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Abstract

User simulators are essential to conversational AI, enabling scalable agent de-
velopment and evaluation through simulated interactions. While current Large
Language Models (LLMs) have advanced user simulation capabilities, we reveal
that they struggle to consistently demonstrate goal-oriented behavior across multi-
turn conversations, which is a critical limitation that compromises their reliability
in downstream applications. We introduce User Goal State Tracking (UGST), a
novel framework that tracks user goal progression throughout conversations. Lever-
aging UGST, we present a three-stage methodology for developing user simulators
that can autonomously track goal progression and reason to generate goal-aligned
responses. Moreover, we establish comprehensive evaluation metrics for measur-
ing goal alignment in user simulators, and demonstrate that our approach yields
substantial improvements across two benchmarks (MultiWOZ 2.4 and τ -Bench).
Our contributions address a critical gap in conversational AI and establish UGST
as an essential framework for developing goal-aligned user simulators.

1 Introduction

User Goal
You would like to return your headset because it’s broken. You 
prefer to get the refund to your credit card, but if it isn’t possible, 
you get angry and ask to speak with a human agent.

Okay, store credit is okay then! 
Thank you for your help.

I purchased a headset and it broke. I’d like to return it and 
get a refund to my credit card

Unfortunately I can only allow store credit or exchanges, 
since it has been over 14 days since you purchased it.

Reasoning
The agent will not allow me to get 
the refund to my credit card. So, I 
need to request to speak with a 

human agent. I also need to 
ensure I am angry.

This is completely unacceptable. 
Store credit won’t cut it, connect 

me with a human agent I can 
speak to.

Figure 1: The standard simulator (left) fails
to adhere to their user goal, while our goal-
aligned simulator response (right) reasons to
generate a goal-aligned response.

To develop conversational agents that can handle real-
world complexity and effectively address user needs,
we must be able to simulate realistic user behaviors
(Schatzmann et al., 2006; Pietquin and Hastie, 2013).
In the era of experience, conversational agents learn
most effectively by interacting with users in their envi-
ronment (Silver and Sutton, 2025). Since large-scale
human data collection is impractical, user simulators
offer a scalable alternative by modeling diverse user
behaviors, from pursuing specific goals to exhibiting
unique personas (Eckert et al., 1997a).

Large Language Models (LLMs) have enabled so-
phisticated user simulation that can generate contex-
tually appropriate responses, however they also suffer
from instruction drift and degraded performance over
multi-turn conversations (Laban et al., 2025; Li et al.,
2024). Current LLM-based user simulators exhibit
what we refer to as the goal misalignment problem,
where they struggle to consistently adhere to their
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Explanations
- “You are Rosa Martinez” is aligned because the user never contradicted it
- “Your family of 5 is visiting and you want to show them around the city” is 
  misaligned because the user made a reservation for 2 instead of 5.
-  “You want to make a reservation at a restaurant” is complete because the user 
made a reservation
- “It should be in the east” is incomplete because the restaurant was in the west
- “Get the phone number and address” is attempted because the user tried to get 
the information, but the agent couldn’t help with that.
- “You prefer a moderate price range, but are okay with an expensive one” is 
  aligned because the user asked for a moderately priced restaurant

User Goal
You are Rosa Martinez. Your family of 5 is visiting and you want to show them around 
the city. You would like to make a reservation at a restaurant in the east area. Make 
sure to get the phone number and address of the restaurant. You prefer a moderate 
price range, but are okay with an expensive one. Preface each request politely with 
'Please.' and thank the agent for each response.

User Profile
    -  You are Rosa Martinez  ----------------------------------------------
    -  Your family of 5 is visiting and you want to show them  -------
       around the city
User Policy
    -  Preface each request politely with ‘Please’  ----------------------
    -  Thank the agent for each response  -------------------------------
Task Objectives
    -  You want to make a reservation at a restaurant  ---------------
        Requirements
              -  It should be in the east  --------------------------------------
              -  Get the phone number and address  -----------------------
       Preferences
              -  You prefer a moderate price range, but are okay  -------
                  with an expensive one

ALIGNED
MISALIGNED

ALIGNED
ALIGNED

ALIGNED

COMPLETE

ATTEMPTED
INCOMPLETE

Can you please help me find a moderately priced restaurant in the west?

Of course! I found Ricardo’s Diner, it is a moderately priced restaurant in 
the west. Would you like to make a reservation?

Thank you! Yes, can I make a reservation for two please?

I have made you a reservation for two people at Ricardo’s Diner. Is there 
anything else I can help you with?

Thank you. Can I get the phone number and address please?

Sorry, I do not have that information.

Latest User Goal State

Figure 2: An illustration of the User Goal State Tracking framework. On the left side, we present a
user goal and a conversation between a user and a conversational agent. The right side shows the
latest user goal state, providing us with a representation of the user’s goal progression. Below the
goal state, we provide specific explanations that justify the status of each sub-component.

user goals throughout conversations (Zhang et al., 2020; Kim et al., 2025; Yao et al., 2024). Through
principled analysis, we find that existing user simulators cannot reliably adhere to their assigned
user profiles and behavioral constraints, or manage multiple objectives and complete them within
the specified conversation limits, as detailed in Table 3. This misalignment leads to unexpected
simulator behavior, which can produce inaccurate evaluations or misleading reward signals that
compromises the effectiveness of reinforcement learning (RL) for conversational agents (Skalse et al.,
2022; Amodei et al., 2016; Carroll et al., 2019; Yao et al., 2024). These failures reveal a fundamental
limitation in user simulators that undermines their reliability for downstream tasks and highlights
a critical yet largely unexplored challenge in developing goal-aligned user simulators. To address
this challenge, we propose developing user simulators that can track goal progression, and reason
to ensure that each response progresses towards completing objectives while adhering to their user
profiles and behavioral constraints, as depicted in Figure 1.

We present User Goal State Tracking (UGST), a framework that builds upon Dialog State Tracking
principles (Henderson et al., 2014) and dynamically tracks a user’s goal progression throughout a
conversation. UGST uses User Goal States to provide structured representations of goal progression.
These states are created by decomposing the user goal into modular sub-components where each
captures a distinct aspect of the goal (e.g. finding a restaurant to eat at, prefacing each request politely
with ‘please’). Each sub-component is assigned a corresponding status that is dynamically updated
after every turn in a conversation. Our framework is presented in Figure 2.

We leverage UGST to systematically enhance goal alignment in LLM-based user simulators through
a three-stage methodology. First, we introduce inference-time steering, where we conduct UGST and
provide simulators with their latest goal state before they generate each response, explicitly grounding
them in their goal progression. Using inference-time steering, we generate conversations with explicit
reasoning traces about goal progression and goal-aligned user responses. We conduct supervised
fine-tuning (SFT) on the generated conversation data to foster intrinsic capabilities to autonomously
track goal progression and generate goal-aligned responses without any external guidance from
inference-time steering. Further, inspired by recent findings on strong generalization capabilities of
RL (Qian et al., 2025; Mukherjee et al., 2025; Gunjal et al., 2025), we apply Group Relative Policy
Optimization (GRPO) (Shao et al., 2024) with a composite reward derived from UGST to further
refine reasoning and goal alignment capabilities. This approach addresses the fundamental limitations
identified in current LLM-based user simulators, and helps develop more goal-aligned simulators that
can autonomously track goal progression and reason to generate more goal-aligned responses.

