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Abstract
Characterizing the ground state properties of quan-
tum systems is fundamental to capturing their be-
havior but computationally challenging. Recent
advances in AI have introduced novel approaches,
with diverse machine learning (ML) and deep
learning (DL) models proposed for this purpose.
However, the necessity and specific role of DL
models in these tasks remain unclear, as prior stud-
ies often employ varied or impractical quantum
resources to construct datasets, resulting in unfair
comparisons. To address this, we systematically
benchmark DL models against traditional ML ap-
proaches across three families of Hamiltonian,
scaling up to 127 qubits in three crucial ground-
state learning tasks while enforcing equivalent
quantum resource usage. Our results reveal that
ML models often achieve performance compara-
ble to or even exceeding that of DL approaches
across all tasks. Furthermore, a randomization
test demonstrates that measurement input features
have minimal impact on DL models’ prediction
performance. These findings challenge the ne-
cessity of current DL models in many quantum
system learning scenarios and provide valuable
insights into their effective utilization.

1. Introduction
The efficient estimation of ground state property (GSP)
and the classification of phases of matters are among the
most fundamental problems in unraveling the myth of the
quantum world, with far-reaching implications in quantum
physics (Carleo & Troyer, 2017; Torlai et al., 2018; Geb-
hart et al., 2023), chemistry (Aspuru-Guzik et al., 2005;
Kandala et al., 2017; Cao et al., 2019; Bauer et al., 2020),
and materials discovery (Bauer et al., 2020; Clinton et al.,
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2024). Despite the significance, the curse of dimension-
ality renders classical simulations of large-scale quantum
systems infeasible for practical applications (Ceperley &
Alder, 1986; White, 1992; Becca & Sorella, 2017). Quan-
tum computers offer a promising alternative; however, their
current limitations, including unavoidable quantum noise
and restricted quantum resources, constrain their immediate
utility (Preskill, 2018). These challenges underscore the
pressing need for innovative strategies to quantify GSP and
classify quantum phases in large-qubit systems efficiently.

Artificial intelligence has recently emerged as a transforma-
tive tool in scientific discovery, augmenting and accelerating
research across diverse domains. Within quantum physics
and quantum computing, this synergy has given rise to a bur-
geoning field, dubbed quantum system learning (QSL) (Car-
leo & Troyer, 2017; Gebhart et al., 2023), where classical
learners extract essential information from quantum systems
to enable efficient predictions about related systems (see
Appendix A for details). A seminar work to this field was
made by Huang et al. (Huang et al., 2022), who proved
that classical algorithms incapable of leveraging data cannot
achieve comparable performance guarantees in the context
of GSP estimation (GSPE) and quantum phase classifica-
tion (QPC). Building on this, several machine learning (ML)
models (Lewis et al., 2024; Cho & Kim, 2024; Wanner et al.,
2024) with provable efficiency have been devised to tackle
different classes of quantum systems.

The remarkable success of deep learning (DL) over ML in
many fields such as computer vision and language process-
ing has inspired researchers to explore advanced DL frame-
works for tackling GSPE and QPC tasks (Wang et al., 2022b;
Tran et al., 2022; Zhang & Di Ventra, 2023; Tang et al.,
2024a; Wu et al., 2024; Rouzé & França, 2024). Despite re-
cent advancements, most DL-based methods incur substan-
tially higher computational and memory costs compared to
their ML-based counterparts. Moreover, the claimed heuris-
tic advantages of DL models often ignore their dependence
on quantum resources, resulting an unfair comparison with
ML approaches. More specifically, the success of many
DL protocols frequently relies on leveraging expensive, or
even unlimited, quantum measurements to generate labels,
whereas ML models rely on a limited number of measure-
ments. This disparity in quantum resource requirements
creates an inherently inequitable basis for comparison. With
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the scarcity of quantum resources likely to persist in the
foreseeable future, a pivotal question emerges:

Do we truly need deep learning in QSL with restrictive
quantum resources?

To address the above question, here we systematically revisit
the role of DL in QSL, especially for GSPE and QPC tasks
across various families of quantum systems. By maintaining
the same total number of queries (i.e., measurements), we
first confirm the scaling law of current ML and DL models.
We next uncover a counterintuitive phenomenon, where
existing ML models often outperform current DL models in
QSL tasks. We last design randomization tests to examine
the role of measurements as data features in GSPE and QPC
tasks. The results reveal an opposite function of measure-
ment outcomes. Specifically, measurement outcomes are
largely redundant as input representations for GSPE tasks
but significantly improve performance for QPC tasks. These
results offer concrete guidance for future model design to
advance QSL. Part of source code of dataset generation are
open-sourced in this Github Repository.

2. Preliminaries
Here we briefly recap the basic concepts of quantum sys-
tems. Refer to Appendix A for the omitted details.

The computation of fundamental properties of ground states
in quantum systems has far-reaching impacts on physics,
materials science, and chemistry (Bauer et al., 2020; Geb-
hart et al., 2023; Clinton et al., 2024). In such systems, the
interactions among particles are mathematically described
by a Hamiltonian, which encapsulates the system’s energy
and dynamics. For an N -qubit system, the Hamiltonian can
generally be expressed as H(α) =

∑4N

i=1 αiGi ∈ C2N×2N ,

where α ∈ R4N refers to the Pauli expansion coefficients,
Gi ∈ {I,X, Y, Z}⊗N is the i-th Pauli-string ∀i ∈ [4N ],
I = [ 1 0

0 1 ] is the identity matrix, and X = [ 0 1
1 0 ], Y =

[ 0 −ı
ı 0 ], Z = [ 1 0

0 −1 ] are Pauli operators along X , Y , Z axes.

The mathematical formulation of a Hamiltonian indicates
that it is a Hermitian operator. Consequently, it can always
be expressed through its eigen-decomposition as

H(α) =

2N∑
i=1

λi|ψi⟩⟨ψi| ∈ C2N×2N . (1)

Suppose that the eigenvalues are arranged as an ascending
order, i.e., λ1 ≤ λ2 ≤ ...λ2N . Then the eigenvalue λi rep-
resents the i-th energy level and the eigenvector |ψi⟩ is the
corresponding energy state. Here we follow the conven-
tions to use Dirac notations to represent vectors (Nielsen &
Chuang, 2010), where |ψi⟩ ∈ R2N is the column vector and
|ψi⟩ is the conjugate transpose of |ψi⟩. The ground state

and the ground state energy of H(α) refer to |ψ1⟩ and λ1,
respectively. Throughout the study, we interchangeably use
|ψ(α)⟩ and |ψ⟩ to specify the ground state.

Fundamental properties of ground states. A crucial way
to understand quantum systems involves quantifying their
ground state properties. This process relies on quantum
measurements, which extract classical information from the
ground state |ψ⟩. Mathematically, when applying an ob-
servable O (i.e., a Hermitian matrix with the size 2N × 2N )
to |ψ⟩, the expectation values of measurement outcomes is
tr(ρO), where ρ = |ψ⟩ ⟨ψ| is the density matrix formalism
of |ψ⟩ with |·⟩ ⟨·| being the outer product operation. By
selecting different O, key properties of quantum systems,
e.g., correlation functions, entanglement entropies, and the
classification of phases, can be acquired.

Correlation functions. Correlation functions reveal the un-
derlying interactions and symmetries of the system. The
two-point correlation functions of |ψ⟩ is a matrix C with the
size N ×N , whose entry Cij refers to the expectation value
of the observable O = (XiXj + YiYj + ZiZj)/3 with

Cij =
tr(XiXjρ) + tr(YiYjρ) + tr(ZiZjρ)

3
, (2)

where PiPj represents an N -qubit Pauli string such that
Pauli operator P ∈ {X,Y, Z} act on the i-th and j-th qubits,
and the identity operator I acts on all other qubits.

Entanglement entropies. Entanglement entropies quantify
the strength of quantum correlations. For the 2-order Rényi
entanglement entropy of the specified subsystem A (i.e., a
subset of qubits among N -qubits), it takes the form as

S2(ρA) = − log[tr(ρ2A)], (3)

where ρA = trA(|ψ⟩ ⟨ψ|) is the reduced density matrix.

Quantum phase. The quantum phase of ground states re-
veals the underlying symmetries and critical phenomena of
the explored quantum system. Conceptually, two ground
states |ψ⟩ and |ψ′⟩ belong to the same phase if they share
identical relevant order parameters or topological invariants.
The choice of observables O used to quantify these phases
is inherently problem-dependent and varies based on the
specific properties under study.

Finite measurements and classical shadow. Due to the
probabilistic nature of quantum mechanics, the exact value
of a desired property, i.e., tr(ρO), requires infinite measure-
ments on identically prepared quantum states ρ. In practice,
only a finite number of measurements M can be performed,
leading to statistical uncertainty. Accordingly, the estimated
mean value of an observable O is given by 1

M

∑M
i=1 oi,

where oi represents the i-th measurement outcome, and the
variance of the estimate scales as var(Ô) ∼ 1/M .
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A computationally and memory-efficient approach for es-
timating the expectation values of many local observables
is classical shadow (Huang et al., 2020). The fundamental
principle of classical shadow lies in the ‘measure first and
ask questions later’ strategy. For an unknown N -qubit state
ρ, the Pauli-based classical shadow repeats the following
procedure T times. At the t-th time, the state ρ is first
operated with a unitary Ut = U1,t ⊗ · · ·Uj,t · · · ⊗ UN,t

randomly sampled from the predefined unitary ensemble
single-qubit Clifford gates and then each qubit is measured
under the Z basis to obtain an N -bit string denoted by
bt ∈ {0, 1}N . The shadow formalism of the j-th qubit
is ρ̂j,t = 3U†

j,t|bj,t⟩⟨bj,t|Uj,t − I , ∀j ∈ [N ]. Suppose
the observable is O = P1 ⊗ ...Pi... ⊗ PN . The shadow
estimation of tr(ρO) is 1

T

∑T
t=1

∏N
j=1 tr(ρ̂j,tPj).

3. Problem setup
To fairly evaluate the necessity of DL in QSL, we reformu-
late the QSPE and QSP tasks to ensure equivalent quantum
resource usage. This section begins by introducing the
explored families of Hamiltonian, followed by a detailed
description of the ML and DL approaches employed for
these tasks, and an explanation of the unified resource cost
in dataset construction.

3.1. Explored families of Hamiltonians

We consider three families of Hamiltonians, i.e., Heisenberg
models (HB), transverse-field Ising models (TFIM) (Dutta
et al., 2015), and Rydberg atom models (Bernien et al.,
2017; Browaeys & Lahaye, 2020). These Hamiltonians
were chosen because they are widely studied in the field of
QSL (Luo et al., 2022; An et al., 2023; Gebhart et al., 2023;
Du et al., 2023; An et al., 2024), owing to their versatility
and practical significance.

Following concepts introduced in Sec. 2, the mathematical
expression of an N -qubit Heisenberg models is

HHB(x) =
∑
i<j

Jij(XiXj + YiYj + ZiZj), (4)

where x = {Jij} contains all coupling strength parameters
between adjacent qubits i and j, for ∀i, j ∈ [N ]. For an
N -qubit (one-dimensional) TFIM, its formula is

HTFIM(x) = −
N−1∑
i=1

JiZiZi+1 −
N∑
i=1

hiXi, (5)

where x = {Ji} ∪ {hi} contains the coupling strengths
{Ji} of all qubit pairs and the transverse field {hi}. For an
N -qubit Rydberg atom model, it takes the form as

HRyd(x) =
∑
i<j

ΩR6
b

a6|i− j|6
NiNj +

N∑
i=1

Ω

2
Xi−∆iNi, (6)

where Ni = (I + Zi)/2 is the occupation number operator
at qubit i and x = (Ω, Rb, a,∆). For ease of notations, we
denote the ground states of HHB(x), HTFIM(x), and HRyd(x)
as |ψHB(x)⟩, |ψTFIM(x)⟩, and |ψRyd(x)⟩, and their density
matrices as ρHB(x), ρTFIM(x), and ρRyd(x), respectively.

3.2. QSL Tasks and benchmark learning models

The primary objective of the classical ML and DL models
under investigation is to extract meaningful knowledge from
the training dataset, enabling accurate predictions of target
properties for a given class of Hamiltonians.

