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ABSTRACT

The molecular basis of protein thermal stability is only partially understood and
has major significance for drug and vaccine discovery. The lack of datasets and
standardized benchmarks considerably limits learning-based discovery methods.
We present HotProtein, a large-scale protein dataset with growth tempera-
ture annotations of thermostability, containing 182K amino acid sequences and
3K folded structures from 230 different species with a wide temperature range
−20◦C ∼ 120◦C. Due to functional domain differences and data scarcity within
each species, existing methods fail to generalize well on our dataset. We ad-
dress this problem through a novel learning framework, consisting of (1) Pro-
tein structure-aware pre-training (SAP) which leverages 3D information to en-
hance sequence-based pre-training; (2) Factorized sparse tuning (FST) that uti-
lizes low-rank and sparse priors as an implicit regularization, together with fea-
ture augmentations. Extensive empirical studies demonstrate that our frame-
work improves thermostability prediction compared to other deep learning mod-
els. Finally, we introduce a novel editing algorithm to efficiently generate pos-
itive amino acid mutations that improve thermostability. Codes are available in
https://github.com/VITA-Group/HotProtein.

1 INTRODUCTION

Overheat unfolds and 
deactivates Proteins.

Figure 1: Overheat unfolds and deactivates pro-
teins (Paci & Karplus, 2000).

Proteins are the bio-polymers responsible for ex-
ecuting most biological phenomena and, through
evolution, have had their sequences optimized to
carry out specific functions within specific cellu-
lar environments. A protein’s stability is a multi-
dimensional property that depends on a series of
factors (Pucci et al., 2017; Cao et al., 2019) such
as pH, salinity, and temperature (thermostability
shown in Figure 1), making it hard to adapt a pro-
tein to function outside of its endogenous cellular environment. Protein engineering is the field
where natural proteins are mutated to improve their stability in exogenous environments and their
overall fitness for a particular function. In protein engineering, one of the initial goals for most
engineering campaigns is to improve the thermal stability of protein (Haki & Rakshit, 2003; Bruins
et al., 2001; Frokjaer & Otzen, 2005). Thermally stabilized proteins are more robust and therefore
enable downstream applications in the food (Kapoor et al., 2017), biofuel (Huang et al., 2020), deter-
gent (Von der Osten et al., 1993), chemical (Cho et al., 2015), and pharmaceutical industry (Amara,
2013), drug design (De Carvalho, 2011; Mora & Telford, 2010), and bioremediation of environmen-
tal pollutants (Lu et al., 2022; Alcalde et al., 2006). Thus, to accelerate the engineering of a target
protein it is critical to understand and accurately predict thermal stability changes of mutations.
There has been a substantial effort from the community to quantitatively understand and model pro-
tein thermostability (e.g., Pucci et al., 2017; Cao et al., 2019; Pucci & Rooman, 2014; Li et al.,
2019; Pucci & Rooman, 2017; Pouyan et al., 2022). However, the generalizability of them is still
unsatisfactory, and laborious experimental methods such as directed evolution are often preferred.

*Equal Contribution.
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To enhance the capabilities of learning-based approaches, we present a large-scale, standardized
protein benchmark, i.e., HotProtein, with organism-level temperature annotations which is a
lower bound of protein’s melting temperature (Jarzab et al., 2020). It consists of 182K protein
sequences and 3K folded structures from 230 different species, covering a broad temperature range
of −20◦C ∼ 120◦C. However, similar to Cao et al. (2019), naively trained deep models even
on our dataset do not enable generalization to unseen proteins. The presumed reasons are (1) the
considerable functional heterogeneity in proteins that arise from the environmental conditions and
evolutionary history and (2) the scarcity of high-quality thermostability experimental data due to the
massive cost and labor required to generate such data.

To tackle these pain points, we introduce a novel algorithmic pipeline to improve thermostabil-
ity prediction. First, we enrich our sequence embeddings by infusing 3D structural information in
a contrastive manner–we call this structure-aware pre-training (SAP). Then, we further fine-tune
our model with a factorized sparse tuning (FST) approach. Here, we utilize factorized low-rank
and sparse priors as implicit regularizers and leverage feature augmentation, such as mix-up (Verma
et al., 2019) and worse-case augmentations (Chen et al., 2021d). FST greatly boosts the performance
of tuned predictors, suggesting improved data efficiency and robustness against domain shifts (Li
et al., 2022b; Chen et al., 2021c). Extensive evaluations on both HotProtein and the other exist-
ing protein datasets (i.e., FireProtDB (Stourac et al., 2021)) verify our proposals’ effectiveness.

Finally, to identify the top mutational predictions likely to improve thermal stability for a target
protein, we develop a new optimization-based editing framework on top of a classifier or regressor,
that attempts to mimic the process of directed evolution while limiting the stochasticity (Pucci &
Rooman, 2014). Unlike existing protein engineering approaches (Eijsink et al., 2005; Couñago
et al., 2006; Wijma et al., 2013) that directly utilize the predictions to generate mutational designs,
our proposal maximizes the model’s objective to approach a more thermostable label to identify
input mutated sequences. Our contributions can be summarized as follows:

⋆ We collect and present a large-scale protein dataset, i.e., HotProtein, with organism-level tem-
perature annotations. We use the organism’s environmental growth temperature to label and clas-
sify all proteins within each organism, which we use for thermostability prediction and editing.
It contains 182K amino acid sequences and 3K folded 3D structures of proteins from 230 dif-
ferent species, covering five thermostability types, e.g.,, Cryophilic, Psychrophilic, Mesophilic,
Thermophilic, and Hyperthermophilic.

⋆ We introduce a protein structure-aware pre-training by injecting 3D structural information into
sequence embeddings in a contrastive fashion. It enhances the diversity and expressivity of the
protein representations, resulting in improved thermostability predicting performance.

⋆ We introduce a robust and data-efficient tuning framework that performs weight updates in the fac-
torized and sparse subspace together with augmented feature embedding. This leads to substantial
performance improvements against data scarcity and severe distribution shifts.

⋆ We formulate the search for thermal stabilizing mutations as an optimization problem: for a target
protein and a trained predictor, we customize an editing framework that optimizes the input protein
sequences to identify thermostabilizing mutations.

⋆ Extensive experiments conducted on both thermostability prediction and protein editing tasks,
consistently demonstrate the superiority of our proposals over various existing approaches (Rives
et al., 2021). For example, when fine-tuned on experimentally determined Tm dataset, Fire-
ProtDB, our editing suggester achieves 53.93% (↑ 8.96%) precision in positive mutation clas-
sification, 50.79 (↑ 6.54) Spearman ρ correlation coefficient in the temperature regression, and
54.24% (↑ 1.83%) successful rate in generating positive single mutations.

2 RELATED WORKS

Protein Thermostability Prediction. To enhance a protein’s stability, ∆∆G and ∆Tm are common
metrics by molecular biologists, enzymologists, and protein engineers. ∆∆G evaluates the changes
in free energy between a protein and a mutated variant. While ∆Tm evaluates the change in thermal
tolerance between two protein variants. The two are related through the Van ’t Hoff equation (Wright
et al., 2017) and it is common to obtain ∆∆G from Tm measurements (e,g, Chen et al., 2013;
Capriotti et al., 2005; Rodrigues et al., 2018; Pires et al., 2014a; Parthiban et al., 2006).
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Most studies lack accurate large-scale thermostability data. For example, deepDDG (Cao et al.,
2019) is trained on 5, 766 manually-curated ∆∆G measurements across 242 proteins, while one
of their test set contains 173 experimental melting temperature changes (∆Tm) to assess how well
deepDDG correlated with ∆Tm (Cao et al., 2019). Previously, researchers use empirical physics-
based energy contributions (Kellogg et al., 2011), torsion angles (Parthiban et al., 2006), or graph-
based distance patterns (Pires et al., 2014b) as features and apply different models, e.g., physical
models, residue interaction networks (Giollo et al., 2014), SVMs (Chen et al., 2013), to predict the
thermodynamics ∆∆G. However, none of these methods have shown strong generalization.

Protein Engineering. Protein engineering with machine learning is usually formulated as an
energy-guided refinement process by maximizing a pre-defined energy function with changing input
data (e.g., torsion angle, 1D amino acid sequence, or 2D contact map) (AlQuraishi, 2019; Kuhlman
et al., 2003; Huang et al., 2016; Kuhlman & Bradley, 2019). A group of works trains a generative
model or autoencoder and then optimizes the continuous hidden representation to maximize some
given objectives (e.g., Gligorijevic et al., 2021; Shuai et al., 2021; Hawkins-Hooker et al., 2021;
Hoffman et al., 2022). Another category of works train models to map the input data to the target
property (e.g. temperature, energy, etc.), and then optimize the discrete input space with combi-
natorial optimization (Norn et al., 2021). These methods have been applied to different kinds of
input data, e.g., 1D structural features (Norn et al., 2021; Wang et al., 2017; Karplus, 2009), torsion
angles, and contact maps (Jones & Kandathil, 2018; del Alamo et al., 2021).