In our experiments, LLM-based user simulators are tasked to pursue diverse user goals by interacting
with conversational agents across two benchmarks: MultiWOZ 2.4 (Ye et al., 2022), τ -Bench Airline,
and τ -Bench Retail (Yao et al., 2024). We evaluate goal alignment by tracking the success rate of
sub-components throughout each conversation using UGST. Our findings reveal that state-of-the-art
LLM-based user simulators, including Llama-3.1-8B-Instruct, Qwen-2.5-72B-Instruct, Gemma-3-
27B-Instruct, Llama-3.3-70B-Instruct, Qwen-2.5-72B-Instruct (Grattafiori et al., 2024; Qwen et al.,
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2025; Team et al., 2025), struggle to maintain consistent goal alignment and have demonstrated
failure rates ranging 10-40%. Our three-stage methodology demonstrates substantial improvements,
with inference-time steering yielding immediate gains of up to 5.4%, cold-start SFT achieving 11.0%
absolute improvement, and GRPO with UGST rewards achieving the best performance with up to
14.1% absolute improvement in average success rate. Human evaluation validates both our UGST
methodology and the quality of our improvements, with annotators confirming high agreement with
automated assessments. Notably, our enhanced Llama-3.1-8B-Instruct and Qwen-2.5-7B-Instruct
achieve performance competitive with or exceeding their much larger counterparts, Llama-3.3-70B-
Instruct and Qwen-2.5-72B-Instruct. These improvements extend beyond goal alignment, with our
approach also fostering more diverse user responses without compromising naturalness or coherence.

The main contributions of our work are:

• We reveal that state-of-the-art LLM-based user simulators fail to consistently demonstrate goal-
oriented behavior throughout multi-turn conversations, undermining their reliability and high-
lighting the need for more goal-aligned user simulators.

• We introduce User Goal State Tracking (UGST), a novel framework that tracks a user’s goal
progression throughout a conversation.

• We propose a methodology for developing goal-aligned user simulators that leverages UGST.
With our proposed methodology, we improve goal alignment in LLM-based user simulators and
demonstrate that 8B parameter models can achieve competitive or superior performance to 70B+
parameter models.

• We establish comprehensive evaluation methods for goal alignment across two benchmarks
(MultiWOZ 2.4 and τ -Bench), and validate our approach through both automated metrics and
human evaluation.

Overall, our work introduces UGST to track and improve goal alignment in user simulators, addressing
a critical limitation in existing user simulators and laying the groundwork for future advances in user
simulation and conversational AI.

2 Related Work

User Simulation in Conversational AI. User simulation is a well-established area of research
in conversational AI, and has made significant advancements throughout the years. Early work
relied on probabilistic approaches (Eckert et al., 1997b; Pietquin and Dutoit, 2006) that modeled
user behavior through statistical patterns, and agenda-based methods (Schatzmann et al., 2007;
Schatzmann and Young, 2009; Keizer et al., 2010) that used manually designed rules. As deep
learning gained popularity, approaches started to leverage neural networks (Gür et al., 2018; Asri
et al., 2016; Kreyssig et al., 2018) and transformers (Lin et al., 2021, 2022a; Cheng et al., 2022a; Sun
et al., 2023), which enabled user simulators capable of generating natural and diverse responses. Most
recently, LLMs have demonstrated highly sophisticated and effectiveness user simulator capabilities
(Sekulić et al., 2024; Davidson et al., 2023).
Synthetic Data Generation. The costly and inefficient nature of manually collected user-agent
conversation data (Acikgoz et al., 2025; Ye et al., 2022; Rastogi et al., 2020) motivates user simulators
(Li et al., 2017). Recent works leverage LLMs to create synthetic training data for supervised fine-
tuning (Prabhakar et al., 2025; Shim et al., 2025; Philipov et al., 2024; Niu et al., 2024; Chen et al.,
2021), where simulators enable the efficient generation of vast amounts of high-quality conversation
data with diverse user behaviors, domains, and scenarios.
Reinforcement Learning for Conversational Agents. User simulators enable conversational
agents to learn through trial-and-error interactions with RL (Algherairy and Ahmed, 2025; Scheffler
and Young, 2002; Gür et al., 2018; Shah et al., 2018; Lin et al., 2022b; Liu et al., 2023). In these
settings, agents interact with user simulators and learn through rewards based on the interactions.
Conversational Agent Evaluation. Traditional methods for evaluating conversational agents
require comparing generated responses with static responses. This leads to the one-to-many problem
where many valid responses exist and some may be penalized when they do not match an expected
response (Zhao et al., 2017; Mehri and Eskenazi, 2020; Cheng et al., 2022b; Mehri and Shwartz, 2023;
Davidson et al., 2023). Consequently, user simulators are used to interact with the agent and allow
researchers to observe how the agent performs in various scenarios. The resulting conversations can
be analyzed and evaluated based on metrics such as task completion or user satisfaction (Davidson
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et al., 2023; Cheng et al., 2022b; Sun et al., 2023; Yao et al., 2024; Lu et al., 2025; Kazi et al., 2024;
Xiao et al., 2024; Pan et al., 2025; Bozdag et al., 2025).
Improving User Simulation. Existing work focuses on improving various aspects of LLM-based
user simulators. For instance, Sun et al. (2023) makes user simulators more realistic by incorporating
prior knowledge and experiences into response generation. Luo et al. (2024) improve user simulator
quality by using a verifier LLM to provide feedback for unsuitable responses. Meanwhile, Liu
et al. (2023); Ahmad et al. (2025) improve the diversity of user simulator behavior by incorporating
multiple personas. Despite these advances, existing works assume that LLMs possess the fundamental
capabilities to simulate users and consistently demonstrate goal-oriented behaviors. This assumption
proves problematic, as recent evaluations reveal that even state-of-the-art LLM-based user simulators
struggle to follow their user goal (Kim et al., 2025; Zhang et al., 2020; Yao et al., 2024). Prior work
has develop goal-oriented dialogue systems that proactively guide conversations towards specific
objectives (Muise et al., 2019; Tang et al., 2019; Wu et al., 2019). In our work, we address the critical
goal misalignment problem in LLM-based user simulators by improving LLM abilities to simulate
users and consistently demonstrate goal-oriented behaviors.

3 Problem Formulation
User simulators are designed to simulate realistic user behaviors and interact with conversational
agents. They operate based on a user goal G which encompasses tasks to be completed along with
behavioral guidelines, constraints, and contextual information.

Formally, we define a conversation as Cn = {u1, a1, ..., un, an}, where ui and ai denote the user
simulator and agent utterance at turn i, respectively. The user simulator is provided with an initial
system message s0 that provides general instructions for the user simulator and defines the user goal
G. They generate responses ui based on the conversation history Ci−1, aiming to progress towards
achieving the user goal G. Conversations conclude upon reaching a maximum length or when the
user simulator explicitly ends the conversation by sending a termination indicator (e.g., TERMINATE).

Despite recent advances, current LLM-based user simulators suffer from the goal misalignment
problem and demonstrate limitations in maintaining goal-aligned behavior throughout multi-turn
conversations. To analytically understand these limitations, we conduct a principled analysis of 52
randomly selected conversations, where LLM-based user simulators (Llama-3.1-8B-Instruct and
Qwen2.5-7B-Instruct) interact with conversational agents to pursue a user goal from the MultiWOZ
2.4, τ -Bench Airline, and τ -Bench Retail datasets. We identify goal alignment failures, where the
user simulator does not follow the specified user goal G. Table 3 categorizes these failures into five
distinct patterns. Such goal alignment failures can lead to unexpected behaviors from user simulators,
which can adversely affect the reliability of evaluations, diminish the quality of generated synthetic
data, and compromise the effectiveness of reinforcement learning. We highlight the critical need to
address these shortcomings and improve the fundamental capabilities of LLMs to be goal-aligned
user simulators. In the following sections, we introduce User Goal State Tracking, a framework
designed to systematically track a user’s progress towards their goal, and demonstrate how to leverage
it to improve goal alignment in user simulators.

