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Abstract

Many important problems involving molecular property prediction from 3D struc-
tures have limited data, posing a generalization challenge for neural networks. In
this paper, we describe a pre-training technique based on denoising that achieves
a new state-of-the-art in molecular property prediction by utilizing large datasets
of 3D molecular structures at equilibrium to learn meaningful representations for
downstream tasks. Relying on the well-known link between denoising autoen-
coders and score-matching, we show that the denoising objective corresponds
to learning a molecular force field — arising from approximating the Boltzmann
distribution with a mixture of Gaussians — directly from equilibrium structures.
Our experiments demonstrate that using this pre-training objective significantly
improves performance on multiple benchmarks, achieving a new state-of-the-art on
the majority of targets in the widely used QM9 dataset. Our analysis then provides
practical insights into the effects of different factors — dataset sizes, model size and
architecture, and the choice of upstream/downstream datasets — on pre-training.

1 Introduction

The success of the best performing neural networks in vision and natural language processing (NLP)
relies on pre-training the models on large datasets to learn meaningful features for downstream
tasks [[15 160l (16} [11}[19]. For molecular property prediction from 3D structures (a point cloud of
atomic nuclei in R?), the problem of how to similarly learn such representations remains open. For
example, none of the best models on the widely used QM9 benchmark use any form of pre-training
[e.g.133, 139,156,163, in stark contrast with vision and NLP. Effective methods for pre-training could
have a significant impact on fields such as drug discovery and material science.

In this work, we focus on the problem of how large datasets of 3D molecular structures can be utilized
to improve performance on downstream molecular property prediction tasks that also rely on 3D
structures as input. We address the question: how can one exploit large datasets like PCQM4MV2E]
that contain over 3 million structures, to improve performance on datasets such as DES15K that are
orders of magnitude smaller? Our answer is a form of self-supervised pre-training that generates
useful representations for downstream prediction tasks, leading to state-of-the-art (SOTA) results.

*Equal contribution. Correspondence to: szaidi@stats.ox.ac.uk, mschaarschmidt@deepmind.com.
TWork done during an internship at DeepMind.
3Note that PCQM4Mv?2 is a new version of PCQM4M that now offers 3D structures.
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Figure 1: GNS-TAT pre-trained via denoising on PCQM4Mv?2 outperforms prior work on QMO9.

Inspired by recent advances in noise regularization for graph neural networks (GNNs) [23], our
pre-training objective is based on denoising in the space of structures (and is hence self-supervised).
Unlike existing pre-training methods, which largely focus on 2D graphs, our approach targets the
setting where the downstream task involves 3D point clouds defining the molecular structure. Relying
on the well-known connection between denoising and score-matching [[69., 161} 25]], we show that the
denoising objective is equivalent to learning a particular force field, adding a new interpretation of
denoising in the context of molecules and shedding light on how it aids representation learning.

The contributions of our work are summarized as follows:

* We investigate a simple and effective method for pre-training via denoising in the space of 3D
structures with the aim of improving downstream molecular property prediction from such 3D
structures. Our denoising objective is shown to be related to learning a specific force field.

* Our experiments demonstrate that pre-training via denoising significantly improves performance
on multiple challenging datasets that vary in size, nature of task, and molecular composition. This
establishes that denoising over structures successfully transfers to molecular property prediction,
setting, in particular, a new state-of-the-art on 10 out of 12 targets in the widely used QM9 dataset.
Figure [Tillustrates performance on one of the targets in QM9.

* We make improvements to a common GNN, in particular showing how to apply Tailored Activa-
tion Transformation (TAT) [[79] to Graph Network Simulators (GNS) [51], which is complemen-
tary to pre-training and further boosts performance.

* We analyze the benefits of pre-training by gaining insights into the effects of dataset size, model
size and architecture, and the relationship between the upstream and downstream datasets.

2 Related Work

Related work is discussed in detail in Appendix [A] and summarized in this section. First, various
works have formulated methods for pre-training using graph data [40, 27,74} 32, |37]], rather than 3D
point clouds of atom nuclei as in this paper. To our knowledge, this work is the first to pre-train models
for downstream tasks involving molecular property prediction from 3D structures. Second, denoising
has been applied to learning representations in various other contexts [70, 71} 150} 51} 46, 23] and for
score-based generative modelling [69} 161,162 25| 26} 75,157]. We make a formal connection between
the two in a molecular context in Section [3.2.1] Lastly, the design of equivariant neural network
architectures has been the dominant approach for improving molecular property prediction models
recently [e.g. 133,139,156, 65| 29} 53| [1]. Our approach is architecture-agnostic and shown to improve
both a GNN and Transformer-based model.



3 Methodology

3.1 Problem Setup

Molecular property prediction consists of predicting scalar quantities given the structure of one or
more molecules as input. Each data example is a labelled set specified as follows: we are provided
with a set of atoms S = {(a1,p1), ..., (a|s],P|s))}> Where a; € {1,...,118} and p; € R? are the
atomic number and 3D position respectively of atom ¢ in the molecule, alongside a label y € R.
We assume that the model, which takes S as input, is any architecture consisting of a backbone,
which first processes S to build a latent representation of it, followed by a vertex-level or graph-level
“decoder”, that returns per-vertex predictions or a single prediction for the input respectively.

