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ABSTRACT

The increasing deployment of powerful Multimodal Large Language Models
(MLLMs), typically hosted on cloud platforms, urgently requires effective com-
pression techniques to efficiently transmit signal inputs (e.g., images, videos)
from edge devices with minimal bandwidth usage. However, conventional image
codecs are optimized for fidelity to serve the Human Visual System (HVS) and ill-
suited for MLLMs, in which diverse downstream tasks are jointly considered. In
this paper, we first systematically analyze the impact of compression artifacts on
several mainstream MLLMs. We find that: Compression distortion unevenly im-
pacts different-level image features, leading to varying effects on MLLMs’ down-
stream tasks depending on their feature-level reliance. Motivated by this discov-
ery, we propose an image Codec TAilored to MLLMs (CoTAM) designed to adap-
tively protect multi-level features and suit different demands of downstream tasks.
The encoder leverages CLIP’s shallow-layer attention to generate an importance
map for bit allocation, preserving critical semantic regions. Concurrently, the de-
coder integrates a lightweight adapter with a multi-level loss function to ensure
the faithful reconstruction both of low-level details and high-level semantic con-
text for robust synthesis of cross-level features. Extensive experiments validate
that our method achieves up to 35.99% bitrate saving while maintaining the same
performance on the MLLM tasks, outperforming previous SOTA neural codecs.

1 INTRODUCTION

The proliferation of MLLMs, such as GPT-4o Hurst et al. (2024), Gemini Team et al. (2023),
and LLaVA Liu et al. (2023a), has marked a paradigm shift in artificial intelligence, revolution-
izing human-machine interaction, content understanding Li et al. (2023a), and automation Yin et al.
(2024). These models possess an insatiable appetite for high-quality visual data Zhu et al. (2025)
to fuel their powerful capabilities. As MLLM applications become ubiquitous—from real-time vi-
sual question answering on mobile devices to complex scene analysis in cloud-based services—the
demand for transmitting and storing image and video data is growing at an explosive rate. This
surge creates a critical bottleneck: the conflict between the need for high-fidelity visual input and the
constraints of limited communication bandwidth and storage resources. Consequently, developing
highly efficient compression techniques tailored for this new era is not just beneficial but imperative.

However, existing compression techniques are ill-suited for the versatile, open-world nature of
MLLMs. Conventional codecs are engineered for the HVS Wallace (1991); He et al. (2022); Li
et al. (2024c), while Image Coding for Machine (ICM) methods target specific, narrow computer
vision tasks Feng et al. (2022); Chamain et al. (2021). This misalignment leads to inconsistent per-
formance across the diverse capabilities of MLLMs. As illustrated in Fig. 1(a)(b), both methods
exhibit erratic performance, excelling in some tasks while failing in others He et al. (2022); Kao
et al. (2025). Fundamentally, these approaches do not address the crucial question of how MLLMs
holistically perceive and are affected by compression artifacts.

To address this gap, our work begins with a systematic investigation into this question. Our analysis
reveals a crucial insight: Compression distortion unevenly impacts different-level image features,
leading to varying effects on MLLMs’ downstream tasks depending on their feature-level reliance.
Specifically, as shown in Fig. 1(c)(d), our analysis reveals that: tasks that rely on either low-level
structural features (e.g., large-font OCR) or global high-level semantic features (e.g., overall scene
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understanding) both demonstrate relatively robust to compressed distortion. In contrast, tasks requir-
ing a synthesis of cross-level features (e.g., counting objects) are highly susceptible, as compression
artifacts disrupt the crucial integration of low-level information into a coherent high-level semantic.
Motivated by this finding, we introduce an image Codec TAilored to MLLMs (CoTAM). At the en-
coder, our codec leverages priors from the shallow layers of a pre-trained CLIP model Radford et al.
(2021) to guide rate allocation. At the decoder, a lightweight adapter with the reconstruction prior
and a multi-level objective function ensures that both low-level fidelity and high-level perception
are faithfully restored. This mechanism resolves the conflicting demands of different task types,
ensuring the reconstructed output is faithful to the MLLMs’ needs. The main contributions of this
work are summarized as follows:

• We first provide a systematic analysis of MLLM performance under compression, revealing
how MLLMs are affected by compression distortion.

• We propose CoTAM whose encoder uses lightweight CLIP-based semantic priors for rate
allocation while the decoder uses a multi-level loss and adapter with reconstruction priors
to preserve multi-level information.

• Our approach achieve significant bitrate savings while delivering consistently high perfor-
mance across a wide spectrum of MLLM tasks, and also shows compatibility with high-
resolution and video-based MLLM scenarios.

(a) MME Benchmark (b) MMBench Category-1

(c) MMBench Category-2

(c) Task Performance drop (from ELIC) on MME Benchmark

(d) Task Performance drop (from ELIC) on MMBench Category-1

Figure 1: (a)(b) Performance comparison of compression methods on MME Fu et al. (2023) and
MMBench Liu et al. (2024b) under similar bitrates. For MMBench, we report the 10 most affected
tasks (largest score drops). Human-centric codec ELIC He et al. (2022) excels on low-level structural
tasks (e.g., Large-font OCR) and the ICM method Bridge-d1 Kao et al. (2025) excels on high-level
tasks (e.g., landmark identification), while our method consistently outperforms both. (c)(d) Com-
pression distortion (from ELIC) affects tasks differently: Tasks relying on either low-level structural
features or coarse high-level semantics (e.g., OCR and scene understanding) tend to be relatively
robust, whereas those depending on cross-level features (e.g., counting) suffer more, reflecting a
synthesis that fails when corrupted low-level information can no longer be coherently structured by
the high-level context. Seeing more benchmarks’ sub-tasks and images in Appendix.