Description about more related works. Due to space limitations, we place discussions about
protein engineering background, directed evolution, guided directed evolution, other protein ther-
mostability datasets, sequence-/structure-based protein models, and sparse and low-rank subspace
fine-tuning in our Appendix A.

3 THE HOTPROTEIN DATASET

To obtain thermostable labels for an organism’s proteome, we collect the raw data from the NCBI
BioProject (Barrett et al., 2012), which offers an organizational framework to access the (meta-)data
about research projects, which is deposited or planned for deposition, into archival repositories.

Preprocess. From the NCBI bioproject XML file1, we filter organisms where the environmental
data (i.e., “OptimumTemperature” and “TemperatureRange”) is available. After removing duplicate
organism entries (keeping the first entry), this provides us with 1, 733 unique entries. Next, we pro-
ceed to download these organisms’ proteomes from UniProt2 via their taxids and bin the proteomes
based on the “TemperatureRange” classification of that organism. Finally, we remove all proteins
over 1, 500 amino acids in length and utilize CD-Hit3 to cluster protein sequences across organisms
within a “TemperatureRange” class at a sequence similarity threshold of 50%. In each cluster, we
only keep proteins whose sequence lengths are between 200 ∼ 550.

Annotation and Folding. To further increase the fidelity of our annotations, we remove organisms
from each “TemperatureRange” bin where the “OptimumTemperature” does not fall within the cor-
responding limits: ❶ Hyperthermophilic (> 75 Celsius), ❷ Thermophilic (45 ∼ 75 Celsius), ❸
Mesophilic (25 ∼ 45 Celsius), ❹ Psychrophilic (5 ∼ 25 Celsius), and ❺ Cryophilic (−20 ∼ 5 Cel-
sius). The filtered proteomes and their corresponding annotations form the HotProtein dataset
and are utilized throughout the classification and regression tasks in our study.

For a random subset of the HotProtein dataset (∼ 3K), we predict structure with Al-
phaFoldV2 (AlQuraishi, 2019; Jumper et al., 2021) to obtain their 3D coordinates. The official
implementation is adopted. We report the predicted template modeling (P-TM) scores for each
folded structure in Figure 2 A.3) and B.3). The P-TM score is a rough approximation of the folding
quality (AlQuraishi, 2019), and we kept structures only with a P-TM ≥ 0.8.

Properties. As described in Figure 2, we generate four distinct testbeds from the HotProtein
dataset that differed in scale: (1) HP-S2C2 has 1026 “hot” (≥ 45◦C) and 939 “cold” (< 45◦C)
proteins from 61 and 4 species, respectively. Both sequence and structure statistics of these proteins
are provided. (2) HP-S2C5 consists of both sequences and structures for {73, 387, 195, 196, 189}

1https://ftp.ncbi.nlm.nih.gov/bioproject/bioproject.xml
2https://www.uniprot.org/help/uniprotkb
3http://weizhong-lab.ucsd.edu/cd-hit/
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Figure 2: The overview of HotProtein dataset. Figures A.1 ∼ 3), B.1 ∼ 3), and C.1 ∼ 2) collect the
statistics of HP-S2C2, HP-S2C5, and HP-S respectively. The left figure records the density distribution of
each category over the protein’s growth (organism-level) temperature. The density in a bin is computed as
# proteins within the bin
# proteins in the category . {1026} indicates that there are 1026 proteins in the corresponding class “Hot”. The upper
right figure is the predicted template modeling (P-TM) score from AlphaFoldv2 (AlQuraishi, 2019; Jumper
et al., 2021), reflecting the quality of folded protein structures. A larger P-TM suggests a better quality and
P-TM ≥ 0.8 (red lines) is a normal threshold for satisfied folded structures. The bottom right figure presents
the species distribution of the three datasets, and # species in certain categories is included in the brackets.

proteins sampled from the five categories, from Cryophilic to Hyperthermophilic. (3) HP-S is the
entire sequence HotProtein dataset. It contains {6390, 34946, 30333, 79087, 31549} sequences
from {3, 32, 31, 116, 48} different species, of five classes ordered from Cryophilic to Hyperther-
mophilic. (4) Moreover, HP-SC2 as a 2-class variant is created by merging Hyperthermophilic and
Thermophilic as “hot” class and the other three as “cold” class. All temperature annotations are
organism-level, serving as a lower bound of for a protein’s melting temperature. Given their
number of samples, HP-S2C2/C5 and HP-S/SC5 are regarded as small- and large-scale datasets.

4 METHODOLOGY

Denote the thermostability dataset by D = {xi, yi}Ni=1, where xi stands for the input while yi is the
thermostability critical temperature (either real value or class index). Here we describe 1) how we
pretrain the model F , and 2) how we finetune to pretrained model to fit D.

4.1 PROTEIN STRUCTURE-AWARE PRE-TRAINING

Previous protein pre-trained models (e.g., Rives et al., 2019; Vig et al., 2020; Rao et al., 2021; Meier
et al., 2021) mainly focus on masking prediction tasks and amino acid representations. These pre-
trained models achieve considerable improvementscompared to traditional computation methods
(e.g., Schymkowitz et al., 2005; Montanucci et al., 2019; Chen et al., 2020) on amino acid prediction
tasks, e.g., contact prediction, mask prediction (Brandes et al., 2022), mutational effect prediction
(Meier et al., 2021; Notin et al., 2022; Li et al., 2022a). On the other hand, directly learning universal
protein embedding is potentially useful for protein prediction tasks. Inspired by recent sentence
representation learning works (Gao et al., 2021) and 3D structure-aware pre-training (Hsu et al.,
2022), we adopt a contrastive loss for representation learning.

Contrastive Loss Design. Denote the model as F , our contrastive loss function is defined as:

LInfoNCE(xi,Neg(xi)) = − log
exp(F ′(xi) · F ′′(xi)/τ)

exp(F ′(xi) · F ′′(xi)/τ) + Z(xi,Neg(xi))
, (1)

where Z(xi,Neg(xi)) =
∑

xj∈Neg(xi)
exp(F ′(xi) · F ′mom(xj)/τ). Here, F ′(xi) and F ′′(xi)

are two copies of randomly perturbed models by injecting independent dropout noises into F(xi),
and Neg(·) presents a set of negative examples, and Fmom is a slowly updated momentum model
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Figure 3: The overall pipeline of our proposals. The left describes the protein structure-aware pre-training
(SAP); The right presents the factorized sparse tuning (FST).

(see below) and τ is the temperature value. Notice that random mutating amino acid could introduce
unknown changes (Shortle, 2009; Resch et al., 2008), we add perturbations to hidden representations
and inject layer-wise dropout noise (Srivastava et al., 2014) with a rate 0.05 in practice, and follow
the hyperparameter configurations in He et al. (2020).

Leverage 3D Information. We combine an additional 3D structure model using 3D inputs with the
sequence-based model, to enhance the performance. We therefore slightly change Equation 1 into,

L3D(xi,Neg(xi)) = − log
exp(F ′(xi) · F ′′

3D(xi)/τ)

exp(F ′(xi) · F ′′
3D(xi)/τ) + Z(xi,Neg(xi))

, (2)

Z(xi,Neg(xi)) =
∑

xj∈Neg(xi)

{
exp(F ′(xi) · F ′mom

3D (xj)/τ) + exp(F ′
3D(xi) · F ′mom(xj)/τ)

}
,

where F3D stands for the 3D structure model which uses 3D coordinates as inputs, Fmom
3D is its

momentum model. The memory bank logs the negative examples from both the sequence and 3D
models. In short, a pair for sequence and 3D model representation is regarded as the positive pair,
and we aim at injecting 3D representation information into the sequence model.

4.2 FACTORIZED SPARSE TUNING UNDER DATA SCARCITY AND DISTRIBUTION SHIFT

In real-world application domains, it is extremely challenging or even infeasible to collect a suffi-
cient large-scale (engineered) protein dataset, due to the massive time and resource cost of trans-
formation, protein expression, and purification. Therefore, data scarcity is one of the crucial bot-
tlenecks in predicting protein properties. Another obstacle lies in the substantial data distribution
shifts. Proteins with different (sometimes even the same (Xia, 2021)) functionalities have distinc-
tive and idiographic structures, sharing few common characteristics. To tackle these two issues, we
introduce a factorized sparse tuning pipeline (FST). It leverages the low-rank and sparse priors as
implicit regularizations for enhanced data-efficiency (e.g., Khan & Stavness, 2019; Shalev-Shwartz
& Ben-David, 2014; Rasmussen & Ghahramani, 2000; Zhou et al., 2018; Arora et al., 2018; Zhang
et al., 2021) and robustness to domain shifts (Li et al., 2022b).

