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Abstract
K-Means clustering is a classical and effective un-
supervised learning method attributed to its sim-
plicity and efficiency. However, it faces notable
challenges, including sensitivity to random initial
centroid selection, a limited ability to discover
the intrinsic manifold structures within nonlinear
datasets, and difficulty in achieving balanced clus-
tering in practical scenarios. To overcome these
weaknesses, we introduce a novel framework for
K-Means that leverages manifold learning. This
approach eliminates the need for centroid calcu-
lation and utilizes a cluster indicator matrix to
align the manifold structures, thereby enhancing
clustering accuracy. Beyond the traditional Eu-
clidean distance, our model incorporates Gaussian
kernel distance, K-nearest neighbor distance, and
low-pass filtering distance to effectively manage
data that is not linearly separable. Furthermore,
we introduce a balanced regularizer to achieve
balanced clustering results. The detailed exper-
imental results demonstrate the efficacy of our
proposed methodology.

1. Introduction
Clustering is an unsupervised learning technique aiming
at organizing data groups that exhibit similar characteris-
tics without labels (Nie et al., 2023). It has been widely
applied in Web data analysis and information retrieval (Fu
et al., 2023; He et al., 2024). K-Means (Hartigan & Wong,
1979; Lloyd, 1982) is one of the simplest and most popular
clustering algorithms (Liu et al., 2023). Its core concept
is partitioning data points into c mutually exclusive clus-
ters, and with each centroid representing a cluster, each data
point is assigned to the cluster associated with its nearest
centroid. The algorithm achieves this by minimizing the
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sum of squared distances between each data point and its
corresponding centroid within a cluster.

While K-Means excels in processing linearly separable data,
it has limitations when dealing with nonlinearly separable
data (Bai & Liang, 2020; Lu et al., 2024; Cheng et al.,
2024). This is because it utilizes Euclidean distance to mea-
sure the distance between data points, making it incapable
of dividing nonlinearly separable clusters. To address these
limitations, researchers have proposed various improvement
methods. For instance, Kernel K-Means (KKM) (Schölkopf
et al., 1998) introduces a kernel function to map data into
a high-dimensional space, where the transformed data be-
come linearly separable. This has led to the development of
the Multi-Kernel K-Means (MKKM) algorithm (Du et al.,
2015; Yao et al., 2020; Wang et al., 2022; Liu, 2022), which
utilizes multiple kernel functions to capture the nonlinear
structure of data better. Another solution is spectral cluster-
ing (Ng et al., 2001; Zhou et al., 2020; Ding et al., 2024),
an algorithm based on graph theory (Yang et al., 2023b),
which utilizes the similarity matrix between data points
to project them into a low-dimensional feature space and
then applies the traditional K-Means algorithm, making it
suitable for complex nonlinear data and irregularly shaped
clusters (Fettal et al., 2023; Yang et al., 2023a).

However, the aforementioned K-Means methods all require
the initialization of cluster centroids, which can easily lead
to suboptimal local solutions rather than the optimal global
solution (Nie et al., 2022). K-Means++ (Arthur & Vassil-
vitskii, 2006) adopts an improved initialization method that
selects initial centroids according to a probabilistic distri-
bution, resulting in a more uniform distribution of initial
centroids and reducing the risk of falling into inferior local
minima. Nie et al. proposed the Coordinate Descent Method
for solving K-Means (CDKM), which can solve a better lo-
cal minima of the objective function and effectively address
the problem of forming empty clusters (Nie et al., 2022).
Nevertheless, these methods still require the computation of
cluster centroids, which are calculated based on the mean
of all points within a cluster. Consequently, outliers can sig-
nificantly impact the clustering results (Wang & Su, 2011;
Huang et al., 2021; Heidari et al., 2024). Both (Lu et al.,
2023) and (Pei et al., 2023) introduce centerless variants of
K-Means, which minimize the distance between samples
within the cluster instead of the distance between samples
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and the centroids. Therefore, these methods eliminate the
need for initializing and updating the cluster centroid, thus
preventing their negative influence and leading to more ro-
bust results and improved clustering performance.

Although these methods address the centroid initialization
problem, they generally overlook the issue of balanced clus-
tering, resulting in a bias towards larger clusters and smaller
clusters being absorbed by larger ones (Malinen & Fränti,
2014). Even worse, all samples might be assigned to a sin-
gle cluster. Balanced clustering, on the contrary, seeks to
minimize the mean squared error (MSE) meanwhile con-
sidering the balance of cluster sizes, thus avoiding trivial
solutions. Regularized K-Means (RKM) (Lin et al., 2019)
introduces regularization terms to control the size of each
cluster for achieving balanced clustering, while Discrete and
Balanced Spectral Clustering with Scalability (DBSC) mod-
ifies the objective function of spectral clustering to promote
balanced spectral clustering (Wang et al., 2023). However,
these methods ignore the manifold structure and thus cannot
exploit explicit cluster distribution.

To mitigate these problems, we propose a novel unified
K-Means clustering framework. We transform traditional K-
Means into a label-guided manifold learning version without
the need to compute the cluster centroids, thereby improv-
ing the robustness of clustering. Specifically, we use the
learned cluster indicator matrix to construct a similarity ma-
trix, which ensures the consistency of the data manifold
structure and cluster labels. Moreover, we maximize the bal-
anced regularization term to ensure the balance of clustering
results and provide the theoretical proof of its effectiveness.
Finally, we further introduce four different distances, i.e.,
Euclidean distance, K-nearest neighbor distance, Gaussian
kernel distance, and low-pass filtering distance, which are
suitable for nonlinearly separable data and make it adaptive
to datasets of various structures. The main contributions of
this work can be summarized as follows:

• Decentralization: We propose a unified K-Means clus-
tering framework that eliminates centroid calculations
and hence improves the robustness to outliers.