Dataset construction with unified resources. Unlike prior
studies, we impose restrictions on the quantum resources
available for constructing the training dataset. This ap-
proach ensures a fair comparison between classical ML and
DL models while adhering to practical constraints. More
specifically, let D = {(x(i),v(i))}ni=1 represent the training
dataset, where x(i) ∼ DX is the i-th classical input param-
eter of the explored class of Hamiltonians sampled from
a prior data distribution DX , and v(i) is the corresponding
measurement information (e.g., classical shadows) collected
from the ground state |ψ(x)⟩ with M snapshots.

We adopt the total number of measurements as the measure
of the quantum resource cost. Specifically, when construct-
ing the dataset D, we restrict the total amount of the query
complexity of the quantum systems, i.e., n×M , ensuring it
does not exceed a specified threshold. This restriction stems
from the fact that given the scarcity of available quantum re-
sources in the foreseeable future, it is essential to minimize
n×M required to train learning models (see Appendix A.4).

With access to the constructed training dataset D, ML and
DL models utilize it to infer a hypothesis function h(x, z),
which is then employed to predict a target property of unseen
inputs. Here, z represents optional auxiliary information,
the details of which will be clarified later. A standard met-
ric to measure the prediction performance of ML and DL
models is the expected risk (a.k.a., prediction error), i.e.,

R(h) = Ex∼DX

[
|h(x, z)− f(x)|2

]
, (7)

where f(x) is the target property with the input x.

Tasks. We apply ML and DL models to learn QSL tasks
from D. The first two tasks belong to QSPE, where f(x)
corresponds toCij in Eq. (2) and S2 in Eq. (3) for |ψHB(x)⟩
and |ψTFIM(x)⟩. The last task belongs to QPC, which
classifies the ordered phases of |ψRyd(x)⟩. Specifically,
there are three phases of |ψRyd(x)⟩. Define two observ-
ables as O⋆ = 1

2N

∑[(N−1)/⋆]
k=0 (I+Z⋆k+1) with ⋆ ∈ {2, 3}.

The state |ψRyd(x)⟩ is classified into Z2-order phase if
tr(ρRyd(x)O2) > max{tr(ρRyd(x)O3), 0.7}; Z3-order
phase if tr(ρRyd(x)O3) > max{tr(ρRyd(x)O2), 0.6}; and
the disordered phase if neither condition is satisfied.
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The primary distinction between current ML and DL mod-
els in achieving the above task lies in their implementation
approaches. For clarity, we next introduce their implemen-
tations separately.

ML models. A common characteristic of ML models is the
use of tailored explicit feature maps to extract information
from the training dataset D without involving the auxiliary
information z in Eq. (7). In most cases, their mathematical
form can be unified as

h(x;w) = ⟨w, ϕ(x)⟩, (8)

where w ∈ Rd refers to model parameters and ϕ(·) ∈ Rd

denotes the problem-informed feature map.

Here, we focus on three classes of advanced ML mod-
els commonly employed in QSL tasks. All these models
utilize a supervised learning framework to derive the hy-
pothesis h(x;w) from a pre-processed dataset D̂. That is,
in alignment with the supervised learning framework, the
collected measurement information v(i) is used to acquire
the estimated label of the target property, i.e., D → D̂ =
{x(i), ŷ(i)}, where ŷ(i) refers to the estimation of the target
property f(x(i)) (e.g., Cij , S2, or the ordered phase class).

Remark. Although the labels in D̂ vary depending on the
specified QSL tasks, the construction of D̂ is performed
entirely classically using the original dataset D without any
quantum resources. In addition, when M → ∞, the labels
become exact ŷ(i) = f(x(i)), ∀i ∈ [n].

Existing ML models differ in the design of ϕ(·) and the use
of D̂ to complete the training, as recapped below.

Linear Regressor (LR). When the feature map ϕ(x) is de-
signed according to the geometry property of the given
Hamiltonian, h(x;w) can be implemented using Lasso or
Ridge regression to achieve provable guarantees for many
QSPE tasks (Lewis et al., 2024; Wanner et al., 2024). In
addition, prior studies have proposed the use of random
Fourier features as an alternative to these feature maps ϕ(x)
to achieve similar performance. We follow this convention
to implement the linear regressor hLR(x

(i);w), which is ob-
tained by minimizing the mean square error (MSE) loss func-
tion with L⋆ regularization: L = 1

n

∑n
i=1 ∥hLR(x

(i);w)−
ŷ(i)∥22 + λ∥w∥2⋆ with λ ≥ R+ being a hyperparameter,
LR ∈ {Lasso,Ridge}, and ⋆ ∈ {1, 2}.

Kernel Methods. For Hamiltonians that satisfy the smooth-
ness property, Huang et al. (2022) proved that the truncated
Dirichlet kernel (DK) can achieve provable efficiency in
many QSPE tasks. For comparison, they employed radial ba-
sis function kernel (RBFK) and neural tangent kernel (NTK)
as references. We follow the same convention of using these
three kernels to tackle the explored two GSPE tasks. Accord-
ing to the dual form of linear regression, these kernel meth-
ods, denoted by hKernel(x;w), can be optimized by mini-

mizing the MSE loss L = 1
n

∑n
i=1(hKernel(x

(i);w)− ŷ(i))2
with Kernel ∈ {DK,RBFK,NTK}. For self-consistency, we
also employ these three kernels to complete the QPC task.
The only modification is the loss function, which is the
cross entropy (CE) loss L = − 1

n

∑n
i=1

∑3
c=1 ŷ

(i)
c log(p

(i)
c ),

where ŷ(i)c is the one-hot vector of ŷ(i) for the class c ∈ [3],
and p(i)c refers to the predicted score with the class c.

Tree models. Tree ensemble models are representative ML
classifiers, which empirically outperform DL in certain
dataset types, such as tabular data (Grinsztajn et al., 2022).
For this reason, we choose four of them for the QPC task:
RandomForest (RF), GradientBoostingTree (GBT), Light-
GBM (LGBM), and XGBoost (XGB). These methods share
a common feature map, i.e., ϕ(x) = [ϕ1(x), . . . , ϕT (x)],
where ϕt(x) = [I(x ∈ Lt

1), . . . , I(x ∈ Lt
lt
)] with I(·) be-

ing the indicator function and Lt
j denoting the j-th leaf

of tree t. The learning model hTree(x;w
∗) is obtained

via minimizing CE loss L as with the kernel method with
Tree ∈ {RF,GBT,LGBM,XGBoost}.

DL models. Unlike ML, a key feature of DL is their use
of neural networks to implicitly extract knowledge from
D. Current DL models are primarily categorized into two
paradigms: supervised learning and self-supervised learn-
ing (SSL). We next separately outline their mechanisms.

Supervised learning. Current DL models in this category
can be classified into two classes based on the use of auxil-
iary information z in Eq. (7). In the first class, DL models
exclude z and are expressed as h(x;w) = gNN(x;w, arc),
where arc specifies the neural architecture. In the second
class, DL models incorporate the measured outcomes v of
ρ(x) as z, with the form h(x;w) = gNN(x, z;w, arc).

For both classes, their implementation and optimization are
similar to ML models. The dataset D is preprocessed to D̂,
which is used to optimizing these DL models via the MSE
or CE loss. Here we consider two deep neural networks
broadly used in QSL tasks: multilayer Perceptron (MLP)
and convolutional neural networks (CNN). For clarity, DL
models with auxiliary information are denoted as MLP-A
and CNN-A, while MLP and CNN refer to the first subclass.

Self-supervised learning. The key feature of SSL models
is their two-stage optimization process, consisting of a pre-
training stage and a fine-tuning stage (Devlin, 2018). The
aim of pre-training is to capture general representations of
quantum systems via unlabeled data. In contrast, the aim
of fine-tuning is to adapt the pre-trained representations to
specific QSL tasks, using a few labeled data.

The SSL framework utilizes two datasets: a pretrain dataset
Dpre = {(x(i),v

(i)
pre}

npre
i=1 and a supervised finetune (SFT)

dataset Dsft = {(x(i),v
(i)
sft }

nsft
i=1 to complete the optimiza-

tion, where the definitions of npre, nsft, v
(i)
pre , and v

(i)
sft align
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with the definitions of n and M in D. To ensure consistent
quantum resource usage with other learning models, the
datasets must satisfy npre ×Mpre + nsft ×Msft = n×M .

During pretraining, a neural network gpre(x, z;w, arc),
which utilizes measurement outcomes {v(i)} as ancillary
information {z(i)}, is optimized by sequentially predicting
measurement outcomes for individual qubits. The objective
is to minimize the KL-divergence loss. During finetuning,
the optimized gpre serves as a backbone and is paired with a
trainable head. This head is updated using a labeled dataset
D̂sft, which is preprocessed from Dsft on the classical side,
by minimizing either MSE loss or CE loss.

We employ two advanced SSL models as benchmarks:
Shadow Generator (SG) (Wang et al., 2022b) and
LLM4QPE (Tang et al., 2024a). For clarity, SG is an
only autoregressive model without supervised finetuning;
LLM4QPE-F refers to SSL models trained without pretrain-
ing, while LLM4QPE-T denotes those trained with both
pretraining and fine-tuning.

4. Experiment and results
We now conduct systematic experiments on two GSPE tasks
and one QPC task introduced in Sec. 3 to investigate the role
of ML and DL models under consistent quantum resource
constraints. Refer to Appendix C for the omitted details.

4.1. Results of ground state property estimations

For GSPE tasks, the dataset construction of HHB(x) and
HTFIM(x) is as follows. For HHB(x) in Eq. (4), we set Jij =
369

|i−j|a with varying a ∈ (1, 2) uniformly. For HTFIM(x) in
Eq. (5), Ji is sampled from [0, 2] uniformly. The number
of training examples n and snapshots M varies depending
on the tasks and will be detailed later. Each task is repeated
five times under each setting to collect statistical results.

We employ test error as a surrogate to evaluate the expected
risk R(h) in Eq. (7) by fixing nte = 200 test examples. For
clarity, we only present the averaged results for the explored
QSPE tasks in the main text. Specifically, the given dataset
D is used to train different learning models to predict Cij

for all qubit pairs (i, j), with the corresponding test errors
{ϵ(Cij)}i,j recorded. The root mean squared error (RMSE)
on all cases yields ϵ(C̄) = ( 1

N2

∑
i,j ϵ(Cij))

1/2. Similarly,
in entropy estimation in Eq. (3), the subsystem A refers to
all neighboring qubit pairs, i.e., i-th and (i + 1)-th qubits.
Following the same routine as ϵ(C̄), we record the test
errors for all pairs {ϵ(S2,i)}i and compute RMSE across
theseN−1 settings, i.e., ϵ(S̄2) = ( 1

N−1

∑N−1
i=1 ϵ(S2,i))

1/2.

Scaling behavior of QSL models. To explore the scaling
behavior of different QSL models on GSPE tasks, we apply
Lasso, Ridge and LLM4QPE-F to learn the correlation
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Figure 1: Scaling behavior of learning models when applied
to GSPE tasks with 127-qubit |ψHB⟩ and |ψTFIM⟩. The up-
per (lower) two subplots explore the scaling behavior of learning
models for M (for n) when applied to predicting ϵ(C̄) and ϵ(S̄2),
while keeping n = 100 (M = 512). The notation “a-b” means
that the explored task is a and the employed model is b.

and entropy of 127-qubit |ψHB⟩ and |ψTFIM⟩. For each
task, the training size and the snapshots are varied as n ∈
{20, 40, 60, 80, 100} and M ∈ {64, 128, 256, 512}. Each
learning model uses the same amount of quantum resources
to complete the training. The hyperparameter λ of two ML
models is fixed to be 103. The feature dimension of these
two models is the same, which is d = 2× 1272 for |ψHB⟩
and d = 2 × (127 − 1) for |ψTFIM⟩. LLM4QPE-F with
about 18.1M parameters is trained under its default setting.

The achieved results in Fig. 1 confirm the scaling law of the
employed ML and DL models, as more training examples
n and more snapshots M enable a better prediction per-
formance. In addition, the prediction performance linearly
(logarithmically) depends on the training size n (number
of shots M ), highlighting the dominant role of training
size. For the same task, the two ML models, Lasso and
Ridge, often achieve similar performance and consistently
outperform the DL model. For instance, when n = 100
and M = 512, the quantity ϵ(C̄) for Lasso, Ridge and
LLM4QPE-F when applied to |ψHB⟩ is 0.011, 0.012, and
0.017, respectively. See Appendix C.2 for details.