Enforcing the Low-rank Prior through Factorization. Given a pre-trained model Wp ∈ Rm×n,
we perform a low-rank decomposition to its weight update ∆W represented as Wp +∆W = Wp +
UV , where U ∈ Rm×r, V ∈ Rr×n, and the rank r ≪ min{d, k}. Usually, r = 4 or 8 (i.e., 0.6% of
total parameters) is sufficient to achieve a great performance in our case. During forward, the input
is fed into both dense pre-training Wp and its low-rank representation UV . The obtained features
are summed in a coordinate-wise manner, as demonstrated in Figure 3 (right). Take the original
feature h = Wpx as an example. Our modified features can be described as below:

ĥ = Wpx+∆Wx = Wpx+ UV x. (3)

As for the backpropagation, Wp is frozen and low-rank matrices {U, V } receive gradient updates.
We adopt Xavier normal (Glorot & Bengio, 2010) and zero initialization for U and V respectively,
and therefore the low-rank update is zero in the beginning. As suggested by Hu et al. (2021), UV x
can be scaled via an extra hyperparameter α, which works similarly to the learning rate. In our case,
we find α is not sensitive and set it as 4, i.e., the default value used in Hu et al. (2021).

Enforcing the Sparsity Prior. We introduce the sparsity into tuning processes as an implicit struc-
tural prior by modeling a sparse weight update with S ∈ Rm×n. As indicated in Figure 3, our
refined features h̃ are depicted as follows:

h̃ = Wpx+ (UV + S)x, S =

{
si,j , (i, j) ∈ Ω
0, (i, j) ∈ ΩC , (4)
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where a “residual” feature Sx is point-wisely added to ĥ from Equation 3, i ∈ {1, 2, · · · ,m}, and
j ∈ {1, 2, · · · , n}. The set Ω determines the position of trainable si,j and pruned elements, where
the latter is 0 across the whole training. We compute the initial sparse matrix of S by i) first solving
a robust principal component decomposition (Candès et al., 2011) of Wp with an efficient algorithm
(i.e., GreBsmo (Zhou & Tao, 2013)), and ii) then eliminating the elements with the least magnitude
of obtained sparse solutions. In this way, step i) produces the initial values of si,j and step ii)
constructs the set Ω, where we observe |Ω| = 64 (i.e., 0.01% of total parameters) is good enough in
our case. As also revealed in Yu et al. (2017), combining the low-rank and sparse weight updates is
capable of delivering superior performance, compared to either of them.

Feature Augmentation. Another group of common fixes to data scarcity and domain shift prob-
lems is data augmentation (Shorten & Khoshgoftaar, 2019). However, most of existing data-
level augmentations are unrealistic to protein sequences, including regional dropout (Zhou & Tao,
2013; Zhong et al., 2020) and CutMix (Yun et al., 2019) in computer vision; synonym replace-
ment (Kolomiyets et al., 2011; Zhang et al., 2015; Wang & Yang, 2015), random insertion, swap,
and deletion (Wei & Zou, 2019) in natural language processing. The reason is that even a single
amino acid mutation for the protein sequence may dramatically change its functionality (Resch et al.,
2008; Shortle, 2009). To avoid ambiguity, we utilize feature-level augmentations which manipulate
the model’s intermediate feature embedding. Specifically, we examine two effective mechanisms:
(1) Mixup feature augmentation. It creates a fused feature h̃aug = λ × h̃1 + (1 − λ) × h̃2 and its
associated soft label yaug = λ × y1 + (1 − λ) × y2, where {h̃1, y1}, {h̃2, y2} are {feature em-
bedding, label} of two different sequences and λ = 0.2 in our experiments. (2) Worst-case feature
augmentation. It injects worst-case noises δ and builds an augmented feature h̃aug = h̃ + δ, where
δ is generated by maxδL(F(x, h̃ + δ), y) with the gradient ascent (Chen et al., 2021d). L, F , and
x denote the objective function, model, and input sequence, respectively.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Metrics. The performance is evaluated on the test splits. {Accuracy, Precision} and {Spearman,
Pearson} correlation coefficients are used for classification and regression tasks. For HP-S2C2 and
HP-S2C5, 10-fold evaluation is conducted; while on HP-S and HP-SC2, we run three replicates
with different random seeds. Average performance and its 95% confidence intervals are reported.

Training Details. Baselines. 3D GCN (Gligorijević et al., 2021) is trained for 20 epochs, with an
initial learning rate of 1 × 10−4 that decays by 0.1 at the 10th epoch. For TAPE (Rao et al., 2019),
we train it for 4 epochs, with an initial learning rate of 1 × 10−4 and a linear decay schedule. As
for ESM-1B, we follow (Rives et al., 2021) and only train a linear classification head on the top of
ESM-1B backbone. The head tuning consists of 4 epochs with an initial learning rate of 2 × 10−2

and an OneCycle (Smith & Topin, 2019) decay scheduler. A training batch size of 4 is used across
all experiments. Since we start tuning from pre-trained models (Rao et al., 2019; Rives et al., 2021),
the performance of TAPE and ESM-1B are usually saturated after 2 ∼ 3 epochs.

▷ SAP. We use AlphaFoldDB (Jumper et al., 2021) for SAP protein pre-training. We filter the data
with sequence length and data quality and finally get 270K data. ESM-1B (Rives et al., 2019) and
ESM-IF (Hsu et al., 2022) backbone are used to process the sequence and 3D coordinate inputs,
and an average pooling layer is applied to the final-layer token representations of ESM models
and get protein embeddings. A momentum encoder with τ = 1.0, momentum encoder coefficient
α = 0.9999 and memory bank of size 65, 536 is used and the model is trained for 4 epochs, with
AdamW optimizer, weight decay 10−12, batch size 512 and an initial learning rate 10−6 decayed
with OneCycle (Smith & Topin, 2019) decay scheduler.

▷ FST. For our FST, we choose an initial learning rate of 1 × 10−2 for the linear classification
head, and an initial learning rate of 1 × 10−3 for training the low-rank and sparse components
in ESM-1B. Other training configurations inherit the same ones from tuning ESM-1B. As for the
hyperparameters of rank r and the number of non-zero elements |Ω| in FST, we perform screenings
on r ∈ {4, 8, 16} and |Ω| ∈ {16, 32, 64, 128}, where we choose (r, |Ω|) = (4, 64) on HP-S2C2/C5
and (r, |Ω|) = (8, 64) on HP-S and HP-SC2. Meantime, we adopt a one-step gradient ascent with
a step size of 1× 10−5 to generate worst-case feature augmentations, and apply them to the last two
layers of ESM-1B, as suggested in Chen et al. (2021d).
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Table 1: Performance of predicting thermostability with classification. Accuracy (%) is reported for all
three datasets, and Precision (%) is calculated for the 2-class classification on HP-S2C2 and HP-SC2.
“FST”, “Aug.”, and “SAP” denote factorized sparse tuning, feature augmentation, and protein structure-
aware pre-training, respectively. FST adopts (r, |Ω|) = (4, 64) on HP-S2C2/C5 and (r, |Ω|) = (8, 64)
on HP-S/SC2. N.A. means “not applicable”. 95% confidence interval are computed via the 10-fold evalua-
tion on HP-S2C2/C5 and 3 replicates on HP-S/SC2.

Methods HP-S2C2 HP-S2C5 HP-S HP-SC2

Accuracy Precision Accuracy Accuracy Accuracy Precision

3D GCN (Gligorijević et al., 2021) 78.88±1.57 73.39±2.76 67.40±2.11 N.A. N.A. N.A.
TAPE (Rao et al., 2019) 83.31±1.10 76.42±3.06 66.44±2.30 64.75±0.23 76.37±0.25 80.64±0.50
ESM-IF1 (Hsu et al., 2022) 79.08±0.85 76.49±3.96 58.75±2.46 N.A. N.A. N.A.
ESM-1B (Rives et al., 2021) 91.19±0.47 84.18±1.71 83.26±1.54 69.50±0.16 86.24±0.22 88.14±1.62

ESM-1B + Aug. 91.74±0.79 86.09±2.12 84.32±1.41 69.54±0.39 86.26±0.22 88.27±1.43
ESM-1B + FST 91.85±0.45 84.85±1.04 85.96±1.13 72.97±0.28 87.50±0.12 88.71±1.73
ESM-1B + FST + Aug. 91.91±0.64 86.10±1.14 86.08±1.33 73.09±0.10 87.54±0.38 88.83±1.27
ESM-1B + FST + Aug. + SAP 92.36±0.58 86.51±1.67 86.25±1.03 73.21±0.13 87.57±0.10 89.07±1.29

Table 2: Performance of thermostability regression. Correlation coefficients are reported for all three datasets.
95% confidence interval are computed via the 10-fold evaluation on HP-S2C2/C5 and 3 replicates on HP-S.