• Label-Guided Manifold Learning: We construct the
similarity matrix using a learnable cluster indicator
matrix, ensuring the consistency of the data’s manifold
structure and its labels.

• Cluster Balance: We introduce a balanced regular-
ization term that maximizes ℓ2,1-norm of the cluster
indicator matrix to ensure the balance of clustering
results.

• Four Distance Metrics: We introduce four different
distance matrices to explore different K-Means variants
and improve clustering performance on nonlinearly
separable and complex data.

2. Related Work
2.1. K-Means

Given data X = {x1,x2, · · · ,xn} ∈ Rd×n, the num-
ber of cluster centroids c, and the cluster centroids uk =
1

nk

nk∑
i=1

xi, (k = 1, 2, . . . , c), nk is the number of samples

in the k-th cluster, the K-Means clustering algorithm aims
to minimize the sum of squared distances between each sam-
ple and its corresponding cluster centroid. The objective
function of K-Means can be expressed as:

min
uk,F

c∑
k=1

nk∑
i=1

∥xi − uk∥22 Fik s.t. F ∈ Ind (1)

where F ∈ Rn×c is a cluster cluster indicator matrix. The
i-th row f i of matrix F represents the label vector for the
i-th sample. Fik = 1 indicates that the i-th sample belongs
to the k-th cluster, and Fik = 0 otherwise. This means that
each sample’s label vector f i is a one-hot label.

2.2. Kernel K-Means

Kernel K-Means is a generalization of the traditional K-
Means clustering algorithm. First, a nonlinear mapping func-
tion ϕ is used to map the data points to a higher-dimensional
feature space, and then the traditional K-Means algorithm
is applied. Taking the Gaussian kernel K-Means as an ex-
ample, its objective function can be expressed as:

min
uk,F

c∑
k=1

nk∑
i=1

∥ϕ(xi)− uk∥22 Fik s.t. F ∈ Ind (2)

where uk =
1

nk

nk∑
i=1

ϕ(xi) is the centroid of

the k-th cluster in the feature space. By em-
ploying the Gaussian kernel function K(x,y) =

exp

(
−∥x− y∥2

2σ2

)
, σ is a scaling parameter, we can

implicitly compute the inner product or distance in the
high-dimensional feature space without the need to
explicitly calculate the feature vector ϕ(x). The objective is
to minimize the sum of squared distances between each data
point and its assigned cluster centroid in the feature space,
which allows for the discovery of nonlinear structures of
the data.

2.3. Fuzzy K-Means

Fuzzy K-Means is an extension of the traditional K-Means
algorithm and diverges from the hard clustering of the tradi-
tional K-Means by employing soft clustering, which permits
each data point to belong to multiple clusters with a certain
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degree of membership. This approach offers enhanced flex-
ibility, particularly adept at handling scenarios where the
boundaries between data points are not distinctly defined.
The objective function of fuzzy K-Means can be articulated
as follows:

min
uk,F

c∑
k=1

nk∑
i=1

∥xi − uk∥22 F
m
ik s.t. F ⩾ 0,F1 = 1 (3)

where 1 is an all-one vector; m > 1 is a parameter that
controls the fuzziness of the membership function; a larger
m indicates higher fuzziness.

3. A Unified Centerless Framework
The K-Means method and its variants described above rely
on the calculation of cluster centers, making them suscep-
tible to outliers, which can negatively affect clustering re-
sults. To address this issue, we first introduce Theorem 1,
transforming the K-Means clustering into a label-guided
manifold learning version, which is also equal to a unified
centerless framework.
Theorem 1. Let xi be the i-th sample of data matrix X, uk

be the centroid of the k-th cluster. Then, we have
c∑

k=1

nk∑
i=1

∥xi − uk∥22 Fik =

n∑
i=1

n∑
j=1

∥xi − xj∥22 Sij , (4)

where S is the similarity matrix that represents the manifold
structure of the data. It is constructed from the cluster
indicator matrix F, such that S = GG⊤, where G =
FP−1/2, P ∈ Rc×c is a diagonal matrix, and Pkk =∑n

i=1 Fik

Proof. Expanding the left side of Equation (4) yields:

tr
( n∑

i=1

c∑
k=1

xix
⊤
i Fik

)
− 2tr

( n∑
i=1

c∑
k=1

x⊤
i ukFik

)
+ tr

( n∑
i=1

c∑
k=1

uku
⊤
k Fik

)
.

(5)

Taking the partial derivative with respect to uk and setting
it to zero, we find:

uk =

∑n
i=1 xiFik

Pkk
= XfkP

−1
kk . (6)

where fk is the k-th column vector of F.

Substituting Equation (6) back into Equation (5) and letting
Q ∈ Rn×n be a diagonal matrix where Qii =

∑c
k=1 Fik,

we see that Equation (5) is simplified to:

tr

n∑
i=1

xix
⊤
i Qii − tr

c∑
k=1

XfkP
−1
kk f

⊤
k X⊤

=tr(X(Q− FP−1F⊤)X⊤)

(7)

Letting the similarity matrix S = FP−1F⊤, then

S1 = FP−1(1⊤F)⊤ = F1 = Q1 (8)

Equation (8) means that Q is a degree matrix of S, then
Equation (7) can be written as:

tr(X(Q−FP−1F⊤)X⊤) =

n∑
i=1

n∑
j=1

∥xi − xj∥22 Sij (9)

Therefore, according to Equation (5), Equation (7), and
Equation (9), we can conclude that Equation (4) holds and
Theorem 1 is proved.