Does DL really outperforms ML in QSPE? We inves-
tigate the performance of all learning models presented
in Sec. 3 when applied to predict correlations of |ψHB⟩,
where the qubit count has four varied settings, i.e., N ∈
{48, 64, 100, 127}. For LLM4QPE-T, we set npre = 100
and Mpre = 1024. To ensure fairness, the cost of quantum
resources in these models satisfy n ×M = nsft ×Msft +
npre ×Mpre, where nsft ∈ {20, 60, 100} and M = Msft.
We additionally adopt classical shadow (CS) as the baseline.
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Table 1: The RMSE result on correlation prediction of |ψHB⟩ with varied N and nsft. M is fixed to 64. The best results are
highlighted in boldface while the second-best results are distinguished in underlined. The results are averaged over 5 independent runs
with different random seeds. The standard deviation is very small (< 10−5), such that we omit it.

Methods
N = 48 N = 63 N = 100 N = 127

nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100

CS 0.21113 0.21257 0.21399 0.21447

MLP-4 layers 0.05428 0.03825 0.03524 0.06463 0.04435 0.03833 0.07532 0.05952 0.06010 0.07971 0.09173 0.08608

CNN-4 layers 0.06484 0.04899 0.03456 0.06621 0.03608 0.03100 0.06436 0.03425 0.02808 0.07441 0.03196 0.05221

SG 0.22127 0.20645 0.20034 0.21988 0.21354 0.20391 0.21981 0.22062 0.21066 0.23070 0.20901 0.20575

LLM4QPE-T 0.05189 0.03368 0.03197 0.06111 0.03364 0.02863 0.05050 0.03227 0.02726 0.05079 0.03184 0.02634

DK 0.05336 0.06008 0.07147 0.05277 0.05977 0.07179 0.05146 0.05489 0.06480 0.05057 0.05358 0.06334

RBFK 0.05452 0.04176 0.04101 0.04726 0.03829 0.03922 0.04096 0.03299 0.03282 0.03850 0.03115 0.03086

NTK 0.06828 0.04074 0.03903 0.06692 0.04107 0.04394 0.05960 0.03314 0.02871 0.05676 0.03140 0.02706

Lasso 0.04221 0.02636 0.02489 0.04856 0.02791 0.02326 0.04219 0.02602 0.02646 0.04137 0.03292 0.02083

Ridge 0.04247 0.02884 0.02475 0.04216 0.02816 0.02402 0.04191 0.02711 0.02251 0.04110 0.02620 0.02161

Tab. 1 demonstrates the achieved results. The overall results
indicate that while all learning models exhibit the expected
scaling behavior, ML models consistently outperform DL
models under fair quantum resource constraints. Among
DL models, LLM4QPE-T achieves the best performance,
highlighting the effectiveness of SSL. Furthermore, a higher
nsft with fewer npre generally leads to lower prediction er-
rors compared to the reverse setting. Additionally, unlike
other learning models, SG only attains performance compa-
rable to classical shadows, underscoring the importance of
high-quality labeled data in training. We conduct additional
benchmarks on TFIM for predicting entanglement entropy
and observe similar results (see Appendix C.3).
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Figure 2: Role of measurements as input representations on
GSPE tasks. RMSE ϵ(C̄) when applied to the employed learning
models to predict correlations of 127-qubit |ψHB⟩. Left panel:
Performance of supervised learning models with varied training
size n and fixed snapshots M = 64. Right panel: Performance
of SSL-based model LLM4QPE-T with varied training size n and
snapshots M . The notation “a-A” (or “a”) refers that the learning
model a uses (or does not use) v as auxiliary information.

Are measurement outcomes redundant? We conduct
two independent experiments to investigate the role of mea-
surement outcomes as input features. The first focuses on
supervised learning models, and the second evaluates the
SSL-based model using a randomization test. For both ex-
periments, the task is to predict correlations of the 127-qubit
|ψHB⟩, with quantum resource costs of each learning model
kept consistent with the scaling behavior experiments.

For the supervised learning framework, we use Lasso,
Ridge, RBFK, and CNN as benchmark models. To assess
the impact of measurement outcomes v, we compare model
performance with and without using v as auxiliary informa-
tion. When x is concatenated with v, the feature dimension
of both ML models is fixed to be d = 127 × (M + 254).
Otherwise, it is 2× 1272. As for CNN, input dimension is
127×(M+127) and 1272, respectively. For the SSL frame-
work, we employ LLM4QPE-T and design a randomization
test. In this test, the ground truth measurement outcomes
v in both D̂pre and D̂sft are replaced with randomized coun-
terparts v′, where each element v′

ij is uniformly sampled
from [0, 5] as an integer value.

The achieved results are exhibited in Fig. 2. The left panel
illustrates the results of supervised learning models. A key
observation is that ML models are more sensitive to whether
measurement information is included. For example, when
n = 60, ϵ(C̄) for Ridge-A (or CNN-A) is 0.066 (or 0.032)
while Ridge (or CNN) is 0.032 (or 0.031). The right panel
shows the performance when using real and randomized
measurement outcomes as input features, indicating that
characterizing real outcomes as embeddings shows no evi-
dent performance improvement of LLM4QPE-T in GSPE
tasks. Refer to Appendix C.4 for additional experiments.

Is bigger often better? To evaluate how DL model size
impacts performance in GSPE tasks, we benchmark multiple
MLPs with a different number of parameters when predicting
correlation of a 127-qubit |ψHB⟩ with M = 512 and n =
100. For completeness, we also exploit LLM4QPE-F (with
∼ 18.1M parameters), as well as Lasso (with ∼ 0.1M
parameters), as two baselines. The quantum resource cost
to train all models is kept to be the same.

To explore the role of the model size, the employed MLPs are
composed of only one hidden layer whose dimension varies
{16, 32, 64, 128}. In this way, the model size spans from
0.5M to 4.1M. All models are trained in 1000 epochs with
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0.5M 1M
2.1M

4.1M

2 × 10 2
3 × 10 2
4 × 10 2
6 × 10 2

R
M

SE
= 0.001

Lasso (0.1M)
= 15

LLM4QPE (18.1M)
= 3854

Figure 3: Performance of MLPs with varied model sizes on
predicting correlation of 127-qubit |ψHB⟩. The x-axis represents
the number of parameters in MLPs with ‘M’ being the abbreviation
of million. The notation λ refers to regularization weights used in
MLPs, and “A (b M)” refers to the performance of model A (i.e.,
Lasso, and LLM4QPE) with b million parameters.

an early stopping strategy. We consider ℓ2-regularization
weights as hyperparameters.

The achieved results are exhibited in Fig. 3. When λ is
small, increasing the model size results in degraded per-
formance, due to the overfitting. In contrast, when λ be-
comes large, MLPs could match the performance of the
optimal LLM4QPE-F, despite having only 1/36 the param-
eters. These findings suggest that optimizing performance
depends more on balancing model size and hyperparameters
than simply increasing model size.

4.2. Results of quantum phases classification

For QPC task presented in Sec. 3, the training dataset
construction of HRyd(x) is followed by the configuration
of (Wang et al., 2022b; Tang et al., 2024a), i.e., Rb/a ∈
[1, 2.95], ∆ ∈ [−20π, 30π], and Ω = 10π. The distribution
of the labels exhibits a long-tail distribution, hence, we pre-
process the original dataset to achieve label balance. The
training size n and snapshots M varies depending on the
tasks and will detailed later. As with Sec. 4.1, we use test
accuracy to evaluate the classification performance, where
nte = 1600 test examples are used for all cases.
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Figure 4: Scaling behavior of ML and DL models when applied
to QPC tasks with |ψRyd⟩. The left (right) subplots explore the
scaling behavior of learning models for M (n) when applied to the
QPC task, while keeping n = 40 (M = 256). The shadow region
refers to the standard deviation.

Scaling behavior of QSL models. To investigate the scal-
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Figure 5: Role of measurements on QPC tasks. The left
and right panels separately exhibit the performance of RF and
LLM4QPE-T when applied to learn 31-qubit |ψRyd⟩ with varied
training size n and snapshots M .

ing behavior, we explore the performance of RF, XGB, and
LLM4QPE-F when they are applied to predict the class of
|ψRyd(x)⟩. The qubit count, training size, and the snapshots
vary with N ∈ {16, 25, 31}, n ∈ {20, 40, 60, 80, 100}, and
M ∈ {64, 128, 256}, respectively. For a fair comparison,
the quantum resource cost is fixed across all models. In addi-
tion, all two ML models undergo hyperparameter optimiza-
tion using Optuna (Akiba et al., 2019), while LLM4QPE-F
are well trained to ensure optimal performance.

Fig. 4 verifies the scaling law of the employed three learning
models, as the growth of n and M enables a better test accu-
racy. Moreover, a common feature of both subplots is that
the test accuracy linearly (logarithmically) increases with
the training size n (the number of snapshots M ), implying
that training size is more crucial for accuracy improvement.
For the same task, the two ML models, RF and XGB, per-
form similarly and are consistently superior to LLM4QPE-F.
For instance, when n = 100 and M = 256, the accuracy
for RF, XGB and LLM4QPE-F when applied to |ψRyd⟩ is
94.21%, 95.05%, and 91.90%, respectively.

Does DL really outperform classical ML? We evaluate
the performance of all classifiers presented in Sec. 3.2 when
applied to classifying phases of 31-qubit |ψRyd(x)⟩, with
M ∈ {64, 128, 256}. The resource constraint is the same
as those in Sec. 4.1. For LLm4QPE-T, we set npre = 100
and Mpre = 512, and the cost of quantum resources in all
classifiers satisfy n × M = nsft × Msft + npre ×Mpre,
where nsft ∈ {20, 60, 100} and M =Msft.

The achieved results are summarized in Tab. 2. Although
the overall results exhibit the scaling behavior, classical
ML models perform on par with or better than DL models
in most cases. Moreover, in contrast with QSPE tasks,
LLM4QPE-T is inferior to simpler DL models such as MLP
and CNN. This result reflects the weakness of current SSL
models in manipulating QPC tasks. Another observation
is that LLM4QPE-T is more sensitive to changes of the
training size nsft, different from its performance on QSPE
tasks.

Are measurement outcomes redundant? We conduct two
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Table 2: The test accuracy (%) of quantum phase classification on 31-qubit |ψRyd⟩ with varied M and nsft. The best results are
highlighted in boldface while the second-best results are distinguished in underlined.

Methods
M = 64 M = 128 M = 256

nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100

MLP 92.43 92.93 92.79 94.36 92.92 94.50 94.36 92.93 94.50

CNN 92.42 92.64 92.50 94.93 93.36 92.79 94.93 93.36 92.79

LLM4QPE-T 79.64 86.50 93.64 73.00 81.07 89.64 70.07 78.57 90.57

DK 83.57 90.57 90.21 87.71 91.86 90.43 87.71 91.86 90.43

RBFK 86.79 92.93 93.29 89.64 93.57 93.79 89.64 93.57 93.79

NTK 91.64 89.57 93.64 92.43 92.64 94.36 92.43 92.64 94.36

RF 87.71 91.93 92.14 93.43 91.86 93.57 88.36 91.86 94.21

LGBM 92.93 91.14 95.64 88.43 92.43 94.57 88.43 92.50 93.50

GBT 93.21 92.43 95.14 93.93 92.21 95.57 93.93 92.36 94.93

XGB 94.21 92.36 94.43 89.79 92.07 94.43 89.79 91.36 94.43

classifiers to explore the role of measurement outcomes.
Particularly, RF and LLM4QPE-T are employed to predict
the phases of 31-qubit |ψRyd(x)⟩ withM ∈ {64, 128, 256}
and n ∈ {20, 40, 60, 80, 100}. The experiment setups are
almost similar to the one used in QSPE. In the randomization
test, the randomized input v′ are uniformly sampled from
{0, 1}, due to Pauli-Z measurements applied to the state.