Methods HP-S2C2 HP-S2C5 HP-S

Spearman Pearson Spearman Pearson Spearman Pearson

3D GCN (Gligorijević et al., 2021) 0.490±0.019 0.469±0.019 0.291±0.053 0.301±0.074 N.A. N.A.
TAPE (Rao et al., 2019) 0.432±0.061 0.386±0.065 0.367±0.063 0.364±0.047 0.504±0.013 0.453±0.031
ESM-IF1 (Hsu et al., 2022) 0.589±0.040 0.547±0.036 0.373±0.036 0.377±0.035 N.A. N.A.
ESM-1B (Rives et al., 2021) 0.890±0.018 0.893±0.0238 0.712±0.043 0.804±0.023 0.807±0.001 0.809±0.001

ESM-1B + Aug. 0.895±0.014 0.909±0.010 0.714±0.034 0.811±0.034 0.808±0.002 0.809±0.001
ESM-1B + FST 0.898±0.008 0.900±0.009 0.742±0.039 0.815±0.024 0.819±0.002 0.825±0.004
ESM-1B + FST + Aug. 0.892±0.011 0.912±0.013 0.747±0.026 0.818±0.025 0.820±0.001 0.825±0.003
ESM-1B + FST + Aug. + SAP 0.906±0.010 0.923±0.012 0.754±0.035 0.837±0.019 0.823±0.001 0.827±0.003

5.2 PREDICTING THERMOSTABILITY VIA CLASSIFICATION AND REGRESSION

Comparison to Existing Approaches. We evaluate our proposals and compare with existing
approaches on HP-S2C2/C5 and HP-S/SC2 for both classification and regression tasks. 3D
GCN (Gligorijević et al., 2021) and TAPE (Rao et al., 2019) are classical structure- and sequence-
based models, while ESM-IF1 (Hsu et al., 2022) and ESM-1B (Rives et al., 2021) emerges recently
as current state-of-the-art approaches, dealing with structure and sequence inputs respectively. From
results shown in Table 1 and 2, several consistent observations can be drawn: ❶ Compared with
baselines. Our proposal, i.e., ESM-1B+FST+Aug.+SAP, greatly surpasses various baseline by a
margin of {1.17% ∼ 13.48% accuracy, 2.33% ∼ 13.12% precision, 0.016 ∼ 0.474 Spearman, and
0.030 ∼ 0.537 Pearson correlation} on HP-S2C2, {2.99% ∼ 27.50% accuracy, 0.042 ∼ 0.463
Spearman, and 0.033 ∼ 0.536 Pearson correlation} on HP-S2C5, {3.71% ∼ 8.46% accuracy,
0.016 ∼ 0.319 Spearman, and 0.018 ∼ 0.374 Pearson correlation} on HP-S, and {1.33% ∼ 11.2%
accuracy and 0.93% ∼ 8.43% precision on HP-SC2. These generalization improvements on hold-
out proteins validate the effectiveness of our methods in tackling the functional domain shift and
data-scarcity issues, i.e., pre-training on a general-purpose dataset UniRef50 (22M samples) and
tuning on the specific-domain dataset HotProtein (182K samples). Moreover, our methods per-
form much stably in general, evidenced by the reduced confidence interval of multiple runs. ❷
Structure versus sequence-based models. On the classification task, sequence-based models like
ESM-1B and TAPE show clear performance advantages in most cases. As for the regression task,
ESM-1B achieves an overwhelming superiority among the four baseline approaches, while the next
best model is ESM-IF1 which takes protein structures as inputs. It suggests that powerful mech-
anisms for utilizing 3D structure information are still missing on our challenging HotProtein
dataset. We make a pioneer attempt by leveraging 3D information to enhance sequence-based mod-
els. ❸ Does SAP, FST, and Aug helps? We examine these three components in an incremental
manner and we observe: i) the performance gains from SAP demonstrate the benefits of treating 3D
protein structures as auxiliary information; ii) Both Aug. & FST strengthen the model tuning and a
combination of them enjoys extra improvements; iii) Among these ingredients of our proposal, FST
contributes the most to superior performance. Specifically, Aug consistently obtains improvements
in terms of the average performance; FST usually leads to statistically significant improvements
with respect to the 95% confidence interval, especially on the HP-S/SC2 dataset. ❹ Small v.s.
large datasets. Feature level augmentations are more beneficial at small-scale datasets, while FST
and SAP bring performance gains for both small (HP-S2C5) and large (HP-S) datasets.
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Table 3: Ablation study on the components of our framework. Accuracy (%) for classification and Spearman
& Pearson correlation coefficients for regression are reported. 95% confidence interval are computed via the
10-fold evaluation on HP-S2C5 and 3 replicates on HP-S.

Methods HP-S2C5 HP-S

Accuracy Spearman Pearson Accuracy Spearman Pearson

Based on ESM-1B (Rives et al., 2021) 83.26±1.54 0.712±0.043 0.804±0.022 69.50±0.16 0.807±0.001 0.809±0.001

Feature Aug.
Random 82.97±1.46 0.708±0.043 0.814±0.023 69.46±0.28 0.807±0.001 0.809±0.001
Mixup 83.94±1.43 0.720±0.042 0.810±0.027 69.27±0.27 0.805±0.001 0.806±0.003
Worst-case 84.32±1.41 0.714±0.034 0.811±0.034 69.54±0.39 0.808±0.002 0.809±0.001

# Rank in FST
r = 4 85.96±1.13 0.742±0.039 0.815±0.024 72.75±0.17 0.818±0.001 0.821±0.002
r = 8 85.00±2.16 0.703±0.032 0.801±0.017 72.97±0.28 0.819±0.002 0.825±0.004
r = 16 83.75±1.92 0.725±0.040 0.788±0.019 73.20±0.40 0.821±0.001 0.825±0.002

Sparsity in FST
|Ω| = 16 85.19±1.02 0.702±0.034 0.794±0.027 72.82±0.43 0.815±0.004 0.822±0.005
|Ω| = 32 85.57±1.16 0.706±0.035 0.767±0.060 72.85±0.49 0.818±0.002 0.820±0.002
|Ω| = 64 85.96±1.13 0.742±0.039 0.815±0.024 72.97±0.28 0.819±0.002 0.825±0.004
|Ω| = 128 85.79±1.08 0.729±0.042 0.807±0.029 72.75±0.49 0.818±0.004 0.822±0.006

3D infor. in SAP w.o. 83.89±1.10 0.718±0.023 0.815±0.019 69.80±0.48 0.808±0.001 0.811±0.002
w. 85.58±1.42 0.727±0.035 0.817±0.022 71.52±2.29 0.815±0.001 0.819±0.003

Ablation Study. A comprehensive ablation is presented in Table 3, where we inspect different
feature augmentations, the rank number in FST, the sparsity in FST, and the necessity of 3D infor-
mation in SAP, on top of the vanilla ESM-1B model. ❶ Diverse feature augmentations. Besides
mixup and worst-case feature augmentations, a straightforward baseline (“Random”) that applies a
Gaussian noise from N (0, 0.12) to features, is also implemented. We see: random feature augmen-
tation usually incurs a performance degradation; mixup benefits models tuned on the small-scale
dataset (HP-S2C5), while hurts on the large-scale dataset (HP-S); worst-case feature augmenta-
tions consistently improve the generalization of tuned models on both HP-S2C5 and HP-S, which
is adopted by default in all other experiments of Table 1, 2, and 4. ❷ The # rank in FST. The larger
dataset prefers FST with a higher rank such as r = 8 or 16, compared to the smaller dataset in which
FST with r = 4 works the best. The finding coincided with the ones in Hu et al. (2021); Chen
et al. (2021e). ❸ The sparsity in FST. FST with |Ω| = 64 is a “sweet point”. Superfluous tuning
elements in Ω may lead to inferior results. ❹ 3D infor. in SAP. Directly introducing a contrastive
loss in Equation 1 to the pre-training, has already boosted ESM-1B’s performance, implying an im-
proved protein embedding learning. Coupling the 3D information of protein structures, obtains an
additional quality bonus for the pre-training.

More ablation studies. We summarize the results of additional ablation studies here and refer
readers to the Appendix D for details: ❶ We achieve the best results on extra test benchmarks and
class-balanced test sets. ❷ SAP outperforms other approaches to inject structure information. ❷
Training from scratch yields worse results than pretraining. ❸ On ESM-1B, we test several other
baselines. We notice that additional ℓ2 or ℓ1 regularization, end-to-end fine-tuning, partially frozen
tuning, and other feature aggregation methods all come to worse results than our current ESM-1B.