4 User Goal State Tracking
In this section, we present User Goal State Tracking (UGST), a framework that dynamically tracks
a user’s progress towards their goal throughout a conversation. UGST maintains a structured User
Goal State, which contains a status for each modular sub-component of a user goal.The following
subsections describe the user goal state structure and tracking process.

4.1 User Goal State
The User Goal State is a structured representation that captures a user’s progress towards their goal
at every turn in a conversation. Given an initial user goal described in natural language, UGST
decomposes it into distinct, modular sub-components, where each represents an independent, self-
contained part of the original user goal.

There are several types of sub-components that can make up a user goal. Task objectives and
requirements represent the earliest established sub-components (Schatzmann et al., 2007; Gür et al.,
2018; Cheng et al., 2022b; Rastogi et al., 2020; Yao et al., 2024; Xiao et al., 2024). These are items
that must be completed during an interaction, for instance, a task objective might be "book a flight",
with associated requirements such as "add one checked bag" and "get an aisle seat".
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As user simulators have evolved to handle more complex scenarios, researchers have introduced
additional dimensions to user goals. These include preferences that users must align with when
pursuing task objectives (Yao et al., 2024; Cheng et al., 2022b), such as "you prefer the cheapest
available flight" or "you prefer an aisle seat, but you are also okay with a window seat". There are
also user profile sub-components, which contain contextual information about the user that may
influence their decision making and behavior. These profiles can include relevant facts about a user,
their persona, or emotional state (e.g. "your payment information is stored online", "you currently
live in New York", "you are hurried and always late", "you are emotional and a bit angry") (Yao
et al., 2024; Xiao et al., 2024). Lastly, there are user policies that define behavioral constraints or
guidelines that specify how a user acts during interactions, such as "you are a private person and
reveal little about yourself" (Yao et al., 2024).

We categorize user goal sub-components into these categories (user profile, user policy, task objective,
requirement, or preference) for a more granular representation of goal progression (see Figure 2).

In our representation of the user goal state, the different categories of sub-components have dif-
ferent success criteria. The user profile, user policy and preference sub-components can be either:
(1) ALIGNED: The user has demonstrated behavior consistent with the sub-component, or (2)
MISALIGNED: The user has demonstrated behavior that contradicts or fails to align with this sub-
component.

Task objective and requirements sub-components can have a status of: (1) COMPLETE: The user has
successfully accomplished the specific task or requirement, (2) INCOMPLETE: The user has not yet
accomplished the specific task or requirement, or (3) ATTEMPTED: The user has made a sufficient
attempt to complete the task or requirement, but cannot proceed due to external factors outside their
control (e.g. agent-side failures, system constraints, or limitations). Unlike existing frameworks,
this status ensures that users are not penalized for failures they did not cause, providing a more fair
representation of user performance.

4.2 User Goal State Tracking Process
We track user goal progression throughout each conversation C = {u1, a1...un, an} using the user
goal states. The process begins by decomposing the user goal into sub-components to create an initial
user goal state S0. We employ an LLM to perform this, with the prompt in Appendix D.

After each conversational turn, ti = (ui, ai), each sub-component’s status is individually updated via
an LLM, producing a new user goal state Si that captures the goal progression up until turn i (see
Appendix E for the prompt).

User profile and user policy sub-components begin as ALIGNED and irreversibly switch to MIS-
ALIGNED if the user demonstrates any misalignment. Preferences start as MISALIGNED and become
ALIGNED once the user expresses them. Task objectives and requirements begin as INCOMPLETE
and progress to ATTEMPTED and then COMPLETE as the user addresses them.

The final user goal state Sn captures the cumulative user goal progression across the full conversation.

5 Methodology

The UGST framework serves as the foundation for enhancing goal alignment capabilities of LLM-
based user simulators. In this section we present our method for leveraging UGST to systematically
improve goal alignment in three stages.

5.1 Stage 1: Inference-time Steering

Conventionally, user simulators are provided with a user goal G in the system prompt, and generate
responses based solely on conversation history. At each turn i:

ui = U(Ci−1), (1)
where U represents the user simulator, ui denotes the user simulator’s response at turn i, and Ci−1 is
the conversation history up until turn i. This formulation lacks explicit goal progression tracking,
relying on the user simulator’s inherent ability to infer progress from the conversation history.

We address this by conditioning the user simulator on the latest user goal state before generating
each response. The goal state is provided as a part of the instruction for each response, which helps
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ground the simulator on the progress made towards their goal and the remaining sub-components
that they must complete and stay aligned with. We refer to this as inference-time steering. In this
process, UGST is conducted after every turn in the conversation. For each turn i, the user simulator is
provided with the conversation history and the latest user goal state to generate their next response:

ui = U(Ci−1, Si−1), (2)

where U represents the user simulator, ui denotes the user simulator’s response at turn i, Ci−1 is the
conversation history up until turn i, and Si−1 represents the user goal state at turn i− 1.

Providing the goal state before generating each response helps steer the user simulator towards
generating responses that are better aligned with their user goals.

5.2 Stage 2: Cold-Start Supervised Fine-Tuning

To enable autonomous goal alignment without requiring external guidance from inference-time
steering, we distill goal-tracking capabilities directly into the model through SFT. We first generate
goal-aligned conversation training data using Llama-3.3-70B-Instruct with inference-time steering,
where the LLM reflects on the user goal state at each turn and provides explicit reasoning traces.

Specifically, we instruct the LLM to generate structured reasoning traces along with every response
that: (1) reflect on the latest goal state and consider the progress made towards the goal, (2) analyze
the remaining task objectives, requirements, and preferences, and how to complete them within the
conversation limit, and (3) consider how to generate a response that stays aligned with the user profile
and policy. These reasoning traces effectively distill the goal progression tracking from inference-time
steering into training data.

We then fine-tune LLM-based user simulators on the generated data using the standard SFT objective:
L(θ) = −

∑
(Ci−1,ui)∈D logPθ(ui|Ci−1) where ui is the reasoning trace and response, and Ci−1 is

the conversation history. This cold-start SFT training process develops the intrinsic abilities of LLMs
to (1) autonomously track goal progression throughout a conversation, and (2) generate goal-aligned
responses, eliminating dependency on computationally expensive inference-time steering.

After training, user simulators operate using the conventional formulation from Equation 1, receiving
only conversation history Ci−1 as input, and eliminating the need for goal state tracking. The
simulators have learned to implicitly track and maintain goal alignment through reasoning patterns
distilled from the inference-time steering process.

5.3 Stage 3: GRPO with UGST Rewards

UGST provides structured reward signals that capture fine-grained goal-alignment across multiple
dimensions. This characteristic makes it well-suited for RL approaches, and enables us to design
composite rewards that evaluate alignment across sub-component categories (Gunjal et al., 2025).

We employ Group Relative Policy Optimization (GRPO) (Shao et al., 2024), which has demonstrated
effectiveness in developing emergent capabilities in LLMs, such as reasoning (Guo et al., 2025;
Gunjal et al., 2025). We extend this approach to user simulation by leveraging UGST’s structured
signals to further refine the goal-tracking and response generation capabilities developed in stage 2.

