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ABSTRACT

Large Language Models, augmented with specialized tools or modules, commonly
referred to as TALMs, show superior reasoning abilities over generic LLMs, across
different knowledge intensive Question Answering (QA) tasks. However, their ef-
ficacy on complex mathematical reasoning benchmarks, has remained largely un-
explored. Moreover, existing research lacks the study of complementary benefits
offered by diverse tool-sets towards solving mathematical problems. In this work,
we present a TALM-based framework - MATHSENSEI, which is powered by a
knowledge retriever (LLM or Bing Web Search), program generator + executor
(Python), and symbolic problem solver (Wolfram-Alpha). We perform extensive
ablations with various tool combinations, across multiple math sub-disciplines of
different datasets. Our experiments also comprise evaluation of well-known plan-
ning algorithms such as REACT and Plan-And-Solve. MATHSENSEI outperforms
GPT-3.5-TURBO with chain-of-thought (CoT) by 13.5 % on the MATH dataset.
We observe that TALMs are beneficial for progressively increasing complexity
of problems (such as AQuA, MMLU-Math, and higher level complex questions
in MATH), and show minimal benefits over simpler math word problems (such
as GSM-8k). The code and data are available at https://github.com/Debrup-
61/MathSensei.

1 INTRODUCTION

The family of Large Language Models (LLMs), ranging from proprietary gpt-3.5-turbo, GPT-4 to
open-source models, such as Llama 2, are considered as a one-stop solution for solving a broad
spectrum of NLP tasks (Brown et al., 2020; Radford et al., 2019; Chowdhery et al., 2022; OpenAI,
2023). However, generic LLMs consistently fail to solve problems that require extensive mathe-
matical, commonsense, abductive, and multi-hop reasoning (Lu et al., 2023b; Cobbe et al., 2021;
Huang & Chang, 2023). For enhancing the reasoning abilities of LLMs, the research community has
been exploring various techniques, such as - (1) intelligent prompting variations, such as chain
of thought (Wei et al., 2022), program of thought (Chen et al., 2022), tree of thoughts (Yao et al.,
2023), and self-refinement (Madaan et al., 2023), (2) multi-model interaction frameworks, such
as Multi-agent Debate (Du et al., 2023; Liang et al., 2023) and Round-Table Conference (Chen
et al., 2023b), (3) tool-augmented LLMs (TALMs) powered by external symbolic tools, APIs, and
libraries.

Recent advancements in TALM frameworks, such as Chameleon (Lu et al., 2023a), OlaGPT (Xie
et al., 2023), ART (Paranjape et al., 2023), and SocraticAI (Yang & Narasimhan, 2023) have ex-
plored the effectiveness of incorporating external tools for solving knowledge-intensive reasoning
tasks and simple mathematical problems (such as arithmetic and algebra). However, the effective-
ness of TALM framework is yet to be validated on diverse mathematical domains (e.g., PreAlgebra,
Calculus, Geometry, Intermediate Algebra, Probability) at varying levels of difficulty. In addition,
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Generated Query: 

solve |x + 3| = 6

Answer: 
Yes, the solution from the Wolfram alpha API for
"solve |x + 3| = 6" is:  x = -9 and x = 3 (real solutions)
or  x =-3 + 6 e^(i n) and n element R (complex solutions)




MathSensei

student

Generated Code:

from sympy import *

# Define the equation

# Solve the equation

# sol = solve(eq, x)

# Find the positive difference between the solutions

# diff = abs(sol[0] - sol[1])

eq = Abs(x + 3) - 6

print("Positive difference between the solutions:", diff)

Code Output:

Error message: Name ‘x’ is not defined


 
 - From the Wolfram Alpha response, we find that the solutions are $x=-9$ and $x=3$.

 - The positive difference between the solutions is $3-(-9)=12$.

 - Therefore, the answer is $\\boxed{12}$.

Question : 
Find the positive
difference between
the solutions for  
$|x + 3| = 6$.
 

Figure 1: An end-to-end workflow of MATHSENSEI on the compositional setting from the MATH
dataset. The final answer is highlighted in green font (ci and oi are defined in Section 2).

existing research works have not delved into individual tool study, both in isolation and in combina-
tions with other tools. This motivated us to explore the potential of TALM frameworks in the context
of complex mathematical reasoning tasks. In this paper, we propose and develop MATHSENSEI, a
TALM-based framework, comprising a distinct set of tools (also referred to as modules), combined in
a sequential fashion (Fig. 1). These modules include LLM-based components, such as - knowledge
retriever (KR ), python code generator (PG ), code refiner (CR ), and solution generator (SG );
and APIs, such as - Bing-Web-Search-API (BS ) and Wolfram-Alpha-API (WA ). After conduct-
ing extensive ablations, varying the set and order of modules in our framework, we observe that
complex mathematical problems, spanning different subdomains can be benefited by specific types,
combinations, and order of these modules. Our best configuration of MATHSENSEI, PG + WA +
SG ( + + ) achieves an impressive performance accuracy of 47.6 % on the MATH (Hendrycks
et al., 2021b) dataset, surpassing GPT-3.5-TURBO( ) with Chain-of-Thought (CoT) prompting by
13.5% (Chen et al., 2023a). The same setting shows a performance gain of +11.6% over GPT-4 (with
CoT prompting) on Intermediate Algebra problems. For Precalculus, GPT-4 (with CoT prompting)
has an accuracy of 26.7%, which gets improved to 28.9% by our WA + PG + SG ( + + ) set-
ting. Improvements on AQuA-RAT (Ling et al., 2017) and MMLU-Math (Hendrycks et al., 2021a)
are lower, 2.4% and 3.3% respectively, showing that the efficacy decreases as requirement of ex-
ternal knowledge decreases. This further highlights the need for effective planning strategies. We
evaluate two advanced planning techniques (Plan-And-Solve (Lu et al., 2023a) and REACT (Yao
et al., 2022)) with MATHSENSEI and do not observe benefit of using them over our best config-
uration. Our contributions are as follows: (a) we comprehensively evaluate the effectiveness of
TALM frameworks across multiple mathematical datasets, such as GSM-8K, AQUA-RAT, MATH,
MMLU-Math, encompassing diverse mathematical problem types and tasks, (b) through system-
atic ablations by varying the set and order of modules in our framework, we observe that complex
mathematical problems spanning different domains (such as, algebra, calculus, number theory, and
probability from the MATH dataset) can be benefited by certain types, combinations, and order of
these modules, and (c) we quantify the performance of state-of-the-art planning techniques, such as
Plan-And-Solve and REACT coupled with tool-augmented LLMs on the MATH dataset.

2 METHOD

Problem Formulation. Given an input mathematical query q ∈ Q, the objective is to provide the
final correct answer a by executing the set of relevant modules. Let [m1, . . . ,mt], be the ordered
sequence of chosen modules for answering q, and [o1, . . . , ot] be the output sequence of the t mod-
ules. Let, si, fi, and ci denote the instruction, in-context example(s), and context, respectively, that
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we use for module mi. The input prompt pi, corresponding to module mi is defined as:

pi = ⟨si; fi; ci⟩ (1)

where context ci is defined as:

ci =

{
[q], if i = 1;

[ci−1; oi−1], for i = 2, . . . , t
(2)

Here, x; y denotes concatenation of x and y.

Datasets. We perform evaluations on MATH (Hendrycks et al., 2021b), GSM-8K (Cobbe et al.,
2021), AQUA-RAT (Ling et al., 2017), and MMLU-Math (Hendrycks et al., 2021a), with special
focus on MATH, since it contains a diverse set of subject types (Precalculus, Prealgebra, Alge-
bra, Geometry, Intermediate Algebra, Counting and Probability, and Number Theory) and levels
of difficulty(1-5). GSM-8K consists of basic arithmetic operations with linguistically diverse math
word problems while AQUA-RAT is a MCQ format task spanning algebra. MMLU-Math has prob-
lems in abstract algebra, elementary mathematics, high-school mathematics, college mathematics,
and formal logic.

Modules. For our experiments, we use a diverse set of modules: (1) LLM-based Knowledge Re-
triever (KR), (2) Bing Web Search (BS), (3) Wolfram Alpha (WA), (4) Python Generator + Executor
(PG) using Sympy library, (5) Code Refiner (CR), and (6) LLM-based Solution Generator (SG).
Overview of the modules are presented in A.2. We also provide illustrative examples of each mod-
ule in A.3. We assign GPT-3.5-TURBO ( ) as the default LLM in all LLM-based modules unless
mentioned otherwise. This is mainly because it is more accessible and cheaper, compared to GPT-4.
For querying a search-engine, we use Bing-Web-Search-API. Please refer to Table 24 for more
details about the online resources that we use in this work.