Since S = GG⊤, Sij =
〈
gi,gj

〉
, gi is the i-th row of

G, if the elements of the distance matrix D are defined as
Dij = ∥xi − xj∥22, then we have

min
F

n∑
i=1

n∑
j=1

∥xi − xj∥22 Sij = min
F

tr(G⊤DG) (10)

According to Equation (4), we have:

min
uk,F

c∑
k=1

nk∑
i=1

∥xi − uk∥22 Fik = min
F

tr(G⊤DG) (11)

Drawing from the Equation (11), we have derived a unified
centerless framework for K-Means and manifold learning.
This framework not only dispenses with the calculation of
cluster centroids but also employs a cluster indicator matrix
to construct a similarity matrix S, thereby preserving the
consistency between the data’s manifold structure and its
labels. In what follows, we will discuss the new version of
K-Means, Kernel K-Means, and Fuzzy K-Means.

(1) K-Means: According to Theorem 1, the objective of
traditional K-Means can be reformulated as follows:

min
F

n∑
i=1

n∑
j=1

∥xi − xj∥22 Sij = min
F

tr(G⊤DG)

=min
F

tr((FP−1/2)⊤D(FP−1/2))

=min
F

tr(F⊤DF(P)−1) s.t. F ∈ Ind

(12)

where F ∈ Rn×c denotes the cluster indicator matrix, and
D ∈ Rn×n represents the distance matrix.

(2) Kernel K-Means: When applied Theorem 1 in the
kernel space, Equation (2) can be rewritten as

min
F

n∑
i=1

n∑
j=1

∥ϕ(xi)− ϕ(xj)∥22 Sij = min
F

tr(G⊤DG)

= min
F

tr(F⊤DF(F⊤F)−1) s.t. F ∈ Ind

(13)
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where Dij = ∥ϕ(xi)− ϕ(xj)∥22 = K(xi,xi) +
K(xj ,xj) − 2K(xi,xj). The novel form Equation (13)
of Kernel K-Means avoids reliance on cluster centroids, en-
hancing the method’s capacity to handle nonlinear data and
imparting greater robustness of clustering results.

(3) Fuzzy K-Means: Let Wik = Fm
ik, G = WP−1/2,

S = GG⊤, and P ∈ Rc×c be a diagonal matrix where
Pkk =

∑n
i=1 Wik. According to Theorem 1, Equation (3)

can be reformulated as

min
F

n∑
i=1

n∑
j=1

∥xi − xj∥22 Sij = min
F

tr(G⊤DG)

=min
F

tr(W⊤DW(P)−1) s.t. F ⩾ 0,F1 = 1

(14)

where the elements of the distance matrix D are defined as
Dij = ∥xi − xj∥22.

Therefore, we can say that K-Means, Kernel K-Means, and
Fuzzy K-Means are all unified in our centerless manifold
framework minF tr(G⊤DG).

4. Methodology
4.1. Motivation and Objective

We substitute G = FP−1/2 into Equation (10) and rewrite
the unified K-Means as minF tr(F⊤DF(P)−1). Since the
cluster indicator matrix F is discrete and challenging to
optimize directly, and it does not ensure a balanced cluster-
ing, we introduce a balanced regularization term based on
ℓ2,1-norm and obtain the overall objective:

min
F

tr(F⊤DF(P)−1)− λ∥F⊤∥2,1 s.t. F ⩾ 0,F1 = 1

(15)
where λ is a balance parameter. Then, we prove that maxi-
mizing ∥F⊤∥2,1 helps to address both issues via Theorem 2.
Theorem 2. Given n1 + n2 + . . .+ nc = n, where nk ≥ 0
represents the number of samples in the k-th cluster. By
achieving the following balanced regularization term, F is
discrete and exhibits a balanced cluster distribution, i.e.,
the maximum will be attained when n1 = n2 = . . . = nc.

max
F
∥F⊤∥2,1 s.t. F ⩾ 0,F1 = 1 (16)

Proof. Let fk ∈ Rn×1 represents k-th column of F. The
ℓ2,1-norm of the cluster indicator matrix F⊤ ∈ Rc×n is
defined as follows:

∥F⊤∥2,1 =

c∑
k=1

√
f⊤k fk =

c∑
k=1

√√√√ n∑
i=1

F2
ik =

c∑
k=1

ak (17)

where

ak =

√√√√ n∑
i=1

F2
ik =

√
f⊤k fk (18)

Lemma 1. According to the Cauchy-Schwarz inequality, let
a = [a1, a2, . . . , ac]

⊤ ∈ Rc×1, e = [1, 1, · · · , 1]⊤ ∈ Rc×1.
Then, we have

|⟨a, e⟩| ≤ ∥a∥2 ∥e∥2 ⇒
c∑

k=1

ak ≤ ∥a∥2
√

(1 + 1 + · · ·+ 1)

⇒
c∑

k=1

ak ≤ ∥a∥2
√
c

(19)

The equality holds if and only if a1 = a2 = · · · = ac.

According to Lemma 1, maximizing ∥F⊤∥2,1 =
∑c

k=1 ak
is equivalent to maximizing ∥a∥2. By substituting into
Equation (18), we obtain

∥a∥2 =

√√√√ c∑
k=1

a2k =

√√√√ c∑
k=1

n∑
i=1

F2
ik =

√√√√ n∑
i=1

c∑
k=1

F2
ik

(20)
Thus, we have

max ∥a∥2 ⇒ max ∥a∥22 = max

n∑
i=1

c∑
k=1

F2
ik (21)

Obviously, each row f i of F is independent, so for each row,
we have

max
Fik

c∑
k=1

F2
ik s.t. 0 ≤ Fik ≤ 1,

c∑
k=1

Fik = 1 (22)

The solution to maximizing Equation (22) should be realized
when f i has only one element equal to 1 and the rest are
0, and the maximum value of Equation (22) should be 1.
Thus, we can conclude that Equation (22) of n rows reach
maximum only when F is a discrete cluster indicator matrix.