2 IMPACT ANALYSIS OF IMAGE DISTORTION ON MLLMS

2.1 PRELIMINARIES: THE MLLM PIPELINE

The architecture of mainstream MLLMs Li et al. (2024a); Zhu et al. (2025) comprises three key
parts: a vision encoder Radford et al. (2021); Zhai et al. (2023), a projector, and a LLM Bai et al.
(2023); Touvron et al. (2023). The vision encoder, often a Vision Transformer (ViT) Han et al.
(2022), serves as the model’s “eye”, responsible for transforming an input image into a sequence of
vision tokens. These vision tokens are then passed through the projector (e.g., some MLP layers), a
lightweight network that maps them into the LLM’s feature space. Finally, the LLM backbone (e.g.,
LLama Touvron et al. (2023), Qwen Team (2024)) processes these projected vision tokens alongside
a text prompt to perform cross-modal reasoning and generate the final output.

This work investigates the effects of the compression distortion on the Vision Encoder. Because it
serves as the sole gateway for visual information into the MLLM, the quality of its output tokens
directly dictates the upper bound on the entire model’s downstream performance. To this end, in this
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Figure 2: How compression affects VQA tasks: while the MLLM’s robust low-level structural and
coarse-grained high-level semantic abilities enable it to identify the “strawberry” and “AI”, it fails
on tasks demanding fine-grained cross-level information, such as providing an accurate count.

Inflow: CLS-Guided, Outflow: Dispersed

Stage2: Local Information Extraction Stage3: Global Semantic IntegrationStage1: Preliminary Screening
Inflow: CLS-Guided, Outflow: Localized Inflow: CLS & Summary Token, Outflow: Re-dispersed

Figure 3: Information flow across different layers of the vision encoder. According to the flows,
we can divide the information processing to three stages as Table 1. In stage 3, a token with high
attention no longer represents its own local visual content, but instead transforms into a high-level
‘summary token’ Liu et al. (2025); Li et al. (2023c) responsible for integrating global information.

work, we isolate our analysis from the LLM backbone, whose behavior is conditioned on specific
textual prompts, in order to derive general conclusions about the visual processing pipeline itself.

2.2 EXPLORING THE IMPACT OF IMAGE COMPRESSION DISTORTION TO MLLMS

To design a codec tailored to MLLMs, we must first understand what visual information MLLMs
require and how this information acquisition process is affected by compression artifacts.

2.2.1 HOW DOES VISUAL INFORMATION FLOW IN MLLMS?

Prior work shows that weak high-level semantic capability in MLLMs induces hallucinations Fu
et al. (2023), whereas supplying richer, clearer image details substantially improves performance Liu
et al. (2024a). Together, these findings imply that strong MLLMs must exploit both low-level cues
and high-level semantics. A scan of mainstream benchmarks (MME Fu et al. (2023), MMBench Liu
et al. (2024b), SEED-Bench Li et al. (2023a)) confirms this breadth: tasks span object recognition
and counting, spatial reasoning, OCR, compositional inference, and the interpretation of abstract
concepts like emotion and intent. The diversity of these tasks also indicates that MLLMs rely on
visual information across multiple levels of granularity—from low-level pixel details to high-level
semantic abstractions. For example, in Fig. 2, answering “What is the word?” requires low-level
structural OCR capabilities, determining “What is this fruit?” demands high-level global semantic
reasoning, while the response to “How many strawberries are in this picture?” needs both structural
information and global semantics. This raises a pivotal question: how does the vision encoder
transform raw pixels into a feature representation that balances both low-level details and high-
level semantics? To investigate this, we analyze the information flow within the vision encoder
(CLIP Radford et al. (2021)), inspired by the inflow/outflow methodology of Tong et al. (2025).
Specifically, for a self-attention map A ∈ RN×N in a given layer, where Aji denotes the attention
from source token i to target token j, we define two metrics Information Inflow & Outflow to trace
the primary information pathways. Inflow(k) = argmax

j
Akj , and Outflow(k) = argmax

i
Aik.

The visualization of this information flow (Fig. 3) reveals a distinct three-stage feature processing
pattern, which is detailed in Table 1 and corroborated by the PCA Maćkiewicz & Ratajczak (1993)
visualization and [CLS] attention maps in Fig. 4(a). The process begins with Stage 1: Preliminary
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Table 1: The Three-Stage Pattern of Visual Information Processing in the Vision Encoder.
Stage Information Flow (Fig. 3) [CLS] Attention (Fig. 4(a)(b)) PCA-Visualized Features (Fig. 4(c))
Stage 1:
Preliminary Screening
(Shallow Layers)

Inflow: Receives global guidance from [CLS].
Outflow: Scattered, performs a broad initial screening. Broad, with higher intensity on key areas. Resemble raw textures and edges;

no significant aggregation.

Stage 2:
Local Information Extraction
(Middle Layers)

Inflow: Remains anchored to the [CLS] token.
Outflow: Concentrates on neighboring patches. Converges on certain edges and local regions. Extracts low-level features with

clear structures.

Stage 3:
Global Semantic Integration
(Deep Layers)

Inflow: Diversifies, from [CLS] and summary tokens.
Outflow: Disperses again to integrate refined features. Converges on a few summary tokens. Extracts cross-level to abstract, high-level

semantics; structural details are discarded.

(a) Raw Image (b) Compressed Image

Stage 1 Stage 2 Early Stage 3 Later Stage 3 Stage 1 Stage 2

Early Stage 3 Later Stage 3

(c) Cosine Similarity

Stage 1 Stage 2 Early Stage 3 Later Stage 3
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tt
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tu
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s

Avg: 0.91 Avg: 0.81

Avg: 0.64 Avg: 0.75

Figure 4: Three stages’ CLS attention maps and PCA features in Table 1 (layer 0, 5, 15, 22 in
vision encoder) for (a) the raw image and (b) the compressed image. (c) The visualization of cosine
similarity between raw tokens and distorted tokens. Simiarity is lowest at Early Stage 3, indicating
a significant impact on cross-level features.

