework named
HarmoniCa to harmonize them for better feature cache (Sec. 4.2). Finally, our HarmoniCa shows
higher efficiency and better applicability than the previous training-based method (Sec. 4.3).

4.1 DISCREPANCY BETWEEN TRAINING AND INFERENCE

Revealing previous approaches for DiT, most of them (Selvaraju et al., 2024; Chen et al., 2024b)
manually set the value of the Router in a heuristic way. To be adaptive, Learning-to-Cache (Ma
et al., 2024b) employs a learnable Router 5. However, we have identified two discrepancies be-
tween its training and inference phases in the following.

𝒙!

DiT 𝑡 − 1

cacheRouter!"#,:

DiT 𝑡

𝑡 ∼ 𝒰 2, 𝑇

𝝐 ∼ 𝒩(𝟎, 𝑰)

Learnable Frozen Backward Data Flow

ℒ&'(
!"#

DiT 𝑡 − 1

Figure 3: Training paradigm of
Learning-to-Cache. L(t)

LTC denotes the
loss function. In each iteration, this
method manually adds noise to images
to obtain xt as the input of DiT at t.
“∗” in “DiT (∗)” represents the current
timestep.

Prior timestep disregard. As illustrated in Fig. 2, the in-
ference process employing feature cache at timestep t is
subject to the prior timesteps. For example, at timestep
t = 1, the input x1 has the error induced by reusing
the cached features c0 and c1 at preceding timestep t =
2. Furthermore, reusing and updating features at earlier
timesteps also shape the contents of the current cache.

However, Learning-to-Cache is unaffected by prior de-
noising steps during training. Specifically, for each train-
ing iteration, as depicted in Fig. 3 (a), it first uniformly
samples a timestep t akin to DDPM (Ho et al., 2020). It
then pre-fills an empty cache at t and proceeds to train
Routert−1,: at subsequent timestep t− 1, without being
influenced by the feature cache mechanism from timestep
T to t+ 1.

Objective mismatch. Moreover, we also find that Learning-to-Cache (Ma et al., 2024b) solely
focuses on the predicted noise at each denoising step during training. It leverages the following
learning objective at timestep t:

L(t)
LTC = L(t)

MSE + β
∑N−1

i=0 rt,i, (4)

where β is a coefficient for the regularization term of the Routert: and L(t)
MSE represents the Mean

Square Error (MSE) between the predicted noise of the DiT with and without reusing cached features
at t.

In contrast, the target during inference is to generate the high-quality image x0, which also leads to
a discrepancy of objective.

4.2 HARMONIZING TRAINING AND INFERENCE

Existing studies (Ning et al., 2023; Li et al., 2024b; Ning et al., 2024) on diffusion models show that
discrepancies between training and inference phases can lead to error accumulation (Arora et al.,
2022; Schmidt, 2019) and results in performance degradation. Therefore, we harmonize training
and inference with a new learning-based caching framework called HarmoniCa. It is composed of
the following two techniques to alleviate the discrepancies mentioned above. Detailed algorithms of
HarmoniCa can be found in Sec. A.

Step-wise denoising training. To mitigate the first discrepancy, as shown in Fig. 4 (a), we propose
a new training paradigm named Step-Wise Denoising Traning (SDT), which completes the entire
denoising process over T timesteps, thereby accounting for the cache usage and update from all
prior timesteps. Specifically, at timestep T , we randomly sample a Gaussian noise xT and perform
a single denoising step to pre-fill the cache. Over the following T − 1 timesteps, the student
model, which employs the feature cache mechanism, gradually removes noise to generate an image.

5rt,i in the Router is a learnable parameter.
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Concurrently, the teacher model executes the same task without utilizing the cache. Requiring the
student to mimic the output representation of its teacher, we compute the loss function and perform
back-propagation to update Routert,: at each timestep t. To ensure that each rt,i is differentiable
during training, distinct from Eq. (3), we proportionally combine the directly computed feature with
the cached one to obtain oi following Ma et al. (2024b):

oi = rt,ibi(hi, cs) + (1− rt,i)ci. (5)
Similar to inference, we also update ci in the cache with bi(hi, cs) when rt,i > τ . To improve
training stability (Wimbauer et al., 2024), we fetch the output from the student as the input to the
teacher for the next iteration. We repeat the above T learning iterations until the end of training.
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ℒ!"#$
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(a) Step-Wise Denoising Training (b) Image Error Proxy-Guided Objective
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Figure 4: Overview of HarmoniCa. (a) Step-Wise Denoising Training (SDT) mimics the multi-
timestep inference stage, which integrates the impact of prior timesteps at t. (b) Image-Error Proxy-
Guided Objective (IEPO) incorporates the final image error into the learning objective by an efficient
proxy λ(t), which is updated through gradient-free image generation passes every C training itera-
tions. M(t) masks the Router to disable the impact of the cache mechanism at t. ⊙ denotes the
operation of element-wise multiplication.
As depicted in Fig. 5, by incorporating prior denoising timesteps during training, SDT significantly
reduces error at each timestep and obtains a much more accurate image x0, even with lower com-
putation, compared to Learning-to-Cache.

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
xT 1 x0

0.0

0.1

0.2

0.3

M
SE

LTC (32.68%)
SDT (34.20%)

Figure 5: MSE of xt for DiT-XL/2 256 ×
256 (Peebles & Xie, 2023) (T = 20, N =
56) induced by different feature cache meth-
ods. xt is the noisy image obtained at
timestep t + 1. “LTC” denotes Learning-
to-Cache. For a fair comparison, L(t)

LTC is
employed for SDT. We mark the CUR in the
brackets.

Image error proxy-guided objective. For the sec-
ond discrepancy, a straightforward solution to align
the target with inference involves using the error of
final image x0 caused by cache usage directly with
a regularization term of Router as our training ob-
jective. However, even for DiT-XL/2 256×256 (Pee-
bles & Xie, 2023) with a small training batch size,
this requires approximately 5× GPU memory and
10× time compared to SDT combined with L(t)

LTC
as detailed in Sec. B, making it impractical. There-
fore, we have to identify a proxy for the error of x0

that can be integrated into the learning objective.

Based on the above analysis, we propose an Image
Error Proxy-guided Objective (IEPO). It is defined
at each timestep t as follows:

L(t)
IEPO = λ(t)L(t)

MSE + β
∑N−1

i=0 rt,i, (6)

where λ(t) is our final image error proxy treated as a coefficient of L(t)
MSE . This proxy represents

the final image error caused by the cache usage at t. With a large λ(t), L(t)
MSE prioritizes reduction

of the output error at t. This tends to decrease the cached feature usage rate at the corresponding
timestep, and vice versa. Therefore, our proposed objective considers the trade-off between the error
of x0 and the cache usage at a certain denoising step.

Here, we detail the process to obtain λ(t) as follows. For a given Router, a mask matrix is defined
to disable the use of cached features and force updating the entire cache at t as:

M(t)
j,k =

{
1, j ̸= t
1

rj,k
, j = t

, (7)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where (j, k) 6 denotes the index of M(t) ∈ RT×N . As depicted in Fig. 4 (b), x0 and x
(t)
0 are

final images generated from a randomly sampled Gaussian noise xT using feature cache guided by
(Upper) Router and (Lower) Router element-wise multiplied by M(t), respectively. Then, we
can formulate λ(t) as:

λ(t) = ∥x0 − x
(t)
0 ∥2F , (8)

where ∥ · ∥F denotes the Frobenius norm. To adapt to the training dynamics, we periodically update
all the coefficients {λ(1), . . . , λ(T )} every C iterations 7, instead of employing static ones.

(a) DiT w/o feature cache (b) SDT+L(t)
LTC (×1.40) (c) HarmoniCa (×1.44)

Figure 6: Random samples for DiT-XL/2 256×256 (Peebles & Xie, 2023) w/ and w/o feature cache
(T = 20). We mark the speedup ratio in the brackets.

Fig. 6 shows that L(t)
IEPO helps yield much more accurate objective-level traits and significantly

improves the quality of x0 even at a higher speedup ratio than L(t)
LTC . The study in Sec. C justifies

that employing L(t)
LTC incurs the optimization deviating from minimizing the error of x0.