3 EXPERIMENTS AND RESULTS

Advantages of Bing Search over LLM-based knowledge retrieval. As shown in Table 4, the
Bing Search (BS ) module significantly outperforms the KR module. The extra knowledge re-
trieved by the KR module is useful only for problems in Algebra, PreAlgebra, and Probability
domains. Moreover, the overall accuracy drops steadily as we change KR’s LLM from GPT-3.5-
TURBO to other variants (Table 7). This indicates that generic LLMs are not equipped with mathe-
matical concepts of other domains. After analyzing different LLM variants for the KR module, we
find that the knowledge retrieved by weaker LLMs heavily degrades performance of the downstream
SG module. This motivated us to explore the impact of search engine-based knowledge retrieval.
In Table 5, we observe that BS + SG setting is a clear winner over the SG setting, when GPT-3.5-
TURBO is used for generating the BING-Web-Search-API query and getting final solution from SG.
This holds true even when the LLM used in both modules is varied between TEXT-DAVINCI-003
(+4.6%) and GPT-3.5-TURBO (+4.2%). Thus, augmenting LLMs with knowledge (relevant to a
mathematical question) retrieved from the web proves to be more beneficial in improving problem
solving capabilities, compared to LLM-generated knowledge. Please refer to Appendix A.6 and A.7
for more details.

Program generation (PG) with Sympy. Recent research works such as PAL (Gao et al., 2023)
and Program of Thoughts (PoT) (Chen et al., 2022) have showcased the benefits of using python
code representations to solve mathematical problems, by offloading execution of generated code
to an external python interpreter. We observe that the PG + SG setting using the sympy library
can improve upon the performance accuracy of SG on the MATH dataset by a substantial margin of
10.1%. We find that a majority of problems in MATH require complex computations such as solving
equations, representation of complex mathematical objects such as vectors, solving problems in
Geometry, some of which are hurdles for the Solution generator module since text representations
alone fail to capture such complexities. Libraries such as sympy in our implementation, on the other
hand, has support for symbolically representing such objects using well-defined functions, classes,
methods, and sub-packages, which greatly improves the performance. We present additional insights
into the strengths and limitations of the PG module in Appendix A.9.1 and A.9.2, respectively.

3



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

QUESTION: Determine the number of ways to arrange the letters of the word NINE. GOLD ANSWER: 12

SG ( ): PG+SG ( + ) BS+SG ( + ) WA+SG ( + )

There are 4 distinct letters in
the word NINE. The number
of ways to arrange 4 distinct
letters is 4! = 24. Therefore,
the answer is 24 .

SG module misses the re-
peated characters in NINE.

from sympy import *
word = ’NINE’
numperm=factorial(len(word));
print(numperm);
. . .
The word NINE has 4 let-
ters.The number of ways to
arrange 4 distinct letters is
4! = 24. Therefore, the answer
is 24 .

PG module ignores the re-
peated characters.

Retrieved Example: In the
word ”BANANA”, there are
6 letters but only 3 distinct
letters . . . repeated letters.
Retrieved Formula: nPr
= n!/(n1! n2! ... nr!)
. . . Therefore, the answer is 4!/
(2! 1! 1!) = 12 .

BS module retrieves simi-
lar examples and relevant
formula from the Web.

We call the Permutations
function on the word NINE to
find all possible arrangements
of the letters. The answer
from WolframAlpha is EINN,
ENIN, . . . , NINE. Therefore,
the answer is 12 .

WA module generates the
correct query: Permuta-
tions[NINE] to solve the given
question and final SG answer
is grounded on WA output.

Table 1: Qualitative Analysis of the Responses generated by different Settings for a given MATH
example.

Wolfram Alpha outperforms PG on specific sub-disciplines. We compare the paradigm of
program-guided solving (having Sympy) with the use of symbolic engines utilizing knowledge bases
(Wolfram Alpha). We find from Table 5 that WA + SG outperforms the SG approach by 8.1%, when
both WA and SG are powered by GPT-3.5-TURBO. Additionally, there is a consistent improve-
ment in accuracy over SG (close to 11 %) when TEXT-DAVINCI-003 is used as the LLM instead of
GPT-3.5-TURBO. This showcasses the meaningful positive impact of augmenting Wolfram Alpha’s
capabilities with chain of thought (CoT) style reasoning of LLMs. Even more interestingly, WA+SG
closely follows PG+SG performance on MATH, even outperforming it on specific sub-disciplines
such as Intermediate Algebra by a significant margin (10.4%). We find that the majority of errors
in Intermediate Algebra arise from Python code execution errors (Table 18), clearly showcasing the
inability of python code to represent complex math objects in this domain. In contrast, the WA mod-
ule effectively interacts with the API using Wolfram code language to address these issues, resulting
in substantial enhancements (example in Table 2). As shown in Fig. 6, the maximum utility of the
WA module lies in subdomains of Intermediate Algebra and Algebra. We present a further deep
dive into the strengths and weaknesses of WA in Appendix A.8.2 and A.8.3, respectively.

Effect of Multiple Module Combinations. We experiment with various module combinations on
MATH, reported in Table 4. Our findings on the MATH dataset reveal that distinct module combi-
nations exhibit specialized efficacy in addressing specific categories of mathematical problems. The
PG+WA+SG setting outperforms PG+SG and WA+SG by 3% (p-value = 0.013) and 5% (p-value
= 0.0) respectively, showcasing the potential for effective utilization of complementary skills and
strengths offered by both modules. We used a Z-test with a left-tailed alternative hypothesis for the
above. The maximum gain for the PG+WA+SG setting over PG+SG and WA+SG are achieved in
the sub-domains of Number Theory (40.5 %, 37.8% to 49.1%) and Intermediate Algebra (21.1%,
31.5% to 35.0%). We observe that WA+PG+SG is the best performing setting on problems in Alge-
bra and Pre-calculus, which shows that the order of the modules used also has a substantial impact
on the performance. The PG+SG and the PG+CR+SG settings are most useful in the subdomains
of Pre-algebra and Probability respectively. Table 6 presents an examination of the variations in
accuracy among various settings as a function of the problem levels (1-5) in the MATH dataset.
Our analysis reveals a consistent improvement of over 10% across all difficulty levels with diverse
modular configurations.

We consider an example from the MATH dataset and present a qualitative analysis of the responses
generated by different settings in Table 1. We observe that in this example, SG and PG+SG are
unable to capture the fine-grained nuances in the input question (repetition of characters in the word
”NINE”), leading to reasoning errors. On the other hand, the BS+SG and WA+SG settings avoid
committing such errors. Further insights into the distribution of math problems where our best
configuration (PG+WA+SG) is most useful, is presented in Appendix A.10. These insights on the
complementary benefits provided by each module, motivated us to evaluate state-of-the-art planning
techniques with MATHSENSEI, which we present in Appendix A.11.
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QUESTION: Let a, b, c be real numbers such that a+ b+ c = 1. Find the minimum value of 2a2 + 3b2 + 6c2.

GOLD ANSWER 1

PG+SG ( + ) WA+SG ( + )

from sympy import *
a, b, c = symbols(’a b c’)
expr = 2*a**2 + 3*b**2 + 6*c**2
constraint = Eq(a + b + c, 1)
solved = solve(constraint, c)
exprsub = expr.subs(c, solved[0])
deriv = diff(exprsub, a)
criticalpoint = solve(deriv, a)
minvalue = exprsub.subs(a, criticalpoint[0])

Python ( ) Output:
Minimum value: 3b2+6(1/4−b/4)2+2(3/4−3b/4)2

[PG module unable to get min value as an integer]

SG ( ) Output: We can use the method of Lagrange
multipliers to solve this problem . . . Therefore, the answer is
13

6
[SG module does not use PG Output]

WA( ) Query Generator:

Minimize[2a2 + 3b2 + 6c2, a + b + c == 1]
[Wolfram Alpha code provides simple way of representing
question.]