Screening, where shallow layers perform a broad, initial scan of the image, with attention scattered
to capture raw textures and edges. This is followed by Stage 2: Local Information Extraction,
where middle layers consolidate these findings; the Outflow becomes shorter, with attention con-
verging on neighboring patches to analyze local features with clear structures. Finally, the deep
layers execute Stage 3: Global Semantic Integration. In this phase, the model integrates refined
local features into a holistic, semantic representation, with attention converging on a few key “sum-
mary tokens.” Liu et al. (2025); Li et al. (2023c)

To quantitatively validate our three-stage finding, we measure two layer-wise attention distance
metrics Dosovitskiy et al. (2020) on 1,000 images from the CC3M dataset Changpinyo et al. (2021):
the Average Attention Distance (Davg) and the Average Max Attention Distance (Dtop1).

Davg =
1

N

N∑
i=1

N∑
j=1

Aij · d(pi, pj), Dtop1 =
1

N

N∑
i=1

d(pi, pargmaxjAij
)

Here, A is the NN attention map from a self-attention layer, where Aij is the attention weight from
token j to token i. The term pi denotes the 2D spatial position of the i-th token in the input image.
Consequently, d(pi, pj) represents the Euclidean distance between the positions of tokens i and j.
As plotted in Fig. 5(a)(b), both metrics exhibit a clear U-shaped trend. The average distance is high
during Stage 1, decreases for Stage 2, and increases again during Stage 3. This quantitative trend
strongly corroborates our findings.

(a) Average Attention Distance (b) Average Max Attention Distance
(c) Cosine Similarity between raw token

 and distorted token in each layer

Preliminary

 Screening

Local information

Extraction Global Semantic Integration

Low-level cross-level high-level

Preliminary

 Screening
Local information

Extraction Global Semantic Integration
Preliminary

 Screening
Local information

Extraction Global Semantic Integration

Low-level cross-level high-level Low-level cross-level high-level

Figure 5: (a)(b) Attention distance and (c) the impact of distortion on internal tokens in the vision
encoder. Low-level (Stage 2) and coarse high-level features (the later phase of Stage 3) are rel-
atively robust to compression artifacts, while cross-level features (the early phase of Stage 3) are
significantly affected because they require both high-fidelity low-level details and emerging high-
level semantic context. Blue, green, and red indicate stages 1, 2, and 3, respectively.
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2.2.2 HOW DOES COMPRESSION DISTORTION AFFECT MLLMS?

Having established the three-stage information flow model, we analyze its vulnerability to compres-
sion distortion. By measuring the cosine similarity of feature tokens between original and com-
pressed images at each layer, a clear pattern emerges, as shown in Fig. 5(c). While the low-level
features in Stage 1 and 2 prove relatively robust to compression, linearly and slowly decrease in
similarity layer by layer, we observe a sharp drop in similarity in the early phase of Stage 3, which
marks a critical failure in the formation of cross-level features. These features are uniquely vulner-
able because their creation requires a delicate synthesis of high-fidelity low-level details from Stage
2 and emerging high-level semantic context from Stage 3. Consequently, even the subtle corruption
of the low-level details by compression leads to a disproportionately large failure in this synthesis
process. In contrast, the similarity recovers in the later part of Stage 3, demonstrating that coarse,
high-level semantics are more resilient. This finding is further corroborated by the attention maps,
PCA features and cosine similarity in Fig 4(b)(c). While these visualizations show little change in
PCA features and high cosine similarity in stages 1 and 2 between original and compressed images,
the token similarity in the early phase of stage 3 is significantly decreased. The later part of stage
3 is aimed at generating coarse high-level semantic information. Therefore, the impact of distorted
details is diminished, resulting in a higher overall cosine similarity. As shown in Fig. 2, compres-
sion distortion only minimally affects questions of high-level semantics (e.g., “What is the fruit?”)
or low-level structure (e.g., “What is the word?”). Its impact is much greater, however, on tasks like
counting or texture analysis, which demand both local details and global context.

Task-level validation confirms this hypothesis. As shown in Fig. 1(c)(d), tasks requiring the synthe-
sis of both detailed and semantic information (e.g., “count”) degrade severely under compression.
Conversely, tasks reliant on either robust low-level structures (OCR) or coarse high-level semantics
(positional reasoning) remain resilient. This leads to a key insight: the critical failure point of
compression is not a uniform loss of different feature types, but a disproportionate collapse of
the cross-level representations that bridge low-level and high-level information.

The takeaways of the above analysis are the following:

Takeaways:
1. MLLMs require visual information at different levels to perform diverse tasks.

2. The vision encoder in MLLMs operates in three stages: shallow layers handle initial
filtering, middle layers extract low-level features via local analysis, and deep layers perform
global semantic integration, sequentially assembling these features into cross-level and then
high-level semantic representations.

3. Compression-induced information loss increases linearly in early layers, indicating that
low-level features suffer only modest degradation. However, this compromises cross-level
features, which rely on integrating low-level information with high-level context to preserve
fine-grained semantics. In contrast, coarse high-level features are moderately affected, as
they depend more on abstract representations.

These expose a fundamental paradox in current ICM approaches Kao et al. (2025); Li et al. (2024b);
Chamain et al. (2021). They only try to preserve the high-level information but ignore the low-level
information, which is important for MLLMs to generate cross-level features. Our work is thus built
upon a new cornerstone: An effective codec must simultaneously preserve proper both low-level
fidelity and high-level semantic information.