4.3 EFFICIENCY DISCUSSION

Training efficiency. Our HarmoniCa incurs significantly lower training costs than the previous
learning-based method. As shown in Tab. 1, HarmoniCa requires no training images, whereas
Learning-to-Cache utilizes original training datasets. Thus, it is challenging to apply Learning-to-
Cache to models like the PIXART-α (Chen et al., 2023) family, which are trained on large datasets,
limiting its applicability. Moreover, while dynamic update of λ(t) incurs approximately 10% extra
time overhead, HarmoniCa requires only three-quarters of the training hours compared to Learning-
to-Cache, which needs to pre-fill the cache for each training iteration.

Table 1: Training costs of learning-based feature
cache methods for DiT-XL/2 256 × 256 (Peebles
& Xie, 2023) (T = 20). We train with all methods
for 20K iterations using a global batch size 64 on 4
NVIDIA H800 80GB GPUs. For HarmoniCa, we
set C = 500. As in the original paper, we utilize
the full ImageNet training set (Russakovsky et al.,
2015) for Learning-to-Cache.

Method #Images Time(h) Memory(GB/GPU)

Learning-to-Cache 1.22M 2.15 33.33

SDT+L(t)
LTC 0 1.47 33.28

HarmoniCa 0 1.63 33.28

Inference efficiency. Fortunately, our method
with a pre-learned Router has no computa-
tional overhead during runtime. Moreover, less
than 6% extra memory overhead 8 is induced by
cache for DiT-XL/2 256 × 256 with a batch
size of 8. Therefore, the introduced inference
cost is controlled at a small level.

5 EXPERIMENTS

This section begins by outlining the detailed ex-
perimental protocols (Sec. 5.1). Subsequently,
we provide comprehensive comparisons across
different methods to show the superior performance and acceleration ratio of our HarmoniCa
(Sec. 5.2). Finally, we provide ablation studies for the key designs of our method (Sec. 5.3).

5.1 IMPLEMENTATION DETAILS

Models and datasets. We conduct experiments on two different image generation tasks. For class-
conditional task, we employ DiT-XL/2 (Peebles & Xie, 2023) 256 × 256 and 512 × 512 models
pre-trained and accessed on ImageNet dataset (Russakovsky et al., 2015). For text-to-image (T2I)
task, we utilize PIXART-α (Chen et al., 2023) series, known for its outstanding performance. These

61 ≤ j ≤ T and 0 ≤ k ≤ N − 1.
7C mod T = 0.
8The cache occupies 0.49 GB GPU memory and inference without the feature cache mechanism takes

8.18 GB GPU memory.
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models including PIXART-XL/2 at resolutions of 256 × 256 and 512 × 512, along with PIXART-
XL/2-1024-MS at a higher resolution of 1024 × 1024, are tested on MS-COCO dataset (Lin et al.,
2015). We additionally use T5 model (Raffel et al., 2023) as their text encoders.

Training settings. Following Ma et al. (2024b), we set the threshold τ as 0.1 for all the models.
Each of them is trained for 20K iterations employing the AdamW optimizer (Loshchilov & Hutter,
2019) on 4 NVIDIA H800 80GB GPUs. The learning rate is fixed at 0.01, C is set to 500, and global
batch sizes of 64, 48, and 32 are utilized for models with increasing resolutions. Additionally, we
collect 1000 MS-COCO captions for T2I training.

Baselines. For class-conditional experiments, we choose the current state-of-the-art (SOTA)
Learning-to-Cache (Ma et al., 2024b) as our baseline. Due to the limits mentioned in Sec. 4.3, we
employ FORA (Selvaraju et al., 2024) and ∆-DiT (Chen et al., 2024b), excluding Learning-to-Cache
for the T2I task. The results of these methods are obtained either by re-running their open-source
code (if available) or by using the data provided in the original papers, all under the same conditions
as our experiments. We also report the performance of models with reduced denoising steps.

Evaluation. To assess the generation quality, Fréchet Inception Distance (FID) (Nash et al., 2021),
and sFID (Nash et al., 2021) are applied to all experiments. For DiT/XL-2, we additionally provide
Inception Score (IS) (Salimans et al., 2016), Precision, and Recall (Kynkäänniemi et al., 2019) as
reference metrics. For PIXART-α, to gauge the compatibility of image-caption pairs, we calculate
CLIP score (Hessel et al., 2022) using ViT-B/32 (Dosovitskiy et al., 2020) as the backbone. To
evaluate the inference efficiency, we measure the CUR 9 and the inference latency for a batch size
of 8. In detail, we sample 50K images adopting DDIM (Song et al., 2020a) for DiT-XL/2, and
30K images utilizing IDDPM (Nichol & Dhariwal, 2021), DPM-Solver++ (Lu et al., 2022b), and
SA-Solver (Xue et al., 2024) for PIXART-α. All of them use classifier-free guidance (cfg) (Ho &
Salimans, 2022).

More implementation details can be found in Sec. D and the results of PIXART-Σ (Chen et al.,
2024a) family are available in Sec. E, including generation with an extremely high-resolution of
2048 × 2048. In addition, we also present the results of combination with quantization to further
accelerate DiT inference in Sec. F.

5.2 MAIN RESULTS

Table 2: Accelerating image generation on ImageNet for the DiT-XL/2. We mark the speedup ratio
in the brackets and highlight the best score in bold.

Method T IS↑ FID↓ sFID↓ Prec.↑ Recall↑ CUR(%)↑ Latency(s)↓

DiT-XL/2 256× 256 (cfg = 1.5)

DDIM (Song et al., 2020a) 50 240.37 2.27 4.25 80.25 59.77 - 1.767
DDIM (Song et al., 2020a) 39 237.84 2.37 4.32 80.22 59.31 - 1.379(×1.28)

Learning-to-Cache (Ma et al., 2024b) 50 233.26 2.62 4.50 79.40 59.15 23.39 1.419(×1.25)

HarmoniCa 50 238.74 2.36 4.24 80.57 59.68 23.68 1.361(×1.30)

DDIM (Song et al., 2020a) 20 224.37 3.52 4.96 78.47 58.33 - 0.658
DDIM (Song et al., 2020a) 14 201.83 5.77 6.61 75.14 55.08 - 0.466(×1.41)

Learning-to-Cache (Ma et al., 2024b) 20 201.37 5.34 6.36 75.04 56.09 35.60 0.468(×1.41)

HarmoniCa 20 206.57 4.88 5.91 75.20 58.74 37.50 0.456(×1.44)

DDIM (Song et al., 2020a) 10 159.93 12.16 11.31 67.10 52.27 - 0.332
DDIM (Song et al., 2020a) 9 140.37 16.54 14.44 62.63 50.08 - 0.299(×1.11)

Learning-to-Cache (Ma et al., 2024b) 10 145.09 14.59 11.58 64.03 52.06 19.11 0.279(×1.19)

HarmoniCa 10 151.83 13.35 11.13 65.22 52.18 22.86 0.270(×1.23)

DiT-XL/2 512× 512 (cfg = 1.5)

DDIM (Song et al., 2020a) 20 184.47 5.10 5.79 81.77 54.50 - 3.356
DDIM (Song et al., 2020a) 16 173.31 6.47 6.67 81.10 51.30 - 2.688(×1.25)

Learning-to-Cache (Ma et al., 2024b) 20 178.11 6.24 7.01 81.21 53.30 23.57 2.633(×1.28)

HarmoniCa 20 179.84 5.72 6.61 81.33 55.80 25.98 2.574(×1.30)

Class-conditional generation. We begin our evaluation with DiT-XL/2 on ImageNet and com-
pare it with current SOTA Learning-to-Cache (Ma et al., 2024b) and the approach employing fewer

9Definition can be found in Sec. 3.
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timesteps. The results are presented in Tab. 2, where our HarmoniCa surpasses baseline methods.
Notably, with a higher speedup ratio for a 10-step DiT-XL/2 256 × 256, HarmoniCa achieves an
FID of 13.35 and an IS of 151.83, outperforming Learning-to-Cache by 1.24 and 6.74, respectively.
Moreover, the superiority of our HarmoniCa increases as the number of timesteps decreases. We
conjecture that it is because the difficulty to learn a Router rises as the timestep goes up. Addi-
tionally, we further conduct experiments with a lower CUR for this task in Sec. H.

