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ABSTRACT

Molecular simulations use statistical mechanics at the atomistic scale to enable
both the elucidation of fundamental mechanisms and the engineering of matter
for desired tasks. Non-quantized molecular behavior is typically simulated with
differential equations parameterized by a Hamiltonian, or energy function. The
Hamiltonian describes the state of the system and its interactions with the envi-
ronment. In order to derive predictive microscopic models, one wishes to infer
a molecular Hamiltonian from macroscopic quantities. From the perspective of
engineering, one wishes to control the Hamiltonian to achieve desired macroscopic
quantities. In both cases, the goal is to modify the Hamiltonian such that bulk
properties of the simulated system match a given target. We demonstrate how this
can be achieved using differentiable simulations where bulk target observables and
simulation outcomes can be analytically differentiated with respect to Hamilto-
nians. Our work opens up new routes for parameterizing Hamiltonians to infer
macroscopic models and develops control protocols

1 INTRODUCTION

At the atomic level, physical processes are governed by differential equations containing many
degrees of freedom. Macroscopic phenomena in matter emerge from microscopic interactions that
can be simulated through numerically integrating the equations of motion. In classical simulations,
these equations of motion are derived from a Hamiltonian function. In quantum simulations, they are
derived from a Hamiltonian operator. Examples of microscopic quantities emerging from simulations
are time series of positions, velocities, and forces on atoms and molecules. From these, a rich family
of macroscopic observables can be calculated to describe the configurational and temporal correlation
functions of atoms.

Classically, simulating the positions of points that preserves energy requires integrating the Hamilto-
nian equations of motions:

dp; O0H dg; OH

dt N _aq,- E - 8]?2" (1)

where p; and ¢; are the respective momentum and position of the i*" particle. H is the Hamiltonian
of the systems; for conservative systems, it is given by the sum of kinetic energy and the potential
energy,

N o2
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where boldface denotes the set of quantities for all particles, U(q) is the potential energy and
p?/(2m;) is the kinetic energy of the i*? particle.

Simulating an entire system containing all degrees of freedom is computationally intractable. Typi-
cally one is interested in a small subset of a system, such as a molecule or protein, and concerned
only with the influence of the environment on the system, but not the details of the environment
itself. For this reason, one usually incorporates an environment Hamiltonian I, with coarse-grained



Under review as a conference paper at ICLR 2020

macroscopic variables of interest into the original Hamiltonian: H;,; = H + Hj;. The inclusion of
Hy is important in simulating systems under certain thermodynamic conditions. For example, the
crystallization and melting of water occur under constant pressure conditions. These conditions are
imposed by the environment, which must therefore be incorporated into Hj. The environment, and
therefore Hj, can also be explicitly controlled and optimized in an experiment. For example, H}; can
represent an external laser that is varied to control chemical reaction dynamics.

Recent advances in differentiable solvers have shown that differentiable simulations may be performed,
in which the result of a simulation may be analytically differentiated with respect to its inputs
(5 125 135 145 155 16). Our paper demonstrates the use of differentiable simulations in the context
of molecular simulation. We show that a Hamiltonian can be learned such that the macroscopic
observables computed through simulation trajectory to match a given target. This is done through
automatic differentiation of the macroscopic observables computed from simulation trajectory with
respect to the system Hamiltonian. Moreover, we show that the same principles can be used to control
the system Hamiltonian to force the system towards a target state.

2 APPROACH

2.1 MOLECULAR SIMULATIONS

Molecular simulations with a control Hamiltonian In this work, we demonstrate the use of au-
tomatic differentiation in molecular dynamics simulations. To simulate systems under under fixed
thermodynamic conditions with macroscopic thermodynamic controls, most applications require
fixed temperature, pressure, or strain. A typical way to impose thermodynamic constraints is to
introduce modified equations of motion that contain virtual external variables. For example, to control
the temperature of a systems, a virtual heat bath variable is needed to couple to the system variables
(7;8). These modified equations of motion can be integrated using ODE solvers. In the Appendix we
present the differentiable form of the Nose-Hover chain, a common method for imposing constant
temperature conditions. We choose this integrator to represent realistic dynamics of particle systems
at constant temperature for our experiments.

We also demonstrate the use of a graph neural network to represent a control Hamiltonian H}, in one
of our experiments. Graph neural networks (GNN) learn the molecular potential energy function
(9; [10; [11) while preserving physical symmetries (transnational, rotational and permutational). GNNs
have shown flexible fitting power to represent molecular energies, and can be used to model control
Hamiltonians (see Appendix).