3 COTAM: CODEC TAILORED TO MLLMS

Our analysis reveals a core principle for a codec tailored to MLLMs: it must preserve multi-level
visual information. Based on this principle, we introduce CoTaM, a codec designed with a dual-
strategy approach, as depicted in Fig. 6(b). First, drawing upon the insight from Takeaway 2—that
the initial layers of a vision encoder perform preliminary information filtering—our encoder uses
shallow CLIP attention to guide bitrate allocation, prioritizing important regions for MLLMs. Sec-
ond, inspired by Takeaways 1 and 3, our decoder uses the decompressed image as a reconstruction
prior to retain robust low-level details and avoid domain shift. A latent feature adapter then injects
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Figure 6: The framework of our method.

semantic enhancements, and the entire model is optimized with a multi-level loss that supervises
fidelity at multi-level features. Furthermore, for high-resolution inputs, CoTaM incorporates a Hier-
archical Guidance mechanism to fuse multi-scale semantic information, making it compatible with
the patch-based processing Liu et al. (2024a) common in MLLMs for both images and videos.

3.1 BASE CODEC

Our base codec enables variable bitrates by adapting the multi-quantizer methodology from Jia et al.
(2025); Cui et al. (2021). We equip its internal layers with multiple sets of learned quantization
vectors for each bitrate to adaptively allocate bits for each spatial location. This allows the semantic
importance map to select a specific vector for each region, thereby assigning more bits to critical
areas and fewer to the rest areas. Further architectural details are provided in the Appendix.

3.2 SHALLOW CLIP-GUIDED ENCODER

Our Shallow CLIP-guided encoder is born from the Takeaways 2 of our prior analysis: the shallow
layers of an MLLM’s vision encoder perform a preliminary screening to identify regions of potential
importance. To leverage this early-stage intelligence, we average the [CLS] attention scores from
the first three layers of a frozen CLIP model Radford et al. (2021)—chosen for their high atten-
tion distance (Fig. 5)—to create a small downsampled spatial map (e.g., 8x8), which quantifies the
semantic richness of each region.

This continuous map is subsequently converted into a discrete, three-level mask via a statistics-
based quantization method µ ± kσ. The three integer levels in this mask directly correspond to
rate allocation instructions: decrease bitrate, maintain base bitrate, or increase bitrate. Crucially,
due to the small size of this map and its quantization into only three values, the bitrate overhead
for this map is negligible (128 bits for 336x336 input). This final mask then directly modulates the
quantization parameters of our learned compression backbone on a patch-wise basis, ensuring that
semantically critical regions for MLLMs are allocated more bitrate and with higher fidelity.

3.3 MULTI-LEVEL FIDELITY DECODER

Our analysis revealed a critical flaw in existing ICM methods: in their pursuit of high-level semantic
fidelity, they often degrade the low-level structured information, and also in turn lead to a significant
loss of cross-level features. To resolve this problem, our decoder is designed to preserve fidelity
across the entire feature hierarchy. It achieves this through two key components:

First, our design leverages the decoded image as a reconstruction prior. This approach serves two
critical functions. On the one hand, as shown in Fig. 1 and takeaway 3, since standard compression
is already effective at preserving robust low-level structures, using the decoded image ensures this
foundational information is retained. On the other hand, it mitigates a potential domain shift, as
MLLM vision encoders are pre-trained on natural RGB images; providing the decoded image as
a prior grounds the input in the expected domain. Upon this prior, a lightweight Latent Feature
Adapter, composed of a single transformer block, operates directly on the decoded latent code
from the bitstream. It generates a semantic enhancement feature that is fused (via element-wise
addition) with the patch embeddings extracted from the decoded image. This strategy injects high-
level guidance directly into the feature domain without disrupting the crucial low-level information.

Second, as illustrated in Fig. 6(a), the entire framework is trained end-to-end using a multi-level
fidelity loss, Ltotal, to supervise the fidelity at both ends of the feature spectrum. This loss is a
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weighted sum of two components:

Ltotal = λlowLlow + λhighLhigh (1)
The first component, the low-level fidelity loss (Llow), is designed to preserve fine-grained details
often damaged by existing methods. Guided by our finding in Takeaway 3, it imposes critical
constraints on the shallow layers by minimizing the Mean Squared Error (MSE) between the patch
embedding features of the original and decoded images. Simultaneously, the high-level perceptual
loss (Lhigh) ensures global semantic coherence by minimizing the MSE between the final-layer token
representations of the original and our processed output.

3.4 EXTENSION TO HIGH-RESOLUTION AND VIDEO INPUTS

Handling high-resolution images is a critical capability for MLLMs, making it imperative for codecs
to support them efficiently. This presents a core dilemma. On one hand, guidance from a single,
fixed-size downsampled image is too coarse; as shown in Fig. 6(c), the background attention is rel-
atively coarse, failing to focus on important information. A direct strategy to adapt to this, inspired
by mainstream MLLM processing pipelines, is to employ a patch-based method where local guid-
ance is applied to each patch independently. The fundamental limitation of this approach, however,
is its lack of global perception; it cannot determine which local information is crucial for building
coherent semantics across different patches. For instance, in Fig. 6(c), it lacks sufficient attention on
the person’s head. Therefore, to resolve this conflict between local detail preservation and global se-
mantic integrity, we propose our Hierarchical Guidance to fuse (via addition) both global and local
maps, creating a comprehensive guidance signal that is both locally precise and globally aware. On
the other hand, we resize the decoded high-resolution features to get a global feature before they are
processed by the adapter. This is done to match the expected input of the high-resolution MLLM,
which is composed of multiple high-resolution patches and a downsampled global patch.