T2I generation. We also present PixArt-α results in Tab. 3, comparing our HarmoniCa against
FORA (Selvaraju et al., 2024) and the method using fewer timesteps. HarmoniCa outperforms
these benchmarks across all metrics. For example, with the 20-step DPM-Solver++, PIXART-α
256 × 256 employing HarmoniCa achieves an FID of 27.61 and speeds up by 1.52×, surpassing
the non-accelerated model’s FID of 27.68. In contrast, DPM-Solver++ with 15 steps and FORA
only achieves FIDs of 31.68 and 38.20, respectively, with speed increases under 1.32×. Notably,
HarmoniCa also cuts about 36% off processing time without dropping performance when using
the IDDPM sampler, while FORA results in over a 20 FID increase and a 15.67% CUR decrease.
Overall, our method consistently delivers superior performance and speedup improvements across
different resolutions and samplers, demonstrating its efficacy. HarmoniCa also significantly outper-
forms ∆-DiT (Chen et al., 2024b), which can be found in Sec. I.

Table 3: Accelerating image generation on MS-COCO for the PIXART-α.

Method T CLIP↑ FID↓ sFID↓ CUR(%)↑ Latency(s)↓

PIXART-α 256× 256 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 30.96 27.68 36.39 - 0.553
DPM-Solver++ (Lu et al., 2022b) 15 30.77 31.68 38.92 - 0.418(×1.32)

FORA (Selvaraju et al., 2024) 20 - 38.20 - 50.00 0.424(×1.30)

HarmoniCa 20 30.93 27.61 37.48 65.02 0.364(×1.52)

IDDPM (Nichol & Dhariwal, 2021) 100 31.25 24.15 33.65 - 2.572
IDDPM (Nichol & Dhariwal, 2021) 75 31.25 24.17 33.73 - 1.868(×1.37)

FORA (Selvaraju et al., 2024) 100 - 55.30 - 50.00 1.889(×1.36)

HarmoniCa 100 31.23 23.79 32.49 65.67 1.641(×1.56)

SA-Solver (Xue et al., 2024) 25 31.31 23.76 34.93 - 0.891
SA-Solver (Xue et al., 2024) 20 31.28 23.96 35.63 - 0.677(×1.31)

HarmoniCa 25 31.29 23.85 35.56 54.31 0.665(×1.34)

PIXART-α 512× 512 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.30 23.96 40.34 - 1.759
DPM-Solver++ (Lu et al., 2022b) 15 31.29 25.12 40.37 - 1.291(×1.36)

HarmoniCa 20 31.30 24.99 40.36 55.01 1.168(×1.51)

PIXART-α 1024× 1024 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.10 25.01 37.80 - 9.470
DPM-Solver++ (Lu et al., 2022b) 15 31.07 25.77 42.50 - 7.141(×1.32)

HarmoniCa 20 31.08 24.76 41.83 59.65 6.289 (×1.51)

5.3 ABLATION STUDIES

In this subsection, we employ a 20-step DDIM (Song et al., 2020a) sampler for DiT-XL/2 256×256
and settings in Sec. 5.1 without special claim.

Table 4: Ablation results of different components. The first row denotes the model w/o feature
cache. The second and last rows denote Learning-to-Cache and HarmoniCa, respectively.

Training Paradigm Learning Objective
IS↑ FID↓ sFID↓ CUR(%)↑ Latency(s)↓

Learning-to-Cache SDT L(t)
LTC L(t)

IEPO

224.37 3.52 4.96 - 0.658

✔ ✔ 115.00 18.57 16.18 32.68 0.483(×1.36)

✔ ✔ 203.41 5.20 6.07 36.70 0.458(×1.44)

✔ ✔ 166.65 8.01 7.62 34.20 0.471(×1.40)

✔ ✔ 206.67 4.88 5.91 37.50 0.456(×1.44)

Effect of different components. To show the effectiveness of components involved in HarmoniCa,
we apply different combinations of training techniques and show the results in Tab. 4. For the train-
ing paradigm, equipped with L(t)

LTC , our SDT significantly decreases FID by 10 compared to that of
Learning-to-Cache. For the learning objective, our IEPO achieves nearly a 40 IS improvement and a
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3.13 FID reduction for SDT compared with L(t)
LTC . Moreover, both SDT and IEPO can help signifi-

cantly enhance performance for the counterparts in the table. For a fair comparison, we modify the
implementation of Learning-to-Cache to train the entire Router in Tab. 4. A detailed discussion
of this can be found in Sec. J.
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Figure 7: Ablation results of iteration inter-
val C. ∅ denotes the model employing L(t)

LTC
as its loss function.

Effect of iteration interval C. As illustrated in
Fig. 7, we carry out experiments to evaluate the im-
pact of varying C values on updating λ(t) in Eq. (8).
Despite similar speedup ratios, using an extreme
C value leads to notable performance degradation.
Specifically, a large C means the proxy λ(t) fails to
accurately and timely reflect the cache mechanism’s
effect on the final image. Conversely, a small C re-
sults in overly frequent updates, complicating train-
ing convergence. Hence, we choose a moderate value of 500 as C in this paper based on its superior
performance, as demonstrated in the figure.
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Figure 8: Ablation results of coefficient β
in Eq. (6). ∅ denotes the model w/o feature
cache.

Effect of coefficient β. We also explore the trade-off
between inference speed and performance for differ-
ent values of β in Eq. (6). As shown in Fig. 8, a
higher β leads to greater acceleration but at the cost
of more pronounced performance degradation, and
vice versa. Notably, performance declines gradu-
ally when β ≤ 8e−8 and more sharply outside this
range. This observation suggests the potential for
autonomously finding an optimal β to balance speed
and performance, which we aim to address in future research.

Effect of different metrics for λ(t). In Tab. 5, we conduct experiments to explore the effect of λ(t)

with different metrics. Both ∥·∥2F and DKL(·) lead to notable performance enhancements compared
to using only the output error (i.e., λ(t) = 1) at each time step. Due to the insensitivity to outliers,∑

| · | is generally less effective for image reconstruction and inferior to the others in Tab. 5.

Table 5: Ablation results of different metrics for λ(t). The first and second columns represent the
model w/o feature cache and SDT+L(t)

LTC , respectively. DKL(·) denotes Kullback–Leibler (KL)
divergence.

λ(t) +∞ 1
∑

|x0 − x
(t)
0 | ∥x0 − x

(t)
0 ∥2F DKL(x0,x

(t)
0 )

IS↑ 224.37 166.65 172.08 206.57 205.91

FID↓ 3.52 8.01 6.95 4.88 5.25

sFID↓ 4.96 7.62 7.79 5.91 5.51

CUR(%)↑ - 34.20 34.82 37.50 36.79

Latency(s)↓ 0.658 0.471(×1.40) 0.470(×1.40) 0.456(×1.44) 0.458(×1.44)

6 CONCLUSION

In this research, we focus on accelerating Diffusion Transformers (DiTs) through the cache mech-
anism in a learning-based way. We first identify two discrepancies between training and inference
of the previous method: (1) Prior Timestep Disregard in which earlier step influences are neglected,
leading to inconsistency with inference, and (2) Objective Mismatch, where training focuses on in-
termediate results, misaligning with the final image quality target. To alleviate these discrepancies,
we harmonize training and inference by introducing a novel feature cache framework dubbed Har-
moniCa, which consists of the Step-wise Denoising Training (SDT) and the Image Error-Aware
Optimization Objective (IEPO). SDT captures the influence of all timesteps during training, closing
the gap with the inference stage, while IEPO introduces an efficient proxy for final image error,
ensuring that optimization objectives remain aligned with inference requirements. With the com-
bination of the two components, extensive experiments demonstrate that our framework achieves
superior performance and efficiency with significantly lower training cost compared to the existing
training-based method.
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Appendix
We organize the appendix as follows.