WA( ) Output:

Yes, the answer is: min(2a2 + 3b2 + 6c2|a + b + c = 1
= 1) at (a, b, c) = (1/2, 1/3, 1/6)

SG( ) Output

We call the Wolfram Alpha API to minimize
2a2 + 3b2 + 6c2 subject to a + b + c = 1. The
answer from Wolfram Alpha is 1. Therefore, the answer is
1

[SG module uses WA output to give correct answer]

Table 2: Example Demonstration of advantages of WA( ) over PG( ) in Int.Algebra

Effectiveness of MathSensei on MMLU-Math. Results in Table 8 reveal that the BS+PG+SG
configuration enhances the accuracy of the SG setting by 3.3%. As the performance gain is low,
we further perform a type wise analysis in Table 9. We observe that, other than Formal Logic
(FL), adding different modules show substantial improvements in different types, such as 17% in
College Math, 11.7% in High School Math, 7.5% in Elementary Math. Our analysis in MMLU-
Math further supports the complimentary benefit of the tools used in MATHSENSEI framework for
various mathematical types.

Decreased Efficacy on GSM-8K, AQUA datasets. From Table 8, we observe marginal improve-
ments of using multiple modules on AQUA-RAT and GSM-8k, over the standalone SG module.
Both datasets contain simpler algebraic and arithmetic word problems. GSM-8K consists of prob-
lems requiring simple arithmetic operations such as addition, subtraction, etc. and its complexity
stems from linguistic diversity. The addition of the PG module (with Sympy) has a negative effect on
the SG module on GSM-8K . By simply removing the Sympy library, we achieve accuracy gains of
2-3%. However, the SG module still outperforms PG+SG for GPT-3.5-TURBO. For GEMINI-PRO as
well, we observe minimal improvements by incorporating PG on GSM-8K and AQUA as shown in
Tables 10 and 11 ,respectively. Our observations align with previous research work such as Program
of Thought (PoT) (Chen et al., 2022), which showed program-guided solving to be useful for solv-
ing more challenging classes of problems (such as, polynomial equations, combinatorics, symbolic
questions) compared to simple arithmetic questions. Similar to GSM-8K, AQUA-RAT primarily
focuses on problems that require generic language-based reasoning skills. We find that settings with
tools mostly hurt the performance compared to SG. This is attributed to the fact that WA and BS are
unnecessary for addressing straightforward problems, and invoking them often introduces noisy and
irrelevant information into the context of SG.

4 CONCLUSION

We introduce a tool-augmented Large Language Model (TALM) framework, aka MATHSENSEI,
targeted for mathematical reasoning. We utilize tools for web-search based knowledge retrieval,
program generation, and API-based problem solving (Wolfram Alpha). We perform extensive abla-
tions over the individual tools, along with varying the order and combinations on complex mathe-
matical reasoning datasets (such as MATH). Our best configuration achieves a 13.5% improvement
over GPT-3.5-TURBO (with CoT prompting) on MATH. Our experiments with planning strategies
does not improve over our best configuration. We also observe that benefit of mathematical TALMs
are minimal for simpler math word problems (in GSM-8k) and its benefit progressively increases
as the required complexity and knowledge requirement for the problem increases through AQuA,
MMLU-Math.
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A APPENDIX

A.1 RELATED WORK

Prompting Techniques. Large Language Models (LLMs) employing prompting strategies such as
Chain-of-Thought (CoT) (Wei et al., 2022) and Program-of-Thought (POT) (Chen et al., 2022) have
demonstrated commendable performance on simple mathematical datasets such as GSM-8K (Cobbe
et al., 2021). However, their efficacy diminishes for datasets requiring complex computations and
advanced mathematical knowledge. For instance, on the MATH dataset, GPT-4 with CoT prompting
exhibits a notably low accuracy of 42%. Several variations of these strategies have been explored
to improve accuracy in reasoning tasks. (Madaan et al., 2023) proposed self-refine that involves
iteratively refining the initial output by utilizing feedback from the same model. (Zhou et al., 2023)
employs code-based self-verification, by utilizing python code to check simple constraints that the
LLM generated output should satisfy and correcting the output if necessary. Similarly, Progressive-
Hint-Prompting (Zheng et al., 2023) involves multiple turns of interactions, using previously gener-
ated answers as hints for subsequent turns.

Similar to POT prompting, PAL (Program Aided language models) (Gao et al., 2023) adopts a
program-guided solving paradigm. It reads natural language problems, generates programs as in-
termediate reasoning steps, and delegates the solution step to a runtime environment, such as the
Python interpreter. Across 13 natural language reasoning tasks within Big-Bench-Hard (Suzgun
et al., 2022), they observe that program-guided solving consistently outperforms significantly larger
models. In our Tool-augmented framework (MATHSENSEI), we incorporate several such techniques.
We adopt CoT prompting for the text generation modules, and use the methodology by (Gao et al.,
2023) to generate python code (using libraries like sympy) based on the current context and mathe-
matical question; followed by execution of the code using python interpreter.

While (Gao et al., 2023) focuses on elementary level MWP (Math Word problems) and simple
arithmetic datasets such as ASDIV (Miao et al., 2021) and SingleEQ (Koncel-Kedziorski et al.,
2015), we explore complex mathematical datasets spanning diverse math problem types (MATH,
AQUA (Ling et al., 2017), MMLU-Math). Following self-refine, we employ a code refinement
module to iteratively rectify syntactical errors in the original generated code, using error messages
from the interpreter.

Tool-Augmented LLMs. The emerging trend of tool-augmented LLMs has garnered increasing
attention within the research community. Large language models, trained on the objective of next-
token prediction, excel at generating tokens based on probabilistic patterns in their training data,
making them effective in data-intensive tasks. However, their proficiency falls short in capturing
nuanced reasoning or token relationships, particularly in domains like mathematics. Consequently,
there are instances or specific question types where it would be advantageous for an LLM to leverage
support from specialized tools or modules. For instance, consider a question requiring the solution
to the roots of a 4th-degree polynomial. The LLM, upon generating a special token followed by
a query, can pause its generation and invoke a mathematics knowledge-base like Wolfram Alpha.
Wolfram Alpha, in turn, can utilize its API to process the query and return the answer to the LLM,
which can then continue its generation.

Toolformer (Schick et al., 2023) leverages data annotated with such tool calls (using special tokens
for tools) and responses to train language models to employ tools as needed in a self-supervised
manner. Similarly, the tool-augmented LLM framework CHAMELEON (Lu et al., 2023a) adopts a
plug-and-play approach to utilize tools sequentially. In their setup, the sequence of execution of
the tools is predetermined based on a target task; the output of each tool is added to the context for
subsequent downstream tools in the pipeline. They perform evaluation on multi-modal knowledge-
intensive datasets like ScienceQA, TabMWP. Similarly, frameworks such as ART (Paranjape et al.,
2023) engage in multi-step reasoning, where each step is linked to a tool call. Utilizing search and
code tools, ART tackles various tasks across datasets such as MMLU (Hendrycks et al., 2021a)and
BigBench (Srivastava et al., 2023).

Our work adopts the generic backbone of popular tool-augmented LLM frameworks such as Tool-
former and CHAMELEON. In comparison to the previous work, we distinguish ourselves by con-
ducting a comprehensive analysis and comparison specific to tools useful for addressing diverse
mathematical problems. Notably, CHAMELEON lacks evaluation on mathematical datasets, and

9
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Modules

Models/APIs KR BS WA PG CR SG

Bing-Web-Search-API ( ) ✗ ✓ ✗ ✗ ✗ ✗

Wolfram-Alpha-API ( ) ✗ ✗ ✓ ✗ ✗ ✗

Llama-2-7B ( ) ✓ ✗ ✗ ✗ ✗ ✗

Phind-CodeLlama-34B-V2 ( ) ✗ ✗ ✗ ✓ ✗ ✗

text-davinci-002 ( ) ✓ ✗ ✗ ✗ ✗ ✗

text-davinci-003 ( ) ✓ ✓ ✓ ✗ ✗ ✓

gpt-3.5-turbo( ) ✓ ✓ ✓ ✓ ✓ ✓

Table 3: Module Inventory.

ART focuses exclusively on algebra, leading to gaps in the assessment of tool-augmented LLMs.
Furthermore, our study incorporates a comparison of planning techniques within tool-augmented
LLM frameworks for mathematical reasoning, an aspect not adequately addressed in the current
literature. To the best of our knowledge, planning techniques like REACT (Yao et al., 2022) have
primarily been tested on knowledge-intensive reasoning datasets such as FEVER (Thorne et al.,
2018) and HotpotQA.

A.2 MODULE INVENTORY

In this section, we present a brief overview of the tools or modules that we use in our study. We
show the list of model/api used for each module in Table 3. A detailed description of the prompts
used in each module is presented in A.12.