Our method is also compatible with video MLLMs. Current mainstream approaches typically pro-
cess videos by sampling a sequence of individual frames, a strategy analogous to the patch-based
processing of high-resolution images. Consequently, our semantic guidance mechanism can be ap-
plied on a frame-by-frame basis to guide the compression of videos.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Codec Setting. Our framework is built upon two learned image compression models, ELIC He
et al. (2022) and DCAE Lu et al. (2025) to demonstrate the versatility of our approach in being
integrated with different codecs. For model training, we utilized a dataset comprising one million
images randomly sampled from the CC3M dataset Changpinyo et al. (2021). The training protocol
spans a total of five epochs, with the first epoch dedicated to an initialization phase using only the
low-level fidelity loss (Llow). This pre-training step ensures a stable optimization trajectory by al-
lowing the network to first grasp the reconstruction of basic structural features. For hyperparameters
k, λlow and λhigh, we empirically set them to 0.75, 0.1, and 1, respectively.

MLLM Setting. For MLLM evaluation, our primary experiments were conducted on LLaVA-
1.5 Liu et al. (2024a)(both 7B and 13B variants with a CLIP encoder Radford et al. (2021)) to assess
performance and scalability. To further substantiate the generalization capabilities of our method,
we also performed tests on LLaVA-Onevision-7B Li et al. (2024a) (with a SigLIP encoder Zhai et al.
(2023)) and InternVL2-8B Chen et al. (2024) (with an InternViT encoder Gao et al. (2024)).

Testing Benchmark Our evaluation protocol is twofold, assessing both MLLM tasks performance
and image reconstruction quality. For image benchmark, we evaluated on MME Fu et al. (2023),
TextVQA Singh et al. (2019), POPE Li et al. (2023b), SeedBench Li et al. (2023a), VQAv2 Goyal
et al. (2017), MMMU Yue et al. (2024), and MMBench Liu et al. (2024b). For video benchmark:
we used Video-MME Fu et al. (2025). For reconstruction metric, we report PSNR.

Compared Methods To position our work within the current landscape, we compared the codec
against a comprehensive set of baselines. For human-centric image compression methods, we se-
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Figure 7: Performance comparison on LLaVA-1.5-7B.

Figure 8: Left three: Performance comparison on LLaVA-1.5-13B. Right three: Performance com-
parison with methods that fine-tuned the codec encoder.

lected ELIC He et al. (2022), and DACE Lu et al. (2025). For coding for machine methods, we
compared against Bridge-d1 (fixing encoder), Bridge-d3 (finetuning encoder) Kao et al. (2025) and
ICMH-adapt Li et al. (2024b). Since ICMH-adapt Li et al. (2024b) only supports the ResNet archi-
tecture, we reimplemented this method and trained it with our multi-level loss.

4.2 PERFORMANCE COMPARISON

4.2.1 LOW-RESOLUTION IMAGE BENCHMARK

Our primary validation, presented in Fig. 7, is conducted on the LLaVA-v1.5-7B model with a
336x336 input resolution. Using ELIC as the base codec, our method consistently outperforms pre-
vious approaches across six diverse benchmarks. As shown in Table 2, under the same performance
level, it achieves a 35.99% bitrate saving. To demonstrate its generalizability, we integrated our
method with another SOTA codec, DCAE Lu et al. (2025), and achieved similar performance gains.
The scalability of our approach is further validated in Fig. 8, where we also show improvements on
the larger LLaVA-1.5-13B model, proving its effectiveness across different model scales.

Finetuning Codec. While our main approach freezes the codec to sidestep the perfor-
mance–reconstruction trade-off, we also test a fine-tuning variant by adding a rate loss Minnen et al.
(2018) to the objective (Eq. 1). The results, presented in Fig. 8, show that even in this comparison
with another fine-tuning method Kao et al. (2025), our approach demonstrates superior performance.
Furthermore, both methods significantly outperform the original, non-fine-tuned base codec.

4.2.2 HIGH-RESOLUTION IMAGE AND VIDEO BENCHMARK

Addressing the significant overhead of high-resolution data, we extend our method to this domain.
To the best of our knowledge, our work is the first to pioneer a coding framework for high-resolution
image and video MLLMs. We validate this on two mainstream models, LLaVA-OneVision-7B and
InternVL2-8B, with results presented in Fig. 9. For high-resolution images, our approach consis-
tently outperforms the base codec. Because the current mainstream Video LLM usually extracts
video frames into fixed frame images (such as 16, 32 frames), our method can also be directly
applied to video MLLM. The codec also achieves superior performance on Video-MME.

Figure 9: Performance comparison on High-resolution and Video MLLM. Left three: LLaVA-
Onevision-7B. Right three: InternVL2-8B.
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4.3 ABLATION STUDY

Framework. To assess each component’s contribution, we perform an ablation study. As shown
in Fig. 10(a)(b)(c), the removal of the Adapter module induces a catastrophic degradation in perfor-
mance across all three benchmarks. This consistent and vast performance underscores the Adapter’s
role as an essential bridge between the compressed features and the downstream MLLM; its function
in aligning feature spaces is both indispensable and universally critical.

Conversely, ablating the image reconstruction module (blue curve) also impacts performance, but
with varying severity across benchmarks, reflecting different dependencies on visual fidelity. For
TextVQA (Fig. 10(a)) and SeedBench (Fig. 10(c)), “Ours (w/o Rec.)” drops sharply relative to the
full model, highlighting the value of reconstruction-induced prior knowledge. In contrast, the impact
on MME (Fig. 10(b)) is much milder.

Lastly, removing the clip guidance module (brown curve) consistently reduces performance across
benchmarks, indicating it as an effective general optimization.

(a) (b) (c)

(b)

(c)

(a)

Figure 10: Ablation study on framework.

(a) (b) (c)

(a)

(b)

(c)

Figure 11: Ablation study on modules. We test
BD-score using ELIC as the anchor on MME.