The results are exhibited in Fig. 5. Different from the results
in QSPE tasks, using measurement outcomes as auxiliary
information can indeed boost the test accuracy of both clas-
sical ML and DL models on QPC tasks. For example, When
n = 100 and M = 256, the test accuracy of RF increases
from 93.57% to 98.36%. For LLM4QPE-T, there is an ev-
ident performance gap when the learning model is trained
with ground-truth and randomized measurement outcomes,
where the former is 85.36% and the latter is 66.93% when
n = 100 and M = 64.

5. Related works
Prior approaches to understanding quantum systems can
be categorized into simulation-based (White, 1992), quan-
tum tomography-based, and learning-based methods (Huang
et al., 2022). This work primarily focuses on the learning-
based paradigm. Below, we briefly summarize prior studies
on learning the ground state properties of Hamiltonians
and elucidate their connection to our approach. Additional
details are provided in Appendix A.3.

The first category of learning-based approaches leverages
conventional ML models to predict interested properties in
quantum systems. A key feature of these methods is their
typically provable guarantees, where the computational com-
plexities scale at most polynomially with system size. A
seminal contribution in this area is the work by (Huang et al.,
2022), which demonstrated the efficiency of kernel-based
methods in learning ground state properties and predicting
different phases of smooth Hamiltonians. Building on this
foundation, a series of provably efficient ML models have

been developed to learn Hamiltonians under various con-
ditions, with improved sample and runtime complexities
(Lewis et al., 2024; Wanner et al., 2024). More recently, ex-
perimental studies have validated the practical effectiveness
of this approach (Cho & Kim, 2024).

The second category of learning-based approaches employs
deep learning (DL) models to study quantum systems. Un-
like ML models, which focus on optimizing computational
complexities across various quantum systems, this research
direction emphasizes the development of novel learning
paradigms and neural architectures to achieve heuristic im-
provements, particularly in prediction accuracy. In recent
years, a variety of DL models have been introduced to
predict specific or multiple properties of quantum systems
within supervised and self-supervised learning frameworks
(Zhu et al., 2022; Wang et al., 2022b; Zhang & Di Ventra,
2023; Tang et al., 2024a; Wu et al., 2024).

While our work also explores the capabilities of learning
models in understanding quantum systems, it distinguishes
itself from prior literature by focusing specifically on the
role of DL in this context. Through systematic and extensive
experiments, we fill this knowledge gap, uncovering the
potential and the limitations of current DL models.

6. Conclusion
In this study, we revisit current QSL models by unifying
quantum resource usage and systematically verifying the
scaling laws of learning models applied to GSPE and QPC
tasks on standard families of Hamiltonians. Our results
exhibit that increased training data and quantum resources
generally enhance prediction performance. Counterintu-
itively, we find that ML models often outperform DL mod-
els in these tasks, raising questions about the necessity of
existing DL models in QSL. Furthermore, a randomization
test highlights the redundancy of measurement features in
the benchmark tasks. All of these findings offer concrete
guidance for model design.

8



Rethink the Role of Deep Learning towards Large-scale Quantum Systems

Two future research directions are identifying novel QSL
tasks where DL models excel and developing new DL pro-
tocols tailored for such scenarios. For the first direction, we
will explore the potential of DL models on more challeng-
ing quantum many-body systems and large-scale molecular
systems (McArdle et al., 2020; Bauer et al., 2020). Addi-
tionally, we aim to evaluate the capabilities of ML and DL
models designed for digital quantum computers and their
associated applications (Tian et al., 2023; Alexeev et al.,
2024; Nation et al., 2025; Du et al., 2025b). For the second
direction, we will exploit the advanced neural architectures
and training strategies to develop novel DL models for QSL.

Impact Statement
Quantum system learning (QSL) holds transformative poten-
tial for advancing quantum technologies. Our work revisits
prior QSL frameworks, offering new insights into their scal-
ability, efficiency, and practical applicability under unified
quantum resource constraints. However, as QSL becomes
more practical, societal implications must be carefully con-
sidered. The increased accessibility of QSL could accelerate
technological progress but also exacerbate existing inequali-
ties, such as disparities in access to quantum resources and
expertise. Moreover, the integration of advanced AI models
into quantum technologies raises ethical concerns, including
potential misuse and unintended societal consequences. We
emphasize the need for interdisciplinary dialogue and the
development of responsible policy frameworks to ensure
that the advancements in QSL lead to equitable and positive
outcomes for society.
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A. Preliminaries of quantum system learning
In this section, we supplement the contents of Sec. 2. In addition, we introduce related work and quantum resource in detail.

A.1. Basics of quantum computation

N -qubit state. The atom unit in quantum system learning is the quantum bit, namely qubit. The single-qubit state can be
expressed as a linear combination of two normalized, orthogonal complex vectors in the Hilbert space C2. In Dirac notation
(Nielsen & Chuang, 2010), a single-qubit qubit state is defined as

|ϕ⟩ = c0 |0⟩+ c1 |1⟩ ≡
(
c0
c1

)
∈ C2,

where |0⟩ = [1, 0]⊤ and |1⟩ = [0, 1]⊤ specify two unit bases and the coefficients c0, c1 ∈ C yield |c0|2 + |c1|2 = 1.

Similarly, an N -qubit state is defined as a unit vector in C2N , i.e.,

|ψ⟩ =
2N∑
j=1

cj |ej⟩ ,

where |ej⟩ ∈ R2N is the computational basis whose j-th entry is 1 and other entries are 0, and
∑2N

j=1 |cj |2 = 1 with cj ∈ C.

Density matrix. Besides Dirac notation, the density matrix can be used to describe more general qubit states evolve under
the open system. More specifically, the density matrix of the N -qubit state |ψ⟩ takes the form as

ρ = |ψ⟩ ⟨ψ| ∈ C2N×2N ,

where ⟨ψ| = |ψ⟩† refers to the complex conjugate transpose of |ψ⟩.

For a set of N -qubit states {pj , |ψj⟩}mj=1 with pj > 0,
∑m

j=1 pj = 1, and |ψj⟩ ∈ C2N for j ∈ [m], its density matrix
formalism is

ρ =

m∑
j=1

pjρj ,

with ρj = |ψj⟩ ⟨ψj | and tr(ρ) = 1.

Quantum measurement. The quantum measurement refers to the procedure of extracting classical information from the
quantum state. It is mathematically specified by a Hermitian matrix H called the observable. Applying the observable H
to the quantum state |ψ⟩ yields a random variable whose expectation value is ⟨ψ|H |ψ⟩. Additionally, the measurement
outcome corresponds to one of the eigenvalues of the observable H , and the probability of obtaining a specific eigenvalue λj
is determined by the projection of |ψ⟩ onto the corresponding eigenstate of H . For a pure state ρ = |ψ⟩ ⟨ψ|, the expectation
value can equivalently be expressed as tr(Hρ). In the case of mixed states represented by a density matrix ρ, the expectation
value generalizes to tr(Hρ) =

∑
j pjtr(Hρj), reflecting the statistical mixture of quantum states.

A.2. Classical shadow

Classical shadows provide a computationally and memory-efficient method for storing quantum states on classical computers,
enabling the estimation of expectation values for local observables (Huang et al., 2020). The core principle of classical
shadows is the ‘measure first and ask questions later’ strategy. Here we recap the implementation of Pauli-based classical
shadows, as a widely used approach in the context of QSL. Interested readers can refer to tutorials and surveys (Huang,
2022), or recent progress (Huang et al., 2021; Nguyen et al., 2022; Zhou & Liu, 2023; Nakaji et al., 2023; Ippoliti, 2024;
Rouzé & França, 2024) for more comprehensive details.

The procedure of Pauli-based classical shadow for an unknown N -qubit state ρ is repeating the following procedure M
times. At each time, the state ρ is first operated with a unitary U randomly sampled from the single-qubit Clifford (CI) group
CI(2) and then each qubit is measured under the Z basis to obtain an N -bit string denoted by b ∈ {0, 1}N . In this scenario,
the unitary at the t-th time takes the form as Ut = U1,t ⊗ · · ·Uj,t · · · ⊗ UN,t ∼ U = CI(2)⊗N with uniform weights.
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As proved in Ref. (Huang et al., 2020), the classical shadow with respect to the t-th snapshot for ∀t ∈ [M ] is

ρ̂t =

N⊗
j=1

(
3U†

j,t|bj,t⟩⟨bj,t|Uj,t − I2
)
. (9)

Then, the estimated state of ρ by Pauli-based classical shadows is

ρ̂M =
1

M

M∑
t=1

ρ̂t, (10)

with E[ρ̂M ] = ρ.

Note that Pauli-based classical shadows, i.e., {Ui,t, bt}i,t, are memory and computation-efficient. Namely, O(NM) bits
are sufficient to store ρ̂M and O(NM) computational time is enough to load ρ̂T to the classical memory. Next, when the
locality of the observable O =

∑
iOi is well bounded, the shadow estimation of the expectation value, i.e., tr(ρ̂MOi), can

be performed in O(M) time after ρ̂M is loaded into the classical memory (Huang et al., 2020).

A.3. Related work

In this subsection, we delve into prior literature relevant to this study, including works omitted in the main text. For clarity,
we systematically outline the connections and differences between our work and each category.

Learning-free model. Previous studies on learning-free models in QSL can be classified into two subcategories based on
whether they involve interaction with quantum systems.

The first subcategory consists of classical simulators, including state-vector simulators and tensor-network simulators,
each with its own strengths and limitations. State-vector simulators (Aaronson & Gottesman, 2004; Smelyanskiy et al.,
2016; Li et al., 2021) can handle arbitrary quantum states but are limited to small qubit counts, typically no more than 50.
Tensor-network simulators (White, 1992; Perez-Garcia et al., 2006; Sandvik & Vidal, 2007; Corboz, 2016; Cirac et al., 2021),
on the other hand, are capable of simulating large-qubit states but are most effective for states with low entanglement (Orús,
2019).

The second category consists of measurement-based protocols, which require direct access to the quantum system. These
protocols assume that the ground state of the explored Hamiltonian has already been prepared using a quantum analog
simulator or a quantum digital computer through specific algorithms. The primary focus of this category is on effectively
extracting the target information from these prepared quantum states. A representative example in this context is classical
shadow protocol (Huang et al., 2020; 2021; Nguyen et al., 2022; Zhou & Liu, 2023; Ippoliti, 2024).

As this study focuses primarily on learning-based approaches, we do not perform a systematic benchmark against learning-
free models. However, these learning-free models are complementary to learning-based methods. For instance, classical
shadows are utilized in this work to generate training examples.

ML models for QSL. Existing ML models in the field of QSL encompass kernel methods (Huang et al., 2022), ℓ1-regularized
regression (Lasso) (Lewis et al., 2024), and ℓ2-regularized regression (Ridge) (Wanner et al., 2024). These ML models
leverage structured representations of Hamiltonian parameters and associated measurement outcomes to predict target
properties or phases. For quantum states prepared by quantum computers, a recent study proposed a truncated trigonometric
monomial kernel to efficiently predict different linear properties (Du et al., 2025a). As highlighted in the main text, a key
feature of ML models is provably efficient, which has been validated empirically on real experimental quantum data (Cho &
Kim, 2024).

DL models for QSL. Significant efforts have been devoted to utilizing deep learning (DL) techniques to enhance the
understanding of large-scale quantum systems. This research line can be categorized into three subclasses: using DL to
reconstruct quantum states, to predict the properties of quantum states prepared by quantum circuits, and to predict the
properties of ground states for a family of Hamiltonian. The primary focus of this study lies in the last subclass. For clarity,
we briefly summarize each subclass below.