• LLM-based Knowledge Retriever (KR ) - For this module, we design a prompt to extract
relevant knowledge from a pre-trained LLM (taking any one from the list of models mentioned in
Table 3) in the form of concepts, formulas, mathematical expressions, theorems, definitions, and
hints on how to solve a corresponding mathematical question. An example prompt and output is
shown in Fig. 2.

• Bing Web Search (BS ) - This module queries the Bing-Web-Search-API ( ) to extract the
most relevant snippets which may contain similar questions and concepts required for solving a
mathematical problem. For similar questions search, we directly query the API ( ) with a math-
ematical question. In case of concepts search, we first use an LLM (either gpt-3.5-turbo ( ) or
text-davinci-003 ( )) to generate a query corresponding to the input question, and then call the API
( ) to retrieve relevant concepts (refer to Fig. 3 for an example).

• Wolfram Alpha (WA ) - This module (comprising multiple components) calls the
Wolfram-Alpha-API using a query in the Wolfram language, retrieving the mathematical infor-
mation from this knowledge base and utilizing the capabilities of its computation engine. First we
employ an LLM to generate contextualized thoughts. Subsequently, based on the generated thought,
the next component formulates a Wolfram code language query (referred to as the “Final Query”).
On passing this query as input to the Wolfram Alpha API, we get a JSON dictionary object. We
extract all the useful information from this dictionary (using an LLM-based extractor) and add it to
the context of next module. An overview of the WA module is presented in Fig. 4.

• Python Generator+Executor (PG ) - We use an LLM that takes as input the current context as
a part of a well-structured prompt (shown in Appendix Fig. 5). The LLM is explicitly instructed
to use the sympy library for accessing a set of mathematical operations and data structures required.
Based on the prompt, the module generates an (executable) Python code, which on execution returns
some output(s) or an error message. We handle syntax errors using two setups:

- Without refiner: Here, if generated code produces syntax errors, we omit the output of
PG from the context for next module.

- Code-Refiner (CR ): Here, we feed the error message along with the incorrect program
to a code-fixing LLM which then generates a corrected python code and rationales of fixed
errors given as “Errors fixed”. We also add the information of common errors from our
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qualitative analysis in the system prompt to aid the code refinement process. An output for
the code refinement setup from the MATH dataset is presented in Fig. 5.

• Solution Generator (SG ) - The solution generator is the final module in all settings. It takes the
output from the pipeline and compiles a step-by-step solution based on all the context of previous
modules. The final step is prompted to produce the answer of the question. It outputs the final
answer enclosed within $\\boxed{}$ (similar to the MATH dataset).

A.3 OVERVIEW OF MODULES

A.3.1 OVERVIEW OF LLM-BASED KNOWLEDGE RETRIEVER

Figure 2: Overview of the LLM-based Knowledge Retriever (KR ) module.The text in green is a
relevant knowledge generated by the LLM.

11
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A.3.2 OVERVIEW OF BING SEARCH MODULE

SIMILAR
QUESTION 
SEARCH

CONCEPTS
SEARCH

QUERY
GENERATED

If the fourth term of an arithmetic sequence is $200$ and the eighth
term is $500$, what is the sixth term?


QUESTION

 

Question 1: Find the 16th term of
arithmetic sequence with common
difference 2? 
From the given, a1 = 0 ; n = 16 ; d
= 2; a16 = 0 + (16 - 1)2; a16  = 15 *
2 = 30

Question 2:
...

What is the formula for the
nth term of an arithmetic
sequence?

The main difference between sequence and series is that, by
definition, an arithmetic sequence is simply the set of numbers
created by adding the common difference each time. 

Arithmetic series, on the other head, is the sum of n terms of a
sequence. For example, you might denote the sum of the first
12 terms with S12 = a1 + a2 + ... + a12.", 

It is represented by the formula a_n = a_1 + (n-1)d, where a_1 is
the first term of the sequence, a_n is the nth term of the
sequence, and d is the common difference, which is obtained
by subtracting the previous term from the current term. How do
you know if a sequence is arithmetic or geometric?"

Figure 3: Overview of the BS module; We concatenate the similar questions and concepts (from
which relevant knowledge is retrieved by GPT-3.5-TURBO and then used as context by a downstream
module).

A.3.3 OVERVIEW OF WOLFRAM ALPHA MODULE






Find the dot product of

PROMPT

...

{{ thought }}

To find the dot product of two
vectors, we need to multiply
their corresponding components
and then add them up. 

Do you know the Wolfram
Alpha command to calculate
the dot product of two given
vectors?

GENERATE

THOUGHT

G
EN

ER
AT

E
W

O
LF

R
A

M
Q

U
ER

Y

...
{{ question }}

EXTRACT
ANSWER

Answer: 
Yes, the Wolfram Alpha
command to find the dot
product of the two vectors
is: dot product [-2,0,7] and
[3,4,-5]

Final Query: dot product
[-2,0,7] and [3,4,-5]

...

{{ answer }}

the dot product of [-2,0,7] and
[3,4,-5] is -41.

WOLFRAM ANSWER 

JSON OBJECT

...

CALL

WOLFRAM

ALPHA

Figure 4: Overview of the WA module.
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A.3.4 OVERVIEW OF PYTHON GENERATION MODULE

{{ instruction }}

GENERATE 
CODE

{{ in-context example(s) }}
...

{{ question }}

Read the following mathematical question and write Python
code using the sympy library to answer the question or
generate an intermediate result


A particle moves so that it is at   at time .
Find the speed of the particle, measured in units of distance
per unit of time.

  
from sympy import *

t = symbols('t')


r = Matrix([3*sin(t/4),3*cos(t/4)])

v = diff(r, t)


speed = simplify(v.norm())

print(\"Speed of the particle:\", speed)

PROMPT

Speed of the particle: 
3*sqrt(Abs(sin(t/4))**2 + Abs(cos(t/4))**2)/4

EXECUTE
CODE

...


Refined Code:

from sympy import *

x = symbols('x')

eq = Eq(x**4 + 5*x**3 + 9*x**2 - x - 14, 0)

print(\"Equation:\", eq)\

roots =solve(eq, x)

integer_roots = [r for r in roots if int(r) ==r]

print(\"Integer roots:\", integer_roots)

Changed: 'is_integer()' to 'int(r) == r' to check if the roots
are integers

Error: Cannot convert complex to int

FINAL PG OUTPUT


{{ instruction }}
...

{{ in-context example(s) }}
...

Generated Code:
from sympy import *
x = symbols('x')
eq = Eq(x**4 + 5*x**3 + 9*x**2 - x - 14, 0)
print(\"Equation:\", eq)
roots = solve(eq, x)
integer_roots = [r for r in roots if r.is_integer()]
print(\"Integer roots:\", integer_roots)
Error: 'bool' object is not callable

REFINE CODE
(ROUND-1)


Refined Code:

from sympy import *
x = symbols('x')
eq = Eq(x**4 + 5*x**3 + 9*x**2 - x - 14, 0)
print(\"Equation:\", eq)
roots =solve(eq, x)
integer_roots = []
for r in roots:
if r.is_real and int(r) == r:
        	integer_roots.append(int(r))
print(\"Integer roots:\", integer_roots)
Changed: Used the is_real() method to check if the roots are real.
Fixed the incorrect way of checking if the roots are integers.
Error: None

PROMPT

REFINE CODE
(ROUND-2)


EXECUTE
CODE


Equation: Eq(x**4 + 5*x**3 + 9*x**2 - x - 14, 0)
Integer roots: [-2, 1]

(a) (b)

Figure 5: Overview of (a) Python Generator Module and (b) Code Refiner Module
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A.4 RESULTS TABLES

Method Alg P.Cal P.Alg Geom Prob N.Th Int.Alg O.Acc

Baselines with gpt-3.5-turbo ( )
CoT-LTP (Guo et al., 2023) 49.6 16.3 52.3 22.5 30.2 29.8 16.9 31.1
ComplexCoT (Fu et al., 2023) 49.1 16.8 53.8 22.3 29.7 33.4 14.6 34.1
ComplexCoT+PHP (Zheng et al., 2023) 51.1 16.1 57.7 25.4 33.7 35.1 17.1 36.5
SKiC (Chen et al., 2023a) 57.9 23.0 62.0 30.1 38.2 35.5 17.8 40.6