Training Loss. We validate the necessity of our multi-level loss design. As shown in Fig. 11(a),
relying solely on the high-level loss fails to capture essential low-level details, while using only
the low-level loss produces detailed yet semantically inconsistent results. Optimal performance is
achieved by integrating both.

Hierarchical Guidance. For high-resolution images, our proposed Hierarchical Guidance im-
proves the importance map by fusing local and global attention. The results in Fig. 11(b) demon-
strate that it yields a clear performance improvement over a purely global guidance strategy.

Attention Maps. Our use of averaged attention maps from CLIP’s first three layers is validated
in Fig. 11(c), achieving optimal performance as shallow layers are better for holistic screening. In
contrast, deeper layers emphasize global aggregation and thus degrade performance, consistent with
our three-stage information flow model.

4.4 COMPLEXITY ANYLSIS

We analyze the computational complexity of our method in Table 2. Since our approach only uti-
lizes the first three shallow layers of the CLIP encoder, the increase in encoding time is marginal
compared to the base codec. Furthermore, as our framework does not require fine-tuning the codec
and the CLIP guidance only reallocates bit rates, the overall PSNR in Fig. 12 shows only a minor
degradation compared to the base codec.

0.0 0.1 0.2 0.3 0.4
Bits Per Pixel (bpp)

25

30

35

PS
N

R
 (d

B)

ELIC
DACE
Ours(ELIC)
Ours(DCAE)

Figure 12: PSNR comparison
on Kodak dataset.

Method Encoding (s) Decoding (s) Total (s) BD-Rate↓

ELIC 0.173 0.096 0.269 0.00
Ours (ELIC) 0.178 (+2.9%) 0.101 (+5.2%) 0.279 (+3.7%) -35.99%

DCAE 0.077 0.085 0.162 0.00
Ours (DCAE) 0.080 (+3.9%) 0.091 (+7.1%) 0.171 (+5.6%) -31.05%

Table 2: Comparison of times on Kodak dataset (resized as
336x336), and average BD-rate on six MLLM benchmarks,
which represents the bitrate saved to achieve the same score.
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5 CONCLUSION

We conduct a comprehensive analysis of how compression artifacts affect MLLMs, revealing that
fine-grained semantic features in cross-level features are highly vulnerable to subtle low-level dis-
tortions. Based on this insight, we propose a codec tailored to MLLMs, featuring CLIP-guided bit
allocation and a multi-level fidelity preserved decoder. Our method consistently achieves significant
bitrate savings while preserving MLLM performance across diverse tasks. This work underscores
the importance of compression strategies aligned with the feature hierarchy of MLLMs.
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A.1 RELATED WORKS

A.1.1 MULTIMODAL LARGE LANGUAGE MODELS (MLLMS)

Multimodal Large Language Models (MLLMs), such as LLaVA Liu et al. (2023a), Gemini Team
et al. (2023), and GPT-4o Hurst et al. (2024), have demonstrated remarkable capabilities by aug-
menting Large Language Models (LLMs) with visual perception. These models typically use a
vision encoder (e.g., Clip Radford et al. (2021), SigLip Zhai et al. (2023)) to process images and an
LLM backbone (e.g., LLama Touvron et al. (2023), Qwen Bai et al. (2023)) to perform cross-modal
reasoning. However, the prevailing cloud-edge deployment of MLLMs—hosting powerful models
on servers while capturing data at the edge—presents a significant communication bottleneck. This
challenge motivates our work to develop a compression solution optimized not for human viewing,
but for the unique perceptual needs of MLLMs.

A.1.2 IMAGE COMPRESSION

The fundamental goal of image compression is to minimize the bits required to represent an im-
age—thereby reducing storage and transmission costs—while maintaining sufficient fidelity for its
intended application. Conventional image compression, encompassing both traditional standards
like JPEG and VVC Wallace (1991); Bross et al. (2021), and modern learned methods Liu et al.
(2023b); Lu et al. (2025), is fundamentally optimized for the Human Visual System (HVS) Li et al.
(2025), often by discarding information that is imperceptible to humans but potentially vital for
machine analysis.

To bridge the gap created by this human-centric paradigm, the field of Image Coding for Machine
(ICM) emerged. However, the predominant ICM approach Feng et al. (2022); Chen et al. (2023);
Li et al. (2024b) involves tailoring codecs for narrow, specific tasks like object detection or segmen-
tation. However, this task-specificity is fundamentally at odds with the general-purpose nature of
MLLMs. Thus, a critical research gap remains for a compression solution that preserves the full
visual features required by these models.

A.2 BENCHMARK EXAMPLES

To illustrate the diversity of tasks that Multimodal Large Language Models are expected to per-
form, we provide representative examples from two key benchmarks used in our evaluation. Fig. 13
and 14 showcase selected question-answer pairs from the MME Fu et al. (2023) and SEED-Bench Li
et al. (2023a) benchmarks, respectively. These tasks range from object recognition and counting to
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Optical Character Recognition (OCR). Notably, the OCR examples involve large-font text where
understanding the overall structure and positional relationships is crucial for correct interpretation.
Furthermore, the examples highlight the varied question formats MLLMs must address, encompass-
ing both binary (Yes/No) judgments and multiple-choice selections. Collectively, these examples
underscore the necessity for a compression codec to preserve a wide spectrum of visual informa-
tion—from fine-grained details and high-level semantics to the essential structural and positional
cues required by these diverse tasks. This challenge is a core motivation for our work.

Is the word in the 

logo \"c'est 

cheese\"?

Answer the question 

using a single word 

or phrase.

OCR

I want to carry one thing with 

me on a rainy day. Is the thing 

in the image an appropriate 

choice?

Answer the question using a 

single word or phrase.

Commonsense Reasoning

"Is this movie titled 

a perfect world 

(1993)?

Answer the question 

using a single word 

or phrase."

Posters

Does this image describe a 

place of chalet?