Quantum state reconstruction. This subclass primarily focuses on using various DL models to reconstruct the explored
quantum state. The first approach involves employing DL models to generate the explicit form of the density matrix,
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with the input being the classical description of the quantum state under investigation. Typical examples of this approach
include (Lanyon et al., 2017; Ahmed et al., 2021; Cha et al., 2021; Ma et al., 2023). Another approach involves using
generative models to implicitly reconstruct the given quantum state, where the outputs of the neural networks replicate the
measurement outcomes of the quantum state. Typical examples of this approach include auto-regressive models such as
Boltzmann machine (Carleo & Troyer, 2017), Recurrent Neural Networks (RNNs) (Carrasquilla et al., 2019; Hibat-Allah
et al., 2020; Carrasquilla & Torlai, 2021; Li et al., 2024) and Transformers (Carrasquilla et al., 2021; Cha et al., 2021; Wang
et al., 2022b; Zhang & Di Ventra, 2023; Viteritti et al., 2023; Sprague & Czischek, 2024; Fitzek et al., 2024)

Properties prediction of quantum states prepared by quantum computers. Initial studies have been carried out to use DL
models to predict the interesting properties of the quantum states prepared by quantum computers. For example, different DL
models have been proposed to complete nonlocality detection (Deng, 2018; Kriváchy et al., 2020), estimation of quantum
state entanglement (Ma & Yung, 2018; Gray et al., 2018; Koutnỳ et al., 2023; Rieger et al., 2024), entropy estimation (Shin
et al., 2024; Goldfeld et al., 2024), and fidelity prediction (Zhang et al., 2021; Wang et al., 2022a; Du et al., 2023; Wu et al.,
2023; Vadali et al., 2024; Qian et al., 2024; Qin et al., 2024).

Properties prediction of ground states. As mentioned in the main text, the main focus of this research line is developing
different neural architectures to predict the properties of ground states under supervised, semi-supervised, or self-supervised
learning paradigms. In the supervised learning framework, typical examples include (Wu et al., 2024; Wanner et al., 2024).
In the semi-supervised framework, there have (Tang et al., 2024b). In the self-supervised framework, there have (Zhu et al.,
2022; Wang et al., 2022b; Tang et al., 2024a).

Our work distinguishes itself from prior studies by focusing specifically on the role of DL in quantum system learning.
Rather than designing new network architectures or learning paradigms, we conduct a systematic analysis of the performance
of existing DL models compared to ML models. To the best of our knowledge, this is the first empirical investigation
that explores how classical ML outperforms DL and identifies scenarios where DL excels in QSL. This study provides a
comprehensive comparison across various Hamiltonians of different sizes, including large-scale systems.

A.4. Quantum resource cost

In this subsection, we present evidence to justify our choice of using the number of measurements as the metric for quantum
resource usage. In particular, we restrict the total number of measurements in the dataset, i.e., n×M , when conducting the
training. This decision is primarily based on two considerations: (i) in line with the conventions of QSL, learners typically
rely on single-copy measurements, and (ii) conducting measurements is resource-intensive on near-term quantum cloud
computing platforms. By aligning our analysis with this constraint, we ensure a fair and practical assessment of quantum
resource efficiency, bridging the gap between theoretical learning paradigms and real-world economic considerations.

For illustrative, we summarize pricing data from leading quantum cloud providers (Microsoft, 2024; IBM, 2024; Amazon,
2024), highlighting cost disparities, as shown in Tab. 3 and Tab. 4. An observation is that with the increased number of
measurements, the required cost becomes extremely expensive or even unaffordable. For example, when n = 10000 and
M = 1000, the cost of IonQ-Forte is about 80, 000 USD based on Tab. 3.

Table 3: Price (USD) for every shot execution of different
quantum machines, until December 2024. A shot is a single
execution of a quantum algorithm on a QPU, such as the time
evolution of a Hamiltonian on QuEra-Aquila.

Quantum machine system size Price (USD) / shot

IQM-Garnet 20 0.00145
IonQ-Aria 25 0.03000
IonQ-Forte 36 0.08000

Rigetti Ankaa 84 0.00090
QuEra-Aquila 256 0.01000

Table 4: Price (USD) for every hour usage of different quan-
tum machines, until December 2024.

Quantum machine System size Price (USD) / hour

IQM-Garnet 20 3000.00
IonQ-Forte 36 7000.00
IonQ-Aria 25 7000.00

QuEra-Aquila 256 2500.00
IBM-QPU ≥ 127 5760.00

PASQAL Fresnel 100 3000.00
Rigetti-Ankaa-3 82 4680.00

we next highlight the runtime cost associated with collecting the training dataset. Suppose the wall-clock time required by
IonQ-Forte to perform a single-shot measurement is 1 second. When n = 10000 and M = 1000, the dataset construction
requests around 115 days, which is unacceptable in practice.
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B. More details of quantum system learning models
This section provides the detailed information of quantum system learning (QSL) models corresponding to the supplements
of Sec. 3.2 in the main text. We present overview of our QSL pipeline (Appendix B.1), classical ML-based (Appendix B.2)
and DL-based QSL models (Appendix B.3) separately.

B.1. Overview

The overall QSL pipeline is illustrated in Fig. 6. The quantum system evolves under a specified Hamiltonian, and classical
information is extracted by collecting measurement outcomes, subject to external quantum resource constraints. In the
classical machine learning (ML) process, QSL features are derived from quantum system parameters using customized
feature maps, and the resulting features are input into trainable ML models. In the deep learning (DL) process, neural
networks synchronously serve as both feature maps and trainable learners, forming an end-to-end learning paradigm. Under
resource constraints, supervised labels are approximated from measurement outcomes using learning-free estimators, such
as classical shadows. We benchmark both classical ML and DL learning processes, focusing in particular on the scaling
behavior of model performance with respect to key parameters of resources, as well as the impact of real versus randomized
measurements as representations of QSL models.
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Figure 6: Overview of our methodology on quantum system learning (QSL). The left: The quantum data is collected from the
quantum system that evolved by a specific Hamiltonian under external quantum resource constraints.The center: We organize two
learning patterns, namely classical ML and DL, to explicitly or implicitly characterize the features of collected quantum data towards
GSPE and QPC tasks. The right: We benchmark the performance of classical ML and DL, discussing the scaling behavior and necessary
features (especially on the measurement information) of QSL models.

B.2. ML models

The mechanism of applying ML models to complete QSL is demonstrated in Fig. 6. In particular, system parameters
including Hamiltonian parameters (e.g., coupling strength) and system conditions (e.g., the interaction range of |ψRyd⟩), are
characterized as input features, as well as approximate labels that obtained from measurement outcomes via classical
shadow, together form a supervised dataset. The classical ML model learns from the dataset and is applied to GSPE and
QPC tasks.

Dirichlet Kernel (DK) (Huang et al., 2022) The Dirichlet kernel of order 2 is defined as:

κDK(x,x
′) =

∑
k

cos(πk(x− x′)), (11)

where k is a coefficients vector. The feature map ϕ(x) = 1
n

∑n
i=1

∑∥k∥2≤Λ
k∈Z κDK(x,x

(i))σM (ρ(x(i))) with cutoff Λ = 3.

As explained in the main text, we follow the same routine in Ref. (Huang et al., 2022), we use random Fourier features as the
surrogate of DK. The mathematical formulation of random Fourier features takes the form as xn×d to

√
2/d cos(ωx+ b)
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where ωi are random frequencies sampled from the normal distribution and bi are random biases sampled uniformly from
[0, 2π], and we consider it new features as training data for SVM or KR with linear kernel.

Radial basis function kernel (RBFK) (Huang et al., 2022) RBF kernel (Buhmann, 2000), also known as the Gaussian
kernel, is a widely used kernel function for handling non-linear data by mapping the input space into a higher-dimensional
feature space where the data becomes more separable. The RBF kernel between two feature vectors x and x′ is defined as:

κRBFK(x,x
′) = exp

(
−∥ x− x′ ∥2

2γ2

)
, (12)

where ∥ x− x′ ∥2 is the squared Euclidean distance between two vectors and γ2 =
∑n

i

∑n
j ∥x(i)−x(j)∥2

2

2n2 . The feature map
ϕ(x) = 1

n

∑n
i=1 κRBFK(x,x

(i))σM (ρ(x(i))). In practical, we explicitly use SVM or KR with Gaussian kernel to implement
RBFK. We choose hyperparameter γ2 from a list of discrete candidate values.

Neural Tangent Kernel (NTK) (Huang et al., 2022) The Neural Tangent Kernel (NTK) (Jacot et al., 2018) is a theoretical
framework that describes the behavior of infinitely wide neural networks during training via gradient descent. For a neural
network f(x; θ) with parameters θ, the NTK is defined as the kernel function:

κNTK(x,x
′) = Eθ∼P(⟨∇θf(x; θ),∇θf(x

′; θ)⟩), (13)

where ∇θf(x; θ) is the gradient of the network’s output and Eθ∼P represents the expectation over the distribution of
initial parameter θ. The feature map ϕ(x) = 1

n

∑n
i=1

∑n
j=1 κNTK(x,x

(j))K−1
ji σM (ρ(x(i))) where κNTK is the NTK of

one specific neural network and K is the corresponding kernel matrix. In experiments, the employed neural network
are 2 layers, each of which is with a hidden dimension of 32 and an activation function ReLU, implemented by library
neural tangents (Novak et al., 2020; 2022). NTK is used to map features onto higher dimension feature space, which
is considered as features of training data for SVM or KR with linear kernel.

ℓ1-regularized regression (Lasso) (Lewis et al., 2024) Lasso is a linear regression technique that incorporates ℓ1
regularization. The feature map ϕ(x) is problem-informed and designed according to Hamiltonian geometry property. The
observable corresponding to GSPs decomposes as

O =
∑
P

αPP,

where P is a geometrically local Pauli observable. ϕ(x)x′,P of Lasso takes the form as I[x ∈ Tx′,P ], where I[·] is the
indicator function, x′ is a vector in the discrete input feature space, and Tx′,P includes the coordinates close to x′ in each
coordinate set close to P . In experiments, ϕ(x) is implemented by random Fourier features, with a rigorously theoretical
guarantee (Lewis et al., 2024). We practically map xn×d to

√
2/d cos(Wxn×d+b), and concatenate with x as new feature

[x,
√
2/d cos(Wx+ b)], where Wi is sampled from a normal distribution and bi is uniformly sampled [0, 2π].

ℓ2-regularized regression (Ridge) (Wanner et al., 2024) Ridge is a linear regression technique that incorporates ℓ2
regularization to address multicollinearity and overfitting in regression models. The feature map ϕ(x)x′,P takes the form as
sign(αP )

√
|αP |I[x ∈ Tx′,P ], where x′ is a vector in the discrete input feature space, and Tx′,P includes the coordinates

close to x′ in each coordinate set close to P . In experiments, x is mapped via random Fourier features, the same as Lasso
did.

B.3. DL models

The mechanism of applying DL models to complete QSL is demonstrated in Fig. 6. In particular, there are two learning
patterns, one of which is SSL, DL model is train on masked measurement information, enables itself learning prior
knowledge from measurement (e.g., classically generate measurement strings according to specific system parameters
in the inference phase). The other is supervised learning pattern, which is similar to ML, encodes system parameters and
(optional) measurement information into input features, as well as approximate labels that obtained from measurement
outcomes via classical shadows, together form a supervised dataset. The supervised DL model learns from the dataset and is
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Figure 7: Model architecture of the advanced SSL-based learning model like LLM4QPE. Part 1: Three embeddings are concatenated
as one, two of which are embedded from Hamiltonian parameters (e.g., coupling strength) and measurement outcomes; Part 2: Pretrain
model is a L-layer transformer-based Decoder, taking embeddings as input and output the same size tensors; Part 3: The decoder is used
for supervised finetuning, incorporated with other specific components for adaptation to downstream GSPE and QPC tasks.

applied to GSPE and QPC tasks. The SSL-based model is finetuned on supervised dataset and then applied to both tasks, or
directly estimate properties via classical shadow on its own generated measurement information.

As illustrated in Fig. 6, the DL learning process is categorized into two patterns, one of which is the self-supervised learning
(SSL) paradigm, learning the the prior knowledge from unlabeled quantum data (e.g., measurement information), such as
shadow generator (SG) and the pretrain phase of LLM4QPE, the other is supervised learning models, such as MLP, CNN, and
the finetune phase of LLM4QPE. For deeper MLP and CNN, We incorporate well-known techniques such as dropout, residual
connections, and appropriate ℓ2 regularization to ensure effective training.

Table 5: Model architecture of MLP-1 layer for QSL models.
Din is up to input feature dimension. Dout is up to task dimension.
By default, The following width = 128.

Layer Settings

Fully Connected Din × width
Activation ReLU
Dropout p = 0.5

Fully Connected width×Dout

Table 6: Model architecture of CNN-1 layer for QSL models.
Din is up to input feature dimension. Dout is up to task dimension.
We consider 32 convolutional kernels in the model.