5.3 PROTEIN EDITING TOWARDS IMPROVED THERMOSTABILITY

Based on the models we trained in previous sections, three approaches for protein editing are pro-
posed. We first describe the setting we use to edit proteins, and then report the performance of
different models for three settings, classification, regression, and Editing. To demonstrate the
effectiveness of protein editing towards improved thermostability, we further evaluate our proposals
on FireProtDB4 which is a manually curated database of the protein stability data for single-point
mutants. It contains over 200 natural protein amino acid sequences, i.e.,P = {p(i)}, i ∈ {1, · · · , x},
and their 3.9K mutated sequences, i.e., P̂ = {p̂(i)j }, i ∈ {1, · · · , x} and j ∈ {1, · · · , n(i)}, where
n(i) is the number of mutated variants for the original protein sequence p(i). We take P as the train-
ing set and P̂ as the hold-out testing set. Detailed configurations are referred to the Appendix C.

Editing Suggestions via Classifiers. We deliver the protein editing suggestion via proposed clas-
sifiers. The five-class classification is performed in both fine-tuning and testing stages with P and
P̂ , respectively. Furthermore, we regard a mutation as positive if p̂(i)j is predicted to a class that
has higher temperatures than the category of its original counterpart p(i) (e.g., from Psychrophilic

4https://loschmidt.chemi.muni.cz/fireprotdb/
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Table 4: Evaluation of protein editing suggestions. Accuracy (%) and Precision (%) for classifiers , Kendall
τ & Spearman ρ rank correlation coefficients for regressors , and successful rate (%) for adversarially learned
mutations of protein sequences are reported. 95% confidence interval is computed via three trials.

FireProtDB Classifier Regressors Learned Mutations

Accuracy Precision Kendall τ Spearman ρ Successful Rate

Zero shot
TAPE 44.75 30.18 0.07 5.64 34.78
ESM-1B 62.26 41.73 8.34 9.49 40.39

Ours 66.18 43.60 13.65 19.96 43.46

Fine-tune on P
TAPE 55.18±0.38 38.85±0.36 32.33±1.35 43.78±1.87 44.59±0.45
ESM-1B 69.30±0.53 44.97±0.47 34.76±1.42 44.25±1.89 52.41±0.38

Ours 71.42±0.34 53.93±0.39 36.97±0.78 50.79±1.22 54.24±0.41

to Mesophilic); otherwise, we label the mutation as negative. Then, we compute the associated
accuracy and precision to evaluate the quality of editing suggestions from our proposals.

Editing Suggestions via Regressors. We can also suggest possible editing via regressors. Specifi-
cally, we fine-tune models to regress the protein’s temperature in P , predict the possible temperature
of their mutated variants in P̂ , and measure the ordinal association between prediction and ground
truth temperatures of P̂ .

Replace the amino 
acid “N” with “K”

Tm=58.6℃ → 67.2℃

Figure 4: Visualization of an AI design that
thermostabilized a protein. The amino acid “N”
was predicted by the MutCompute web server
to be mutated to a “K”, which was experimen-
tally shown to improve thermostability by 8.6◦C
and was critical for the engineering of FAST-
PETase(Lu et al., 2022). ThermoPETase structure
(left) (PDB: 6ij6) and the mutated one (right)
was obtained via (Waterhouse et al., 2018).

Optimizing Editing Suggestions. Instead of clas-
sifying whether the mutation increases or decreases
the thermostability, we introduce an efficient editing
algorithm, by optimizing towards an improved ther-
mostability, as depicted below:

max
|M|≤n

L(F(M(x)), yt), (5)

where x is the input, yt denotes the target label
of the class with a higher temperature (e.g., from
Mesophilic to Thermophilic),M stands for the mu-
tation function whose number of mutated amino
acids |M| is constrained by n, F and L is our clas-
sifier and the objective function. In practice, we
set yt as the highest-temperature class, Hyperther-
mophilic. We set L in Equation 5 as probability change times the saliency score following
PWWS (Ren et al., 2019). See Appendix C.1 for details.

Experimental Results. As demonstrated in Table 4, ❶ ESM-1B outperforms TAPE when it is zero-
shot transferred to test data. Ours performs the best. We achieve 66.13% accuracy, 13.65% Kendall
correlation, and 19.96% Spearman correlation, which is 3.86%, 5.31%, 10.47% relative higher than
the ESM-1B baseline. ❷ After finetuning on P , ESM-1B obtains slightly better results than TAPE
on both regression and classification metrics. Our model still outperforms both in all the tested
cases. ❸ When we do protein editing after fine-tuning, ours achieves the best (54.24% successful
rate, 3.49% relative improvements than ESM-1B). It indicates that a better classifier also benefits
protein engineering. Visualization of an edited protein is displayed in Figure 4.

6 CONCLUSION

Predicting thermostabilizing mutations is a primary goal of most protein engineering campaigns.
However, the lack of thermally annotated protein data and effective algorithms has hindered the de-
velopment of a thermostability prediction model that can generalize across the protein space. This
work provides attempts to address both points via a large-scale protein dataset (HotProtein)
with species-specific, lower-bound thermostability annotations and a novel algorithmic framework
designed to tackle the intrinsic challenges of functional domain shifts and data scarcity in ther-
mostability protein engineering. Extensive results validate that our dataset and algorithmic frame-
work provide meaningful improvements over baseline models. Lastly, based on established superior
predictors, we search a protein’s single-point mutation landscape towards identifying thermostabi-
lizing variants. We will keep updating HotProtein by collecting more sequences, improving our
sequence-clustering and filtering, and folding more structures.
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loob Qureshi, Lorna J Richardson, Gustavo A Salazar, Alfredo Smart, et al. The pfam protein
families database in 2019. Nucleic acids research, 47(D1):D427–D432, 2019.

Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rihawi, Yu Wang, Llion Jones,
Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, et al. Prottrans: towards crack-
ing the language of life’s code through self-supervised deep learning and high performance com-
puting. arXiv preprint arXiv:2007.06225, 2020.

11

https://openreview.net/forum?id=p2dMLEwL8tF
https://openreview.net/forum?id=p2dMLEwL8tF


Published as a conference paper at ICLR 2023

Brandon Frenz, Steven M Lewis, Indigo King, Frank DiMaio, Hahnbeom Park, and Yifan Song.
Prediction of protein mutational free energy: benchmark and sampling improvements increase
classification accuracy. Frontiers in bioengineering and biotechnology, pp. 1175, 2020.

Sven Frokjaer and Daniel E Otzen. Protein drug stability: a formulation challenge. Nature reviews
drug discovery, 4(4):298–306, 2005.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 6894–6910, 2021.

Manuel Giollo, Alberto JM Martin, Ian Walsh, Carlo Ferrari, and Silvio CE Tosatto. Neemo: a
method using residue interaction networks to improve prediction of protein stability upon muta-
tion. BMC genomics, 15(4):1–11, 2014.

Vladimir Gligorijevic, Daniel Berenberg, Stephen Ra, Andrew Watkins, Simon Kelow, Kyunghyun
Cho, and Richard Bonneau. Function-guided protein design by deep manifold sampling. bioRxiv,
2021.
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A MORE RELATED WORKS

Protein Engineering. In general, the factors that make one protein functional and simultaneously
thermostable compared to another are complex and unknown for a specific target protein. The lit-
erature on computational models for in silico screening of the thermodynamic impact of a mutation
is exhaustive. In the development of biopharmaceuticals and biocatalysts, improving the thermody-
namic properties of the target protein is a common early goal in most protein engineering campaigns.
A protein’s thermodynamic stability is commonly represented by its Gibb’s free energy and/or melt-
ing temperature. The protein engineering community has been designing computational tools to
enable in silico screening of mutations for several decades and these tools can be classified into bio-
physical models and statistical/machine learning-based models. Computational protein engineering
models are used to guide the search for optimized sequences. Despite recent progress, these meth-
ods have limited utility in reliably ranking sequences, especially at discerning small changes in
thermodynamic properties. Although physics-based methods have been shown to reach reasonable
accuracy, they are computationally demanding and low-throughput making them intractable to apply
to large-scale in silico screening of protein variants.

Recent Success in AI + Protein Engineering. Beyond promising performance in simulation ex-
periments, in the last two years, unsupervised structure-based deep learning techniques have also
shown their ability to learn from natural protein structures and then generalize to guide the engineer-
ing of structurally diverse proteins (Kuhlman & Bradley, 2019; Shroff et al., 2020). For example,
Paik et al. (2021) used MutCompute to improve the thermostability of a DNA polymerase in order
to enable faster loop-mediated isothermal amplification (LAMP) (Panno et al., 2020) assays to be
carried out at 73◦C, a temperature where the commercial counterpart enzyme, BST 2.0, is inactive.
Additionally, Lu et al. (2022) engineered two Polyethylene terephthalate (PET) hydrolases (PETase
and Cutinase) with MutCompute to improve its thermal and pH stability, resulting in FAST-PETase:
a PET hydrolase that can fully degrade post-consumer PET within 48 hours.