Answer the question using 

a single word or phrase.

Scene

Figure 13: The QA pair examples in MME Benchmark Fu et al. (2023).

What is the dominant color in the image?

A. White

B. Brown

C. Black

D. Grey

Answer with the option's letter from the given choices directly.

Scene Understanding

What is the most likely reasoning behind the man's shocked expression?

A. He got a bad grade on a test

B. He suddenly remembered a forgotten appointment

C. He's witnessing a fight

D. He didn't expect the amount of poker chips on the table

Answer with the option's letter from the given choices directly.

Visual Reasoning

Figure 14: The QA pair examples in SeedBench Benchmark Li et al. (2023a).

A.3 CODEC TRAINING STRATEGY

Following Jia et al. (2025); Cui et al. (2021), our codec is trained to operate at multiple bitrates
within a single, unified model architecture, as shown in Fig. 15. The core of this variable-rate
capability lies in the integration of learnable vectors at multiple intermediate layers of the encoder.
These vectors perform a scaling of the feature maps to dynamically control the information flow
and, consequently, the final rate-distortion trade-off.

Let the feature map at the output of the l-th encoder layer be denoted as fl. For a discrete set of
N target bitrates R = r1, r2, . . . , rN , we introduce N corresponding sets of learnable vectors. For
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Figure 15: The variable-bitrates compression frameworks.
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Figure 16: The visualization results under similar total bitrates.

a given target rate r ∈ R, a specific vector gl,r is applied to the feature map fl at each modulated
layer l. This operation is formulated as:

f ′
l = fl ⊙ gl,r (2)

where ⊙ represents element-wise multiplication, and f ′
l is the scaled feature map that serves as the

input to the subsequent layer l + 1.

During the training process, a quality index i is randomly sampled in each iteration. This determines
both the set of gain vectors gl,i to be used in the forward pass and the corresponding trade-off
parameter λi for the loss function. The entire network, including all N sets of gain vectors, is
optimized end-to-end using the rate-distortion loss:

L = D + λiR (3)

where D is the distortion loss and R is the estimated bit rate. By using a different λi for each
quality level (where a larger λi encourages a lower bitrate). In our implementation, we empir-
ically define N = 10 quality levels, with the corresponding set of tradeoff parameters being
λi ∈ {0.00002, 0.00005, 0.0001, 0.0002, 0.0004, 0.0008, 0.0016, 0.0032, 0.0064, 0.0128}.

A.4 VISUALIZATION OF BIT-RATE ALLOCATION

Fig. 16 visualizes the results of our guidance map’s bit-rate reallocation. It clearly shows that more
bits are allocated to semantically important regions, leading to higher fidelity for objects like dogs
in the example.

A.5 PRELIMINARY EXPERIMENTS ON FINETUNING STRATEGIES

A straightforward strategy to optimize a codec for a MLLM is to directly finetune either the codec or
the MLLM on a downstream instruction-following task. To evaluate the efficacy of these approaches,
we conducted a set of preliminary experiments. We employed the LLaVA-Instruct dataset Liu et al.
(2023a) for finetuning, using a standard cross-entropy loss in MLLM as the optimization objective.
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Figure 17: Preliminary experiments on finetuning strategies. ELIC-MFT indicates that the codec
parameters are frozen and the MLLM is finetuned. For ELIC-CFT, only the codec parameters are
finetuned. Our method only need to finetune the adapter.

(a) (b)

Figure 18: (a) Effect of the statistics-based guidance quantization parameter k in µ ± kσ on BD-
rate. All tested values improve over the no-guidance baseline, with performance remaining stable
for k ∈ [0.45, 0.85]. (b) Impact of the number of quantization levels in the Guidance Quantized Map
on BD-rate.

As illustrated in Figure 17, our findings reveal the limitations of direct finetuning. When the codec
parameters are frozen and the MLLM is finetuned (ELIC-MFT), we observe only marginal per-
formance gains. More strikingly, when we freeze the MLLM and attempt to finetune the codec
(ELIC-CFT), the training process collapses, leading to a catastrophic failure where the model loses
its fundamental comprehension abilities. In stark contrast, our proposed method, which only re-
quires finetuning a lightweight adapter, yields substantial performance improvements. These results
underscore the inadequacy of direct finetuning and motivate our approach.

A.6 DISCUSSION ON THE QUANTIZED CLIP GUIDANCE MAP

We explored multiple settings of the Quantized CLIP Guidance Map. First, we examined the
statistics-based quantization method µ ± kσ with different values of k. As shown in Fig. 18(a),
all k values yield improvements, and the performance varies only slightly within the range k ∈
[0.45, 0.85]. Although we adopt k = 0.75 in the paper, other values within this suitable range
produce similar results. Furthermore, as shown in Fig. 18(b), we investigated different numbers of
quantization levels. While using multiple levels generally improves performance, the gain dimin-
ishes when the spacing between levels becomes large (e.g., the five-level setting), possibly because
the wider span assigns overly low quality to some regions, thereby reducing overall performance.
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Figure 19: The input examples of video MLLM.

A.7 DISCUSSION ON VIDEO MLLM

Our method is also directly applicable to video MLLMs. We note that current mainstream video
MLLMs, such as Li et al. (2024a); Chen et al. (2024); Zhu et al. (2025); Hurst et al. (2024),
typically operate not on dense video streams, but on a sparsely sampled sequence of keyframes
(e.g., 16 or 32 frames extracted from the entire video), as shown in Fig. 19. This sparse sampling
strategy inherently reduces the temporal redundancy between adjacent processed frames. Therefore,
applying our image codec on a frame-by-frame basis is a practical and well-aligned strategy for this
specific application. Consequently, our semantic guidance mechanism can be effectively applied to
each sampled frame to guide the compression. While developing a more advanced video codec that
explicitly models the remaining long-range temporal correlations presents a valuable direction for
future work, our current intra-frame approach offers a strong and pragmatic baseline for compressing
visual inputs for today’s video MLLMs.