Baselines with GPT-4
CoT (Zhou et al., 2023) 70.8 26.7 71.6 36.5 53.1 49.6 23.4 50.4
PHP (Zhou et al., 2023) 74.3 29.8 73.8 41.9 56.3 55.7 26.3 53.9

Ours
SG ( ) 46.7 18.1 55.7 25.3 32.9 30.2 16.2 34.5

KR + SG ( + ) 49.1 15.0 58.0 24.4 34.3 29.6 12.0 34.4

BS + SG ( + ) 51.6 20.1 63.3 27.1 36.1 39.6 16.3 38.7

PG + SG ( + ) 60.0 26.5 66.1 30.7 42.1 40.5 21.1 44.6

PG + CR + SG ( + + ) 60.0 26.5 66.1 30.7 48.3 43.0 26.9 45.6

PG′[ ] + SG ( + ) 55.4 23.5 58.0 22.9 32.7 42.2 17.9 39.6

WA + SG ( + ) 57.8 26.1 58.5 26.3 37.6 37.8 31.5 42.6

PG + BS + SG ( + + ) 53.1 20.7 58.7 28.6 37.8 36.6 19.9 39.0

BS + PG + SG ( + + ) 55.0 23.1 61.2 27.5 35.4 35.4 20.5 39.8

WA + PG + SG ( + + ) 62.5 28.9 61.5 27.1 42.6 45.7 33.4 46.3

PG + WA + SG ( + + ) 61.6 28.7 64.7 30.5 42.8 49.1 35.0 47.6

BS + WA + SG ( + + ) 56.2 22.9 61.0 29.8 37.5 44.0 28.9 42.9

WA + BS + SG ( + + ) 60.0 27.0 65.0 29.0 40.5 42.2 31.4 45.4

BS + PG + WA + SG ( + + + ) 60.2 26.4 65.0 31.3 44.7 48.7 31.6 46.7

Table 4: Comparison of our Modular Settings to Published Baselines on MATH. We use GPT-
3.5-TURBO ( ) as the default LLM for each setting (except one row). For PG′[ ] + SG ( +

) setting, we use Phind-CodeLlama-34B-V2 as the underlying LLM for the PG module (while
keeping GPT-3.5-TURBO ( ) as the default LLM for SG module); We ran PG+SG and PG+CR+SG
settings independently on 5000 examples of the MATH dataset. For each subject type corresponding
to PG+CR+SG, we present the maximum accuracy between the two settings; Alg: Algebra, P.Cal:
Precalculus, P.Alg: Prealgebra, Geom: Geometry, Prob: Probability, N.Th: Number Theory, Int.Alg:
Intermediate Algebra; We have taken the first four baseline results from SKiC (Chen et al., 2023a),
and following two baselines from (Zhou et al., 2023).

LLMs BS+SG WA+SG SG
( + ) ( + ) ( )

( + ) 38.7 42.6 -
( + ) 27.4 35.6 -
( + ) 30.0 37.8 -
( + ) 20.8 27.0 -

( ) - - 34.5
( ) - - 16.2

Table 5: Ablations of BS+SG ( + ), WA+SG ( + ), and SG ( ) settings using different combi-
nation of LLMs, such as GPT-3.5-TURBO ( ) and TEXT-DAVINCI-003 ( ) on the MATH dataset.
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Setting Level 1 Level 2 Level 3 Level 4 Level 5
SG ( ) 71.8 53.1 41.0 25.6 12.2
WA+SG ( + ) 74.6 60.5 46.6 37.6 21.3
PG+SG ( + ) 83.6 62.4 52.6 40.0 19.8
WA+PG+SG ( + + ) 76.4 61.5 54.0 40.2 25.2
PG+WA+SG ( + + ) 79.1 62.8 53.9 41.8 26.9
BS+WA+SG ( + + ) 74.6 59.3 51.0 35.6 21.0
WA+BS+SG ( + + ) 76.0 60.1 52.0 39.9 24.6
BS+PG+WA+SG ( + + + ) 81.0 60.5 52.9 41.6 25.4

Table 6: Performance of different Settings across varying Levels of Complexity (1-5) on the MATH
dataset.

Model Ovr Acc
text-davinci-002 ( ) 22.8
text-davinci-003 ( ) 27.1
Llama2-7B ( ) 28.4
gpt-3.5-turbo ( ) 34.4

Table 7: Performance of different backbone models used for KR module in the KR + SG ( + )
setting. For all settings, we use GPT-3.5-TURBO ( ) as the default LLM for the SG module.

Setting GSM-8K* AQUA M.Math
( ) 79.2 61.4 66.2
( + ) 71.8 57.5 64.5
( + ) 65.6 57.9 66.0
( + ) 56.0 53.5 67.6
( + ) 77.0 55.1 68.1
( + + ) 70.1 63.8 65.1
( + + ) 76.2 62.6 67.1
( + + ) 67.6 58.3 67.2
( + + ) 69.2 56.3 69.5
( + + + ) 70.7 61.4 66.9

Table 8: Comparison of Multi-Module Settings for GSM-8K, AQUA-RAT and MMLU-Math
(M.Math) datasets with GPT-3.5-TURBO as LLM.

* We report the results without explicitly using Sympy for the PG Module for GSM-8K. Our
observations show a 2-3 percent improvement by simply removing Sympy.
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Setting FL AA EM CM HM
( ) 53.9 49.0 84.6 41.0 57.7
( + ) 50.6 43.9 84.8 38.6 58.5
( + ) 52.4 54.5 88.1 58.0 67.0
( + ) 40.5 44.4 80.1 49.0 63.0
( + ) 49.5 50.0 81.6 44.0 69.4
( + + ) 44.7 36.1 81.4 57.1 63.7
( + + ) 45.7 55.5 92.1 42.3 68.0
( + + ) 50.0 47.0 81.2 44.0 59.1
( + + ) 46.8 38.0 84.9 47.5 63.3
( + + + ) 41.3 43.0 79.3 45.0 66.1

Table 9: MMLU Accuracy vs type of problem; FL:Formal logic, AA: Abstract Algebra, EM:
Elementary Mathematics, CM: College Mathematics, HM: High School Mathematics

LLM PG+SG SG
GPT-3.5-TURBO 77.0 79.2
GEMINI PRO 75.0 73.6

Table 10: Comparison of PG+SG( + ) and SG ( ) for two models GPT-3.5-TURBO and GEMINI
PRO on GSM-8K.

LLM PG+SG SG
GPT-3.5-TURBO 55.1 61.4
GEMINI PRO 52.7 53.1

Table 11: Comparison of PG+SG( + ) and SG ( ) for two models GPT-3.5-TURBO and GEMINI
PRO on AQUA.
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A.5 ANALYSIS OF TOOLS

A.6 STRENGTHS OF BING SEARCH (BS) MODULE

Previous investigations of retrieval-augmented generation (RAG) and Self-RAG have shown how
conditional generation using retrieval-based approaches improve factuality in knowledge-intensive
tasks. The BS module retrieves useful information (such as, formulas, concepts, and similar ques-
tions) from the Web and improves the effectiveness of the downstream SG module by adding relevant
snippets to its context. We observe that simple retrieval based methods can also be equally beneficial
in the domain of mathematical reasoning (offering improvements in both MATH and MMLU-Math).
BS + SG also outperforms the KR + SG setting (which is powered by LLM-based Knowledge Re-
trieval (KR) module) on both these datasets. An example, where BS + SG is correct and SG is
incorrect is presented in Table 1.

A.7 LIMITATIONS OF BING SEARCH (BS) MODULE

(1) Our simplistic BS Module implementation uses raw outputs returned by the Bing Web Search
API v7 directly, which can be prone to noisy retrievals. Additionally, we do not employ any critique
mechanism to check the relative importance of multiple pieces of retrieved information.

(2) The addition of the BS module to SG reduces the performance on GSM-8K significantly. Like
WA module, this is due to the diminishing utility of BS on simpler problems. This calls for a
component which can effectively decide when it is required to retrieve information and when it is
not necessary (future research).

(3) We observe substantial signs of data contamination through the Web for the MATH test dataset.
We analyze a random sample of 59 examples for which the BS+SG setting was correct. Our qual-
itative analysis, shows that for 37/59 examples, snippets of the exact same question were partially
or fully recovered from the Web. For 27 of these 37 examples, the answers from the Web were di-
rectly used while for the remaining 10 examples, the retrieved content was ignored (due to partially
recovered noisy snippets containing only the question part or incoherent segments). This observa-
tion poses serious questions towards the suitability of such state-of-the-art datasets as evaluation
benchmarks for LLMs.
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A.8 WOLFRAM ALPHA

Figure 6: Distribution of examples where WA+SG ( + ) is correct and SG ( ) is wrong, across
problem types and level of difficulty (1-5). The values are normalized by number of examples in
each (subject - level) combination.