In this case, F⊤F ∈ Rc×c is a diagonal matrix whose k-
th diagonal element is the number of samples in the k-th
cluster, hence:

ak =

√
fk

⊤fk =
√
nk

(23)

where nk is the number of samples of the k-th cluster, fk is
the k-th column of the matrix F.

According to a1 = a2 = · · · = ac, we have
√
n1 =

√
n2 =

· · · = √nc, and the equality holds if and only if n1 = n2 =
· · · = nc = n/c.

Theorem 2 demonstrates that Equation (16) can achieve an
approximate cluster balance. When the optimal solution is

achieved, (F⊤F)1/2 =

√
n

c
I. Consequently, our objective

function in the Equation (15) can be simplified to:

min
F

tr(F⊤DF)− λ∥F⊤∥2,1 s.t. F ⩾ 0,F1 = 1 (24)
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When Equation (24) achieves the optimal solution, F is
discrete and each cluster is balanced.

4.2. Optimization

The ℓ2,1-norm in Equation (24) is difficult to solve directly
by gradient descent because of its non-smooth property.
To simplify the optimization process, we define f(F) =
∥F⊤∥2,1 and perform a first-order Taylor expansion at F(t)

as follows:

f(F) = f(F(t)) + ⟨∇f(F(t)),F− F(t)⟩ (25)

where F(t) is the solution at the t-th iteration, and∇f(F(t))
is the gradient of ∥F⊤∥2,1. The derivative of ∥F⊤∥2,1 with
respect to F is denoted as H, given by:

H =
∂∥F⊤∥2,1

∂F
=

1

2
tr
(
FΛF⊤)
∂F

= FΛ (26)

where Λ is a diagonal matrix and Λkk = 1
∥fk∥2

; fk ∈ Rn×1

is the k-th column of F.

Ignoring the constant in the Equation (25), we solve the
Equation (24) iteratively as follows

F(t+1) = min
F

tr(F⊤DF)− λ⟨∇f(F(t)),F⟩

= min
F

tr(F⊤DF)− λtr(H⊤F)
(27)

So we approximate Equation (24) to Equation (28), F is
updated by solving the following problem:

min
F⩾0,F1=1

tr(F⊤DF)− λtr(H⊤F) (28)

Let F̃ =

[
f i

F0

]
, D̃ =

[
Dii d⊤

i0

di0 D00

]
, where f i ∈ R1×c is

the i-th row of the matrix F, F0 ∈ R(n−1)×c represents
the matrix formed by all rows of matrix F except for the
i-th row f i. di0 ∈ R(n−1)×1 denotes the column vector
consisting of all elements of the i-th column di excluding
the element Dii of matrix D. Lastly, D00 ∈ R(n−1)×(n−1)

represents the matrix formed by all elements of matrix D
except for those in the i-th row and i-th column. Obviously,
tr(F⊤DF) = tr(F̃⊤D̃F̃), and we have:

F̃⊤D̃F̃ =
[
(f i)⊤ (F0)

⊤] [Dii d⊤
i0

di0 D00

] [
f i

F0

]
=(f i)⊤Diif

i + (F0)
⊤di0f

i + (f i)⊤d⊤
i0F0

+ (F0)
⊤D00F0

(29)

Let H̃ =

[
hi

H0

]
, hi is the i-th row of H, H0 ∈ R(n−1)×c

represents the matrix formed by all rows of matrix H except

for the i-th row hi, H̃⊤F̃ =
[
(hi)⊤ (H0)

⊤] [ f i
F0

]
=

(hi)⊤f i+(H0)
⊤F0. Note that tr(H⊤F) = tr(H̃⊤F̃), and

we have:

F̃⊤D̃F̃− λH̃⊤F̃ =(f i)⊤Diif
i + (F0)

⊤di0f
i

+ (f i)⊤d⊤
i0F0 + (F0)

⊤D00F0

− λ(hi)⊤f i − λ(H0)
⊤F0

(30)
Then, removing items not related to variable f i, through the
properties of trace operation, we have:

tr(F⊤DF− λH⊤F)

=tr((f i)⊤Diif
i + 2f iF⊤

0 di0 − λf i(hi)⊤)

=f i(f i)⊤Dii + f i(2F⊤
0 di0 − λ(hi)⊤)

(31)

Thus, the problem of updating the i-th row of F can be:

min
f i1=1

f i(f i)⊤Dii + f i(2F⊤
0 di0 − λ(hi)⊤) (32)

As Dii = 0(i = 1, 2, · · · , n), Equation (32) can be:

min
f i

f i(2F⊤
0 di0 − λ(hi)⊤)⇔ min

f i
f i(2F⊤di − λ(hi)⊤)

(33)
where di is the i-th column of D, Dii = 0. F denotes the
solution before f i is updated. Then, the solution of f i can
be:

Fib =

1, b = arg min
k

(2F⊤di − λ(hi)⊤)k

0, otherwise.
(34)

The detailed optimization for F is summarized in Ap-
pendix A.

4.3. Complexity Analysis

When updating the i-th row of F, we compute F⊤di −
λ(hi)⊤, which requires a time complexity of O(nc) and c
addition operations. Thus, updating all rows of F necessi-
tates a complexity of O(n2c), with nc addition operations.
Therefore, the algorithm requiresO(n2c+nc) for each iter-
ation. To address this, we propose an acceleration strategy
to reduce the time complexity to O(nc) during the iteration
process. Our algorithm’s acceleration strategy and pseudo-
code flow can be found in the Appendix A.