Directed Evolution and Guided Directed Evolution. The most common strategy to engineer
and stabilize a protein is directed evolution. Directed evolution leverages natural evolution where
random mutagenesis is synergized with screening to identify variants with improved fitness for the
desired phenotype, essentially performing a greedy local search to optimize protein fitness (Arnold,
2018). For directed evolution, it is necessary to design a high-throughput assay that selects mutants
enriched for your target phenotype, which is not always possible. Recent progress has been made
in combining machine learning approaches with the data collection capability of directed evolution
in order to accelerate iterative rounds of directed evolution (Yang et al., 2019a; Wittmann et al.,
2021). Here, machine learning is used to ease the experimental screening burden by evaluating
proteins in silico. Briefly, machine learning-guided directed evolution (MLDE) works by iteratively
training an ML model on a small number of variants (101-102) from a combinatorial library and is
then used to infer the remaining variance in the library where the variants with the highest predicted
fitness are then experimentally evaluated and then added to the training set for the subsequent round.
However, the need to consistently generate libraries and expand the training set does not completely
alleviate the screening burden. Furthermore, Wittmann et al. (2021) showed empirical evidence
that sequence-based embeddings from transformer models can accelerate MLDE and that an MSA
transformer (Rao et al., 2021) embedding outperformed sequence embeddings of larger models such
as ProtBert-BFD and ESM-1B (Rives et al., 2021).

Protein Thermostability Dataset. In protein engineering, improving the stability of a protein is a
goal in nearly all protein engineering campaigns and can be a deciding factor in the commercial-
ization of a biocatalyst. Thus, there is plenty of literature on computational algorithms attempting
to model this phenotype. Over the last two decades, several algorithms that predict the thermody-
namic impact of mutations have been developed (e.g., Park et al., 2016; Schymkowitz et al., 2005;
Dehouck et al., 2009; Jokinen et al., 2018; Worth et al., 2011; Cao et al., 2019; Li et al., 2020;
Paradis & Schliep, 2019; Krueger & Andrews, 2011; Dehghanpoor et al., 2018) and can be classi-
fied as either biophysical models or statistical/machine learning models. Biophysical models utilize
amino acid interactions and conformational/rotamer sampling of the protein structure to determine
the changes in stability. The primary two biophysical models are Rosetta (Park et al., 2016) and
FoldX (Schymkowitz et al., 2005). These methods have shown good performance and utility in sev-
eral applications but fail to capture narrow changes in stability (< 1kcal/mol), which is commonly
observed for many mutations. Furthermore, they are computationally demanding and have low
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throughput, hindering their application to large-scale in silico screening for identifying stabilizing
point mutations (Li et al., 2020; Paradis & Schliep, 2019). Machine learning tools trained to evaluate
the impact of a mutation on the stability of a protein are growing in popularity (e.g., Jokinen et al.,
2018; Dehouck et al., 2009; Worth et al., 2011; Cao et al., 2019; Li et al., 2020; Paradis & Schliep,
2019; Krueger & Andrews, 2011; Dehghanpoor et al., 2018). Some notable machine learning mod-
els include PopMusic (Dehouck et al., 2009), DeepddG (Cao et al., 2019), ThermoNet (Li et al.,
2020), SDM (Worth et al., 2011), and mGPfusion (Jokinen et al., 2018). These models are trained
in a supervised fashion to predict available experimental data, usually sourced from ProTherm (Jia
et al., 2015) or manually curated datasets from the literature, using either evolutionary or structural
input features with some models utilizing both types of features. Thus, all use a relatively small
training set, with DeepDDG (Cao et al., 2019) having the largest at 5700 manually curated data
points, due to the limited amount of experimentally validated point mutations. So far, we have yet
to see a stability-predicting algorithm that leverages a language model’s learned representation to
predict the stability effects of mutations.

Sequence- and Structured-based Protein Models. Motivated by self-supervised pre-training in
natural language community (e.g., Liu et al., 2019; Yang et al., 2019b), a variety of recent works for-
mulate the protein pre-training tasks as sequence self-supervised learning, e.g., with auto-encoding
(Shuai et al., 2021), auto-regressive (e.g., Rives et al., 2019; Meier et al., 2021; Elnaggar et al.,
2020; Riesselman et al., 2019), skip-gram language model (Kimothi et al., 2016), mask prediction
(Vig et al., 2020; Brandes et al., 2022) or amino acid contrastive learning objectives (Lu et al.,
2020), similarity metric learning (Bepler & Berger, 2019; Alley et al., 2019). Although using differ-
ent architectures (e.g., LSTMs, transformers, graph networks), different pre-trained datasets (e.g.,
UniRef100 (Suzek et al., 2015), BFD (Steinegger & Söding, 2018), Pfam (El-Gebali et al., 2019)),
and different objectives, these models convert input sequences into per amino acid representations.
Most recently, thanks to AlphaFoldV2 and its folded dataset (Jumper et al., 2021), ESM-IF (Hsu
et al., 2022) proposes to learn the 3D model with inverse folding, which predicts sequences from
backbone 3D structures. The input is 3D coordinate information for each residues backbone N,
CA, and C atoms (present in every amino acid). Passing the input through the ESM-IF permutation
invariant model, the model outputs a probability distribution for amino acid at each residue position.

Sequence-based Pretraining Methods. ESM-1b (Rives et al., 2021), MSA Transformer (Rao et al.,
2021), and Vig et al. (2020) are several popular pre-trained transformer protein language models,
which regard one amino acid as a token. Shuai et al. (2021) trains an antibody language model with
antibody data. These works have been applied to simulation experiments. For example, Hie et al.
(2022) performs ESM-guided affinity maturation of seven diverse antibodies, screening 20 or fewer
variants of each antibody across only two rounds of evolution. Shuai et al. (2021) demonstrates
that their model can be applied to generate synthetic libraries that may accelerate the discovery of
therapeutic antibody candidates in real experiments.

Tranception (Notin et al., 2022) proposes new architectures for sequence pretraining and offers new
test benchmarks. Different from this work, we are interested in pre-training objectives and fine-
tuning methods, instead of neural architectures. FLIP (Dallago et al., 2021) sets up benchmarks
for fitness landscape inference for proteins, and theorem stability is one part of the benchmark.
DeepET (Li et al., 2022a) first pre-trains their convolution network in sequence and then the model
is fine-tuned on thermal prediction tasks. Compared to DeepET, which proposes to fine-tune the
last layer or do end-to-end fine-tuning, we introduce the sparse and low-rank fine-tuning method.
As shown in Table A6, our regularized fine-tuning reaches superior performance, compared to the
last-layer or end-to-end fine-tunings.

Sparse and Low-rank Subspace Fine-tuning. Sparsity-aware fine-tuning is typically leveraged to-
wards the goal of parameter-efficiency (Rebuffi et al., 2017; Houlsby et al., 2019; Li & Liang, 2021;
Lester et al., 2021), which only tunes a few of model weights and keep the rest unchanged. Guo
et al. (2021) embeds the sparsity into fine-tuning with a differentiable approximation of ℓ0 regular-
ization. Chen et al. (2021e) introduces sparse tuning patterns via classical pruning methods (Han
et al., 2015). (Chen et al., 2021a) pre-defines the shape of sparsity patterns and learns their combi-
nation. Another alternative solution for efficient fine-tuning is to constrain weight updates within a
low-rank subspace (Hu et al., 2021; Chen et al., 2021e; He et al., 2021). Numerous literature (Yu
et al., 2017; Li et al., 2018; Oymak et al., 2019; Gur-Ari et al., 2018) point out the intrinsic low-rank
dimensionality of trained over-parameterized models. Wang et al. (2020); Hu et al. (2021) focus on
imposing explicit low-rank structures when transferring pre-trained models to diverse downstream
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tasks, leading to considerable parameter efficiency. Recently, several pioneering studies (Chen et al.,
2021e;a;b) consider combining sparsity and low-rank decomposition for improved efficient training.
However, we investigate these two structural priors from a distinctive perspective, i.e., their implicit
regularization effects against data scarcity and domain shifts.