A.8.1 EXAMPLE WOLFRAM ALPHA COMMANDS

WA Query

Sum[ik, {k, 1, 259}]

Solve[{725x+ 727y == 1500, 729x+ 731y == 1508}, {x, y}]

FactorInteger[3105]

maximize[y/x, (x− 3)2 + (y − 3)2 == 6]

period of cos(bx)

Table 12: Examples of generated WolframAlpha (WA ) Queries.
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A.8.2 STRENGTHS OF WOLFRAM ALPHA MODULE

(1) The WA module overcomes the limitations of SG by constructing a query (in natural lan-
guage/symbolic format) (Table 12), aiding the abstraction of the problem solving process when
required by harnessing the computational intelligence of the Wolfram engine.

(2) In cases, where the query to the Wolfram Alpha API is syntactically and logically correct for
solving a mathematical question, the returned answer is guaranteed to be correct, which is then
processed by the SG module to compile the final answer.

(3) From Fig.6, we observe maximum benefit of Wolfram Alpha module for problems in the
subdomains of Algebra (Level 4) and Intermediate Algebra (Level 2 and 3).

Some examples, demonstrating the benefits of Wolfram Alpha module are provided in Table 13.

A.8.3 LIMITATIONS OF WOLFRAM ALPHA

The limitations of the WA module (examples are shown in below Table) are mostly associated with:
(1) Logical errors in LLM-generated WA API queries (Question 1 in Table 14).

(2) Wrong interpretation of correct WA response by the downstream SG module (Question 2 in
Table 14).

(3) Since WA module returns a single line answer (in many cases), the downstream SG module fails
to provide a step-by-step reasoning (Question 3 in Table 14 ).
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QUESTION 1: Find the remainder when x5 + x4 +
x3 + x2 + x is divided by x3 − 4x

QUESTION 2: Let P be the point (0, 5), let Q be the
point (6, 9), and let R be the point (12, 0). Determine
the area of right-angled △PQR.

GOLD ANSWER: 5x2 + 21x GOLD ANSWER: 39

Setting: SG ( )

Response:
The result of the division is x2 + 5x+ 5x

x3−4x

[INCORRECT; Calculation error in intermedi-
ate step]

Response:
QR =

√
(12− 6)2 + (0− 9)2 =

√
180

[INCORRECT; Error in distance calculation in
intermediate step.]

Setting: WA+SG ( + )

WA API Query:
PolynomialRemainder[x5 + x4 + x3 + x2 + x, x3 −
4x, x]
[CORRECT]

WA API Query:
triangle((0,5),(6,9),(12,0))
[CORRECT]

WA Output:
Yes, the answer is 5x2 + 21x
[CORRECT]

WA Output:
Yes, the answer is: Triangle shape: right
triangle; Edge lengths: (2

√
13, 3

√
13, 13) ≈

(7.211, 10.816, 13); - Area: 39; Perimeter: 13 +

5
√
13 ≈ 31.027; Interior angles: cos−1(3/

√
13) rad;

cos−1(2/
√
1) rad; π/2 rad ≈ (0.588 rad, 0.982 rad,

1.570 rad); Interior angle sum: 180◦ = π rad ≈
3.142 rad.
[CORRECT]

SG Output:
The answer from Wolfram Alpha is found to be 5x2+

21x. Therefore, the answer is 5x2 + 21x
[CORRECT]

SG Output:
We call the Wolfram Alpha API to find the area of
the triangle formed by the points (0, 5), (6, 9), and
(12, 0); The answer from Wolfram Alpha is found to
be 39; Therefore, the answer is 39
[CORRECT]

Table 13: Utility of the WA module in WA+SG ( + ) setting.
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Setting: WA+SG ( + )

QUESTION 1: The positive inte-
gers up to 2007 are alternately sub-
tracted and added: [1− 2+ 3− 4+
· · ·+2001−2002+2003−2004+
2005 − 2006 + 2007.] What is the
value of the expression?

QUESTION 2: When the expres-
sion −2x2 − 20x− 53 is written in
the form a(x+ d)2 + e, where a, d,
and e are constants, what is the sum
a+d+e?

QUESTION 3: Solve 2x2+x+3
x2+x+1 =

2x+1
x+1 for x.

GOLD ANSWER: 1004 GOLD ANSWER: 0 GOLD ANSWER: −2

WA API Query:
Sum[(−1)n ∗ n, {n, 1, 2007}]

[INCORRECT; since it finds
negative of the required answer]

CORRECT Query :
Sum[(−1)(n+1) ∗ n, {n, 1, 2007}]

WA API Query:
CompleteSquare[−2x2−20x−53]

[CORRECT]

WA API Query:
solve (2x2+x+3)/(x2+x+1) =
(2x+ 1)/(x+ 1) for x

[CORRECT]

WA Output:
Yes, the answer is -1004 .

[Logical errors in LLM gener-
ated WA API queries].

WA Output:
Yes, the answer from this object is:
−2(x+ 5)2 − 3

[CORRECT]

WA Output:
Yes, the answer is x = -2

[Since WA module returns a
single line answer (in many cases),
the downstream SG module fails to
provide a step-by-step reasoning.]

SG Output:
We use the Wolfram Alpha
API to evaluate the expression
Sum[(−1)n ∗ n, n, 1, 2007]. The
answer from Wolfram Alpha is
-1004. Therefore, the answer is
−1004

[INCORRECT]

SG Output:
From WolframAlpha response,
we find −2x2 − 20x − 53 =
−2(x + 5)2 − 3.Thus we have
a = −2, d = −5, and e = −3. So,
a + d + e = −2 − 5 − 3 = −10.
Therefore, the answer is −10

[INCORRECT; wrong inter-
pretation of correct WA response by
the downstream SG module. Value
of d should be +5 and not -5.]

SG Output
We call the WolframAlpha API
to solve the given equation.The
answer from Wolfram Alpha is x =
-2. Therefore, the answer is −2

[CORRECT; but lacks reason-
ing chains]

Table 14: Limitations of the WA Module in WA+SG ( + ) setting.
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A.9 PYTHON CODE GENERATION USING SYMPY

Figure 7: Distribution of examples where PG+SG ( + ) is correct and SG ( ) is wrong, across
problem types and level of difficulty (1-5). The values are normalized by number of examples in
each (subject - level) combination.

A.9.1 STRENGTHS OF PYTHON CODE GENERATION MODULE

(1) For complex mathematical problems that are present in the MATH dataset, the Sympy library
offers strong capabilities to the PG module. The benefits are caused by the ability of PG to sym-
bolically represent the complex questions using Sympy objects, classes and methods, leveraging
in-context learning with few-shot examples only.

(2) The deterministic program executor also helps in avoiding common errors committed by the SG
module alone.

(3) The python code generation module ( ) is useful for mathematical problems in multiple
domains (Geometry Lvl1, Number Theory, PreAlgebra, Algebra), as shown in Fig.7.

The example presented in the Table.15 demonstrates how PG module helps in correcting the SG
module’s error.
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QUESTION: The average of Amys, Ben, and Chris’s ages is 6. Four years ago, Chris was the
same age as Amy is now. In four years, Ben’s age will be 35 of Amy’s age at that time. How
many years old is Chris now?

GOLD ANSWER: 10

Setting: SG ( )

Response:

1
3 (a+ b+ c) = 6; c− 4 = a; b+ 4 = 3

5 (a+ 4).

Simplifying the third equation, we get 5b + 20 = 3a + 12. Substituting c = a + 4 into the first
equation and simplifying, we get a+ b = 10.

[INCORRECT; Correct equation: 2a +b =14]

Setting: PG+SG ( + )

Response:

from sympy import *
a, b, c = symbols(’a b c’)
eq1 = Eq((a+b+c)/3, 6)
eq2 = Eq(c-4, a)
eq3 = Eq(b+4, Rational(3,5)*(a+4))
sol = solve((eq1, eq2, eq3), (a, b, c))
print("Chris’s age is", sol[c], "years old")

[Leverages the classes Rational, Eq and method solve from Sympy]

PG Output: Chris’s age is 10 years old

SG Output: Let Amy’s age be a, Ben’s age be b, and Chris’s age be c. The average of their ages
is a+b+c

3 = 6, Four years ago, Chris’s age was c-4, which was the same as Amy’s age at that
time, so c − 4 = a, In four years, Ben’s age will be b + 4, which will be 3

5 of Amy’s age at that
time, so b + 4 = 3

5 (a + 4), Solving the system of equations gives a = 6, b = 2, and c = 10.
Therefore, the answer is 10 years old.