Specifically, after each user response ui at turn i, we apply UGST to evaluate alignment across
five conditions: (1) alignment with user profile, (2) alignment with user policy, (3) task objective
attempt/completion, (4) requirement attempt/completion, (5) alignment with preferences. For each
condition j and response ui, we define an indicator function: Ij(ui) = 1 if response ui satisfies
condition j, and 0 otherwise. Our composite reward aggregates these alignment signals:

R(ui) =

5∑
j=1

αjIj(ui)} (3)

where αj represents the weight for condition j. We assign equal weights of αj = 0.5. Using this
reward function, we optimize the user simulator with GRPO to maximize the expected cumulative
reward. This approach allows the simulator to learn a policy that maintains alignment with the user’s
profile, policies, and preferences while actively pursuing task objective and requirement completion.
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Table 1: User simulator goal alignment performance based on final user goal states from UGST. The
table shows the average success rates for User Profile (Prof.), User Policy (Pol.), Task Objective
(T.O.), Requirements (Req.) and Preferences (Pref.) sub-component categories, and the overall
average performance on the τ -Bench Airline and Retail datasets.

Model Prof. Pol. T.O. Req. Pref. Avg

Prompt-Based

Qwen-2.5-7B-It 88.3 49.2 94.3 96.0 85.7 82.7
Llama-3.1-8B-It 90.9 41.0 97.1 99.0 81.0 81.8
Gemma-3-27B-It 98.7 59.0 97.1 97.0 78.6 86.1
Qwen-2.5-72B-It 89.3 59.6 94.1 96.9 78.6 83.7
Llama-3.3-70B-It 97.4 65.6 98.1 99.0 92.9 90.6

Inference-Time Steering

Qwen-2.5-7B-It 77.9 55.7 96.2 98.0 92.9 84.1
Llama-3.1-8B-It 92.2 57.4 93.3 98.0 95.2 87.2
Gemma-3-27B-It 94.8 62.3 92.4 97.0 85.7 86.4
Qwen-2.5-72B-It 93.3 54.4 98.0 97.9 97.6 88.3
Llama-3.3-70B-It 93.5 63.9 98.1 100.0 97.6 90.6

Cold-Start SFT

Qwen-2.5-7B-It 98.7 55.7 99.0 100.0 95.2 89.7
Llama-3.1-8B-It 89.6 55.7 97.1 97.0 97.6 87.4

GRPO with UGST Rewards

Qwen-2.5-7B-It 93.5 63.9 100.0 100.0 100.0 91.5
Llama-3.1-8B-It 96.1 62.3 100.0 100.0 97.6 91.2

(a) τ -Bench Airline

Model Prof. Pol. T.O. Req. Pref. Avg

Prompt-Based

Qwen-2.5-7B-It 82.0 40.8 96.0 99.5 91.7 82.0
Llama-3.1-8B-It 84.8 36.8 97.1 98.9 96.3 82.8
Gemma-3-27B-It 91.0 39.5 97.8 99.5 96.3 84.8
Qwen-2.5-72B-It 88.6 40.8 98.2 97.9 91.7 83.4
Llama-3.3-70B-It 91.7 46.1 99.6 100.0 100.0 87.5

Inference-Time Steering

Qwen-2.5-7B-It 73.0 47.4 94.9 97.9 93.5 81.4
Llama-3.1-8B-It 84.8 52.6 95.3 98.9 97.2 85.8
Gemma-3-27B-It 94.5 56.6 97.1 99.5 89.8 87.5
Qwen-2.5-72B-It 85.8 48.7 97.1 98.4 98.1 85.6
Llama-3.3-70B-It 92.7 59.2 96.0 98.4 100.0 89.3

Cold-Start SFT

Qwen-2.5-7B-It 85.8 43.4 92.4 94.7 82.4 79.7
Llama-3.1-8B-It 84.8 47.3 95.5 97.8 94.1 83.9

GRPO with UGST Rewards

Qwen-2.5-7B-It 85.5 38.2 97.1 97.9 97.2 83.2
Llama-3.1-8B-It 84.8 47.4 98.9 99.5 98.1 85.7

(b) τ -Bench Retail

6 Experiments

6.1 Experimental Setup

We evaluate user simulator goal alignment by examining how faithfully simulators adhere to their
assigned user goals during interactions with conversational agents. Our evaluation methodology
consists of the following steps:

1. Conversation Generation: User simulators are provided with a user goal and interact with a
conversational agent for up to 10 user-agent turns. The conversational agents are built using
GPT-4o mini (OpenAI, 2024) and equipped with domain-specific function calls along with a
system prompt that describes its policy. The system prompts are provided in Appendix B.

2. Initial User Goal State Generation: For each user goal, the corresponding user goal state is
generated using GPT-4o by decomposing a user goal into distinct modular sub-components, and
categorizing each into the sub-component categories, as detailed in Appendix D.

3. User Goal State Tracking: Then, UGST is conducted on the generated conversations using
an LLM judge (Qwen-2.5-72B-Instruct (Qwen et al., 2025)), which individually updates the
status of each sub-component after every turn. The judge is provided with the sub-component
description, the conversation history, and an evaluation criteria specifying how to update the
status. An example prompt is provided in Appendix E.

4. Evaluation Metrics: Finally, user simulator performance is measured by calculating the success
rate for each sub-component category in the final user goal state, since it is representative of the
user’s overall goal alignment across the entire conversation. For user profile, user policy, and
preferences, we consider ALIGNED status as successful; for task objective and requirements, we
consider both ATTEMPTED and COMPLETE status as successful.

Evaluation Datasets. We evaluate user simulators on two benchmarks across three domains:
MultiWOZ (Ye et al., 2022), τ -Bench Airline, and τ -Bench Retail (Yao et al., 2024). The τ -Bench
Airline dataset contains 50 user goals and the τ -Bench Retail dataset contains 115 user goals. Both
datasets feature comprehensive user goals that naturally encompass all five sub-component categories
(user profile, user policy, task objective, task requirement, preference) across diverse user scenarios,
making them well-suited for our evaluation.

While the original MultiWOZ dataset provides a solid foundation of user goals, they predominantly
focus on task objective and requirements, and preliminary experiments showed that Llama-3.1-
8B-Instruct achieved over a 95% success rate on these goals. To develop a more demanding and
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comprehensive evaluation dataset for user simulators, we developed MultiWOZ Challenge. Multi-
WOZ Challenge comprises 150 carefully constructed user goals that incorporate all sub-component
categories and feature more complex task objective and requirements. The generation process
involved both LLMs and human annotations, and is detailed in Appendix C.

Training Datasets. The training datasets for the Cold-Start SFT and GRPO with UGST Rewards
stages are based on 1000 user goals drawn from two domains: 500 goals from the τ -Bench Retail
training dataset and 500 MultiWOZ goals generated using our goal generation pipeline (Appendix
C). Note that the τ -Bench Airline domain remains unseen during training, allowing us to asses
out-of-domain performance.

We conduct human evaluation studies on different stages of our evaluation methodology and present
them in Appendix G.

6.2 Experimental Results

Table 2: User simulator goal alignment performance
based on final user goal states from UGST. The table
shows the average success rates for User Profile (Prof.),
User Policy (Pol.), Task Objective (T.O.), Requirements
(Req.) and Preferences (Pref.), and the overall average
performance on the Multiwoz Challenge dataset.