• In Sec. A, we provide the detailed procedure of HarmoniCa.
• In Sec. B, we analyze why directly employing the final image error with a regularization term as

the loss function is not feasible.
• In Sec. C, we investigate the optimization deviation of overlooking the final image error during

training.
• In Sec. D, we introduce more details about implementation and other hyper-parameters.
• In Sec. E, we adapt HarmoniCa to PIXART-Σ and show the promising performance.
• In Sec. F, we combine the quantization with HarmoniCa to show further acceleration.
• In Sec. G, we introduce the implementation details of model quantization employed in Sec. F.
• In Sec. H, we compare HarmoniCa with Learning-to-Cache under a relatively low CUR(%).
• In Sec. I, we compare HarmoniCa with ∆-DiT.
• In Sec. J, we compare HarmoniCa with Learning-to-Cache with different sampling strategies.
• In Sec. K, we conduct experiments comparing HarmoniCa with additional caching-based acceler-

ation methods.
• In Sec. L, we compare HarmoniCa with quantization and pruning methods.

• In Sec. M, we conduct more experiments on different metrics for image error proxy λ(t).
• In Sec. N, we study the effect of applying the trained Router to a different sampler.
• In Sec. O, we compare HarmoniCa with Learning-to-Cache as the speedup ratio increases.
• In Sec. P, we conduct more experiments with SA-Solver under different configurations to show

the effectiveness of HarmoniCa.
• In Sec. Q, we show the remarkable performance and acceleration ratio achieved by HarmoniCa

on more high-quality datasets with additional metrics.
• In Sec. R, we provide ablation results of HarmoniCa across different thresholds τ .
• In Sec. S, we show quantitative comparison (Fig. C and D) with some analysis.
• In Sec. T, we show more visualization results (Fig. E to K) across different model series and

resolutions.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A ALOGRITHM OF HARMONICA

As described in Alg. 1, we provide a detailed algorithm of our HarmoniCa. For clarity, we omit the
pre-fill stage (i.e., denoising at T ), where RouterT : is forced to be set to {1}1×N . The conds for
T2I tasks and class-conditional generation are pre-prepared text prompts and class labels, respec-
tively.

Algorithm 1 HarmoniCa: the upper snippet describes the full procedure, and the lower side contains
the subroutine for computing the proxy of the final image error.
func HARMONICA(ϕ, ϵθ,iters,conds, τ, β, T,C)
Require: ϕ(·) — diffusion sampler

ϵθ(·) — DiT model
iters — amount of training iterations
conds — conditional inputs
τ — threshold
β — constraint coefficient
T — maximum denoising step
C — iteration interval

1: Initialize Router with a normal distribution
2: cache = ∅ ▷ Initialize cache
3: for i in 0 to iters

T
− 1 do:

4: xT ∼ N (0, I)
5: if i% C

T
= 0 then

6: {λ(1), . . . , λ(T )} = gen proxy(ϕ, ϵθ,xT ,conds[i], τ,Router)
7: end if
8: for t in T to 1 do:
9: ϵ(t)

′
= ϵθ(xt, t,conds[i],Routert,:, τ,cache) ▷ Fig. 2

10: ϵ(t) = ϵθ(xt, t,conds[i])

11: L(t)
IEPO = λ(t)∥ϵ(t)

′
− ϵ(t)∥2F + β

∑N−1
i=0 r(t)

i ▷ Eq. (6)
12: Tune Routert,: by back-propagation
13: xt−1 = ϕ(xt, t, ϵ

(t)′)
14: end for
15: end for
16: return Router
func gen proxy(ϕ, ϵθ,xT ,cond, τ,Router)
1: cache = ∅ ▷ Initialize cache
2: Employ feature cache guided by Router to generate x0

3: for t in T to 1 do:
4: Generate M(t) ▷ Eq. (7)
5: Employ feature cache guided by Router⊙M(t) to generate x

(t)
0

6: λ(t) = ∥x0 − x
(t)
0 ∥2F ▷ Eq. (8)

7: end for
8: return {λ(1), λ(2), . . . , λ(T )}

B IMAGE ERROR WITH ROUTER REGULARIZATION TERM AS TRAINING
OBJECTIVE

In Tab. A, SDT+L(t)
x0 requires t − 1 additional denoising passes per training iteration at t to com-

pute the error of x0. Consequently, this approach consumes about ×9.73 GPU hours compared to
SDT+L(t)

LTC . Due to the extensive intermediate activations stored from timestep t to 1 for back-
propagation, it also costs ×4.90 GPU memory. This estimation is conducted with small batch sizes
and limited iterations. Therefore, SDT+L(t)

x0 is less feasible for models with larger latent spaces
or higher token counts per image, such as DiT-XL/2 512 × 512, particularly in large-batch, com-
plete training scenarios. Additionally, the network effectively becomes T ×N stacked Transformer
blocks under this strategy, making it difficult (Wang et al., 2024a) to optimize the Router with
even a moderate T value, such as 50 or 100.
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Table A: Training costs estimation across different methods for DiT-XL/2 256×256 (Peebles & Xie,
2023) (T = 20). We only employ 5K iterations with a global batch size of 8 on 4 NVIDIA H800
80G GPUs. L(t)

x0 denotes the loss function replacing L(t)
MSE in Eq. (4) with the final image error.

Method #Images Time(h) Memory(GB/GPU)

SDT+L(t)
x0 0 1.46 65.36

SDT+L(t)
LTC 0 0.15 13.33

C OPTIMIZATION DEVIATION
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Figure A: (Left) Variations of L(t)
MSE and λ(t) for SDT+L(t)

LTC . (Right) Router visualization
across different methods. The gray grid (t, i) represents using the feature in cache at t with-
out computing oi. The white grid indicates computing and updating cache. We also mark
their FID (Heusel et al., 2018) and CUR. All the above experiments employ DiT-XL/2 256 × 256
(T = 20, N = 56).

To generate high-quality x0 and accelerate the inference phase, we believe only considering the
output error at a certain timestep can cause a deviated optimization due to its gap w.r.t the error of
x0. To validate this, we plot the values of L(t)

MSE in Eq. (4) and λ(t) in Eq. (8) during the training
phase of SDT+L(t)

LTC in Fig. A (Left). Comparing L(t)
MSE and λ(t) across different denoising steps,

their results present a significant discrepancy. For instance, L(t)
MSE at t = 14 is several orders of

magnitude smaller than that at t = 1 during the entire training process, and the opposite situation
happens for λ(t). Intuitively, this indicates that we could increase the cache usage rate at t = 1, and
vice versa at t = 14 for higher performance while keeping the same speedup ratio according to the
value of the proxy λ(t). However, only considering the output error at each timestep (i.e., L(t)

MSE)
can optimize towards a shifted direction. In practice, the learned Router with the guidance of λ(t)

in Fig. A (Right) (b) caches less in large timesteps like t = 14 and reuses more in small timesteps
as t = 1 compared to that in Fig. A (Right) (a) achieving significant performance enhancement.

D MORE IMPLEMENTATION DETAILS

In this section, we present more details on the implementation of our HarmoniCa. First, following
Ma et al. (2024b), we also perform a sigmoid function 10 to each rt,i before it is passed to the model.
Moreover, unless specified otherwise, the hyper-parameter β in Eq. (6) for all experiments is given
in Tab. B; any exceptions are noted in the relevant tables.

10σ(x) = 1
1+e−x
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Table B: Hyper-parameter β for training the Router.

Model DiT-XL/2 PIXART-α PIXART-Σ

Resolution 256× 256 512× 512 256× 256 512× 512 1024× 1024 512× 512 1024× 1024 2048× 2048

T 10 20 50 20 20 100 25 20 20 20 20 20

β 7e−8 8e−8 5e−8 4e−8 1e−3 8e−4 8e−4 8e−4 8e−4 1e−3 8e−4 8e−4

E RESULTS FOR PIXART-Σ

In this section, we present the results for the PIXART-Σ family, including PIXART-Σ-XL/2-512-MS,
PIXART-Σ-XL/2-1024-MS, and PIXART-Σ-XL/2-2K-MS. For the latter one, we test by sampling
10K images. Additionally, we train the Router with a batch size of 16 and measure latency using
a batch size of 1. All other settings are consistent with those described in Sec. 5.1.

As shown in Table C, HarmoniCa achieves a ×1.51 speedup along with improved CLP scores and
sFID compared to the non-accelerated model for PIXART-Σ 2048 × 2048. Notably, this is the
first time for the feature cache mechanism to accelerate image generation with such a super-high
resolution of 2048× 2048.