5. Four methods of calculating distance matrix
In order to demonstrate the applicability of our method to a
variety of different datasets, we present the following four
methods of calculating distance matrices:

1. Euclidean square distance: Dij = ∥xi − xj∥22.
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2. K nearest neighbor distance:

Dij =

{
∥xi − xj∥22 , xi ∈ Nk(xj) or xj ∈ Nk(xi)
σ, otherwise

where σ is a large constant, Nk(xi) is the K nearest neigh-
bors of the sample xi.

3. Gaussian kernel distance: Dij = ∥ϕ(xi)− ϕ(xj)∥22 =
K(xi,xi) + K(xj ,xj) − 2K(xi,xj), where
ϕ(x) represents the nonlinear mapping of sam-
ple x, and the Gaussian Kernel is K(x,y) =

exp

(
−∥x− y∥2

2σ2

)
, σ is a scaling parameter.

4. Low-pass filtering distance: In addition to the three dis-
tances mentioned above, we have also introduced a low-pass
filter distance. A low-pass filter allows low frequencies to
pass and blocks high frequencies. With a cutoff frequency

ωc =
1

2π
, its amplitude-frequency characteristic is given

by |H(jω)| = 1√
1 + (ω · 2π)2

. Inspired by this charac-

teristic, when the similarity matrix R is used as input, if
we want to retain samples with high similarity and filter
out samples with low similarity to address the issue of non-
linear separability, we can rewrite the distance matrix as
Dij = a |H(jω)|2 , ω = Rij , where a is a hyperparam-
eter. Through this filtering function, we can see that the
higher the similarity, the smaller the distance, and the lower
the similarity, the bigger the distance. This retains samples
with high similarity, filters out samples with low similarity,
and effectively preserves the intrinsic manifold structure of
the data, which can better handle nonlinear separable data.

6. Experiments
In this chapter, we conducted relevant experiments on two
toy datasets and ten benchmark datasets, and selected 6
classic clustering comparison algorithms for comparison.
Our experiments were conducted on a Windows 11 system,
13th Gen Intel(R) Core(TM) CPU, and MATLAB R2023a.

6.1. Benchmark datasets

Datasets: We selected the following ten datasets: CMUPIE
(Sim et al., 2002), digits (Kusetogullari et al., 2020),
FERET (Phillips et al., 2000), Mpeg7 (Bober, 2001), olivetti
(Samaria & Harter, 1994), Palm1, Pengdigits (Liu & Wech-
sler, 1997), PEAL (Wang & Tang, 2004), STL10 (Coates
et al., 2011), and USPS (Hull, 1994). Detailed information
on the datasets is provided in the Appendix A.

Comparison Methods: We selected the following six com-
parison methods: K-Means (Hartigan & Wong, 1979), KKM

1https://www.scholat.com/xjchensz
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Figure 1. Toy datasets.

(Tzortzis & Likas, 2008), RKM (Lin et al., 2019), CDKM
(Nie et al., 2022), K-sum (Pei et al., 2023), and K-sum-x
(Pei et al., 2023).

6.2. Clustering performance

The experimental results of our method utilizing four dis-
tance matrices and six comparative algorithms on ten bench-
mark datasets are presented in Tables 1 to 3. The parameter
values of our model are in the Appendix A. It is evident that
algorithms such as K-Means, RKM, and CDKM, which rely
on the initialization of cluster centroids, are susceptible to
the influence of these centroids. Additionally, their use of
Euclidean squared distance impedes their ability to effec-
tively handle complex data structures, resulting in inferior
clustering performance compared to K-sum and K-sum-
X, which leverage neighborhood relationships and do not
require cluster centroid initialization. However, these lat-
ter approaches operate under the assumption of balanced
datasets, potentially limiting their applicability to certain
specific data distributions.

In contrast, our four distance-based models employ a center-
less approach, all of which have yielded notably improved
results. Particularly, our low-pass filtering distance met-
ric, which harnesses a nonlinear mapping to transform the
data’s similarity relationships into distance relationships,
has demonstrated exceptional performance. This low-pass
filtering distance preserves the manifold structure of the data
and the consistency of the labels, where higher similarity
corresponds to shorter distances and lower similarity corre-
sponds to larger distances. Consequently, when confronted
with non-linearly separable datasets, our low-pass filtering
distance-based model exhibits superior clustering outcomes.

6.3. Toy datasets

To verify the feasibility of our method on nonlinear datasets
and demonstrate that our method can achieve cluster balance,
we only created the following two datasets.

Two-spiral Dataset: There are a total of four hundred sam-
ples, divided into two clusters, with 200 samples in each

6
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Table 1. The clustering performances on the CMUPIE, digits, FERET, and Mpeg7 datasets.

Datasets CMUPIE digits FERET Mpeg7

Methods ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity

K-Means 0.1968 0.4121 0.2145 0.4353 0.4439 0.5966 0.2651 0.6514 0.2975 0.4557 0.6595 0.4856
KKM 0.1915 0.3770 0.2118 0.4368 0.4526 0.6008 0.2157 0.5807 0.2407 0.4993 0.6892 0.5236
RKM 0.1740 0.4182 0.1859 0.4042 0.4181 0.5833 0.3121 0.7090 0.3236 0.5264 0.7126 0.5521
CDKM 0.1994 0.4146 0.2187 0.4338 0.4438 0.5975 0.2834 0.6819 0.3168 0.5091 0.7196 0.5440
K-sum 0.2150 0.4764 0.2283 0.1390 0.3416 0.7422 0.2879 0.6993 0.2921 0.5386 0.7257 0.5721
K-sum-x 0.1754 0.4208 0.1824 0.1412 0.3417 0.7405 0.2936 0.7056 0.3079 0.5393 0.7288 0.5629