Quantum dynamics Manipulation of the phase of light to control quantum behaviour, known as
coherent control (12;/13)), has been used to control the out-of-equilibrium behavior of various physical
processes (145155165 117;[18). A prototypical example of such control is of the retinal chromophore,
a molecule whose light-induced isomerization controls human vision (19), light-sensing (20), and
bacterial proton pumping (21). Computational and theoretical analysis of coherent control can
explain and motivate experimental control protocols (22; 23} 245 [25). In Ref. (24), for example,
an experimental control protocol was reproduced computationally and explained theoretically. A
minimal model for retinal (26) was used to simulate the quantum yield (isomerization efficiency),
and a genetic algorithm was used to shape the incident pulse. With the minimal retinal model used
commonly in the literature (27;28; 29; 24), we here analyze the control of the incident pulse through
differentiable simulations. In particular, we show that back-propagation through a quantum simulation
can be used to shape the incident pulse and control the isomerization quantum yield. This provides
an example of out-of-equilibrium molecular control through backpropagation.

2.2 BACK-PROPAGATION WITH THE ADJOINT METHOD

To be able to differentiate molecular simulations to reach a control target, we adopt the reverse-mode
automatic differentiation method from Chen et al., which uses adjoint sensitivity methods (30 [1)).
Taking derivatives requires computation of the adjoint state a(t) = dL/d(p(t), g(t)). Evaluating the
loss requires the reverse-time integration of the vector-Jacobian product:

L [t df(a(t),p(t), 6)
@_/ a(t)=—————dt, &)
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where f(q,p,t) represents the Hamiltonian ODE defined in Eq. The reverse-mode automatic
differentiation computes the gradient through the adjoint states without backpropagating through
the fowardpass coputations in the ODE solver. This has the advantage of constant memory cost.
The ability to output positions and momenta at individual timesteps allow one to directly compute
observables and correlation functions from a trajectory. Separate reverse adjoint integrations are
performed for observations at different individual observation times.

3 CONTROL PROTOCOL FOR MOLECULAR QUANTUM DYNAMICS
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Figure 1: A We perform continuous model training during the simulations to bias a harmonic polymer chain
toward a targeted helix shape. This is done by training a bias Hamiltonian parameterized by a GNN. We run
the simulations for 4000 steps, and the loss is computed and differentiated to update GNN weights every 40
simulation steps. B Controlled isomerization of the model retinal Hamiltonian with a time-dependent electric
field. The model consists of two electronic states, denoted with blue and red, a vibrational mode x, and a
torsional mode ¢. We show that the time-averaged quantum yield increases as a function of training epoch with
differentiable control.

We use the model introduced in Ref. (26) for the retinal chromophore. The model Hamiltonian
consists of two diabatic electronic states, a single torisonal mode ¢ for the isomerizing double bond,
and a single stretching mode x (see Fig. [IB). Details of the model, the construction of the Hamiltonian
and the operators of interest can be found in Refs. (26; 29} [27).

The total Hamiltonian of the system and the control field is given by
H(t) = Hs + H, = Hs — pE(1), @)

where Hy is the system Hamiltonian, H, is the control Hamiltonian, {1 is the dipole operator, and
E(t) is the electric field. The quantity to be optimized is the quantum yield, i.e. the efficiency
of isomerization Y (the higher the better; further details are provided in the Appendix). During
simulations, we backpropagate through the simulation trajectory to optimize both the magnitude and
phase of the temporal electric field. The numerical results are shown in Fig. [I|B. The quantum yield
begins at approximately 0.6, and after 50 epochs reaches 0.8 as the electric field is improved. These
results show that differentiable simulations can be used to learn control protocols for electric fields
driven isomerization.

4 CONTROLLING MOLECULAR DYNAMICS

Learning a bias control Hamiltonians is useful in performing pertubative free energy calculations and
sampling rare events between two states in the state space (31}32). Such bias control Hamiltonians are
useful in both non-equilibrium and equilibrium cases as generalized by the Jarzynski equality (33;134).
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We show that differentiable molecular simulations allow us to control dynamics by pertubatively
seeking transitions from a starting state to a target state. This learning scheme does not require a
choice of reaction coordinate, as required by biasing potential methods like adaptive force biasing
(35). We trained a GNN to represent Hp, to bias a linear chain with a harmonic Hamiltonian into a
helix fold (see Fig. [I). The polymer simulations are performed at a constant temperature using the
Nose-Hoover Chain integrator described above and in the Appendix. We back-propagate through
the simulations during the course of the simulations to continuously update the GNN so that the

loss function L = S27"°""*"'* (4, (q(t1)) — bi(gherir))? is minimized where the set of functions ¢;
include structural variables of the polymer chain: bond distances, angles and dihedrals angles.