Layer Settings

Convolutional 5× 5 kernel; stride 1; padding 1
Activation ReLU
Dropout p = 0.5

Fully Connected (32×Din)× 128
Activation ReLU
Dropout p = 0.5

Fully Connected 128×Dout

Muti-layer Perceptron (MLP)-based model We implement MLP-based QSL models with several fully connected (FC)
hidden layers, each of which is implemented as detailed in Tab. 5. We tune the model size via varying the width of hidden
layers as the depth of the network is fixed.

Convolutional Neural Network (CNN)-based model We implement CNN-based QSL models with several convolutional
layers, each of which is implemented as detailed in Tab. 6.

Transformer-based model We primarily follow the work named LLM4QPE (Tang et al., 2024a), which is the advanced
language model-like QSL paradigm, We refer the readers to their paper for model details. LLM4QPE is mainly composed
of the pre-processing embeddings and a decoder-only architecture with trainable parameters (See Fig. 7). The training
process includes a self-supervised pre-training phase and a supervised fine-tuning (SFT) phase. Specifically, we embed the
Hamiltonian system parameters (e.g., coupling strength) and measurement outcomes as well as positional embeddings. We
configure the model with 8 heads, 8 layers (i.e., L = 8) with a 128-dimensional FFN, and a FC hidden layer of dimension
128 for both GSPE and QPC tasks. The maximum dimensions of embeddings are 512 and 256 for GSPE and QPC tasks,
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respectively.

The other transformer-based model we consider in this paper is shadow generator (SG) (Wang et al., 2022b), which is
open-sourced (PennyLaneAI, 2022), and we refer its original model settings.

C. Additional experiment results
This section provides additional experiments and results to complement the main text, offering a more comprehensive
analysis of ML and DL models in QSL tasks. Appendix C.1 details the dataset construction process, including the simulation
tools and parameter settings used to generate the data. The subsequent three subsections present supplementary results on
topics omitted from the main text, including scaling behavior (Appendix C.2), a performance comparison between ML
and DL models under fair resource constraints (Appendix C.3), and the role of measurement outcomes as input features
through a randomization test (Appendix C.4). Additionally, we investigate some new topics that are not addressed in the
main text. Appendix C.5 examines the metrics and conditions under which DL models can outperform ML models. We
explore whether deeper neural networks (Appendix C.6) and infinite measurement shots (Appendix C.7) could influence
the results. Appendix C.8 and C.9 further describe the redundancy of current measurement embedding strategy and the
necessity for a new design. Besides, Appendix C.10 provides a visualization case on a 48-qubit system.

C.1. Dataset generation tools

We utilize different simulation tools to generate the datasets and obtain exact results for the two GSPE tasks and one QPC
task introduced in Sec. 3. Below, we provide a detailed explanation of the tools employed.

The training dataset D for two GSPE tasks (i.e., correlation prediction and entanglement entropy prediction) of both |ψTFIM⟩
and |ψHB⟩ is constructed by using PastaQ.jl (Torlai & Fishman, 2020), which can effectively generate classical shadows
in the large-qubit scenario.

To evaluate the performance of different QSL models, we also need the corresponding ground-truth results. These results
are obtained by using ITensors.jl and ITensorMPS.jl. The following are two pieces of codes on approximate
estimation of two-point correlation Cij in Eq. (2) and the entanglement entropy S2 in Eq. (3), respectively.

1 function compute_exact_correlation(psi::MPS)
2 xxcorr = correlation_matrix(complex(psi), "Sx", "Sx")
3 yycorr = correlation_matrix(complex(psi), "Sy", "Sy")
4 zzcorr = correlation_matrix(complex(psi), "Sz", "Sz")
5 corr = (xxcorr .+ yycorr .+ zzcorr) ./ 3.0
6 dig = sqrt.(diag(corr))
7 for i=1:length(dig)
8 corr[i,:] = corr[i,:] ./ dig[i]
9 corr[:,i] = corr[:,i] ./ dig[i]

10 end;
11 return vec(real(corr))
12 end;
13 exact_correlation = compute_exact_correlation(psi)

1 function compute_exact_renyi_entropy_size_two(psi::MPS, a::Int, b::Int)
2 sites = siteinds(psi)
3 @assert 1 <= a < b <= length(psi)
4 @assert b == a+1
5 orthogonalize!(psi,a)
6 psidag=prime(dag(psi),linkinds(psi))
7 rho_A = prime(psi[a], linkinds(psi, a-1)) * prime(psidag[a], sites[a])
8 rho_A *= prime(psi[b], linkinds(psi, b)) * prime(psidag[b], sites[b])
9 D1,_ = eigen(rho_A)

10 return -log2(sum(real(diag(D1).*diag(D1))))
11 end;
12 exact_entropy = [compute_exact_renyi_entropy_size_two(psi, a, a+1) for a in 1:N-1];

The training dataset D for the QPC task (i.e., phase classification) of |ψRyd⟩ and the corresponding ground-truth results are
collected by using the source code provided in Ref. PennyLaneAI (2022).
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C.2. Scaling behavior of QSL models

In this subsection, we provide more experiment results related to the scaling behavior of ML and DL models when applied
to solve the two QSPE tasks and one QPC task introduced in Sec. 3.
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(a) The subplots explore the scaling behavior of learning models for n when applied to predicting ϵ(C̄).
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(b) The subplots explore the scaling behavior of learning models for n when applied predicting ϵ(S̄2).
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(c) The subplots explore the scaling behavior of learning models for M when applied to predicting ϵ(C̄).
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Figure 8: Scaling behavior of learning models when applied to GSPE tasks with 127-qubit |ψHB⟩ and |ψTFIM⟩. All notations
follow the same meaning as those introduced in Fig. 1.

Additional results with respect to two GSPE tasks. Recall that in the main text, we use two-point correlation prediction
and entanglement entropy prediction as benchmark tasks to evaluate the performance of ML and DL models. Here, we
present additional results for these tasks, obtained by applying ML and DL models under identical parameter settings as
described in the main text. The only difference lies in using more refined training sizes n and snapshots M to collect the
relevant results.

The achieved results related to the correlation prediction are shown in Fig. 8(a) and Fig. 8(c). For each subplot in
Fig. 8(a), we fix the snapshots to be M ∈ {64, 128, 256, 512} and vary the training size with n ∈ {20, 40, 60, 80, 100}.
Conversely, for each subplot in Fig. 8(c), we fix the training size to be n ∈ {20, 40, 60, 80, 100} and vary the snapshots with
M ∈ {64, 128, 256, 512}. All of these results validate the scaling behavior of ML and DL models, echoing the statement in
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the main text, i.e., results shown in Fig 1.

The results for entanglement entropy prediction are presented in Fig. 8(b) and Fig. 8(d), with parameter settings identical
to those used for the correlation tasks. While the achieved results also indicate the consistent scaling law in Sec. 4.1, an
interesting phenomenon is that when M is small (e.g., M = 64), the performance of ML and DL models is unsatisfied, no
matter how the training size n scales. RMSE ϵ(S̄2) of Lasso, Ridge, and LLM4QPE-F maintain around averaged 0.165,
0.164, and 0.176, respectively, on 127-qubit |ψTFIM⟩, without notable scaling.

Additional results with respect to the QPC task. We present the complete results of the exploration of scaling behavior
on the QPC task, i.e., the phase classification of 127-qubit |ψRyd⟩ with the same settings as those in the main text. As shown
in Fig. 9(a) and Fig. 9(b), the achieved results confirm our assertion on the scaling behavior of QSL models in QPC tasks,
mentioned in Sec. 4.2: the test accuracy increases with the training size n and measurement shots M . According to the
increasing trend in the measure of test accuracy, the training size n plays a more significant role in performance improvement
compared to the number of measurements M . Besides, Tree models RF and XGB are more robust than LLM4QPE-F to
fewer shots M and samples n. For example, when n = 20 and M = 64, the test accuracy of RF and XGB are 90.05% and
92.55%, respectively, while the test accuracy of LLM4QPE-F is only 60.17%.
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(a) The scaling behavior of learning models of the varied training size n.
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(b) The scaling behavior of learning models for M .

Figure 9: Scaling behavior of ML and DL models when applied to QPC tasks with 127-qubit |ψRyd⟩. The shadow region refers to
the standard deviation. All notations follow the same meaning as those introduced in Fig. 4.

C.3. Does DL really outperform classical ML?

In this subsection, we present additional experiments and results comparing classical ML and DL models on GSPE tasks
introduced in Sec. 3. These findings complement the results shown in Tab. 1 in the main text, which only exhibits the results
of QSL models when applied to predict correlations of |ψHB⟩.

For completeness, here we apply QSL models to predict two-point correlations Cij of |ψTFIM⟩, and to predict entanglement
entropy S2 of |ψHB⟩ and |ψTFIM⟩. All learning models presented in Sec. 3.2 are considered, where the parameter settings of
these models are the same as those introduced in the main text.

Tab. 7 summarizes the achieved RMSE ϵ(C̄) when applying ML and DL models to predict correlation of |ψTFIM⟩. As
with the conclusion in the main text, ML models outperform DL models in this task. In particular, Ridge and Lasso are
superior to all other employed models. In addition, LLM4QPE-T is still better than other DL models. In addition, given a
few shots per sample (M = 64), the autoregressive model SG only attains a similar performance with CS. This observation
further validates the importance of fine-tuning.

Tab. 8 and Tab. 9 separately summarize the comparison benchmark results of predicting entanglement entropy S2 of |ψHB⟩
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Table 7: The RMSE result on correlation prediction of |ψTFIM⟩ with varied N and nsft. M is fixed to 64. The best results are
highlighted in boldface while the second-best results are distinguished in underlined. The results are averaged over 5 independent runs
with different random seeds.

Methods
N = 48 N = 63 N = 100 N = 127

nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100

CS 0.20924 0.20990 0.21092 0.21180

MLP-1 layer 0.15304 0.17621 0.18264 0.14469 0.17311 0.18283 0.13514 0.15827 0.17499 0.12615 0.14982 0.16912

CNN-1 layer 0.12603 0.10860 0.09798 0.10801 0.09005 0.07831 0.05557 0.04538 0.04100 0.08093 0.03848 0.03056

SG 0.20768 0.21469 0.21312 0.20248 0.20479 0.21969 0.21574 0.21629 0.21887 0.21951 0.21484 0.20622

LLM4QPE-T 0.05088 0.03493 0.03006 0.05252 0.03566 0.03082 0.05217 0.03476 0.03012 0.05259 0.03641 0.03084

DK 0.16018 0.25256 0.17826 0.13727 0.28337 0.23080 0.11138 0.22104 0.32314 0.10072 0.19026 0.30268

RBFK 0.06071 0.05645 0.05867 0.06005 0.05497 0.05662 0.05878 0.04938 0.05125 0.05586 0.04701 0.04833

NTK 0.07138 0.07354 0.07447 0.06529 0.06501 0.06614 0.05630 0.05252 0.05392 0.05421 0.04759 0.04836

Lasso 0.04624 0.03219 0.02812 0.04633 0.03930 0.02859 0.04073 0.03256 0.02899 0.04583 0.03283 0.02932

Ridge 0.04473 0.03173 0.02807 0.04561 0.03226 0.02839 0.04598 0.03277 0.02883 0.04570 0.03285 0.02911

Table 8: The RMSE result on entanglement entropy prediction of |ψHB⟩ with varied N and nsft. M is fixed to 64. The best results
are highlighted in boldface while the second-best results are distinguished in underlined. The results are averaged over 5 independent
runs with different random seeds.