Our-ED 0.1765 0.4200 0.1891 0.3855 0.4195 0.5395 0.3000 0.7071 0.3086 0.5714 0.7463 0.5979
Our-KNN 0.3634 0.6375 0.3736 0.4570 0.4636 0.6058 0.3193 0.7183 0.3321 0.5600 0.7280 0.5800
Our-K-ED 0.2171 0.4844 0.2297 0.4550 0.4461 0.5848 0.3107 0.7117 0.3207 0.5650 0.7413 0.5900
Our-LF 0.6341 0.8174 0.6436 0.5073 0.5076 0.6305 0.3257 0.7233 0.3343 0.4600 0.6602 0.4821

Table 2. The clustering performances on the olivetti, Palm, USPS, and Pendigits datasets.

Datasets olivetti Palm USPS Pendigits

Methods ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity

K-Means 0.4488 0.4697 0.4856 0.7047 0.8947 0.7558 0.6458 0.6026 0.7129 0.6963 0.6705 0.7260
KKM 0.4900 0.4862 0.5233 0.6620 0.8732 0.7065 0.6872 0.6437 0.7565 0.7859 0.7139 0.7859
RKM 0.4922 0.4671 0.5144 0.7690 0.9180 0.7825 0.6241 0.5748 0.7003 0.7296 0.6639 0.7296
CDKM 0.4617 0.4795 0.4896 0.7225 0.9052 0.7745 0.6526 0.6094 0.7237 0.7027 0.6697 0.7226
K-sum 0.4233 0.4282 0.4656 0.8405 0.9405 0.8520 0.6802 0.6274 0.7486 0.7562 0.6743 0.7562
K-sum-x 0.4322 0.4099 0.4467 0.8145 0.9321 0.8295 0.6502 0.5853 0.7150 0.7768 0.7001 0.7768

Our-ED 0.5078 0.4910 0.5256 0.8460 0.9401 0.8555 0.6539 0.5842 0.7164 0.7816 0.7056 0.7816
Our-KNN 0.5767 0.5361 0.5933 0.8585 0.9456 0.8665 0.7545 0.6690 0.7545 0.8406 0.7719 0.8406
Our-K-ED 0.5478 0.5229 0.5700 0.8325 0.9362 0.8440 0.7595 0.6559 0.7595 0.8579 0.7784 0.8579
Our-LF 0.8322 0.8181 0.8322 0.9055 0.9674 0.9105 0.8450 0.7803 0.8450 0.8322 0.7612 0.8322

Table 3. The clustering performances on the PEAL and STL10
datasets.

Datasets PEAL STL10
Methods ACC NMI Purity ACC NMI Purity
K-Means 0.7206 0.8939 0.7539 0.8088 0.8049 0.8328
KKM 0.7087 0.8624 0.7296 0.9162 0.8548 0.9162
RKM 0.8072 0.9129 0.8181 0.9422 0.8796 0.9422
CDKM 0.7296 0.8967 0.7617 0.8094 0.8053 0.8333
K-sum 0.8770 0.9424 0.8811 0.9220 0.8502 0.9220
K-sum-x 0.8491 0.9291 0.8537 0.9215 0.8505 0.9215
Our-ED 0.8596 0.9321 0.8640 0.9212 0.8500 0.9212
Our-KNN 0.8919 0.9417 0.8939 0.9198 0.8357 0.9198
Our-K-ED 0.8602 0.9317 0.8649 0.9228 0.8516 0.9228
Our-LF 0.8854 0.9446 0.8889 0.9539 0.8969 0.9539

cluster. As can be seen from Figure 1.(a), this is a nonlin-
early separable data, which can be used to verify the ability
of our method to handle nonlinearly separable data. As
shown in Figure 2, the results of K-Means, KKM, CDKM,
and our method on the double spiral dataset. K-Means and

CDKM use Euclidean distance and are affected by the ini-
tialization of cluster centroids, so they cannot effectively
separate the nonlinearly separable dataset. Although KKM
uses the kernel method to calculate, it still relies on the
calculation of cluster centroids, while our method does not
require the calculation of cluster centroids and can well
maintain the inherent structure of the data.

No-structure Dataset: A dataset of 400 samples without
structure as shown in Figure 1.(b), with each sample ran-
domly distributed on this two-dimensional plane, which can
be used to verify that our method can ensure cluster bal-
ance during clustering. For the unstructured dataset, we
conducted binary clustering, three-cluster clustering, four-
cluster clustering, and five-cluster clustering, as shown in
Figure 3. Regardless of how many clusters the unstructured
dataset is divided into, cluster balance can be achieved, with
the number of samples in each cluster basically remaining
consistent.

Under the ideal cluster balance condition, when n = 400
samples are divided into c = 2, 3, 4, 5 clusters, the sample
number of each cluster should be n/c = 200, 133, 100, 80.
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Figure 2. The clustering results of our method and three comparison methods K-Means, KKM and CDKM on the two-spiral dataset.
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Figure 3. The clustering results of our method on the no-structure dataset, different colors represent different clusters.

Table 4. The value of SSe.

Methods
Two

clusters
Three

clusters
Four

clusters
Five

clusters

Ours (LF) 2 11 14 18
K-Means 162 1821 106 856

If we make a quantitative analysis, and calculate every
clustering, the error sum of squares of each cluster is
SSe =

∑c
k=1 (nk − n

c )
2, the larger the value, the worse

the balance, the smaller the value, the better the balance.
The specific calculation results can be seen in Table 4.

Moreover, from Figure 3.(d) and (e), we can see that our
clustering is not a simple linear clustering, and a cluster is
not just around a cluster centroid, which also indicates that
our method has good anti-noise performance.