Model Prof. Pol. T.O. Req. Pref. Avg

Prompt-Based

Qwen-2.5-7B-It 54.7 18.0 78.4 81.9 73.5 61.3
Llama-3.1-8B-It 73.6 35.0 86.1 89.0 80.9 72.9
Gemma-3-27B-It 80.1 50.3 95.0 97.7 92.1 83.0
Qwen-2.5-72B-It 72.0 31.0 91.0 93.3 90.2 75.5
Llama-3.3-70B-It 72.0 31.0 97.9 98.6 93.2 83.3

Inference-Time Steering

Qwen-2.5-7B-It 43.4 26.3 88.1 89.8 71.1 63.7
Llama-3.1-8B-It 71.7 38.0 85.2 88.6 74.3 71.6
Gemma-3-27B-It 72.3 45.7 87.0 89.7 74.8 73.9
Qwen-2.5-72B-It 71.0 46.3 94.9 96.9 92.9 80.4
Llama-3.3-70B-It 72.6 64.3 97.0 97.8 91.7 84.7

Cold-Start SFT

Qwen-2.5-7B-It 60.3 38.9 88.0 91.1 83.1 72.3
Llama-3.1-8B-It 57.1 40.1 92.1 94.9 84.3 73.7

GRPO with UGST Rewards

Qwen-2.5-7B-It 51.8 34.0 98.3 98.8 93.9 75.4
Llama-3.1-8B-It 59.0 44.0 99.7 99.8 97.8 80.0

Our experimental results are reported in
Tables 1 and 2.

Prompt-Based. As a baseline, we eval-
uate several prompt-based LLMs for
user simulators. We cover a range
of model sizes and architectures, in-
cluding Qwen-2.5-7B-Instruct, Llama-
3.1-8B-Instruct, Gemma-3-27B-Instruct,
Qwen-2.5-72B-Instruct, and Llama-3.3-
70B-Instruct (Grattafiori et al., 2024; Team
et al., 2025; Qwen et al., 2025). Across
the evaluation datasets, the results show
a general trend of improving average per-
formance with increased model size, with
Llama-3.3-70B-Instruct achieving the high-
est performance. However, all LLMs
struggle with maintaining consistent goal
alignment and demonstrate failure rang-
ing 10-40%. Moreover, closer analy-
sis reveals mixed results across different
sub-components, where larger models do
not consistently demonstrate better perfor-
mance. For example, while Llama-3.3-
70B-Instruct achieves the strongest aver-
age performance, Gemma-3-27B-Instruct
achieves a higher score for the user profile
category. This variation in performance un-
derscores the importance of evaluating user simulators across individual sub-components rather than
relying solely on aggregate metrics, as model capabilities vary across different types of user goal
sub-components.

Inference-time Steering. Next, we evaluate the same set of models with inference-time steering,
where the user goal state Si−1 is provided to the user simulator at every turn i before they generate
their response ui. Inference-time steering improves goal alignment in user simulators, increasing
the average success rate up to 5.4%. However, while there is an increase in the average success rate,
different models react differently to inference-time steering. For example, we observe a drop in the
user profile category for Qwen-2.5-7B-Instruct models, or a drop in the preferences category for
Gemma-27B-Instruct models.

The user goal state captures the user goal and the progress towards completing it (e.g., which sub-
components have been achieved and which remain). We also experiment with a simpler baseline that
provides only the user goal at each turn, essentially reminding the simulator of their objective without
any progress tracking. Table 7 presents the results of this comparison. While providing the user
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goal alone does improve goal alignment in conversations, providing the full user goal state generally
achieves higher performance. This demonstrates that UGST’s ability to capture task progression is
important for effective inference-time steering.

Cold-Start SFT. Our highest performing model from the previous stage is Llama-3.3-70B-Instruct,
so we use it to generate cold-start SFT data with the process described in Section 5.2. We gather
500 user goals from the τ -Bench Retail training dataset and also generate 500 MultiWOZ user
goals with our user goal generation pipeline (Appendix C). The resulting dataset consists of 1000
conversations. Using this dataset, we train Qwen-2.5-7B-Instruct and Llama-3.1-8B-Instruct with
SFT. The hyperparameters we use include a batch size of 32, a learning rate of 1 × 10−6, and 4
epochs. This leads to an increase in performance over the prompt-based and inference-time steering
methods.

GRPO with UGST Rewards. Finally, we apply GRPO with UGST Rewards (Section 5.3) to train
the models from the previous section. We use a learning rate of 5× 10−6, batch size of 16, 8 rollouts,
and 350 training steps. Our dataset is made up of approximately 5000 training samples, constructed
by taking subsets of each conversation in our cold-start SFT data that fit within 2048 tokens.

The resulting models achieve even further improvements, and demonstrate either the highest or
competitive average success rates among all models, including their larger counterparts, Gemma-2.5-
72B-Instruct and Llama-3.3-70B-Instruct.

Our experimental results demonstrate the effectiveness of the proposed methodology for developing
goal-aligned user simulators. Qwen-2.5-7B and Llama-3.1-8B-Instruct gain significant improvements
that enable them to rival much more powerful models like Qwen-2.5-72B-Instruct and Llama-3.3-
70B-Instruct, and demonstrate up to a 14% increase in average success rates. Through systematic
evaluation across diverse domains, we establish that our approach consistently and significantly
improves user simulator goal alignment.

To further validate our findings and examine the broader impact of our methodology, we conduct
additionaly analysis and present it in Appendix H.

7 Conclusion

This work introduces User Goal State Tracking to address the goal misalignment problem in LLM-
based user simulators. This framework dynamically monitors a user simulator’s goal progression
through multi-turn conversations. We leverage this framework and present a three-stage method
that develops user simulators that autonomously track their goal progression and reason to generate
goal-aligned responses. Our experiments across MultiWOZ, τ -Bench Airline, and τ -Bench Retail
domains show significant improvements in goal alignment. By enabling more reliable user simulation,
our work addresses a fundamental challenge in conversational AI and establishes the foundation for
developing agents that learn from user interactions through reinforcement learning.

8 Limitations

While our work demonstrates improvements in user simulator goal alignment, several limitations
remain. First, we use Qwen-2.5-72B-Instruct for reliable UGST, which is computationally expensive
and limits the scalability of our framework. Second, our evaluation methodology relies heavily on
LLMs to create user goal states and conduct UGST. Although we validate this approach through
human evaluations studies that show strong agreement between LLMs and human annotators, the
fundamental concern remains that LLMs are still susceptible to hallucinations and could introduce
biases or inconsistencies in our evaluation. Third, when using UGST rewards for GRPO, we use
equal weights across all conditions and do not incorporate other aspects such as response naturalness
or coherence. Future work should address these limitations by developing smaller, specialized models
for UGST that are more efficient, and investigating optimal reward functions that capture essential
qualities for user simulation.
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Table 3: Categorization and frequency of goal alignment failures identified through manual analysis
of 50 randomly selected conversations between LLM-based user simulators (Llama-3.1-8B-It and
Qwen-2.5-7B-It) and conversational agents.

Goal Alignment Failure Frequency

Confusion: The simulator forgets or confuses parts of the goal. For example, in a shopping application, when instructed to
return a item A and exchange item B, the simulator incorrectly requests to return both items.

33%

Contradiction: The simulator directly contradicts specified constraints or contextual information. For example, in a flight
booking scenario, the user simulator is instructed that they do not have their credit card details. However, they hallucinate
fake credit card information when it is required to proceed with the booking.

23%

Wrongful termination: The simulator exhibits inadequate termination strategies–either terminating prematurely before
receiving agent responses, or continuing indefinitely until reaching the maximum conversation length.

21%

Poor Length Management: The simulator fails to complete all parts of their goal within the conversation length limits,
demonstrating poor management and awareness of conversation length. For example when tasked with booking multiple
flights, the simulator exhausts the conversation length before completing all bookings.