Methods
N = 48 N = 63 N = 100 N = 127

nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100

CS 0.59882 0.61001 0.61184 0.61650

MLP-1 layer 0.71342 0.51571 0.47669 0.66398 0.60608 0.54498 0.76347 0.70524 0.66799 0.80014 0.76523 0.73077

CNN-1 layer 0.24949 0.22327 0.22088 0.25458 0.21889 0.20351 0.24914 0.25079 0.20831 0.27186 0.27863 0.26329

LLM4QPE-T 0.21397 0.18371 0.18092 0.23130 0.20676 0.19969 0.22636 0.20559 0.20095 0.26104 0.24344 0.23770

DK 0.26932 0.33764 0.38542 0.28784 0.35502 0.40298 0.27239 0.34513 0.39357 0.29700 0.35879 0.40720

RBFK 0.36122 0.27159 0.27155 0.35311 0.26144 0.25779 0.31149 0.23926 0.24543 0.31927 0.25187 0.25981

NTK 0.28779 0.26236 0.27971 0.30155 0.29309 0.25857 0.30701 0.26251 0.27414 0.33246 0.27910 0.29076

Lasso 0.21108 0.18358 0.17831 0.23791 0.20900 0.20308 0.22276 0.20289 0.19857 0.25034 0.23338 0.23303

Ridge 0.21067 0.18263 0.17684 0.23754 0.20823 0.20168 0.22246 0.20327 0.19869 0.25043 0.23244 0.23210

Table 9: The RMSE result on entanglement entropy prediction of |ψTFIM⟩ with variedN and nsft. M is fixed to 64. The best results
are highlighted in boldface while the second-best results are distinguished in underlined. The results are averaged over 5 independent
runs with different random seeds.

Methods
N = 48 N = 63 N = 100 N = 127

nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100

CS 0.36902 0.35831 0.36627 0.36715

MLP-1 layer 0.14876 0.17630 0.18955 0.15318 0.18284 0.18883 0.15078 0.18142 0.18649 0.14145 0.18481 0.18929

CNN-1 layer 0.19267 0.24437 0.18010 0.17748 0.22321 0.22642 0.25218 0.19731 0.15335 0.14577 0.12622 0.21737

LLM4QPE-T 0.19218 0.17967 0.17475 0.17554 0.15932 0.15170 0.18045 0.17421 0.16841 0.18827 0.17332 0.16969

DK 0.19481 0.23056 0.25753 0.19911 0.23567 0.25800 0.19234 0.22661 0.25297 0.18365 0.23063 0.25410

RBFK 0.10426 0.14273 0.16264 0.10064 0.14708 0.16492 0.10163 0.14128 0.16184 0.09946 0.14579 0.16301

NTK 0.20609 0.18048 0.18137 0.20849 0.18785 0.18466 0.20252 0.17762 0.18075 0.19118 0.18432 0.18119

Lasso 0.17391 0.16489 0.16383 0.17536 0.17096 0.16667 0.16970 0.16189 0.16360 0.16134 0.16856 0.16350

Ridge 0.17369 0.16441 0.16335 0.17532 0.17081 0.16663 0.16983 0.16204 0.16379 0.16150 0.16910 0.16447

and |ψTFIM⟩. The experiments setups (including N , nsft and M ) are the same with those in Sec. 4.1. Different from the
correlation prediction task, ML models are not always superior to DL models, as LLM4QPE-T achieves the best performance
on 63-qubit |ψHB⟩ system. While Ridge is the second-best, the two models have an average relative difference of 1.47%.

C.4. Are measurement outcomes redundant?

In this subsection, additional experiments and results are provided, to confirm whether measurement outcomes are redundant
input representations for GSPE tasks. We conduct two independent experiments for supervised learning paradigms and
SSL-based models, the same as those introduced in Sec. 4.1. The only difference is that what we focus on is moved from
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predicting correlation Cij to predicting entanglement entropy S2.

Fig. 10 demonstrate the achieved RMSE of ϵ(S̄2) by supervised learning models. As with the results in the main text, no
matter predicting correlation or entropy, employing v as input representations of learning models cannot improve model
performance generally. A slight difference is that when applied to predict entropy S2 of |ψTFIM⟩ and |ψHB⟩, ML models
seem to be less sensitive to whether measurement information is included, compared to CNN.
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(a) M is fixed to 64.
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Figure 10: Role of measurements as input representation towards the entropy prediction task. Panel (a) (or Panel (b)) exhibits the
results of 127-qubit |ψHB⟩ and |ψTFIM⟩ when QSL models are applied to predict the entanglement entropy with M = 64 (or M = 512).
The notation “a-A” (or “a”) refers that the learning model a uses (or does not use) v as auxiliary information.

Fig. 11 shows the performance of the SSL-based model on predicting entropy when using real and randomized measurement
outcomes as token embeddings. The trend of prediction performance is similar to that of predicting correlation, which is
presented in Fig. 2 (the right panel). That is, in GSPE tasks, the employment of measurement outcomes as input features
does not improve the learning performance.
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Figure 11: Randomization test of LLM4QPE-T on predicting S̄ of 127-qubit |ψHB⟩. The performance of LLM4QPE-T varies with
training size n and snapshots M . The labels “Ground truth” and “Random” refer to the use of real or random measurement outcomes as
LLM4QPE’s input features.

C.5. A case study: when neural networks take advantages?

This subsection provides two cases on the potential scenarios where neural networks may excel, including dealing with
out-of-distribution (OOD) Hamiltonian parameters as well as OOD Hamiltonian models.

For the first case, we consider Lasso and MLP as ML and DL models, respectively. Here the problem setting is similar to
the one used in C.2, where the task is predicting correlation. The feature dimension of Lasso is 2× 252. The employed
MLP only contains one hidden layer, where the corresponding dimension is 1024 and its regularization weight λ is fixed to
40. The snapshot M for all cases is fixed to be 128. After training, we apply the trained model to predict the correlation of
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2-dimensional 5× 5-scale |ψHB⟩ with Hamiltonian parameters sampling from interval [0, 2] uniformly, which is originally
out of the distribution of the training set.

The achieved results are summarized in Tab. 10, indicating that MLP could achieve or even exceed the performance of
Lasso on this OOD task.

Table 10: A case study on Lasso and MLP being evaluated on the OOD 2-dimensional 5× 5-scale |ψHB⟩. M is fixed to 128.

n = 20 n = 40 n = 60 n = 80 n = 100

Lasso 0.14809 0.15412 0.13780 0.13759 0.13396

MLP-1024 -width 0.14130 0.13770 0.13697 0.13657 0.13480

For the second case, we consider GB, XGB, MLP and CNN as ML and DL models, respectively. The experiment setting is the
same as the exploration of scaling behavior in Sec. 4.2. The feature dimension of all models is 4. MLP and CNN is the origin
settings as Tab. 5 and Tab. 6. Tree models are tuned with hyperparameters via Optuna (Akiba et al., 2019). The training
size n ∈ {20, 60, 100} and the snapshots M ∈ {64, 128, 256}. The learning models are trained on 25-qubit |ψRyd⟩, and
evaluated on the higher 31-qubit system. The raw training sets are not upsampled to achieve label balance.

Results in Tab. 11 present that neural networks excel in most cases. In extreme cases when M = 256 and n = 20, the
training set has only one or two samples that belong to Z2 or Z3 ordered phase, neural networks can easily overfit on these
few samples and generalize on the evaluation set.

Table 11: The classification accuracy (%) of quantum phases when considering system transferring and long-tailed label
distribution, varied M and n. The best results are highlighted in boldface while the second-best results are distinguished in
underlined.

Methods
M = 64 M = 128 M = 256

n = 20 n = 60 n = 100 n = 20 n = 60 n = 100 n = 20 n = 60 n = 100

MLP 92.76 92.82 93.72 93.85 92.18 92.63 93.85 92.18 92.63

CNN 93.65 94.36 95.32 94.81 93.65 94.42 94.81 93.65 94.42

GB 92.37 93.91 95.83 92.62 93.53 95.96 87.37 92.95 95.19

XGB 93.01 90.13 94.36 89.68 90.19 93.65 82.76 90.19 93.40

C.6. Do results hold if neural networks go deeper?

This subsection provides the experiment results on GSPE as neural networks become deeper. The neural architectures
include MLP and CNN as introduced in Sec. B.3. We evaluate six learning models introduced in the main text to estimate
the correlation C̄ of |ψHB⟩ and |ψTFIM⟩ with the system size N ranging from {48, 63, 100, 127}, and varying n from
{20, 60, 100}. The depth of DL models is increased up to 100 layers. All other experimental settings are aligned with those
of benchmark experiments in Sec. C.3.

Results are summarized in Tab. 12 and Tab. 13. As model depth increases, performance on predicting C̄ of |ψHB⟩ and
|ψTFIM⟩ initially improves but then degrades, yet is still inferior to classical ML models.

C.7. Do results hold if the number of measurement shots goes to infinity?

In this subsection, we consider the GSPE task on the 8-qubit |ψHB⟩ under a non-real-world setting where the number of
measurement shots is assumed to be infinite (M → ∞), resulting in noise-free supervised labels. Simultaneously, the
amount of training data samples is large, with n ∈ {102, 103, 104, 105}. We conduct experiments using four learning models
of increasing model sizes, including Ridge, MLP-4 layers, CNN-4 layers, and LLM4QPE-F.

Results are shown in Tab. 14 and Tab. 15. As training data amounts exponentially increases from 102 to 105, the performance
of Ridge on predicting C̄ and S̄2 of 8-qubit |ψHB⟩ is superior to that of other advanced DL models. Compared to the best
model CNN-4 layers among the DL models in the table, the model size of Ridge is 100× smaller, but the average
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Table 12: The RMSE result on predicting C̄ of |ψHB⟩ with varied system size N and finetuning training size nsft. M is fixed to 64.
MLP(CNN)-x layers represents neural network MLP (CNN) that composed of x layers with residual connection. The best results are
highlighted in boldface while the second-best results are distinguished in underlined.

Methods
N = 48 N = 63 N = 100 N = 127

nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100

CS 0.21113 0.21257 0.21399 0.21447

MLP-2 layers 0.08282 0.07752 0.06616 0.12055 0.08776 0.07086 0.10848 0.08158 0.07405 0.10091 0.10083 0.08245

MLP-3 layers 0.06214 0.04853 0.04494 0.07256 0.05506 0.04467 0.07740 0.06496 0.07098 0.08535 0.08280 0.08691

MLP-4 layers 0.05428 0.03825 0.03524 0.06463 0.04435 0.03833 0.07532 0.05952 0.06010 0.07971 0.09173 0.08608

MLP-5 layers 0.07228 0.04721 0.03764 0.07308 0.05957 0.05091 0.08046 0.07146 0.07174 0.08408 0.08650 0.08458

CNN-2 layers 0.07160 0.04723 0.03795 0.07176 0.04066 0.03042 0.06549 0.04566 0.03464 0.06468 0.03189 0.07404

CNN-3 layers 0.08089 0.03422 0.03435 0.09003 0.03401 0.03159 0.07603 0.03245 0.03295 0.08420 0.03179 0.03025

CNN-4 layers 0.06484 0.04899 0.03456 0.06621 0.03608 0.03100 0.06436 0.03425 0.02808 0.07441 0.03196 0.05221

CNN-10 layers 0.06388 0.08577 0.03856 0.13669 0.06697 0.09836 0.05456 0.03361 0.03555 0.05273 0.08775 0.03523

CNN-20 layers 0.15740 0.11951 0.07480 0.13665 0.10532 0.07100 0.11759 0.09031 0.07029 0.10187 0.08780 0.07183

CNN-50 layers 0.16392 0.12271 0.07735 0.16071 0.14676 0.09655 0.14741 0.11789 0.09367 0.13320 0.12921 0.10086

CNN-100 layers 0.20797 0.20659 0.20394 0.18382 0.17980 0.17323 0.14762 0.14402 0.13628 0.13455 0.13356 0.13150

LLM4QPE-T 0.05189 0.03368 0.03197 0.06111 0.03364 0.02863 0.05050 0.03227 0.02726 0.05079 0.03184 0.02634

RBFK 0.05452 0.04176 0.04101 0.04726 0.03829 0.03922 0.04096 0.03299 0.03282 0.03850 0.03115 0.03086

Lasso 0.04221 0.02636 0.02489 0.04856 0.02791 0.02326 0.04219 0.02602 0.02646 0.04137 0.03292 0.02083

Ridge 0.04247 0.02884 0.02475 0.04216 0.02816 0.02402 0.04191 0.02711 0.02251 0.04110 0.02620 0.02161

Table 13: The RMSE result on predicting C̄ of |ψTFIM⟩ with varied system size N and finetuning training size nsft. M is fixed to
64. MLP(CNN)-x layers represents neural network MLP (CNN) that composed of x layers with residual connection. The best results
are highlighted in boldface while the second-best results are distinguished in underlined.