More experiments, including T-SNE visualization, pa-
rameter and convergence analysis, can be found in the

Appendix A.

7. Conclusion
In this paper, we introduce a novel unified K-Means cluster-
ing framework that achieves balanced clustering and elimi-
nates the need for computing cluster centroids. Specifically,
it first unifies the multiple versions of K-Means into a label-
guided manifold learning version, which utilizes the cluster
indicator matrix to construct the similarity matrix and ex-
ploit the discriminative manifold structure guided by pseudo
labels. Furthermore, it incorporates ℓ2,1-norm based bal-
anced regularization to enforce producing a more robust
and balanced clustering outcome. Four different distance
metrics are introduced to enhance the method’s flexibility
and adaptivity to different data distributions. Especially,
the adopted low-pass filtering distance effectively handles
nonlinear data structures. Finally, experiments on both toy
and benchmark datasets demonstrate that our method out-
performs comparison approaches.
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A. Appendix
A.1. Acceleration strategy

To enhance the algorithm’s efficiency, we calculate and retain the values of 2F⊤di − λ(hi)⊤ for i = 1, 2, . . . , n, which
requires O(n2) time complexity. This allows the resolution of each row, as referenced in Equation (34), to be completed
with only c addition operations, resulting in a cumulative total of nc additions for each iteration.

Before updating the i-th row f i of F, we record the index p corresponding to the non-zero element in f i. Then, we calculate
Equation (34) to obtain b. If b = p, no changes are necessary; however, if b differs from p, the adjustments to 2f⊤k D− λh⊤

k

for k = p, b are expressed as follows:

2f⊤p D− λh⊤
p ← 2f⊤p D− λh⊤

p − 2di, 2f⊤b D− λh⊤
b ← 2f⊤b D− λh⊤

b + 2di (35)

where fp is the p-th column of F, fb is the b-th column of F. hp is the p-th column of H, hb is the b-th column of H. di is
the i-th column of D. This process involves just two additional operations. Each iteration for this step takes 2v additions,
where v ≤ n. Consequently, this method reduces the time complexity per iteration fromO(n2c+nc) toO(nc+2v), which
simplifies to O(nc).

Overall, this approach significantly minimizes the computational load of the algorithm, improving its efficiency. The
comprehensive flow of the algorithm can be found in Algorithms 1 and 2.

Algorithm 1 Optimizing F

Input: distance matrix D ∈ Rn×n, matrix H, hyperparameter λ.
Initialize: cluster indicator matrix F ∈ Rn×c

Calculate and store 2F⊤D− λH⊤, nk = f⊤k 1
while F not converge do

for i = 1 to n do
Update p by the index of element 1 in f i

if np = 1 then
continue

end if
Compute b = argmin

k
(2F⊤di − λ(hi)⊤)k

if b ̸= p then
Update 2f⊤k D− λh⊤

k (k = p, b) via Equation (35)
end if

end for
end while
Output F ∈ Rn×c

Algorithm 2 Solving problem (24)
Input: distance matrix D ∈ Rn×n, cluster number c, hyperparameter λ.
Initialize: cluster indicator matrix F ∈ Rn×c

while not converge do
Update matrix H by Equation (26);
Update matrix F by Algorithm 1;

end while
Output F ∈ Rn×c

A.2. Convergence Analysis

To address the non-smooth issue of the ℓ2,1-norm in the objective function (24), we performed a Taylor expansion on
f(F) = ∥F⊤∥2,1 and then solved for the cluster indicator matrix F through multiple iterations. The F(t+1) obtained at the
(t+ 1)-th iteration can be derived from:

F(t+1) = min
F

tr(F⊤DF)− λtr(H⊤F) (36)
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Since D is a positive definite matrix and tr(H⊤F) is a linear function of F, the formula is convex in F. Because F is a
discrete cluster indicator matrix with elements valued at 0 or 1, and D and H are fixed matrices, the value of the formula
varies within a finite range. Furthermore, by updating F through solving the minimization problem, the value of the objective
function does not increase. Specifically, after each update, the value of the objective function either remains unchanged or
decreases. All iterative results are located in the compact set {F | F1 = 1,F ⩾ 0}. Therefore, our model is convergent and
will obtain an optimal solution during the iteration process.

A.3. The information of benchmark datasets

Table 5. The information of datasets.
Datasets Samples Features Clusters Type

CMUPIE 2856 1024 68 images
digits 4000 256 10 images

FERET 1400 6400 200 images
Mpeg7 1400 6000 70 images
olivetti 900 2500 10 images
Palm 2000 256 100 images

Pendigits 10,992 16 10 images
PEAL 30,863 256 1,040 images
STL10 13000 2048 10 images
USPS 9,298 256 10 images

A.4. Parameter setting

Since Equation (24) contains the parameter λ, we need to set the parameter λ for all four distances. In addition, Our-KNN

needs to set the value of the nearest neighbor K; using the Gaussian kernel function K(x,y) = exp

(
−∥x− y∥2

2σ2

)
, the

Our-K-ED contains the parameter σ.