B MORE METHOD DETAILS FOR STRUCTURE-AWARE PRE-TRAINING

During the pretraining, the language model only learns from context-token pairs, instead of learning
a global representation for one sentence (or one protein). Once we target the global representation
of one sentence (or one protein), we should learn from a loss function that directly compares one
sentence and another (Gao et al., 2021). Similar to the sentence representations of BERT (Devlin
et al., 2018), we notice that the protein representations learned by sequence models are not uniformly
distributed in the latent space (Gao et al., 2021). Therefore, we adopt contrastive learning in the
protein embedding space to distribute the representations more uniformly and let the 3D model
inject information into the sequence model. We refer readers to (Gao et al., 2021; Su et al., 2021)
for details about motivations.

Momentum Encoder to Construct Negative Examples. Following (He et al., 2020), the momen-
tum model Fmom is a slowly updated model with update rule: Fmom ← αFmom + (1 − α)F ,
where α ∈ [0, 1) is the momentum coefficient. During the optimization of Equation 1, to save the
computation budget for negative examples, we adopt the memory bank (He et al., 2020) to con-
struct enough negative examples. The Neg set is taken to be a queue of F ′(xj) representations from
previous mini-batches.

C MORE IMPLEMENTATION DETAILS

Computing resources. Experiments use Tesla V100-SXM2-32GB GPUs as computing re-
sources. Each experiment can be run with a single V100 GPU.

C.1 EXPERIMENTAL DETAILS ABOUT PROTEIN EDITING

Search Space. Based on our fine-tuned classifiers, we generate 20 possible single point mutations
at each position (i) in a natural protein sequence p(i) and then evaluate whether the resulted p̂

(i)
k

(k ∈ {1, · · · , 20}) successfully leads to improved thermostability. The corresponding successful
rate is used as our evaluation metric.

Optimization Method. We adopt a recently-proposed well-known method, PWWS (Ren et al.,
2019). PWWS replaces tokens base on a ranking score H(x, x∗

i ) = ϕ(S(x))i∆P ∗
i , where x is

the input sequence, x∗
i stands for replacing the amino acid at index i, ∆P ∗

i denotes the change in
classification probability after replacing with x∗

i , and ϕ(S(x))i is the saliency score.

Dataset Descriptions. Previously, numerous benchmarks have been proposed for thermostability or
∆∆G prediction. Some of them use Rosetta (Rohl et al., 2004) predicted score, (Frenz et al., 2020)
and others create datasets, e.g., ProThermDB (Nikam et al., 2021) based on experiment records.
The curation of large high-quality thermostability datasets is still ongoing, and protein stability
experiments are time-consuming and expensive (Stourac et al., 2021). We set up our benchmark
using FireProtDB (Stourac et al., 2021), which is a superset of published experiments records and is
the most up-to-date dataset to our knowledge. We download the latest version of FireProtDB, clean
the duplicates, and extract the ∆Tm values. We retain all the values with ∥∆Tm∥ ≥ 1 to make
sure that the temperature change is large enough and not random noise. Finally, we get 961 data
instances with ∥∆Tm∥ > 1.

Benchmark Quality. Rosetta is an academic framework for computational modeling and analysis
of protein structures. We utilize the Rosetta Cartesian ∆∆G application (Park et al., 2016) to assess
how well-established biophysical computational tools can recapitulate the thermostability dataset
- FireProtDB. The Cartesian ∆∆G application calculates the change in the folding energy of a
mutation. First, we relax the crystal structures of the proteins in FireProtDB with an unconstrained
FastRelax as recommended in Leman et al. (2020), which allows the backbone and side-chain atoms
to move slightly to be better accommodated into the chosen Rosetta score, “ref2015 cart”. Cartesian
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Table A5: We report the correlation coefficient between Rosetta ∆∆G and FireProtDB ∆Tm, ∆∆G.

FireProtDB Rosetta Data Size Spearman (%) Pearson (%)

∆∆G with backbone relaxation ∆∆G 3,399 44.93 21.36

∆∆G w/o. backbone relaxation ∆∆G 3,248 28.59 3.31

∆Tm with backbone relaxation ∆∆G 981 -35.91 -3.98

∆Tm w/o. backbone relaxation ∆∆G 1,018 -13.54 0.26

∆∆G then mutates the residues as specified in the database, packs side-chain conformations, and
does gradient-based minimization of the atomic coordinates. Using the values from the Rosetta
score, we can then calculate the ∆∆G of mutation. Any mutations that failed during the calculation
for any reason were discarded.

We calculate the correlation between simulation ∆∆G and experimental ∆∆G in Table A5. Allow-
ing backbone relaxation during structure generation improves the Spearman ∆∆G to 44.93 from
28.59 and the Spearman ∆Tm to −35.91 from −13.54. Compared to Table 2, we observe that our
proposal offers better candidate mutations in terms of the spearman correlation coefficient.

Training Settings. For zero-shot transfer, we directly apply the models trained on HP-S to P̂ .
For fine-tuning, we train all the models with AdamW optimizer, 5 × 10−2 weight decay, and the
OneCycle learning rate schedule. TAPE models are trained with batch size 8, learning rate 10−3

and 10 epochs, while ESM models are trained with batch size 16, learning rate 10−3 and 20 epochs.
For Deep Editing, we use models trained on P . When we finetune ESM models, we re-initialize the
final-layer linear head.

D MORE EXPERIMENTAL RESULTS

Table A6: Head Tuning versus Full Tuning of ESM-1B on thermostability classification and regression. 95%
confidence interval are computed via the 10-fold evaluation on HP-S2C2/C5 and 3 replicates on HP-S.

ESM-1B HP-S2C2 HP-S2C5 HP-S

Accuracy Spearman Accuracy Spearman Accuracy Spearman

Head Tuning 91.19±0.47 0.890±0.018 83.26±1.54 0.712±0.043 69.50±0.16 0.809±0.001
Full Tuning 88.75±1.29 0.797±0.029 77.97±2.46 0.503±0.058 65.88±0.89 0.615±0.050

Head Tuning versus Full Tuning of ESM-1B. In Table A6, only tuning the head of ESM-1B
consistently achieves better performance than tuning the whole ESM-1B across all three datasets. A
potential explanation is that the fully tuned ESM-1B tends to overfit due to the relatively small size
of HotProtein (182K), where the pre-training dataset has around 22M protein sequences.

Table A7: Hyperparameter tuning of the Mixup aug-
mentation. ESM-1B equipped with our proposals is
adopted with HP-S2C2 and HP-S2C5.

Settings/Acc. (%) HP-S2C2 HP-S2C5

λ ∼ B(0.2, 0.1) 0.8547 0.8638
λ ∼ B(0.1, 0.2) 0.8600 0.8527
λ ∼ B(0.2, 0.5) 0.8675 0.8596

Table A8: Evaluation results of our proposals with
ESM-1B on the Meltome Atlas benchmark.

Methods Spearman Pearson

ESM-1B + Ours 0.4560 0.6866
ESM-1B 0.3874 0.5331
TAPE 0.3076 0.3132

Hyperparameter Tuning. In general, we find that our method is not very sensitive to hyperpa-
rameter tuning to yield good results. Specifically: (1) Many hyper-parameters were left at default
values. For example, for SAP, we used the hyper-parameters from He et al. (2020) without optimiz-
ing. (2) For the other hyper-parameters (e.g. batch size, learning rate), we used standard 10-fold
cross-validation for selection. (3) Our algorithm is not sensitive to the choice of hyper-parameters,
as shown in Table 2, our FST achieves considerable improvements for various hyper-parameter

A22



Published as a conference paper at ICLR 2023

choices. (4) We provide more ablations for Mixup augmentation in Table A7, where λ is driven
from beta distributions B.

Our Proposal on Other Benchmarks. To demonstrate the generalization ability of our methods,
we further perform the zero-shot transferring on Meltome Atlas (we train the model on HotProtein
and directly evaluate the model’s performance on 8K Meltome Atlas data). We notice that our
method still achieves better results in Table A8.

Table A9: Comparison with more baselines of MLP
and ESM-1B without any pre-training.

Settings/Acc. (%) HP-S2C2 HP-S2C5

ESM-1B w.o. pre-training 0.7808 0.6652
ESM-1B w. pre-training 0.9119 0.8326
MLP 0.6931 0.6378

Table A10: More approaches to inject the structure
information with ESM-1B.

Settings/Acc. (%) HP-S2C2 HP-S2C5

Ours 0.9236 0.8625
Add 0.8873 0.8093
Concat 0.9001 0.8186

More Baselines: Small Neural Networks and ESM-1B without Pre-training. We conduct extra
experiments with 1) ESM-1B without the pretraining weights (with 2 times larger number of training
iterations than an MLP’s) and 2) a small neural network, 3-layer MLP (256 Dimensional Embedding
Layer→ 3 Layer MLP→ Average Pool) in Table A9. These two approaches achieve much worse
results than ESM-1B baseline.