12%

Misprioritization: The simulator overly prioritizes one part of their goal. They either get stuck on trying to achieve one
part of their goal that is unachievable, rather than moving onto the remaining parts. Or, the user simulator terminates after
completing one part of their goal, rather than completing the remaining parts of the goal.

11%

A User Simulator Goal Alignment Failures

B System Prompts

Prompt B.1: Agent Prompt

You are an advanced agent specializing in conversational dialogues. You can act both as an agent
(providing services) and a user (interacting with the database) to assist users in completing
complex tasks.
Each task may involve multiple sub-tasks, such as finding restaurants, making reservations,
booking hotels, locating attractions, and arranging transportation by checking for trains and
buying train tickets.

# Task Information:
• If the user asks for some attributes of a venue, then an API call is necessary.
• If you decide that more than one API calls are needed, you should call one API first and
wait for the API result. After obtaining that result, you may think and call the next
API or think and make a response.

• If you decide that there is an API input slot that the user has never mentioned, please
put "any" as the slot value as a placeholder.

# Objective:
• Ensure that each assistant utterance follows logical reasoning, determining whether

an API call is needed and structuring the output accordingly. item If there are too
many results returned by API results from database, you should ask the user for more
constraints unless the user explicitly wants you to pick one or some.

# General Procedure You should follow the workflow below every time you receive an input:
1. Use APIs to retrieve information from the database, make operations to the backend, or

use tools to perform other tasks.
2. Repeat step 1 until you decide to make a response to the user.
3. Use the response API to return the response to the user and end your turn.

Prompt B.2: User Simulator Prompt

You are a user simulator interacting with an agent. You are provided with User Goals, and your
task is to interact with the agent to achieve the goals as much as possible.

# Conversation Guidelines:
• Work toward achieving specified user goals while maintaining a natural conversation

flow.
• Reveal information gradually and naturally as a real person would.
• Do not hallucinate information that is not provided in the instruction. If asked

about something not specified, respond honestly and tell the agent you do not have that
information.

• User natural language that is appropriate to the context and your assigned personality,
rather than copying the exact wording from the instructions.

# Conversation Length:
• The maximum conversation length is 20 messages. Plan your approach accordingly to

accomplish your goals within this limit.
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• If you’ve achieved your goals before reaching the maximum length, you can end the
conversation early. To do so, you need to send "Terminate." in a separate, final
message.

– Make sure to allow the agent to respond before sending "Terminate.".
– NEVER include "Terminate." in a message where you are asking a question or making

a request to the agent, because it will end the conversation before the agent can
respond.

– Do NOT mention "Terminate." at any other time, because that will end the
conversation prematurely.

• Do not hallucinate information that is not provided in the instruction. If asked
about something not specified, respond honestly and tell the agent you do not have that
information.

• User natural language that is appropriate to the context and your assigned personality,
rather than copying the exact wording from the instructions.

# User Goals:
{user_goals}

C Multiwoz User Goal Generation

We construct the MultiWOZ Challenge dataset to evaluate user simulator goal alignment. In this
section, we present our user goal generation pipeline that we used to create this dataset.

Step 1: Task Objective Generation

For the attraction, hotel, restaurant, and train domains in the MultiWOZ database, we iterate over the
entities. Each entity has a set of key-value pairs (e.g. “area= east”, “pricerange= moderate”).
To instantiate a single task objective, we: (1) randomly sample requirement/preference keys to use
their values to specify requirements or preferences about the entity the user is looking for, and (2)
randomly sample request keys that will be used to specify information that the user wants about the
entity. We provide this information to GPT-4o mini, and generate a user goal in natural language.

For example, given the attraction below:

{"name": "abbey pool and astroturf pitch",
"type": "swimmingpool",
"area": "east",
"price range": "moderate",
"address": "pool way ...",
"phone": "01223 902088",
... }

we select the area and price range for requirement/preference keys, and select address and phone for
request keys. The task objective would like like:

“Find a swimming pool attraction in the east area. You prefer one with a moderate price range. You
want to know its address and phone number.”

Impossible Task Objectives. To also observe how user simulators perform under failure conditions,
we repeat the process above, but assign a random value to the requirement/preference keys. This
helps create an entity that does not exist in our database.

Conditional Task Objectives. We also include conditional task objectives. A conditional task
objective will require the user to search for one specific entity, but if it satisfies some conditional
requirement, the user must look for another entity. For example:

“You are looking for a swimming pool with a cheap price range. If it is in the east area, then change
your mind and look for another swimming pool in the west area that has a moderate price range.”

Step 2: User Profile and Policy Generation

Next, we automatically generate a diverse set of about 50 user profiles and 50 user policies with
GPT-4o mini. An example a user profile looks like:

“You are Maria García, a travel blogger documenting her adventures across Southeast Asia. Your
experiences focus on local cuisine and cultural festivals.”
An example a user policy looks like:

“Always ask the agent to restate booking details (date, time, price) before confirming. Verify critical
details by repeating them back and asking ’Is that correct?’.”
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Then, we conduct manual annotations of the user profiles and policies, where we confirmed the
relevance and quality. When necessary, some elements were removed or modified.

Step 3: User Goal Generation

Finally, we generate a user goal by randomly select a user profile, user policy and multiple task
objectives. These were combined into a single user goal. We conducted more manual annotations at
this step, to ensure the quality of user goals.

D User Goal State Generation

Our user goal state generation process consists of three main steps. First, we decompose each user
goal into distinct, modular sub-components, where each represents an independent, self-contained
part of the original goal. Second, we classify each sub-component into one of five categories: user
profile, user policy, task objective, requirement or preference. Finally, we assign each sub-component
its default value as described in Section 4.2.

For the decomposition and classification steps, we evaluated several LLMs, including DeepSeek-V3,
Llama-3.3-70B-Instruct, GPT 4o-mini, and GPT 4o. Through manual validation, we determined that
GPT-4o provided the highest quality results, and therefore used it to generate all the user goal states.
The complete prompt used for this process is provided below.

Prompt D.1: Sub-Component Decomposition Prompt

You are an expert annotator tasked with dividing a user’s goal into sub-components.

# User Goal:
{user_goal}

A user goal can be split into multiple sub-components. Each sub-component can be classified into
one of the following categories:

• User Profile: persona, background, contextual information (e.g. You are a software
engineer with 5 years of experience)

• User Policy: general constraints and guidelines that must be consistently followed
throughout the conversation (e.g. Always go with the cheapest option, don’t share
personal information)

• Task Objectives: tasks that must be accomplished (e.g. Book a flight)

– Requirements: conditions and constraints associated with this task objective (e.g.
Purchase 3 carry-on bags)

– Preferences: user preferences associated with this task objective (e.g. You
prefer a direct flight, you’d like an aisle seat)

Analyze the user goal and divide it into sub-components:

• Maintain the same wording as in the original goal when possible

• Feel free to split up a sentence into multiple sub-components if it makes sense or if
they fight in different categories

• Ensure that no part of the original goal is left out

• It is okay if a category is empty, if no sub-components are relevant

# Output Format
{

"user_profile": [
# List of user profile sub-components

],
"user_policy": [

# List of user policy sub-components
],
"task_objectives": [ # List of task objectives

{
"task_objective": "task objective description",
"requirements": [

# List requirements for this task
],
"preferences": [

# List of preferences for this task
]

}
]

}
Output only a JSON object, in the format specified.
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E Sub-Component Status Update Prompt