Table C: Accelerating image generation on MS-COCO for the PIXART-Σ.

Method T CLIP↑ FID↓ sFID↓ CUR(%)↑ Latency(s)↓

PIXART-Σ 512× 512 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.20 26.81 42.79 - 1.912

DPM-Solver++ (Lu et al., 2022b) 15 31.23 25.99 42.08 - 1.435(×1.34)

HarmoniCa 20 31.31 24.30 42.73 65.43 1.206(×1.59)

PIXART-Σ 1024× 1024 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.37 20.98 27.47 - 9.467

DPM-Solver++ (Lu et al., 2022b) 15 31.34 21.63 28.68 - 7.100(×1.33)

HarmoniCa 20 31.36 20.94 27.25 59.52 6.432(×1.47)

PIXART-Σ 2048× 2048 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.19 23.61 51.12 - 14.198

DPM-Solver++ (Lu et al., 2022b) 15 31.26 24.40 53.34 - 9.782(×1.45)

HarmoniCa 20 31.36 23.88 53.25 58.29 9.410(×1.51)

F COMBINATION WITH QUANTIZATION

In this section, we conduct experiments to show the high compatibility of our HarmoniCa with the
model quantization technique. In Tab. D, our method boosts a considerable speedup ratio from
×1.18 to ×1.77 with only a 0.16 FID increase for PIXART-α 256× 256. In the future, we will ex-
plore combining our HarmoniCa with other acceleration techniques, such as pruning and distillation,
to further reduce the computational demands for DiT.

G EXPERIMENTAL DETAILS FOR QUANTIZATION

In Sec. F, we employ 8-bit channel-wise weight quantization and 8-bit layer-wise activation quanti-
zation for full-precision (FP32) DiT-XL/2 and half-precision (FP16) PIXART-α. The former uses a
20-step DDIM sampler (Song et al., 2020a), while the latter employs a DPM-Solver++ sampler (Lu
et al., 2022b) with the same steps. More specifically, we use MSE initialization (Nagel et al., 2021)
for quantization parameters. For the quantization-aware fine-tuning stage, we set the learning rate of
LoRA (Hu et al., 2021) and activation quantization parameters to 1e−6 and that of weight quantiza-
tion parameters to 1e−5, respectively. Additionally, we employ 3.2K iterations for DiT-XL/2 (Pee-
bles & Xie, 2023) and 9.6K iterations for PIXART-α (Chen et al., 2023) on a single NVIDIA H800
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Table D: Results of the combination of our framework and an advanced quantization method: Effi-
cientDM (He et al., 2024). IS↑ is for the former and CLIP↑ is for the latter in the table. Experimental
details for quantization can be found in Sec. G. We mark the speedup ratio and the compression ratio
in the brackets.

Method IS↑/CLIP↑ FID↓ sFID↓ CUR(%)↑ Latency(s)↓ #Size(GB)↓

DiT-XL/2 256× 256 (cfg = 1.5)

EfficientDM (He et al., 2024) 172.70 6.10 4.55 - 0.591(×1.11) 0.64(×3.93)

+HarmoniCa (β = 4e−8) 168.16 6.48 4.32 26.25 0.473(×1.40) 0.64(×3.93)

PIXART-α 256× 256 (cfg = 4.5)

EfficientDM (He et al., 2024) 30.09 34.84 30.34 - 0.469(×1.18) 0.59(×1.98)

+HarmoniCa 30.23 35.00 31.38 53.34 0.301(×1.77) 0.59(×1.98)

PIXART-α 512× 512 (cfg = 4.5)

EfficientDM (He et al., 2024) 30.71 25.82 41.64 - 0.461(×1.20) 0.59(×1.98)

+HarmoniCa 30.65 26.90 42.82 54.31 0.296(×1.80) 0.59(×1.98)

80G GPU. Other settings are the same as those from the original paper (He et al., 2024). Leverag-
ing NVIDIA CUTLASS (Kerr et al., 2017) implementation, we evaluate the latency of quantized
models employing the 8-bit multiplication for all the linear layers and convolutions.

H COMPARISON BETWEEN LEARNING-TO-CACHE AND HARMONICA WITH
A LOW CUR(%)

In this section, we compare HarmoniCa with Learning-to-Cache (Ma et al., 2024b) at a relatively
low CUR(%). As shown in Tab. E, both methods achieve a similar speedup ratio and even better
performance than non-accelerated models. Therefore, we employ higher CUR in Tab. 2 to show our
pronounced superiority.

Table E: Comparison results between Learning-to-Cache and HarmoniCa for the DiT-XL/2 with a
low CUR(%).

Method T IS↑ FID↓ sFID↓ Prec.↑ Recall↑ CUR(%)↑ Latency(s)↓

DiT-XL/2 256× 256 (cfg = 1.5)

DDIM (Song et al., 2020a) 20 224.37 3.52 4.96 78.47 58.33 - 0.658

DDIM (Song et al., 2020a) 15 214.77 4.17 5.54 77.43 56.30 - 0.564(×1.17)

Learning-to-Cache (Ma et al., 2024b) 20 228.19 3.49 4.66 79.32 59.10 22.05 0.545(×1.21)

HarmoniCa (β = 3e−8) 20 228.79 3.51 4.76 79.43 59.32 21.07 0.547(×1.20)

DiT-XL/2 512× 512 (cfg = 1.5)

DDIM (Song et al., 2020a) 20 184.47 5.10 5.79 81.77 54.50 - 3.356

DDIM (Song et al., 2020a) 18 180.06 5.62 6.13 81.37 53.90 - 3.021(×1.11)

Learning-to-Cache (Ma et al., 2024b) 20 183.57 5.45 6.05 82.10 54.90 14.64 2.927(×1.15)

HarmoniCa (β = 2e−8) 20 183.71 5.32 5.84 81.83 55.80 16.61 2.863(×1.17)

I COMPARISON BETWEEN ∆-DIT AND HARMONICA

In this section, we compare HarmoniCa with ∆-DiT (Chen et al., 2024b). Given that the code and
implementation details of ∆-DiT 11 are not open source, we report results derived from the original
paper. Additionally, we evaluate performance sampling 5000 images as used in that study. As
depicted in Tab F, our framework further decreases 20% latency and gains 3.52 IS improvement
compared with ∆-DiT for PIXART-α with a 20-step DPM-Solver++ sampler (Lu et al., 2022b).

11∆-DiT presents the speedup ratio based on multiply-accumulate operates (MACs). Here we report the
results according to the latency in that study.
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Table F: Comparison results between ∆-DiT and HarmoniCa on on MS-COCO for PIXART-α 1024
× 1024.

Method T CLIP↑ FID↓ IS↑ CUR(%)↑ Speedup↑

PIXART-α 1024× 1024 (cfg = 4.5)

DPM-Solver++ (Lu et al., 2022b) 20 31.07 31.98 41.30 - -

DPM-Solver++ (Lu et al., 2022b) 13 31.04 33.29 39.15 - ×1.54

∆-DiT (Chen et al., 2024b) 20 30.40 35.88 32.22 37.49 ×1.49

HarmoniCa (β = 1e−3) 20 31.08 32.97 40.67 62.31 ×1.63

J COMPARISON BETWEEN LEARNING-TO-CACHE WITH DIFFERENT
SAMPLING STRATEGIES

For the implementation details 12, Learning-to-Cache uniformly samples an even timestep t during
each training iteration 13, as opposed to sampling any timestep from the set {1, . . . , T} as mentioned
in Alg. 1 of its original paper. Consequently, according to Fig. 3, only rt,i, where t is an odd
timestep, is learnable, while the remaining values are set to one. We compare Learning-to-Cache
under different sampling strategies (i.e., sampling an even timestep or without this constraint for each
training iteration) against HarmoniCa. As shown in Tab. G, our framework—whether training the
entire Router or only parts of it (similar to the Learning-to-Cache implementation)—consistently
outperforms Learning-to-Cache regardless of the sampling strategy.

It should be noted that the experiments in Sec. 5, with the exception of those in Tab. 4, use an imple-
mentation that uniformly samples an even timestep t during each training iteration. This approach
achieves significantly higher performance compared to sampling without constraints.