Other Approaches to Inject Structure Information. As shown in Table A10, we notice that
directly concatenating or adding the final-layer representations of ESM-IF (structure information)
and ESM-1B (sequence information) comes to slightly worse results.

More Comparisons: End-to-end or Freezing Some Layers Tuning. We provide additional re-
sults with ESM-1B on HP-S2C2 and HP-S2C5. “First 1 / 3 Layers” indicates the layers close to
the input. To achieve better results, we tune the backbone learning rate with 10-fold cross-validation
for these numbers. Table A11 tells us that only tuning the head leads to superior performance.

Evaluation on Balanced Test Sets. We perform extra evaluations on manually balanced test sets.
Results are summarized in Table A12, where our methods consistently show superior performance.

Table A11: Comparison with the end-to-end and par-
tially frozen tuning with ESM-1B on HP-S2C2/5.

Settings/Acc. (%) HP-S2C2 HP-S2C5

End-to-End 0.8875 0.7797
Freeze First 1 / 3 Layers 0.8927 0.8018
Freeze First 2 / 3 Layers 0.9011 0.8195
Tuning Heads 0.9119 0.8326
Tuning Heads + Ours 0.9236 0.8625

Table A12: Evaluation on manually balanced
datasets.

Settings/Acc. (%) HP-S2C2 HP-S2C5 HP-S

3D GCN 0.7633 0.5004 -
TAPE 0.8117 0.5535 0.6370
ESM-IF1 0.7752 0.6032 -
ESM-1B 0.8605 0.8029 0.6980
ESM-1B + Ours 0.9308 0.8294 0.7517

Table A13: Ablation on the feature aggregation
methods with ESM-1B on HP-S2C2 and HP-S2C5.

Settings/Acc. (%) HP-S2C2 HP-S2C5

Average Pooling 0.9119 0.8326
Max Pooling 0.8819 0.3750
No Pooling 0.9084 0.7808

Table A14: Comparisons with the ℓ1 and ℓ2 regular-
ized tuning for ESM-1B on HP-S2C5.

Settings/Acc. (%) HP-S2C5

ESM-1B 0.8326
ESM-1B + ℓ2 (Ridge Regression) 0.7375
ESM-1B + ℓ1 (Lasso) 0.3808

Ablation on the Feature Aggregation Methods. In Table A13, we conduct ablation studies on the
feature aggregation methods with ESM-1B on HP-S2C2 and HP-S2C5, including average pooling,
max pooling, and no pooling. The results are summarized in the below table. We observe that the
average pooling outperforms other aggregation options.
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Comparison to ℓ2 (Ridge Regression) and ℓ1 (Lasso) Regularization. We conduct comparisons
to ℓ2 (ridge regression) and ℓ1 (Lasso) regularization with ESM-1B on HP-S2C5. Results are in
Table A14. We observe that additional regularizers may lead to performance degradation.

Additional Results on Editing In Table 4, we use to 5-class classifier trained on HP-S, and
we provide additional results with 2-class classifier trained on HP-SC2. We get zero-shot accuracy
65.66%, precision 42.77% and successful rate 42.14%. After fine-tuning, we get accuracy 70.82%±
0.32%, precision 48.31 ± 0.29% and successful rate 53.05 ± 0.26%. The result is slightly worse
than the 5-class classifier results.

E MORE DATASET DETAILS

Data Collection and Process. All the data in the NCBI bioproject is accumulated from all scientists
who publish data that makes it into the NCBI database. Thus, there is a lot of duplication and
variation in data entry. Due to the vast number of organisms and multiple strains for organisms,
we removed duplicates by taking the first observation in the NCBI bioproject that had a consistent
quantitative optimal growth temperature and temperature classification.

We remove all sequences that are greater than 1500 amino acids, since most proteins of interest
for engineering fall within this range and it greatly simplifies clustering. During the clustering,
we cluster across all organisms in the same temperature bin in order to remove redundancy across
organisms and kept representative sequences from each cluster in order to not bias sampling to a
specific organism.

There are numerous organism-specific idiosyncrasies present (such as sequence homology between
organisms due to their evolutionary relationship) in each organism proteome that has nothing to
do with thermostability and instead their unique adaptation to their environment. However, there
is no clear-cut way to identify these features/sequences and remove them. Therefore, we expect
there to be numerous organism-specific idiosyncrasies present (such as sequence homology between
organisms due to their evolutionary relationship) in each organism proteome that has nothing to do
with thermostability and instead their unique adaptation to their environment. In practice, we do
not further filter the data to reduce evolutionary differences. Instead, we cluster proteins based
on sequence similarity across all organisms within a temperature bin and select the representative
sequence of each cluster to avoid biasing our dataset to a particular organism.

Domain Shift. For domain shifts, it includes two perspectives: ❶ Between HotProtein and Fire-
protDB. Annotating a proteome with the optimal growth temperature of the organism provides us a
lower bound soft label for training on nearly 200K sequences (i.e., HotProtein). However, we expect
to observe a domain shift when fine-tuning on experimentally curated stability datasets (i.e., Fire-
protDB) since these labels accurately represent a protein variant thermodynamic properties, unlike
our coarse, optimal growth temperature label. We use the classic tool, i.e., cd-hit 5, to compute the
protein sequence similarity (1) between FireprotDB and Hotprotein; (2) within FireprotDB. We find
the similarity between FireportDB and Hotprotein (0.1928) is much lower than the one within Fire-
protDB (0.2504). It suggests the substantial domain shifts, echoed with our paper’s descriptions. ❷
Within HotProtein. HotProtein covers 230 in different species where proteins have different func-
tionality and structures. For example, we expect to observe domain shifts between proteins sampled
from the eukaryotic species (primarily unicellular fungal) and the prokaryotic organisms.

Data Scarcity. For the data scarcity, we measure our framework on two kinds of data-limited scenar-
ios: (1) We have evaluated our proposals on subsampled HP-S2C2 and HP-S2C5, and demonstrated
their effectiveness. HP-S2C2 and HP-S2C5 only have around 2K sequences ( 2

183 of the whole Hot-
Protein dataset). (2) We further examine our approaches on FireprotDB which is a manually curated
database of the protein stability data for single-point mutants. It only contains 0.2K natural protein
amino acid sequences which serve as the training set in our case. Table 4 shows that our methods
lead to consistent performance improvements.

An Organism Lives is Correlates with the Thermostability of the Protein Sequences of that Or-
ganism. The Meltome Atlas provides thermal proteome profiling (TPP) for 13 organisms (Jarzab
et al., 2020). Although TPP is not the melting temperature of the protein since it is not measured

5http://weizhong-lab.ucsd.edu/cd-hit/
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with purified proteins and requires the protein to become insoluble upon denaturation (proteins can
remain soluble even after denaturation), it provides empirical evidence that for mesophilic, and ther-
mophilic prokaryotic organisms, the optimal growth temperature of an organism is very close to
the lower bound of the thermal stability of that organism. This is not the case for eukaryotic and
psychrophilic prokaryotes where the Meltome Atlas shows a ¿10C gap between the optimal growth
temperature and the lower bound of protein stability in these organisms. Thus, given the available
proteome experimental data, we assume that using the optimal growth condition for prokaryotic
mesophiles and thermophiles provides an accurate lower bound melting temperature for their re-
spective proteome. Furthermore, although our method utilizes the lower bound of a proteome’s
thermal stability as a label, we demonstrate that it provides a sufficient learning signal to improve
performance on the manually-curated experimental dataset: FireProtDB.

F DISCUSSION OF BROADER IMPACT

This research aims to predict the thermal stability of proteins from the sequence and structural data
and predict thermostabilizing mutation designs. Improving a protein’s robustness to thermal chal-
lenges can often be the deciding factor for the commercialization of a biocatalyst. Furthermore,
the ability to rapidly thermostabilize a protein will open the door for the engineering of a broader
range of biotechnologically relevant enzymes and therapeutics, which can have a profound impact
on the chemical, agricultural, food, and pharmaceutical industries. It is well documented that func-
tional residues tend to be destabilizing residues and engineering function into a protein can quickly
destabilize the protein. Thus, it is common to first improve a protein’s stability prior to introducing
destabilizing mutations. Our work attempts to accelerate the initial stabilization of a target protein
to enable downstream functional protein engineering.

ESM-1B HP-S2C2 HP-S2C5 HP-S

Accuracy Spearman Accuracy Spearman Accuracy Spearman

Full Tuning 88.75±1.29 0.797±0.029 77.97±2.46 0.503±0.058 65.88±0.89 0.615±0.050
Head Tuning 91.19±0.47 0.890±0.018 83.26±1.54 0.712±0.043 69.50±0.16 0.809±0.001

Ours 91.91±0.64 0.892±0.011 86.08±1.33 0.747±0.026 73.09±0.10 0.823±0.001
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