A.8 ATTENTION DISTANCE OF DIFFERENT VISION ENCODERS

To validate that our three-stage information flow model is a general principle rather than an artifact
of a specific architecture, we extend our analysis to other prominent vision encoders, namely Intern-
ViT Chen et al. (2024) in InternVL2 and SigLIP Zhai et al. (2023) in LLaVA-Onevision Li et al.
(2024a). As shown in Fig. 20, the average attention distance per layer for both encoders exhibits a
clear U-shaped trend, mirroring the pattern observed with the CLIP encoder in our main analysis.
This corroborates our finding that vision encoders broadly follow a three-stage process: an initial
broad screening (Stage 1), followed by localized feature extraction (Stage 2), and concluding with
global semantic integration (Stage 3). Furthermore, Fig. 21 reveals that the feature similarity un-
der compression shows a sharp drop during the early phase of Stage 3, followed by a recovery in
the final layers. This behavior is consistent with our three-stage theory: the initial drop highlights
the vulnerability of cross-level features during the synthesis of local details and emerging global
context, while the subsequent rebound indicates the formation of a more stable, abstract semantic
representation. Notably, SigLIP exhibits two sharp drops in similarity. We hypothesize this is due
to SigLIP’s architecture, which lacks a dedicated class token. Consequently, its deeper layers may
need to retain some local information for the final pooling process, leading to a lower overall feature
similarity. Nevertheless, the feature similarity in SigLIP’s final layer still rebounds, which remains
consistent with the global semantic integration phase of the three-stage process.
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Figure 20: The average attention distance per layer of different vision encoder (InternViT and
SigLIP).

CLIP

SigLIP

InternViT

ELIC DCAE

Figure 21: The impact (token similarity) of distortion on internal tokens in the vision encoder.

A.9 ICM METHOD TASK-WISE PERFORMANCE DROP LEADED BY COMPRESSION
DISTORTION

To provide a more granular view of the inconsistent performance of existing codecs, we present
a detailed task-wise breakdown of the performance degradation caused by compression. Fig. 22
shows the impact of ELIC, a codec optimized for human perception, on various sub-tasks within
the MMBench benchmark. Fig. 23 further illustrates the performance drop on both MME and MM-
Bench when using Bridge-d1, an Image Coding for Machine (ICM) method. These figures highlight
that both human-centric and machine-centric codecs exhibit erratic performance, excelling in some
task categories while failing significantly in others. This inconsistency reinforces the argument that
a new paradigm is needed—one that is holistically tailored to the multi-level feature requirements
of general-purpose MLLMs.
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Figure 22: The task-wise impact of compression distortion (from ELIC) on MMBench.

(a) Task Performance drop on MME Benchmark

(b) Task Performance drop on MMBench Category-1

Figure 23: The task-wise impact of compression distortion (from ICM method Bridge-d1) on MME
and MMBench.
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Figure 24: The attention maps of the class token in different layers.

A.10 ATTENTION MAP AND PCA FEATURES OF DIFFERENT LAYERS

Fig. 24 provides a visual walkthrough of the [CLS] token’s attention maps at different layers of the
vision encoder, substantiating our three-stage model. In the shallow layers (Stage 1, e.g., layer 0),
the attention is broad and scattered, performing a preliminary screening of the entire image. As
we move to the middle layers (Stage 2, e.g., layer 7), attention becomes more focused, converging
on local regions and edges to extract structured features. Finally, in the deep layers (Stage 3, e.g.,
layer 22), the attention disperses again as the model integrates globally aggregated information, with
focus shifting to a few ”summary tokens” that encapsulate high-level semantic concepts.

Complementing this, the Principal Component Analysis (PCA) visualizations in Fig. 25 reveal the
evolution of the features themselves. Features in the shallow layers resemble raw textures and
edges. In the middle layers, these evolve into clearly structured local features. By the time we
reach the deep layers, the structural details are largely discarded in favor of abstract, high-level
semantic representations. Together, the attention patterns and the feature visualizations provide
strong, complementary evidence for the distinct information processing stages within the vision
encoder.

A.11 INFORMATION FLOW OF DIFFERENT LAYER

To further dissect the information processing dynamics, we analyze the inflow and outflow patterns
for tokens across different layers, as illustrated in Fig. 26. This analysis reveals a clear three-stage
progression. Initially, in Stage 1, tokens exhibit wide-ranging inflow and outflow without a clear
focus, a pattern characteristic of a broad initial screening of the image. Subsequently, Stage 2 is
marked by an asymmetric information flow: inflow remains anchored to the global [CLS] token
for guidance, while outflow becomes highly localized to neighboring patches, reflecting a focus on
structured local feature extraction. Finally, in Stage 3, the dynamics shift again as most tokens re-
ceive targeted inflow from a few ”summary” tokens, which in turn broadcast their globally-integrated
semantic knowledge via global outflow. This dynamic confirms the final phase of semantic synthesis
and integration.
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Figure 25: The PCA features in different layers.

A.12 ANALYSIS ON OTHER DATASETS

In Fig. 27, we present the results obtained from analyzing different datasets. It can be observed that
the general curve trends are consistent with those in Fig. 5, indicating that different datasets do not
affect our conclusion.

A.13 LLM USAGE

We acknowledge the use of a large language model (LLM) to assist in the preparation of this
manuscript. The LLM’s role was strictly limited to improving grammar and refining language.
It did not contribute to any of the core research components, such as the initial ideas, experimental
design, data analysis, or interpretation of the results.
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Figure 26: The information flows of different layers.
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(a) Kodak (b) COCO

Figure 27: The attention distance on different datasets.
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