Methods
N = 48 N = 63 N = 100 N = 127

nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100

CS 0.20924 0.20990 0.21092 0.21180

MLP-2 layers 0.07899 0.06371 0.05524 0.07986 0.05279 0.04283 0.08293 0.05303 0.04630 0.07908 0.05006 0.04333

MLP-3 layers 0.06080 0.05664 0.06074 0.06514 0.06928 0.06914 0.06301 0.06358 0.07317 0.06324 0.06510 0.07327

MLP-4 layers 0.05912 0.05794 0.05980 0.05899 0.05705 0.06163 0.05678 0.05628 0.06977 0.05535 0.06496 0.07197

MLP-5 layers 0.07422 0.06545 0.05739 0.07341 0.06921 0.06922 0.06648 0.06556 0.07044 0.06941 0.07222 0.06867

CNN-2 layers 0.12845 0.15039 0.08935 0.12227 0.16686 0.10315 0.10084 0.08879 0.05177 0.10495 0.08535 0.04647

CNN-3 layers 0.13545 0.17135 0.12004 0.12545 0.17026 0.11778 0.11433 0.11267 0.05027 0.13312 0.03562 0.05347

CNN-4 layers 0.13624 0.17178 0.12015 0.12608 0.17103 0.13809 0.12221 0.11046 0.06586 0.13757 0.10498 0.05556

CNN-10 layers 0.10861 0.14012 0.13969 0.10894 0.14113 0.13640 0.08386 0.10294 0.06330 0.07107 0.06095 0.04910

CNN-20 layers 0.06796 0.07030 0.09552 0.05565 0.03468 0.03917 0.17534 0.10762 0.04129 0.05152 0.03588 0.04086

CNN-50 layers 0.05984 0.03783 0.20409 0.29550 0.27408 0.23003 0.27766 0.03706 0.04305 0.28359 0.26455 0.22790

CNN-100 layers 0.31863 0.31729 0.31449 0.31156 0.31115 0.30988 0.30174 0.30136 0.30013 0.29768 0.29570 0.29139

LLM4QPE-T 0.05088 0.03493 0.03006 0.05252 0.03566 0.03082 0.05217 0.03476 0.03012 0.05259 0.03641 0.03084

Lasso 0.04624 0.03219 0.02812 0.04633 0.03930 0.02859 0.04073 0.03256 0.02899 0.04583 0.03283 0.02932

Ridge 0.04473 0.03173 0.02807 0.04561 0.03226 0.02839 0.04598 0.03277 0.02883 0.04570 0.03285 0.02911

Table 14: The RMSE results on predicting C̄ of |ψHB⟩ with varied training size n. System size N = 8. The number of testing sets is
fixed to 2× 104. Labels are noise-free (M → ∞). The best results are highlighted in boldface .

M → ∞ # Params n = 102 n = 103 n = 104 n = 105

Ridge < 0.01M 0.00780 0.00528 0.00367 0.00660
MLP-4 layers 0.09M 0.04219 0.04172 0.03961 0.03956
CNN-4 layers 1.14M 0.01987 0.02078 0.02056 0.02054
LLM4QPE-F 9.89M 0.03966 0.04304 0.04916 0.04659

performance is 3× better. In such a non-real-world setting, the empirical performance of QSL models is not ruled by the
scaling behavior we have observed in Sec. C.2. Despite the exponentially increased training data, the RMSE results fail to
show a declining tendency.

On the other hand, we fix the training data amount n = 104 and vary the system size N ∈ {8, 10, 12, 16, 25, 31}. As
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Table 15: The RMSE results on predicting S̄ of |ψHB⟩ with varied training size n. System size N = 8. The number of testing sets is
fixed to 2× 104. Labels are noise-free (M → ∞). The best results are highlighted in boldface .

M → ∞ # Params n = 102 n = 103 n = 104 n = 105

Ridge < 0.01M 0.01563 0.00947 0.00753 0.00851
MLP-4 layers 0.09M 0.10817 0.09142 0.05398 0.05302
CNN-4 layers 1.14M 0.04334 0.02410 0.03520 0.02073
LLM4QPE-F 9.89M 0.10648 0.11171 0.10895 0.10826

Table 16: The RMSE results on predicting C̄ of |ψHB⟩ with varied N . The training set and testing set both have 104 samples, with
noise-free labels (M → ∞). The best results are highlighted in boldface .

M → ∞ N = 8 N = 10 N = 12 N = 16 N = 25 N = 31

Ridge 0.00367 0.00444 0.00566 0.00636 0.00599 0.00579
MLP-4 layers 0.03961 0.03677 0.03460 0.03129 0.02769 0.02625
CNN-4 layers 0.02056 0.03710 0.03432 0.03050 0.02582 0.02381
LLM4QPE-F 0.04666 0.04385 0.03969 0.03728 0.03083 0.02951

demonstrated in Tab. 16, the performance of Ridge on predicting C̄ of |ψHB⟩ of different system sizes is much superior to
that of other advanced DL models in all cases. The average RMSE of Ridge is 1/5 times than that of CNN-4 layers,
the latter of which is best among the DL models in the table.

C.8. Additional experiment results on measurement outcomes as embeddings

In this subsection, we further explore how measurement outcomes as embeddings play a role in transformer-based QSL
models like LLM4QPE. We consider two cases: (i) an idealized setting where the number of measurement shots approaches
infinity, resulting in noise-free supervised labels; in this case, we use randomly generated measurement outcomes as
embeddings to preserve the integrity of the learning process; and (ii) a realistic setting, where we vary the number of actual
embedded measurement outcomes while maintaining consistent label fidelity. The number of embedded measurement
outcomes Memb varies from {1, 8, 64, 512}.

For the first case, the embeddings follow the same randomization way introduced in the main text, with system size
N ∈ {8, 10, 12, 16, 25, 31}. Tab. 17 shows that model performance generally improves when fewer random outcomes are
embedded.

Table 17: The RMSE results of LLM4QPE-F on predicting C̄ of N -qubit |ψHB⟩, with embedding Memb random measurement
outcomes. The training set and testing set both have 104 samples, with noise-free labels (M → ∞). Memb is the actual number of
embedded measurement outcomes.

M → ∞ N = 8 N = 10 N = 12 N = 16 N = 25 N = 31

Memb = 1 0.04666 0.04385 0.04126 0.03728 0.03083 0.03125
Memb = 8 0.04746 0.04926 0.03969 0.03984 0.03408 0.02951
Memb = 64 0.04795 0.04791 0.04785 0.04043 0.03637 0.03524
Memb = 512 0.04913 0.04521 0.04506 0.03905 0.03406 0.03268

For the second case, we adopt the same experimental setting as that in Sec. C.2. M is fixed to 512. As exhibited in Tab. 18,
the performance of DL models remains relatively stable, suggesting that the LLM-like embedding approach empirically
renders the measurement outcomes largely redundant as features. This observation highlights a fundamental limitation of
the explored embedding methods in correlation prediction tasks.
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Table 18: The RMSE results of LLM4QPE-F on predicting C̄ of N -qubit |ψHB⟩, with embedding Memb real measurement
outcomes. testing size is set to 200. M is fixed to 512. Memb ≤M is the actual number of embedded measurement outcomes. nsft is
the training size over the finetuning phase.

N = 63 N = 100 N = 127

nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100 nsft = 20 nsft = 60 nsft = 100

Memb = 1 0.02555 0.02104 0.02019 0.02307 0.01872 0.01760 0.02239 0.01739 0.01635

Memb = 8 0.02556 0.02106 0.02019 0.02309 0.01873 0.01760 0.02242 0.01739 0.01635

Memb = 64 0.02556 0.02104 0.02019 0.02309 0.01872 0.01759 0.02239 0.01739 0.01636

Memb = 512 0.02560 0.02104 0.02019 0.02309 0.01872 0.01759 0.02240 0.01740 0.01635

Table 19: The RMSE results of predicting C̄ of N -qubit |ψHB⟩, using MLP (with two embedding strategies), Lasso and Ridge
as learning models. Measurement outcomes are embedded as input features of MLP in two ways: raw tensor directly characterizing,
or averaging (Avg.) over M measurement outcomes for each qubit (M × N → 1 × N ). N ∈ {63, 100, 127}. Training size
n ∈ {20, 80, 100}. Measurement shots M ∈ {64, 128, 256, 512}. The best results are highlighted in boldface .

N = 63 N = 100 N = 127

n = 20 n = 60 n = 100 n = 20 n = 60 n = 100 n = 20 n = 60 n = 100

M = 64

Raw 0.08964 0.05522 0.04872 0.08666 0.04949 0.04055 0.08878 0.05068 0.04076

Avg. 0.05572 0.03522 0.02984 0.05525 0.03972 0.02801 0.05505 0.03951 0.03242

Lasso 0.04856 0.02791 0.02326 0.04219 0.02602 0.02646 0.04137 0.03292 0.02083

Ridge 0.04216 0.02816 0.02402 0.04191 0.02711 0.02251 0.04110 0.02620 0.02161

M = 128

Raw 0.10921 0.05905 0.04835 0.10966 0.06137 0.04485 0.10408 0.06359 0.04554

Avg. 0.04403 0.03034 0.02552 0.04699 0.03561 0.02603 0.04435 0.03421 0.03007

Lasso 0.03168 0.02171 0.01905 0.03127 0.02045 0.01735 0.03041 0.01980 0.01647

Ridge 0.03169 0.02178 0.01921 0.03069 0.02067 0.01786 0.03053 0.02087 0.01726

M = 256

Raw 0.14085 0.08316 0.06045 0.12558 0.08648 0.05983 0.11720 0.08232 0.06089

Avg. 0.03581 0.02673 0.02272 0.04022 0.02966 0.02168 0.03883 0.03188 0.02893

Lasso 0.02556 0.01749 0.12125 0.02406 0.01747 0.01467 0.02283 0.01542 0.01324

Ridge 0.02556 0.01751 0.01572 0.02408 0.01697 0.01494 0.02286 0.01576 0.01377

M = 512

Raw 0.15943 0.11187 0.08246 0.13586 0.10826 0.08329 0.12608 0.10324 0.08330

Avg. 0.03020 0.02475 0.02211 0.03713 0.02864 0.02272 0.03644 0.02962 0.02618

Lasso 0.02037 0.01586 0.11038 0.01892 0.01403 0.01263 0.01702 0.01257 0.01117

Ridge 0.02036 0.01583 0.01436 0.01891 0.01404 0.01271 0.01798 0.01285 0.01186

C.9. Do results depend on how measurement outcomes are embedded?

We further evaluate two additional embedding strategies commonly used in DL models for QSL tasks, beyond the three
methods discussed in the main text. Specifically, these additional strategies include (i) using raw normalized measurement
outcomes as input (Raw) and (ii) using averaged normalized outcomes as input (Avg.). We evaluate DL models using these
two embedding strategies for predicting C̄ of |ψHB⟩.

The results, summarized in Tab. 19, show that while the averaged embedding remains inferior to classical ML models
such as Lasso and Ridge, it dramatically outperforms the other model using Raw embedding strategy in the predicting
correlation task. On the issue of how to better design the feature map (or proper embedding) of measurement information
for neural networks, we leave this as future work.

C.10. A case of visualization

This subsection visualizes the prediction results of C̄ for a 48-qubit |ψHB⟩ system, using a single Hamiltonian sample and
Ridge regression as the learning model. The training set consists of n = 100 samples, each measured with M = 128 shots.
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Figure 12: A case of comparison between Ridge and baseline (CS) on predicting Cij with a 48-qubit |ψHB⟩. We take
one Hamiltonian sample as an example, the left is the exact ground truth, the middle is the estimation by CS, and the right is
the estimation by Ridge, where RMSE is 0.15411 and 0.02183, respectively.

Figure 12 compares the performance of Ridge regression and the baseline estimator, classical shadows (CS), in predicting
the correlation matrix Cij for the selected sample. The matrix C is of size 48 × 48, with each element Cij ∈ (0, 1].
Compared to the ground truth (i.e., the testing label), Ridge exhibits stronger generalization: its RMSE is significantly
lower than that of CS, which primarily reflects the noise level present in the training labels.
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