Table G: Comparison results between Learning-to-Cache with different sampling strategies and Har-
moniCa for the DiT-XL/2 256 × 256. “♣” denotes that only parts of the Router corresponding
to odd timesteps are learnable and the remaining values are set to one (i.e., disable reusing cached
features).

Method T IS↑ FID↓ sFID↓ Prec.↑ Recall↑ CUR(%)↑ Latency(s)↓

DiT-XL/2 256× 256 (cfg = 1.5)

DDIM (Song et al., 2020a) 20 224.37 3.52 4.96 78.47 58.33 - 0.658

Learning-to-Cache (Ma et al., 2024b) 20 115.00 18.57 16.18 60.35 62.98 32.68 0.483(×1.36)

Learning-to-Cache♣ (Ma et al., 2024b) 20 201.37 5.34 6.36 75.04 56.09 35.60 0.468(×1.41)

HarmoniCa♣ (β = 3.5e−8) 20 205.39 4.86 5.92 75.06 57.97 36.07 0.463(×1.42)

HarmoniCa 20 206.57 4.88 5.91 75.20 58.74 37.50 0.456(×1.44)

K COMPARISON BETWEEN HARMONICA AND ADDITIONAL
CACHING-BASED METHODS

To highlight HarmoniCa’s advantages, we compare it with DeepCache (Ma et al., 2024c) and Faster
Diffusion (Li et al., 2023a) on a single A6000 GPU. Due to the partial open-sourcing of the compared
methods and the lack of implementation details, we directly report their results from Learning-
to-Cache. As shown in Tab. H, HarmoniCa achieves a minimal FID increase of less than 0.05,
while providing a 1.65× speedup, outperforming both Faster Diffusion and DeepCache. Notably,
DeepCache is constrained by the U-shaped structure, making it unsuitable for DiTs.

12Let T be an even number here.
13https://github.com/horseee/learning-to-cache/blob/main/DiT/train_

router.py#L244-L247
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Table H: Comparison between different caching-based approaches. We use U-ViT (Bao et al., 2023)
on ImageNet 256×256 here.

Method T FID↓ Latency(s)↓

DPM-Solver (Lu et al., 2022a) 20 2.57 7.60

Faster Diffusion (Li et al., 2023a) 20 2.82 5.95(×1.28)

DeepCache (Ma et al., 2024c) 20 2.70 4.68(×1.62)

HarmoniCa 20 2.61 4.60(×1.65)

L COMPARISON BETWEEN HARMONICA AND ADDITIONAL ACCELERATION
METHODS

As shown in Tab. I, we compare our HarmoniCa with advanced quantization and pruning methods.
Our method significantly outperforms these methods, demonstrating the substantial benefit of feature
cache for accelerating DiT models. It is important to note that the speedup ratio for quantization
is partially determined by hardware support which we do not rely on and the current customized
CUDA kernel often lacks optimization on H800’s Hopper architecture. Additionally, our method
is orthogonal to these approaches, meaning it can be combined with them for further acceleration
(results of EfficientDM + HarmoniCa have been presented in Sec. F). We believe the significant
performance drop of PTQ4DiT here results from a small-sampling-step DDIM sampler. A 50/250-
step DDPM sampler is used in the original paper.

Experimental details: We employ the bit-width of w8a8 for quantization. Specifically, the im-
plementation details for EfficientDM can be found in Sec. G. For PTQ4DiT, we implemented the
DDIM sampler and re-run the open-source code, which originally only supported DDPM. For Diff-
pruning, we re-implement the method for the DiT model (which originally only supported U-Net
models) and follow the settings specified in the original paper. For quantization, latency tests were
conducted with the w8a8 multiplication from He et al. (2024).

Table I: Comparison between different acceleration approaches. We use DiT-XL/2 on ImageNet
256×256 here. “*” denotes the latency was tested on one A100 GPU.

Method T IS↑ FID↓ sFID↓ Latency(s)↓ Latency(s)↓*

DDIM (Zhang et al., 2022) 20 224.37 3.52 4.96 0.658 1.217

EfficientDM (He et al., 2024) 20 172.70 6.10 4.55 0.591(×1.11) 0.842(×1.45)

PTQ4DIT (Wu et al., 2024) 20 17.06 71.82 23.16 0.577(×1.14) 0.839(×1.45)

Diff-pruning (Fang et al., 2023) 20 168.10 8.22 6.20 0.458(×1.44) 0.813(×1.50)

HarmoniCa 20 206.57 4.88 5.91 0.456(×1.44) 0.815(×1.49)

M ADDITIONAL METRICS FOR THE IMAGE-ERROR PROXY λ(t)

As shown in Tab. J, under the same speedup ratio, we further test MS-SSIM (Wang et al., 2003)
and LPIPS (Zhang et al., 2018) (AlexNet (Krizhevsky et al., 2017) to extract image features) which
are designed to evaluate natural image quality as metrics for λ(t). These metrics exhibit comparable
performance compared with ∥·∥2F . For instance, LPIPS slightly outperforms in FID and sFID, while
∥ · ∥2F marginally excels in IS.

Table J: Effect of additional different metrics for λ(t). We use DiT-XL/2 on ImageNet 256×256
with a 20-step DDIM sampler here.

λ(t) ∥x0 − x
(t)
0 ∥2F 1− MS-SSIM(x0, x

(t)
0 ) LPIPS(x0, x

(t)
0 )

IS↑ 206.57 204.72 205.83

FID↓ 4.88 4.91 4.83

sFID↓ 5.91 5.83 5.57

CUR(%)↑ 37.50 37.68 37.32

Latency↓ 0.456(×1.44) 0.456(×1.44) 0.456(×1.44)
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N APPLY THE TRAINED ROUTER TO A DIFFERENT SAMPLER FROM
TRAINING DURING INFERENCE

As shown in Tab. K, the Router trained with one diffusion sampler can indeed be applied to
a different sampler, such as DPM-Solver++→Sa-Solver (6th row) and IDDPM→DPM-Solver++
(10th row). However, the performance of these trials is much worse than the standard HarmoniCa.
We believe this is due to the discrepancies in sampling trajectories and noise scheduling between
the two samplers, which need to be accounted for during the Router training. In other words, the
sampler used for training should match the one used during inference to improve the performance.

Table K: Results of applying the trained Router to a different sampler from training during infer-
ence. “A→B” denotes the Router trained with the sampler “A” is directly used during inference
with the sampler “B”.

Method T CLIP↑ FID↓ sFID↓ CUR(%)↑ Latency(s)↓

PIXART-α 256× 256 (cfg = 4.5)

SA-Solver (Xue et al., 2024) 20 31.28 23.96 35.63 - 0.677

SA-Solver (Xue et al., 2024) 16 31.16 26.27 39.28 - 0.520(×1.30)

HarmoniCa 20 31.23 24.17 35.98 42.12 0.516(×1.31)

HarmoniCa (DPM-Solver++→ SA-Solver) 20 31.18 25.99 37.94 40.98 0.523(×1.29)

DPM-Solver++ (Lu et al., 2022b) 100 31.30 25.01 35.42 - 2.701

DPM-Solver++ (Lu et al., 2022b) 73 31.27 25.16 36.11 - 2.005(×1.35)

HarmoniCa 100 31.35 24.96 35.19 51.89 1.998(×1.35)

HarmoniCa (IDDPM→DPM-Solver++) 100 31.22 25.43 39.84 50.98 2.002(×1.35)

O PERFORMANCE COMPARISON WITH THE INCREASE OF THE SPEEDUP
RATIO

1.1 1.2 1.3 1.4 1.5 1.6
Speedup Ratio

80

100
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Learning-to-Cache
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Figure B: IS/FID with the increase of the speedup ratio for different methods. We employ DiT-XL/2
with a 10-step DDIM sampler on ImageNet 256× 256.

To emphasize the significant advantage of our method over Learning-to-Cache, we present the IS and
FID results as the speedup ratio increases for both Learning-to-Cache and our HarmoniCa in Fig. B.
As the speedup ratio grows, the gap between Learning-to-Cache and our approach widens substan-
tially. Specifically, with a speedup ratio of approximately 1.6, HarmoniCa achieves substantially
higher IS and lower FID scores, 30.90 and 12.34, respectively, compared to Learning-to-Cache.
Furthermore, our method consistently outperforms Learning-to-Cache across all speedup ratios.