[CORRECT]

Table 15: Utility of the PG module in PG+SG ( + ) setting.
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QUESTION: Uriah’s book bag is getting too heavy for him. He needs to remove 15 pounds from
it. His comic books weigh 1/4 pound each and his toys weigh 1/2 pound each. If he removes 30
comic books, how many toys does he need to remove?

GOLD ANSWER: 30 comic books weigh 7.5 pounds because 30 x .25 = ¡¡30*.25=7.5¿¿7.5 He
needs to remove 7.5 more pounds because 15 - 7.5 = 7.5 He needs to remove 15 toys because 7.5
/ .5 = 15

Setting: SG ( )

Response:

We know that Uriah needs to remove a total of 15 pounds from his bag. He removes 30 comic
books, which weigh a total of 30*(1/4) = 7.5 pounds. So he still needs to remove 15 - 7.5 =
7.5 pounds.Let the number of toys he needs to remove be x.The weight of x toys is x*(1/2) =
0.5x pounds. We need to solve the equation 0.5x = 7.5 to find x. Solving for x, we get x = 15.
Therefore, Uriah needs to remove 15 toys from his bag. The answer is 15. [CORRECT]

Setting: PG+SG ( + )

Response:

from sympy import *
x = symbols(’x’)
eq = Eq((1/4)*(30-x) + (1/2)*x, 15) [Wrong equation - reasoning error]
print("Equation:",eq)
sol = solve(eq, x)
print("Solution x:",sol)
ans = 30 - sol[0]
print("Toys to remove:",ans)

PG Output: Equation: Eq(0.25*x + 7.5, 15); Solution x: [30.0000000000000];
Toys to remove: 0;

SG Output: From Python code we get that Uriah needs to remove 0 toys.
The answer is 0. [INCORRECT]

Table 16: Demonstration of a Reasoning Error committed by the PG module in PG+SG ( + )
setting in a GSM-8K problem.

A.9.2 LIMITATIONS OF PYTHON CODE GENERATION MODULE

(1) Errors in Intermediate Algebra and Prealgebra are mainly due to the inability of generated python
code to express complex objects (syntax errors) and boundary cases, respectively. In Geometry and
Precalculus, we found a large proportion of errors to be caused due to lack of understanding of
plots/figures (expressed in latex format) accompanying the question. We present some examples of
common syntactical errors that the PG module makes (on MATH) in Table 17. An example of a
reasoning error by PG on GSM-8K dataset is presented in Table 16.

(2) We conduct a qualitative analysis of PG+SG ( + ) on 106 randomly sampled questions from
MATH dataset presented in Table 18. We find that the majority of errors in Intermediate Algebra
arise from python code execution errors, clearly showcasing the inability of python code to represent
complex math objects in this domain. In contrast, the WA ( ) module effectively interacts with
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the API using symbolic Wolfram code language to address these issues, resulting in substantial
enhancements. A similar study is also conducted for the AQUA and GSM-8K dataset as presented.

Error Type Error message

Undefined Symbol name ’x’ is not defined
Incorrect handling of objects ’FiniteSet’ object has no attribute ’subtract’
Undefined functions name ’divisibleby’ is not defined
Library use without import sympy package not found

Table 17: Common Errors committed by the PG ( ) Module.

Dataset Subject PG-Exec-Err PG-R-Err SG-Err Egs.

MATH

Alg 8 5 2 15
P.Cal 6 9 0 15
P.Alg 4 11 0 15
Geom 3 12 0 15
Prob 8 6 1 15
N.Th 6 7 3 16

Int.Alg 14 0 1 15

O.Cnt 51 48 7 106

GSM-8K - 1 18 1 20
AQUA - 1 6 13 20

Table 18: Summary of Error types with PG+SG ( + ) setting on a random subset of 106 examples
(MATH dataset); for GSM-8K and AQUA we consider 20 random examples, where the setting SG
( ) is correct; PG-Exec-Err: Code generated by PG module having syntactical errors; PG-R-Err:
Executable python code (from PG ) having reasoning errors; SG-Err: Solution Generator (SG )
alters correct output from PG to incorrect; Alg: Algebra, P.Cal: Precalculus, P.Alg: Prealgebra,
Geom: Geometry, Prob: Probability, N.Th: Number Theory, Int.Alg: Intermediate Algebra, O.Cnt:
Overall Count, Egs.: Examples. Here we report the absolute count of errors across different subjects.

A.10 COMBINING THE STRENGTHS OF WA AND PG:

In the presented figure (Fig. 8), the combination of the diverse capabilities offered by each module,
namely PG (Python Generator) and WA (Wolfram Alpha), yields substantial enhancements across
all mathematical subdomains. Notably, the combined approach yields additional benefits, particu-
larly in problems of higher difficulty levels. For example, we see a large rise for Precalculus lvl 2
problems, compared to PG+SG and WA+SG settings.
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Figure 8: Distribution of examples where PG+WA+SG ( + + ) is correct and SG ( ) is wrong,
across problem types and level of difficulty (1-5). The values are normalized by number of examples
in each (subject - level) combination.
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A.11 PLANNING EXPERIMENTS

We explore two state-of-the-art planning strategies based following the Chameleon (Lu et al., 2023a)
and the REACT (Yao et al., 2022) frameworks and report in in Table 19.

Plan-And-Solve Within the Plan-And-Solve (PAS) framework, a dynamic planner (LLM), gen-
erates a plan for a given mathematical problem before the start of execution. In our context, the
plan consists of the sequence of modules to be run. Notably, this planning approach is inherently
non-adaptive, as the strategy lacks the capability to determine the next module based on feedback
and the output of the previously executed modules. To instruct the planner LLM, we provide input
prompts containing information about each module, along with few-shot examples representing a
possible sequence. The prompts utilized for the planner model are detailed in Table 23.

MATHSENSEI with REACT Planner. The previous modular settings, have a fixed order of exe-
cution of the modules. However, we also wish to test out settings where there is power given to the
central LLM to call different modules as and when required. This is done by executing (thought,
action request, action execution) triplets. The thought serves as a summary of what we have till
now in relation to answering the question, the action request is the specific action we wish to take in
the next step, and the action execution step calls the necessary module from the modules library to
execute the action. An overview of the REACT setting applied to the MATH dataset is presented in
Fig. 9. The results for this setting corresponding to each problem type is presented in Table 19.

Results. We evaluate the performance of Plan-And-Solve and REACT on a randomly sampled
subset of the MATH dataset of 3100 examples(for which REACT converges). The results show
that simple vanilla implementation of the above planners is not sufficient for surpassing our best
configuration PG+WA+SG. In particular, the majority of errors for REACT, were as a result of the
failure of REACT to converge to a final solution (finish thought state). The variation of the accuracy
as a function of the level of the problem shows, REACT* can surpass Plan-And-Solve (PAS) by a
small percentage, however it still lags behind our best settings.

Plan Method Alg P.Cal P.Alg Geom Prob N.Th Int.Alg O.Acc
PAS* 57.3 29.8 65.0 32.4 42.0 47.7 31.9 47.3
REACT* 62.9 30.6 65.1 32.1 42.0 46.1 33.7 48.9
PG + WA + SG ( + + )* 61.4 32.8 65.2 33.4 45.4 54.2 37.6 50.7
WA + PG + SG ( + + )* 64.4 32.1 62.8 32.1 46.9 49.4 38.3 50.6

Table 19: Comparison of planning strategies: Plan-And-Solve (PAS) and REACT with two of our
best performing settings on 3072 randomly sampled examples from the MATH dataset. Here X*
denotes the use of 3072 samples for evaluating method X.

Setting Level 1 Level 2 Level 3 Level 4 Level 5
PAS* 76.0 60.1 53.9 40.5 26.1
REACT* 78.3 62.0 55.4 41.6 27.9
PG + WA + SG ( + + )* 79.3 65.3 54.3 43.9 31.1
WA + PG + SG ( + + )* 78.3 65.6 55.8 43.1 30.1

Table 20: Comparing Performance of different Planning Strategies (§A.11) with two of our Top
Performing Settings by varying Difficulty Level of Problems from the MATH dataset.