While utilizing the Low-pass filtering distance defined as Dij = a |H(jω)|2 , ω = Rij , we employ the directly alternate
sampling (DAS) method (Li et al., 2022) to select r anchor points (where r < n), denoted as A ∈ Rd×r. The number of
selecting anchor points is configured according to the ratio range provided in (Li et al., 2022), where the anchor ratio is
from 0.1 to 0.9 with a step of 0.1. Subsequently, we apply the method from (Nie et al., 2016) to obtain the corresponding
anchor graph T ∈ Rn×r. Let ρ represent the number of neighboring anchor points for each sample; the specific computation
formula for the anchor graph T is as follows:

Tij =

{
h(xi,aρ+1)−h(xi,aj)

ρh(xi,ar+1)−
∑ρ

z=1 h(xi,az)
j ≤ ρ

0 j > ρ
(37)

where h(xi,yj) = ∥xi − yj∥22, and aj represents the j-th neighboring anchor point. Finally, based (Liu et al., 2010) and
the anchor graph T, we can derive the input matrix R for the Low-pass filtering distance as:

R = T∆−1T⊤ (38)

where ∆ ∈ Rr×r has diagonal elements defined as ∆jj =
∑n

i=1 Tij , with all other elements being zero.

• Our-ED: The values of λ for CMUPIE, digits, FERET, Mpeg7, olivetti, Palm, Pengdigits, PEAL, STL10, and USPS
are 7696000, 2886000, 1000, 1200, 1801000, 13126000, 500000, 88000, 500000, 52600.

• Our-KNN: The values of (K, λ) for CMUPIE, digits, FERET, Mpeg7, olivetti, Palm, Pengdigits, PEAL, STL10, and
USPS are (20, 15000000), (100, 300000), (12, 500000), (19, 2000), (80, 300000), (10, 100000), (712, 100000), (29,
80000), (1000, 80000), (445, 50000).

• Our-K-ED: The values of (σ, λ) for CMUPIE, digits, FERET, Mpeg7, olivetti, Palm, Pengdigits, PEAL, STL10, and
USPS are (0.1, 0.001), (0.2, 9), (0.2, 0.001), (1, 0.8), (0.5, 9), (0.8, 0.1), (0.09, 500), (16, 0.04), (0.5, 0.001), (0.1, 0.7).
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• Our-LF: The values of λ for CMUPIE, digits, FERET, Mpeg7, olivetti, Palm, Pengdigits, PEAL, STL10, and USPS
are 0.43, 0.71, 0.57, 0.23, 0.2, 0.74, 0.6, 0.15, 0.1, 0.82.

A.5. T-SNE visualization on the USPS dataset

We have visualized the performance of various methods on the USPS dataset, as shown in Figure 4.(a) depicts the true
cluster labels, while Figure 4.(b)-(g) present the results of the six comparative algorithms. The final subfigure showcases our
method based on the low-pass filtering distance metric.

Examining the true label representation in Figure 4.(a), we observe that clusters 4 and 6, as well as clusters 5 and 10, are
relatively proximal to one another. Among the six comparative methods, regardless of whether they are based on Euclidean
distance or KNN distances, they struggle to accurately recognize the underlying cluster relationships between these two
pairs of closely related clusters. In contrast, our low-pass filtering distance-based clustering approach is able to effectively
differentiate these proximal clusters, and the resulting clustering outcomes closely align with the true label distribution,
exhibiting the most favorable performance.

This visual analysis highlights the ability of our low-pass filtering distance metric to better preserve the inherent manifold
structure and cluster proximities present in the USPS dataset, leading to superior clustering outcomes compared to the
alternative algorithms considered.
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(b) K-Means
-80 -60 -40 -20 0 20 40 60

-80

-60

-40

-20

0

20

40

60

1
2
3
4
5
6
7
8
9
10

(c) KKM
-80 -60 -40 -20 0 20 40 60

-80

-60

-40

-20

0

20

40

60

0
1
2
3
4
5
6
7
8
9

(d) RKM

-80 -60 -40 -20 0 20 40 60
-80

-60

-40

-20

0

20

40

60

1
2
3
4
5
6
7
8
9
10

(e) CDKM
-80 -60 -40 -20 0 20 40 60

-80

-60

-40

-20

0

20

40

60

0
1
2
3
4
5
6
7
8
9

(f) K-sum
-80 -60 -40 -20 0 20 40 60

-80

-60

-40

-20

0

20

40

60

0
1
2
3
4
5
6
7
8
9

(g) K-sum-x
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(h) Ours

Figure 4. T-SNE Visualization of the clustering effect of our method and six comparison methods on the USPS database.

A.6. Parameter analysis

In Figure 5, we further discuss the impact of the parameter λ associated with the balanced regularization term on the
clustering performance across different datasets. We selected four datasets - CMUPIE, digits, olivetti and Palm - to
investigate this relationship.

The results indicate that the clustering performance exhibits varying trends as a function of λ for the different datasets.
However, a emerges where the clustering performance first increases and then decreases as λ is increased. This suggests
that the selection of an appropriate value for λ is crucial, as overly large or small values can lead to suboptimal clustering
outcomes.

The observed trends highlight the importance of dataset-specific parameter tuning to achieve the best clustering performance.
The careful selection of the λ parameter, which controls the sparsity and regularization of the model, plays a significant role
in the effectiveness of the clustering algorithms across diverse data domains.
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A.7. Convergence

As shown in Figure 6, our method exhibits rapid convergence on the four evaluated datasets. The final objective function
values reach a balanced and stable state, and the clustering performance also gradually stabilizes with increasing iteration
counts. This observation demonstrates the strong convergence properties of our algorithm and the effectiveness of the
optimization process underlying our algorithm.
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(b) digits
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(c) olivetti
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Figure 5. The evaluations of clustering performance with parameter λ on CMUPIE and digits datasets.
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(c) olivetti

0 2 4 6 8 10
iteration

3

4

5

6

7

8

O
bj

ec
tiv

e 
Lo

ss

104

0

0.2

0.4

0.6

0.8

1

C
lu

st
er

in
g 

pe
rf

or
m

an
ce

Obejctive loss
ACC
NMI
Purity

(d) palm

Figure 6. Objective loss and clustering performance with iterations on CMUPIE and digits datasets.
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