3.2 Pre-training via Denoising

Given a dataset of molecular structures, we pre-train the network by denoising the structures, which
operates as follows. Let Dyyyctures = {51, .- ., 5, denote the upstream dataset of equilibrium
structures, and let GNNy denote a graph neural network with parameters 6 which takes .S € Dgyyctures
as input and returns per-vertex predictions GNNg(S) = (€1, ..., €/g|). The precise parameterization
of the models we consider in this work is described in Section @1 and Appendix [B]

Starting with an input molecule S € Dgyycrres, We perturb it by adding i.i.d. Gaussian noise to its
atomic positions p;. That is, we create a noisy version of the molecule:

S ={(a1,p1),--, (a5, P|s|)}, where p; = p; + ce€; and €; ~ N (0, I3), (1)

The noise scale ¢ is a tuneable hyperparameter (an interpretation of which is given in Section[3.2.1).
We train the model as a denoising autoencoder by minimizing the following loss with respect to 6:

E,5.9) [HGNN@(S') — (eh...,eS)HQ] . 2)

The distribution p(S‘ ,,S) corresponds to sampling a structure .S' from Dyyycrures and adding noise to it
according to Equation (I). Note that the model predicts the noise, not the original coordinates. Next,
we motivate denoising as our pre-training objective for molecular modelling.

3.2.1 Denoising as Learning a Force Field

Datasets in quantum chemistry are typically generated by minimizing expensive-to-compute in-
teratomic forces with methods such as density functional theory (DFT) [44]. We speculate that
learning this force field would give rise to useful representations for downstream tasks, since molec-
ular properties vary with forces and energy. Therefore, a reasonable pre-training objective would
be one that involves learning the force field. Unfortunately, this force field is either unknown or
expensive to evaluate, and hence it cannot be used directly for pre-training. An alternative is to
approximate the data-generating force field with one that can be cheaply evaluated and use it to learn
good representations — an approach we outline in this section. Using the well-known link between
denoising autoencoders and score-matching [69} 61} 162], we can show that the denoising objective in
Equation (2) is equivalent to learning a particular force field directly from equilibrium structures with
some desirable properties. For clarity, in this subsection we condition on and suppress the atom types
and molecule size in our notation, specifying a molecular structure by its coordinates x € R3Y (with
N as the size of the molecule).

From the perspective of statistical physics, a structure x can be treated as a random quantity sampled
from the Boltzmann distribution pyhysical (x) o< exp(—E(x)), where E(x) is the (potential) energy of
x. According to pphysical, loW energy structures have a high probability of occurring. Moreover, the
per-atom forces are given by Vi 10g pphysical(X) = —Vx E(x), which is referred to as the force field.
Our goal is to learn this force field. However both the energy function E and distribution pphysicat
are unknown, and we only have access to a set of equilibrium structures x1, ..., X, that locally
minimize the energy E. Since X, ..., X, are then local maxima of the distribution pypysical, OUr main
approximation is to replace pynysicar With a mixture of Gaussians centered at the data:

. N
pphysical(x) ~ QG(X) = E qu(x | Xi)7
=1



where we define ¢, (X | x;) = N(X;X;, 0% I3y ). This approximation captures the fact that Dphysical
will have local maxima at the equilibrium structures, vary smoothly with x and is computationally
convenient. Learning the force field corresponding to g, (X) now yields a score-matching objective:

E, %) |[GNNo(X) = Vi log 4, (R)|I°] - 3)

As shown by Vincent [69], and recently applied to generative modelling [61} 162} 25 157} [75]], this
objective is equivalent to the denoising objective. Specifically, defining go(x) = £ 3" | §(x = x;)
to be the empirical distribution and ¢, (X,x) = ¢,(X | x)qo(x), the objective in Equation (3)) is
equivalent to:

2

] . “4)

We notice that the RHS corresponds to the earlier denoising loss in Equation (2)) (up to a constant
factor of 1/0 applied to GNNy that can be absorbed into the network). To summarize, denoising
equilibrium structures corresponds to learning the force field that arises from approximating the
distribution pppysicar With a mixture of Gaussians. Note that we can interpret the noise scale o as
being related to the sharpness of ppnysical Or £ around the local maxima x;. We also remark that the
equivalence between Equation (3)) and the LHS of Equation (E]) does not require ¢, (X | x;) to be a
Gaussian distribution [69], and other choices will lead to different denoising objectives, which we
leave as future work. See Appendix [C]for technical caveats and details.