5 LEARNING FROM OBSERVABLES

We demonstrate an example of fitting pair correlations in Lennard Jones (LJ) systems (Fig. [2).
Pair correlation functions characterize structural and thermodynamic properties of condensed phase
systems (36). We demonstrate that by differentiating through the simulation trajectories, one can
actively modify parameters to match a target distributions function. To make the distribution function
our differentiable target, we implement a differentiable histogram to approximate the typical non-
differentiable histogram operation. This is done by summing over pair distances expanded in a
basis of Gaussians (“Gaussian smearing"), followed by normalization to ensure that the histogram
integration yields the total number of pair distances (see Appendix).
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Figure 2: Computational workflow to fit pair distribution functions for an LJ system. The target distributions
functions are obtained with ¢ = 1 and € = 1. For each training epoch, we compute the pair distribution
functions from simulated trajectories. We back-propagate the mean square loss between simulated and target
pair distribution functions to update the LJ parameters.

We set up the experiment to learn the parameters of a Lennard Jones liquid (36) with pair in-
teractions: u;; = 4e((2)'? — (£)9), with the total potential energy of the system given by
Utotal = Y i Wi (rij). We simulate the system at three different temperatures and obtain three
different pair correlation functions g(r). For each temperature the model learns to reproduce the
same radial distribution function by minimizing the mean square loss between the simulated pair
distribution function and the target. At each epoch, the parameters are updated with gradient descent.

6 CONCLUSIONS

In this work we proposed a framework for training molecular simulations based on macroscopic
quantities to develop learning and control protocols. Our method is based on model learning through
simulation time feedback from bulk observables. Our method also opens up new possibilities for
designing control protocols for equilibrium and non-equilibrium simulations by incorporating bias
Hamiltonians. This work can be extended to the simulation of other types of molecular systems with
different thermodynamic boundary conditions and different control scenarios.
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7 RELATED WORK

Differentiable Simulations Several works have incorporated physics-based simulations to control
and infer movements of mechanical objects. These are done by incorporating inductive biases
that obey Hamiltonian dynamics (37} 138). Many works also focus on performing model control
over dynamical systems (339} 40). Differentiable simulations with automatic differentiation have
also been utilized in constructing models from data in many differential equation settings like
computational fluid dynamics (41), physics simulations (42543} 14), quantum chemistry (44), protein
simulations (45) and normalizing flows (46; 47). Much progress has been made in developing
differentiable frameworks for molecular dynamics (48), PDEs (49; 505 51; 2) and ODEs (1)).

Statistical Physics and Molecular Dynamics In machine learning for molecular dynamics,
automatic differentiation has been applied in analyzing latent structure of molecular kinetics
(5251535 1544 1555 1565 157), fitting models from quantum chemistry calculations (10; 585 159; 1605 6 1),
model reduction of atomistic simulations (2; 625 163} 164} 65) and advanced sampling (66). For the
computation of free energy in simulations, adaptive methods and variational methods have been
proposed with bias Hamiltonians on a specified reaction coordinate (33)), or invertible transformations
(31) between initial and target configurations. For non-equilibrium simulations with finite-time
driving forces, variational methods with gradients have also been applied in the computation of large
deviation functions to better sample rare events (675 168} [69).
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8 APPENDIX

8.1 NOSE-HOVER CHAIN INTEGRATOR

Here we describe the Nose-Hover Chain (75 [8), the constant temperature integrator algorithm men-
tioned in the paper. We applied this integrator to the Lennard Jones system and polymer examples
to simulate systems with constant temperature control. Here we define the variables used in the
integrator:

e N: number of particles
e K: number of virtual variables used in the chain

1: index for individual degrees of freedom, ¢ : 1,...,3N

7: index for virtual variables in the chain j : 1, ..., K

e p;: momentum for each degree of freedom ¢

@;: position for each degree of freedom ¢

m;: mass for each particle in the simulation

Q;: coupling strengths to the heat baths variable in the chain

7;: virtual momenta

The coupled equations of motion are:

dp; oH
at —  dq’

dg; OH m

a - op Van

3N P2 s
= ( i Qmi 7Nl€BT) *7}1@

dm
dt

(&)

dn; nj—1 Nj+1
=4 - — kpT) —n;
dt (Qj—l 57) 77JQHl

dng Tj—1
— = (=>— — kT
dt (qu oT)

The Nose Hover Chain integrator performs effective temperature control, and the integrated dynamics
sample the Boltzmann distribution. The integrator is deterministic and time-reversible. The control of
other thermodynamic variables can be realized with other integrator protocols, such as the Rahman-
Parrinelo method to maintain constant pressure (70).