P ADDITIONALLY RESULTS OF HARMONICA WITH SA-SOLVER
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Regarding the comparison with SA-Solver, we conducted additional experiments to highlight Har-
moniCa’s advantages. In Tab. K, we use fewer denoising steps (20 steps, compared to 25 in the main
texts). With a similar latency, our method outperforms the 16-step Sa-Solver by 2.10 FID and 3.30
sFID (4th row vs. 5th row). In Tab. L, we test our method with higher resolutions. As resolution in-
creases, HarmoniCa delivers more pronounced benefits than the fewer-step Sa-Solver. Specifically,
HarmoniCa achieves lower FID and sFID, and a higher CLIP score with a 1.46× speedup over the
non-accelerated model. In contrast, the 20-step Sa-Solver performs worse than the non-accelerated
model, with a 1.30× speedup.

Table L: HarmoniCa +SA-Solver for high resolution image generation on MS-COCO captions.

Method T CLIP↑ FID↓ sFID↓ CUR(%)↑ Latency(s)↓

PIXART-α 512× 512 (cfg = 4.5)

SA-Solver (Xue et al., 2024) 25 31.23 25.43 39.84 - 2.263

SA-Solver (Xue et al., 2024) 20 31.19 25.85 40.08 - 1.738(×1.30)

HarmoniCa 25 31.24 24.44 39.87 52.04 1.611(×1.40)

PIXART-α 1024× 1024 (cfg = 4.5)

SA-Solver (Xue et al., 2024) 25 31.05 23.65 38.12 - 11.931

SA-Solver (Xue et al., 2024) 20 31.02 23.88 39.41 - 9.209(×1.30)

Harmonica 25 31.10 23.52 37.89 52.46 8.151(×1.46)

Q RESULTS OF T2I GENERATION ON ADDITIONAL DATASETS AND METRICS

Table M: Accelerating image generation on MJHQ-30K (Li et al., 2024a) and sDCI (Urbanek et al.,
2024) for the PIXART-α. We sample 30K images for MJHQ-30K and 5K images for sDCI. “IR”
denotes Image Reward.

Method T

MJHQ sDCI

Latency (s)↓Quality Similarity Quality Similarity

FID↓ IR↑ CLIP↑ LPIPS↓ PSNR↑ FID↓ IR↑ CLIP↑ LPIPS↓ PSNR↑

PIXART-α 512× 512 (cfg = 4.5)

DPM-Solver 20 7.04 0.947 26.04 - - 11.47 0.994 25.22 - - 1.759

DPM-Solver 15 7.45 0.899 26.02 0.138 21.41 11.55 0.876 25.19 0.178 19.85 1.291(×1.36)

HarmoniCa 20 7.01 0.955 26.04 0.129 22.09 11.49 0.951 25.22 0.171 20.01 1.168(×1.51)

PIXART-α 1024× 1024 (cfg = 4.5)

DPM-Solver 20 6.24 0.966 26.23 - - 10.96 0.986 25.56 - - 9.470

DPM-Solver 15 6.49 0.921 26.18 0.107 23.98 11.22 0.942 25.51 0.186 18.44 7.141(×1.32)

HarmoniCa 20 6.31 0.944 26.21 0.101 25.01 11.09 0.979 25.54 0.175 20.42 6.289(×1.51)

In addition to the evaluations on ImageNet and MS-COCO, we conducted further tests using the
high-quality MJHQ-30K (Li et al., 2024a) and sDCI (Urbanek et al., 2024) datasets with PixArt-α
models. We added several metrics, including Image Reward (Xu et al., 2024), LPIPS (Learned Per-
ceptual Image Patch Similarity) (Zhang et al., 2018), and PSNR (Peak Signal-to-Noise Ratio). The
results, summarized in the following table, demonstrate that HarmoniCa consistently outperforms
DPM-Solver across all metrics on both the MJHQ and sDCI datasets. For instance, at the 512×512
resolution, HarmoniCa achieves an FID of 7.01 on the MJHQ dataset, which is lower than the 7.04
FID of DPM-Solver with 20 steps, indicating better image quality. Additionally, under the same
configuration, HarmoniCa achieves a PSNR of 22.09, compared to DPM-Solver’s 21.41 with 15
steps, reflecting better numerical similarity.
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R SENSITIVITY OF HARMONICA TO THE VALUE OF THE THRESHOLD τ

We conduct an ablation study on different values of the caching threshold τ ∈ [0, 1), as shown in
Tab. N. The results demonstrate that HarmoniCa is robust w.r.t variations in τ .

Table N: Performance of HarmoniCa across different values of τ ∈ [0, 1) (τ is the router threshold
as described in Sec. 3). We employ DiT-XL/2 on ImageNet 256× 256 here.

τ T IS↑ FID↓ sFID↓ Latency(s)↓

0.1 10 151.83 13.35 11.13 0.270(×1.23)

0.5 10 151.80 13.41 11.09 0.269(×1.23)

0.9 10 151.78 13.37 11.08 0.270(×1.23)

S QUALITATIVE COMPARISON & ANALYSES

As shown in Fig. C and D, we provide qualitative comparison between HarmoniCa and other base-
lines, e.g., Learning-to-Cache (Ma et al., 2024b), FORA (Selvaraju et al., 2024), and the fewer-step
sampler. Our HarmoniCa with a higher speedup ratio can generate more accurate details, e.g., 2nd
column of Fig. D (d) vs. (b) and objective-level traits, e.g., 2nd column of Fig. C (d) vs. (c).

(a) 20-step DDIM sampler

(b) 14-step DDIM sampler (×1.41)

(c) Learning-to-Cache (×1.41)

(d) HarmoniCa (×1.44)

Figure C: Random samples from DiT-XL/2 256×256 (Chen et al., 2023) with different acceleration
methods. The resolution of each sample is 256 × 256. We employ cfg = 4 here for better visual
results. Key differences are highlighted using rectangles with various colors.

T VISUALIZATION RESULTS

As demonstrated in Figures E to K, we present random samples from both the non-accelerated
DiT models and ones equipped with HarmoniCa, using a fixed random seed. Other settings are
the same as mentioned in the former experiments. Our approach not only significantly accelerates
inference but also produces results that closely resemble those of the original model. For a detailed
comparison, zoom in to closely examine the relevant images.
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“Hello kitty cake surrounded 
by strawberries and kukohon, 

in the style of camille 
pissarro, yanjun cheng, bella 
kotak, iso 200, oshare kei, 

caninecore, meticulous design”

“The small fluffy Corgi is 
sitting among some flowers 
and mountains background , 

in the style of matte 
painting, happy facial 

expression, gongbi, white 
and cyan, movie still, eye  
catching detail, textured 
shading  culture  infused”

“Landscape photography, clean 
sharp focus, hyperrealist 

photography, real photography, 
wide full body angle, 

editorial, luxury reort pool 
in Positano, Italy, 24mm 

Kodak film. dramatic 
backlighting, sunny, bright, 
vibrant and colorful, soft 

body, portra 800 ISO, medium 
format grain, realistic, 

sharp focus, vintage feel”

“Simple 8bit pixel art, an 
astronomical observatory with 
open dome slit on the peak of 
a mountain at dusk, lit by 

the glow of stars and planets 
emerging at the retreat of 

the setting sun, a beautiful 
landscape on the valley below, 
in the style of video game 
detailed 8bit pixel art, 

photography”

(a) 20-step DPM-Solver

(b) 15-step DPM-Solver (×1.36)

(c) FORA (×1.34)

(d) HarmoniCa (×1.51)

Figure D: Random samples from PIXART-α 512×512 (Chen et al., 2023) with different acceleration
methods. The resolution of each sample is 512× 512.

(a) DiT-XL/2 w/o feature cache

(b) HarmoniCa (×1.44)

Figure E: Random samples from (a) non-accelerated and (b) accelerated DiT-XL/2 256×256 (Chen
et al., 2023) with a 20-step DDIM sampler (Song et al., 2020a). The resolution of each sample is
256× 256. We mark the speedup ratio in the brackets.
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(a) DiT-XL/2 w/o feature cache

(b) HarmoniCa (×1.30)

Figure F: Random samples from (a) non-accelerated and (b) accelerated DiT-XL/2 512×512 (Chen
et al., 2023) with a 20-step DDIM sampler (Song et al., 2020a). The resolution of each sample is
512× 512.