Prompt E.1: User Profile Sub-Component Status Update Prompt

You are an expert evaluator analyzing a user simulator’s behaviour. The user simulator is given
a user profile component, which specifies an aspect of their persona, background, or contextual
information. Your task is to evaluate the latest turn to determine if the user simulator behavior
is aligned with this user profile component.
# User Profile Component:
{user_profile_component}
# Conversation History:
{conversation_history[:-2]}

# Latest Turn:
{conversation_history[-2:-1]}
# Evaluation Criteria:
Evaluate the latest turn, and determine if the user simulator is aligned with the user profile
component ({user_profile_component}). You must provide a status, the value of which should be:

• ALIGNED - Choose if ALL these conditions are met:

1. The user simulator behavior does NOT directly contradict the user profile component
2. IF the context clearly calls for demonstrating this profile component, then the

user simulator demonstrates it appropriately (explicitly or implicitly)
3. IF the context does NOT clearly call for demonstrating this profile component

(neither demonstrating nor contradicting)

• MISALIGNED - Choose if ANY of these conditions are met:

1. The user simulator behavior DIRECTLY contradicts the user profile component
2. The context clearly and obviously calls for demonstrating the profile component,

AND the user simulator fails to do so in a way that would be unrealistic for
someone with this profile

# Important Guidelines:

• Focus on the latest turn, but use the conversation history for context

• Unless there’s a clear contradiction, or obvious missed opportunity, lean towards
ALIGNED

– Most turns will not require demonstrating the profile component

A user goal can be split into multiple sub-components. Each sub-component can be classified into
one of the following categories:

• User Profile: persona, background, contextual information (e.g. You are a software
engineer with 5 years of experience)

• User Policy: general constraints and guidelines that must be consistently followed
throughout the conversation (e.g. Always go with the cheapest option, don’t share
personal information)

• Task Objectives: tasks that must be accomplished (e.g. Book a flight)

– Requirements: conditions and constraints associated with this task objective (e.g.
Purchase 3 carry-on bags)

– Preferences: user preferences associated with this task objective (e.g. You
prefer a direct flight, you’d like an aisle seat)

# Output Format:
{{

"status": # ALIGNED | MISALIGNED,
"reasoning": # Brief explanation of your decision

}}

Output a properly formatted JSON response, as specified by the Output Format, and nothing else.

F Naturalness and Coherence Evaluation Prompts

Prompt F.1: Naturalness Evaluation Prompt

You are an expert evaluator analyzing a user simulator’s behavior while they are pursuing a user
goal. Your task is to evaluate the naturalness of the user simulator throughout conversation.

# User Goal
{user_goal}
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# Conversation History
{conversation_string}

# Evaluation Task
Rate the naturalness of the user responses on a scale from 1 to 5, based on three key dimensions:

1. **Grammar and coherence**: Grammatically correct sentences that flow logically and
coherently.

2. **Context Relevance** Responses are strongly related to the conversation context and
previous turns, as well as the user goal.

3. **Conversational Style**: Responses are natural, and appropriate for the conversation
style.

The rating scale is as follows:

• 5 (Highly Natural): Excels in all three dimensions - perfect grammar/coreference, fully
contextually appropriate, and natural conversational

• 4 (Mostly Natural): Strong in all dimensions with minor lapses - occasional awkward
phrasing or slightly unnatural language

• 3 (Moderately Natural): Adequate in all dimensions - functional but noticeably
artificial in style or occasional context mismatches

• 2 (Somewhat Unnatural): Weak in 1-2 dimensions - grammar errors, loses context, or
overly formal/robotic style

• 1 (Very Unnatural): Fails multiple dimensions - poor grammar, irrelevant responses, or
mechanical/repetitive patterns

# Output Format:
{{

"naturalness_score": # number from 1 to 5
"reasoning": # Brief explanation of your evaluation decision

}}

Output a properly formatted JSON response, as specified by the Output Format.

Prompt F.2: Coherence Evaluation Prompt

You are an expert evaluator analyzing a user simulator’s behavior while they are pursuiing a user
goal. Your task is to evaluate the coherence of a user simulator in pursuing their goal in a
conversation.

# User Goal
{user_goal}

# Conversation History
{conversation_string}

# Evaluation Task
Rate the coherence of the user’s dialogue on a scale from 1 to 5, based on three key dimensions:

1. **Goal Progression**: User consistently works toward their stated goal with appropriate
persistence and adaptation

2. **Topic Continuity**: Responses maintain topical relevance and logical connections
between turns

3. **Response Appropriateness**: User responds appropriately to system prompts, questions,
and clarification requests

The rating scale is as follows:

• 5 (Highly Coherent): Clear goal pursuit throughout, all utterances topically connected,
appropriate responses to all system turns

• 4 (Mostly Coherent): Strong goal focus with minor deviations, well-connected utterances,
occasionally misses response opportunities

• 3 (Moderately Coherent): Generally pursues goal with some inconsistencies, mostly
connected utterances, some inappropriate responses

• 2 (Somewhat Incoherent): Weak goal focus with major deviations, frequent topic jumps,
often misses or misinterprets prompts

• 1 (Very Incoherent): No clear goal pursuit, disconnected responses, fails to engage
appropriately with system

# Output Format:
{{
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"coherence_score": # number from 1 to 5
"reasoning": # Brief explanation of your evaluation decision

}}

Output a properly formatted JSON response, as specified by the Output Format.

G Human Evaluation

Table 4: Human Agreement scores with LLM-
based UGST on random user-agent conversa-
tions. We report the overall scores, as well as
scores for each sub-component category.

Prof. Pol. T.O. Req. Pref. Avg

91.7 72.7 91.1 81.3 88.7 85.7

User Goal State Tracking. We validate our evalu-
ation method by conducting a comprehensive human
evaluation study with 10 graduate-level human anno-
tators. For a total of 30 randomly selected conver-
sations, human annotators manually conduct UGST,
resulting in a total of 300 human annotated goal
states. We measure the agreement between the hu-
man annotated goal states and LLM generated goal
states by reporting the proportion of matching sub-
component statuses. Table 4 presents both results
per sub-component category and overall agreement, demonstrating that LLMs can reliably conduct
UGST.

Table 5: Precision (P), Recall (R),
F1 score, and classification accu-
racy (Acc.) of GPT-4o for user goal
state generation.

P R F1 Acc.

98.04 95.60 96.63 91.97

User Goal State Generation. Due to its central role in our
evaluation methodology, we also evaluate how well GPT-4o
generates user goal states. We manually create user goal states
for a total of 30 randomly selected user goal states, and compare
against the goal-states generated by GPT-4o. We report the
precision (P), recall (R), and F1 scores for the sub-components,
where true positives are when the generated goal state correctly
contains a sub-component, false positives are when the goal
state contains a sub-component it should not contain, and false
negatives are when the generated goal state is missing a sub-
component. Additionally, we report the accuracy (Acc.) for categorizing the sub-components. As
shown in Table 5, GPT-4o achieves high performance across all metrics, indicating reliable goal state
generation that ensures accurate and representative downstream evaluations.

H Discussion

H.1 Further Analysis of User Simulators

Table 6: Additional analysis of user simu-
lators. We report BERTScore (F1) for se-
mantic similarity between user utterances and
user goals (higher scores indicate better goal
alignment), naturalness (N) and coherence
(C) scores, and diversity metrics including
MTLD and HDD. Results are averaged across
τ -Bench and MultiWOZ datasets.