8.2 MORE ON TWO-STATE ISOMERIZATION

Here we provide details for the two-state isomerization example in this section. The control incident
electric field is initialized with a Gaussian form.

E(t) = Ep cos(wo(t —tp)) exp(—(t — tp)2/72), (6)

where Ej is the amplitude of the field, wy is the center frequency, t,, is the pulse arrival time, and
7 is the pulse duration. The pulse duration is set to 7 = 10 fs, the center frequency to wy = 2.4
eV, and the arrival time to ¢, = 37 = 30 fs. The short pulse duration is chosen to approximate a
delta-function, the arrival time to ensure that the pulse is completely contained within the simulation,
and the center frequency to approximately match the electronic excitation energy. The field amplitude
is chosen as Fy = 1 in atomic units, since, as explained below, the quantum yield is normalized with
respect to excited state population, and hence to the field intensity.
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The quantity to be optimized is the quantum yield, i.e. the efficiency of isomerization. Denoting the
cis projection operator as P, and the trans projection operator as Pr, the quantum yield is then

Yo - (PR (1)
(Prt(t) + PR (1) — pg(t)
where (...) = (1)|...|s)) denotes a quantum expectation value, P! = Pr [1).,) (1), | is the projection

of Pr onto the diabatic excited electronic state, ]580 = Pr |they ) (1e, | projects onto the ground
diabatic state, and p,, is the ground state population. Subtraction of p, ensures that any population
remaining in the ground state does not contribute to the quantum yield. Since the quantum yield
depends on time, we optimize its average over a time period after the pulse is over:

to+T
Y(), = %/ dt Y (t), ®)

to

)

where <>f denotes a time average. Here, ? is the time at which the yield is first recorded, and T is
the averaging time. We set tg = 0.5 psand 7" = 1.5 ps.

The dynamics are discretized with a timestep of At = 0.05 fs. The electric field is discretized with a
time step of 5At = 0.25 fs. This is done to limit the timescale over which the electric field can vary.

8.3 GRAPH NEURAL NETWORKS

The model is based on graph convolution, which has achieved state-of-the-art predictive performance
for chemical properties and molecular energies/forces (115105 1615585 160). In our work, we utilized
the SchNet (10) architecture to learn the control Hamiltonian. The model consists of a message
step and update step to systematically gather information from neighboring atoms. A 3D molecular
graph is used, and the existence of a connection between atoms is decided by a fixed distance cutoff.
Defining v as the index for each atom and its neighbors as N (v), the graph convolutions process
iteratively updates the atomic embedding h,, by aggregating “messages" from their connected atoms
v and their edge features e,,,,. This update process is summarized by

ht =hi =t 4 Z Message! (hy, ey ). )
uEN (v)
By performing this operation several times, a many-body correlation function can be constructed
to represent the potential energy surface of a molecular system. In the case of SchNet, the update
function is simply a summation over the atomic embeddings. The message function is parameterized
by the following equations:

Message' (eyy, hy) = MLP3(MLP;(ey,) o MLP;(h,) (10)

where the M L P; are independent multi-layer perceptrons (MLP). For each convolution ¢, a separate
message function is applied to characterize atom correlations at different scales. After taking element-
wise products of atomic fingerprints h, and pair-interaction fingerprints e, the joint fingerprint
is further parameterized by another MLP to incorporate more non-linearity into the model. The
final updated fingerprints are used as inputs to two fully-connected layers that yield atom-wise
energies. The sum of these energies gives the total energy of the system. The atomic forces are the
negative gradients of the energy with respect to atomic positions. They are easily computed through
automatic differentiation implemented in PyTorch (71) and Tensorflow (72). We used PyTorch in our
demonstrations.

8.4 DIFFERENTIAL HISTOGRAMS

In this section, we present the calculation of an approximate histogram with Gaussian smearing
functions. Given an observation r that we wish to approximately map onto a histogram with & bins,
the Gaussian-smeared function py(r) is given by

(r—rp)? (r—rp)?
pr(r) =€ /Y e, (11
k

10



Under review as a conference paper at ICLR 2020

where ¢ approximates the bin width. A Gaussian basis is used to replace the non-differentiable Dirac
Delta functions to compute an approximate histogram. The total normalized histogram is the expected
value over individual samples of r over the all the observations of pair distances (between atoms ¢
and j) in the trajectory:

p(r) = Eq jp(ri;). (12)

The pair correlation function g(r) is obtained by normalizing by differential volume increases:

Vv
g(r) = mp(r) (13)
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