Unlike planning in traditional closed world setup datasets such as Blocksworld, Logistics, Depot
planning, etc., the task of planning in the mathematical reasoning domain presents multiple differ-
ences: Firstly, the set of possible actions is not finite as we can query each tool/module with any
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{Question}

My brother is 4 times as old as I am. Six years from
now, he will be twice as old as I will be.  How old is
my brother now?

Thought 1: The first thought is always bing_search.
Let us search the web for similar questions and
background knowledge on how to solve age-related
problems using algebraic equations.

Action 1: bing_search("How to solve age-related
problems using algebraic equations?",context)

Observation 1: 
Bing search response: The problem involves
comparing two people's ages at different points in
time.One way to approach the problem is to use a
single variable to represent the age of one person
and then use that to find the age of the other
person. Another approach is to use a system of two
equations to represent the ages of both people at
different points in time. We can set up two
equations using the given information: B = 4M
(brother's age is 4 times as old as mine) and B + 6
= 2(M + 6) (six years from now, brother will be twice
as old as me).

Thought 2: From the bing_search output, we
can set up two equations to solve the problem.
Let us use algebraic equations to solve the
problem. We can use program_generator for
this.

Action 2: program_generator('Solve the age-
related problem using algebraic equations to
find the age of my brother using python
code',context)

Observation 2: Python code:

from sympy import *
# Define the variables
B = Symbol('B')
M = Symbol('M')
# Define the equations
eq1 = B - 4*M
eq2 = B + 6 - 2*(M + 6)
# Solve the equations
sol = solve((eq1, eq2), (B, M))
# Print the solution
print("My brother is currently",
sol[B], "years old.")',

Code Output:'My brother is
currently 12 years old.

{REACT Step 1}

{R
EA

C
T 

St
ep

 2
}

{REACT Step 3}

Thought 3: From the program_generator output, we find
that the age of my brother is 12 years old. Hence, the
answer is $\boxed{12}$. Let us end the solution using
finish(thought).

Action 3: finish(thought)
Observation 3: 12

Figure 9: Generated output for example from the MATH dataset for the REACT planning setting.

input string. Moreover, there are no preconditions that need to be satisfied for executing a particu-
lar action which makes the planning space much more unbounded. This can lead to long planning
chains with (thought,action,execution) triplets where there may be multiple irrelevant actions. As
seen from our work, the strengths and limitations of each tool also varies with the type of datasets,
subdomains and difficulty levels, which makes the problem non-trivial. Hence, it turns out to be
overwhelming to propose a novel planning strategy in this paper. We plan to explore this issue as a
future research direction. A planner with a novel architecture and sufficient mathematical knowledge
may be required to tackle this point.

28



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

A.12 PROMPTS

INSTRUCTION
Read the following question to generate thought, Query for searching Bing Web Search API, that
will help to solve the entire problem or specific subproblems in the question.

IN-CONTEXT EXAMPLES

Question: When the expression −2x2 − 20x− 53 is written in the form a(x+ d)2 + e, where a,
d, and e are constants, what is the sum a+ d+ e?
Modules used till now: []
Mathematics Problem Type: Algebra
Level of Problem: Level 5
Thought: Since the question involves completing the square let us search how to complete the
square.
Query: How do we complete the square of a quadratic equation?

Question: A circle is circumscribed about an equilateral triangle with side lengths of 6 units
each. What is the area of the circle, in square units? Express your answer in terms of π.
Modules used till now: []
Mathematics Problem Type: Geometry
Level of Problem: Level 5
Thought: To solve this problem, we can search how to find the circumradius of an equilateral
triangle.
Query: How to find the circumradius of an equilateral triangle?

... [More few shot examples]

INPUT QUESTION
Question: The point P = (1, 2, 3) is reflected in the xy-plane, then its image Q is rotated by 180◦

about the x-axis to produce R, and finally, R is translated by 5 units in the positive-y direction to
produce S. What are the coordinates of S?
Mathematics Problem Type: Precalculus
Level of Problem: Level 3

OUTPUT
Thought: To solve this problem, we can search the web for formulas related to reflection, rotation
and translation.
Query: What are the formulas for reflection, rotation, and translation in 3D space?

Table 21: Bing Web Search Query generator Prompt for Concepts Search
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INSTRUCTION

Read the following question to generate thought, answer and final query for searching Wolfram
Alpha API, that is being used to solve the problem or specific subproblems.

IN-CONTEXT EXAMPLES

Question: When the expression −2x2 − 20x− 53 is written in the form a(x+ d)2 + e, where a,
d, and e are constants, what is the sum a+ d+ e?
Modules used till now: []
Mathematics Problem Type: Algebra
Level of Problem: Level 5
Thought: To find the answer to the problem, we need to rewrite the quadratic expression −2x2−
20x−53 in the form a(x+d)2+e, where a, d, and e are constants. Then, we find the sum a+d+e.
Do you know the Wolfram Alpha command to do this?
Answer: Yes, the Wolfram Alpha command to factor the given quadratic expression is:
factor(−2x2 − 20x− 53)
Final Query: factor(−2x2 − 20x− 53)

Question: Harold tosses a nickel four times. What is the probability that he gets at least as many
heads as tails?
Modules used till now: []
Mathematics Problem Type: Counting and Probability
Level of Problem: Level 5
Thought: To find the probability that Harold gets at least as many heads as tails when tossing a
nickel four times, we can use combinatorial techniques to count the favorable outcomes. How-
ever, to simplify the calculations, we can leverage Wolfram Alpha to compute the probability
efficiently. Do you know the Wolfram Alpha command to find the probability for this problem?
Answer: Yes, the Wolfram Alpha command to find the probability of getting at least as many
heads as tails when tossing a nickel four times is: Binomial[4, k] ∗ (1/2)4, where k ranges from
2 to 4 (inclusive).
Final Query: Sum[Binomial[4, k] ∗ (1/2)4, k, 2, 4]

... [More few shot examples]

INPUT QUESTION

Question: Find the constant c such that (x2 − 4x+ 3)(x+ 5)− (x2 + 4x− 5)(x− c) = 0 for
all x.

OUTPUT
Thought: To find the constant c such that the given expression is equal to zero for all x, we can
expand the expression and collect like terms. Do you know the Wolfram Alpha command to do
this?

Answer: Yes, the Wolfram Alpha command to expand the given expression and set it equal to
zero is: expand ((x2 − 4x+ 3)(x+ 5)− (x2 + 4x− 5)(x− c)) = 0

Final Query: expand ((x2 − 4x+ 3)(x+ 5)− (x2 + 4x− 5)(x− c)) = 0

Table 22: Wolfram Alpha API Query generator Prompt
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INSTRUCTION
You need to act as a policy model, that given a question, determines the sequence of modules that
can be executed sequentially to solve the question.

The modules are defined as follows:
- wolfram-alpha-search: Calls the Wolfram-Alpha API to solve the given question or intermediate
steps in the question.
- bing-search: Retrieves similar questions, background knowledge, useful information using the
Bing Web Search API.
- python-generator: This module generates an executable python program that can solve the given
question using the Sympy library.
- solution-generator: This module generates a detailed solution to the question based on the
already generated context. Normally, solution-generator will incorporate the information from
wolfram-alpha-search, bing-search, python-generator. It is always the last module to be executed.

IN-CONTEXT EXAMPLES
Question: Determine the number of ways to arrange the letters of the word ELEVEN.
Modules: [’bing-search’,’solution-generator’]

INPUT QUESTION
Question: If the numbers 4, 5 and 6 are each used exactly once to replace the letters in the
expression A(B − C), what is the least possible result?

OUTPUT
Modules: [’python-generator’, ’solution-generator’]

Table 23: Example of Planner Prompt and Output in Plan-And-Solve (PAS).

Resource URL
open-source icons https://iconduck.com/icons/

llama-2 icon https://llama-2.ai/wp-content/uploads/2023/08/
Llama-2-icon-150x150.png

codellama icon https://codellama.dev/icons/black-transparentbg.png

python icon https://s3.dualstack.us-east-2.amazonaws.com/
pythondotorg-assets/media/community/logos/
python-logo-only.png

azure openai service https://azure.microsoft.com/en-us/products/
ai-services/openai-service/

bing web search api service https://www.microsoft.com/en-us/bing/apis/
bing-web-search-api

Table 24: Online Resources
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