Model F1 N C MTLD HDD

Prompt-Based

Qwen-2.5-7B-It 0.827 4.15 4.31 71.9 0.403
Llama-3.1-8B-It 0.819 4.05 4.211 67.0 0.513
Gemma-3-27B-It 0.823 4.16 4.30 85.4 0.524
Qwen-2.5-72B-It 0.824 4.26 4.50 70.1 0.382
Llama-3.3-70B-It 0.826 4.25 4.51 75.2 0.720

GRPO with UGST Rewards

Qwen-2.5-7B-It 0.827 4.05 4.37 80.7 0.806
Llama-3.1-8B-It 0.836 3.85 4.20 74.0 0.795

To further validate our findings and examine the
broader impact of our methodology, we conduct fur-
ther analysis of our user simulators and present results
averaged across τ -Bench Airline, τ -Bench Retail,
and MultiWOZ Challenge in Table ??.

Goal Alignment. Following Zheng et al. (2024),
we additionally evaluate goal alignment by using
BERTScore (Zhang et al., 2019) to measure the se-
mantic similarity between user utterances and their
user goal, where higher F1 scores indicate better goal
alignment. We observe that the semantic similarity
scores generally show an increasing trend for each
stage of our method, with the final stage achieving
the highest scores.

Naturalness and Coherence. A key concern when
improving goal alignment is ensuring that user sim-
ulators maintain their conversational abilities to gen-
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erate realistic responses. To address this, we assess
the naturalness and coherence of user-agent conver-
sations by employing Qwen-2.5-72B-Instruct to rate conversations on a scale from 1 to 5, as in Kazi
et al. (2024). The evaluation prompts are provided in Appendix F. Throughout the different stages,
naturalness and coherence scores show only minor variations and remain within a similar range. This
indicates that our approach achieves substantial goal alignment improvements without degrading the
fundamental conversational qualities essential for realistic user simulation.

Diversity. Lastly, we assess diversity using Measure of Textual Lexical Diversity (MTLD) (Mc-
Carthy and Jarvis, 2010) and Hypergeometric Distribution Function (HDD) (Wu, 1993) following
established practices in user simulation evaluation (Luo et al., 2024; Pietquin and Hastie, 2013).
MTLD quantifies lexical diversity at the token level, and HDD captures the diversity of vocabulary
when randomly selecting a fixed number of words from the user utterances. There is a consistent
increase in diversity of user simulator utterances, and user simulators from our final stage demonstrate
significant improvements in diversity. These results provide additional validation that our method-
ology enhances goal alignment of user simulators, while also demonstrating that it promotes more
diverse conversational behaviors, a highly desirable trait for user simulation.
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Model Prof. Pol. T.O. Req. Pref. Avg

Prompt-Based

Qwen-2.5-7B-It 88.3 49.2 94.3 96.0 85.7 82.7
Llama-3.1-8B-It 90.9 41.0 97.1 99.0 81.0 81.8
Gemma-3-27B-It 98.7 59.0 97.1 97.0 78.6 86.1
Qwen-2.5-72B-It 89.3 59.6 94.1 96.9 78.6 83.7
Llama-3.3-70B-It 97.4 65.6 98.1 99.0 92.9 90.6

Inference-Time Steering with User Goal

Qwen-2.5-7B-It 70.1 54.2 98.1 99.0 90.5 82.4
Llama-3.1-8B-It 87.0 60.7 97.1 98.0 100.0 88.6
Gemma-3-27B-It 92.2 73.8 96.2 98.0 73.8 86.8
Qwen-2.5-72B-It 93.5 62.3 92.4 94.1 76.2 83.7
Llama-3.3-70B-It 98.7 59.0 96.2 98.0 90.9 88.6

Inference-Time Steering with User Goal States

Qwen-2.5-7B-It 77.9 55.7 96.2 98.0 92.9 84.1
Llama-3.1-8B-It 92.2 57.4 93.3 98.0 95.2 87.2
Gemma-3-27B-It 94.8 62.3 92.4 97.0 85.7 86.4
Qwen-2.5-72B-It 93.3 54.4 98.0 97.9 97.6 88.3
Llama-3.3-70B-It 93.5 63.9 98.1 100.0 97.6 90.6

(a) τ -Bench Airline

Model Prof. Pol. T.O. Req. Pref. Avg

Prompt-Based

Qwen-2.5-7B-It 82.0 40.8 96.0 99.5 91.7 82.0
Llama-3.1-8B-It 84.8 36.8 97.1 98.9 96.3 82.8
Gemma-3-27B-It 91.0 39.5 97.8 99.5 96.3 84.8
Qwen-2.5-72B-It 88.6 40.8 98.2 97.9 91.7 83.4
Llama-3.3-70B-It 91.7 46.1 99.6 100.0 100.0 87.5

Inference-Time Steering with User Goal

Qwen-2.5-7B-It 73.4 38.2 97.5 98.4 95.4 80.6
Llama-3.1-8B-It 91.7 38.2 98.9 99.5 94.4 84.5
Gemma-3-27B-It 94.5 63.2 97.8 98.4 91.7 89.1
Qwen-2.5-72B-It 89.6 40.8 97.1 98.9 97.2 84.7
Llama-3.3-70B-It 92.4 55.3 98.2 100.0 98.1 88.8

Inference-Time Steering with User Goal States

Qwen-2.5-7B-It 73.0 47.4 94.9 97.9 93.5 81.4
Llama-3.1-8B-It 84.8 52.6 95.3 98.9 97.2 85.8
Gemma-3-27B-It 94.5 56.6 97.1 99.5 89.8 87.5
Qwen-2.5-72B-It 85.8 48.7 97.1 98.4 98.1 85.6
Llama-3.3-70B-It 92.7 59.2 96.0 98.4 100.0 89.3

(b) τ -Bench Retail
Model Prof. Pol. T.O. Req. Pref. Avg

Prompt-Based

Qwen-2.5-7B-It 54.7 18.0 78.4 81.9 73.5 61.3
Llama-3.1-8B-It 73.6 35.0 86.1 89.0 80.9 72.9
Gemma-3-27B-It 80.1 50.3 95.0 97.7 92.1 83.0
Qwen-2.5-72B-It 72.0 31.0 91.0 93.3 90.2 75.5
Llama-3.3-70B-It 72.0 31.0 97.9 98.6 93.2 83.3

Inference-Time Steering with User Goal

Qwen-2.5-7B-It 49.8 28.0 77.8 83.2 69.4 61.7
Llama-3.1-8B-It 73.9 49.7 92.9 95.8 80.4 78.5
Gemma-3-27B-It 80.8 49.0 95.9 98.3 89.4 82.7
Qwen-2.5-72B-It 71.7 41.7 92.7 94.9 93.1 78.8
Llama-3.3-70B-It 73.6 60.3 94.9 95.8 91.0 83.1

Inference-Time Steering with User Goal States

Qwen-2.5-7B-It 43.4 26.3 88.1 89.8 71.1 63.7
Llama-3.1-8B-It 71.7 38.0 85.2 88.6 74.3 71.6
Gemma-3-27B-It 72.3 45.7 87.0 89.7 74.8 73.9
Qwen-2.5-72B-It 71.0 46.3 94.9 96.9 92.9 80.4
Llama-3.3-70B-It 72.6 64.3 97.0 97.8 91.7 84.7

(c) MultiWOZ Challenge

Table 7: User simulator goal alignment performance with prompt-based, inference-time steering with
user goal and inference-time steering with user goal states. The table shows the average success
rates for User Profile (Prof.), User Policy (Pol.), Task Objective (T.O.), Requirements (Req.) and
Preferences (Pref.) sub-component categories, and the overall average performance. Highest scores
are bolded, and the second-highest scores are underlined.
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