“A cozy wooden 
cabin perched on 
the side of a 

mountain, 
overlooking a vast 
valley. The sun is 
setting, casting a 
golden glow over 
the cabin and the 

surrounding 
landscape. Smoke 
rises from the 

chimney, and the 
scene feels warm 
and inviting.”

“A peaceful oasis 
in the middle of an 

endless desert, 
with palm trees 

reflecting in the 
crystal-clear water. 
The early morning 
sun is rising, 

casting a golden 
glow over the sand 
dunes, while the 
sky transitions 

from deep blue to 
vibrant orange.”

“A nighttime scene 
of a festival where 
hundreds of glowing 
lanterns float down 
a river, their warm 
light reflecting on 
the water. People 

stand on the banks, 
watching the 

lanterns drift by, 
with fireworks 

lighting up the sky 
above.”

“A dense forest at 
night, illuminated 
by the glow of the 

full moon. 
Fireflies dance in 
the air, creating 
soft, flickering 
lights among the 
trees. The forest 

floor is covered in 
moss and ferns, and 

the scene feels 
magical and 
tranquil.”

“An old, grand 
Victorian library 

with tall 
bookshelves filled 
with leather-bound 
books. Sunlight 

streams in through 
large stained-glass 
windows, casting 
colorful patterns 
on the floor. A 
sense of history 

and knowledge fills 
the air.”

(a) PIXART-α w/o feature cache

(b) HarmoniCa (×1.52)

Figure G: Random samples from (a) non-accelerated and (b) accelerated PIXART-α 256×256 (Chen
et al., 2023) with a 20-step DPM-Solver++ sampler (Lu et al., 2022b). The resolution of each sample
is 256× 256. Text prompts are exhibited above the corresponding images
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“A floating crystal 
palace high above the 
clouds, with intricate 
spires and towers made 

of transparent, 
glowing crystals. The 
sky is filled with 

radiant sunlight, and 
the clouds below 

reflect the palace's 
brilliance, creating a 

heavenly, magical 
scene.”

“Two samurais clad in 
futuristic, neon-

infused armor face off 
in a high-tech dojo. 
Their glowing katanas 
clash as electric 

sparks fly. The scene 
is set against a 

backdrop of towering 
city buildings and a 

bright, cyberpunk night 
sky.”

“A massive dragon with 
shimmering scales 

glides over a dense, 
enchanted forest. Its 
wings create powerful 

gusts of wind, 
rustling the treetops 
below. The dragon’s 
scales reflect the 
sunlight, creating a 
dazzling, majestic 

spectacle.”

“In the depths of a 
dark, shadowy forest, 
a glowing portal of 
swirling blue and 
purple energy opens 
between ancient, 

twisted trees. A faint 
light emanates from 

the portal, casting an 
otherworldly glow on 
the forest floor 
covered in fallen 
leaves and mist.”

(a) PIXART-α w/o feature cache

(b) HarmoniCa (×1.51)

Figure H: Random samples from (a) non-accelerated and (b) accelerated PIXART-α 512×512 (Chen
et al., 2023) with a 20-step DPM-Solver++ sampler (Lu et al., 2022b). The resolution of each sample
is 512× 512.
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“A medieval knight in full 
armor standing in a castle 
courtyard, holding a sword 

with both hands. His face is 
solemn as he prepares for 
battle, while the flags of 
the kingdom flutter behind 

him in the wind.”

“A ballet dancer mid-
pirouette on an empty stage, 

her elegant movements 
illuminated by a single 

spotlight. Her tutu swirls 
around her as she leaps 

gracefully through the air, 
capturing the essence of 

motion and grace.”

“An ancient, majestic castle 
nestled atop a mountain peak, 
surrounded by swirling clouds, 

illuminated by golden 
sunlight. A dragon circles 
above, while knights stand 
guard below. The scene is 
full of magical realism, 
detailed stone walls, and 

elaborate banners flapping in 
the wind.”

“A curious red fox exploring 
a snow-covered forest, its 
fur blending with the white 
landscape. Its sharp eyes 

scan the surroundings as it 
sniffs the ground, leaving 
delicate paw prints in the 

snow.”

“A futuristic space station 
orbiting a colorful planet, 
surrounded by glowing stars 

and nebulae. Astronauts float 
near the station, with sleek 
spacecraft docking. The image 

captures the vastness and 
wonder of space, with 

intricate details on the 
station’s metallic structure.”

“A sleek, advanced city at 
dawn, with shimmering glass 

towers, floating gardens, and 
high-tech transportation 

systems. The sky is painted 
with pastel colors as the sun 
rises, casting a golden glow 

over the futuristic 
landscape.”

(a) PIXART-α w/o feature cache

(b) HarmoniCa (×1.51)

Figure I: Random samples from (a) non-accelerated and (b) accelerated PIXART-α 1024 ×
1024 (Chen et al., 2023) with a 20-step DPM-Solver++ sampler (Lu et al., 2022b). The resolu-
tion of each sample is 1024× 1024.
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“Two colossal mechas, each 
covered in intricate armor 
plating and glowing power 
cores, engage in battle in 
the middle of a futuristic 
city. Skyscrapers crumble 

around them as they exchange 
powerful blows, and the 

energy radiating from their 
weapons lights up the night 

sky.”

“A gargantuan sea creature 
with towering spines and 

glowing eyes rises from the 
ocean, water cascading off 
its massive form. Lightning 

illuminates the stormy sky as 
ships scramble to escape its 

wrath, emphasizing the 
creature’s immense size and 

power.”

“A colossal, ancient citadel 
made of shining marble and 

gold, perched atop the clouds. 
Massive towers and archways 
reach towards a sky filled 

with radiant sunlight, while 
a staircase of light descends 
from the heavens, hinting at 
the citadel’s divine origins.”

“A majestic phoenix, its 
wings spread wide, emerges 

from a massive pillar of fire. 
The flames swirl around it in 

a dance of red, gold, and 
blue, while sparks and embers 

fill the air. Its form is 
both terrifying and beautiful, 

a symbol of rebirth and 
eternal power.”

“A vast army of warriors clad 
in glistening armor charging 
across an icy battlefield 
under a stormy, dark sky. 

Blizzards rage around them, 
and the ground shakes as they 
clash with their enemies. The 
scene is filled with motion, 
energy, and the raw power of 

war.”

“A titanic clash between two 
massive, glowing deities in 
the sky, with thunderbolts 
and energy waves exploding 

around them. Below, mountains 
crumble and oceans churn as 
their power shakes the very 

fabric of reality, creating a 
breathtaking cosmic 

spectacle.”

(a) PIXART-Σ w/o feature cache

(b) HarmoniCa (×1.47)

Figure J: Random samples from (a) non-accelerated and (b) accelerated PIXART-Σ 1024 ×
1024 (Chen et al., 2024a) with a 20-step DPM-Solver++ sampler (Lu et al., 2022b). The resolu-
tion of each sample is 1024× 1024.
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“Two samurais locked in a fierce duel under a cherry blossom tree, depicted in the 
traditional Japanese Ukiyo-e style. The bold outlines, flat colors, and exaggerated poses 

capture the intensity of the moment, while the delicate cherry blossoms fall gently 
around them.”

“A peaceful alpine village nestled in the shadow of towering, snow-capped mountains, 
painted in a detailed realism oil painting style. The wooden houses have sloping roofs 
covered in snow, and smoke rises gently from their chimneys. The brushwork captures the 

texture of the wood and the soft shadows cast by the evening light.”

“A studio photograph of an elegant Asian woman in a flowing silk dress. Her hair is 
styled in soft waves, and the smooth fabric of her dress reflects the studio lights 

gently. The high-definition shot focuses on the intricate textures of her skin and hair, 
as well as the subtle glint of light in her eyes.”

(a) PIXART-Σ w/o feature cache (b) HarmoniCa (×1.51)

Figure K: Random samples from (Left) non-accelerated and (Right) accelerated PIXART-Σ-
2K (Chen et al., 2024a) with a 20-step DPM-Solver++ sampler (Lu et al., 2022b). The resolution of
each sample is 2048× 2048.
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