X —X
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3.2.2 Noisy Nodes: Denoising as an Auxiliary Loss

Recently, Godwin et al. [23] also applied denoising as an auxiliary loss to molecular property
prediction, achieving significant improvements on a variety of molecular datasets. In particular,
their approach, called Noisy Nodes, consisted of augmenting the usual optimization objective for
predicting y with an auxiliary denoising loss. They suggested two explanations for why Noisy
Nodes improves performance. First, the presence of a vertex-level loss discourages oversmoothing
[14}112] of vertex/edge features after multiple message-passing layers — a common problem plaguing
GNNs — because successful denoising requires diversity amongst vertex features in order to match the
diversity in the noise targets €;. Second, they argued that denoising can aid representation learning by
encouraging the network to learn aspects of the input distribution. Since Noisy Nodes incorporates
denoising only as an auxiliary task, the representation learning benefits of denoising are limited to
the downstream dataset on which it is used as an auxiliary task. Our approach is to apply denoising
as a pre-training objective on another large (unlabelled) dataset of structures to learn higher-quality
representations, which results in better performance.

3.3 GNS and GNS-TAT

The main two models we consider in this work are Graph Net Simulator (GNS) [51]], which is a type
of GNN, and a better-performing variant we contribute called GNS-TAT. GNS-TAT makes use of a
recently published network transformation method called Tailored Activation Transforms (TAT) [79],
which has been shown to prevent certain degenerate behaviors at initialization in deep MLPs/convnets
that are reminiscent of oversmoothing in GNNs (and are also associated with training difficulties).
While GNS is not by default compatible with the assumptions of TAT, we propose a novel GNN
initialization scheme called “Edge-Delta” that makes it compatible by initializing to zero the weights
that carry “messages” from vertices to edges. This marks the first application of TAT to any applied
problem in the literature. See Appendix |B|for details.

4 Experiments

The goal of our experimental evaluation in this section is to answer the following questions. First,
does pre-training a neural network via denoising improve performance on the downstream task
compared to training from a random initialization? Second, how does the benefit of pre-training
depend on the relationship between the upstream and downstream datasets? Our evaluation involves
four realistic and challenging molecular datasets, which vary in size, compound compositions (organic
or inorganic) and labelling methodology (DFT- or CCSD(T)-generated), as described below.
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Figure 2: Left: Frequency of compositions of molecules appearing in QM9 overlayed with the
corresponding frequency in PCQM4Mv?2. Each bar represents one molecular composition (e.g. one
carbon atom, two oxygen atoms). Right: Percentage of elements appearing in QM9, DES15K, OC20
that also appear in PCQM4Mv?2.

4.1 Datasets and Training Setup

Datasets. First, the main dataset we use for pre-training is PCQM4Myv2 [43], which contains 3.4
million organic molecules, specified by their 3D structures at equilibrium calculated using DFTE| The
molecules in PCQM4Mv?2 only contain one label, however the labels are not used as denoising only
requires the structures. The large scale and diversity of PCQM4Mv?2 makes it well-suited for pre-
training via denoising. Second, as a dataset for fine-tuning, we use QM9 [47]], which contains around
130,000 small organic molecules and is widely used as a molecular property prediction benchmark
(33, 211531, 20, 29} 56, [63, 23]]. Each molecule is specified by its structure alongside 12 associated
molecular property labels. Third, Open Catalyst 2020 (OC20) is a recent large benchmark of
interacting surfaces and adsorbates relevant to catalyst discovery. OC20 contains various tasks, such as
predicting the relaxed state energy from an initial high-energy structure (IS2RE). We explore different
combinations of upstream and downstream tasks as described in Section[d.3] Lastly, DES15K [18] is
a small dataset we use for fine-tuning, which contains around 15,000 dimer geometries (i.e. molecule
pairs) with non-covalent molecular interactions. Each pair is labelled with its interaction energy
computed using the gold-standard CCSD(T) method [3]. CCSD(T) is usually both more expensive
and accurate than DFT, which is used for all aforementioned datasets. See Appendix [F|for further
details and a discussion about the choice of using DFT-generated structures for pre-training.

Figure 2] (right) shows what percentage of elements appearing in each of QM9, OC20 and DES15K
also appear in PCQM4Mv2. Whereas QM9 is fully covered by PCQM4Mv2, we observe that
DES15K has less element overlap with PCQM4Mv?2 and less than < 30% of elements in OC20 are
contained in PCQM4Myv2. This is owing to the fact that surface molecules in OC20 are inorganic
lattices, none of which appear in PCQM4Mv2. This suggests that we can expect least transfer
from PCQM4Mv2 to OC20. We also compare PCQM4Mv2 and QM9 in terms of the molecular
compositions, i.e. the number of atoms of each element, that appear in each. Due to presence of
isomers, both datasets contain multiple molecules with the same composition. For each molecular
composition in QM9, Figure 2] (left) shows its frequency in both QM9 and PCQM4Mv2. We observe
that most molecular compositions in QM9 also appear in PCQM4Mv2. We also remark that since
pre-training is self-supervised using only unlabelled structures, test set contamination is not possible —
in fact, PCQM4Myv?2 does not have most of the labels in QM9.

Training setup. GNS/GNS-TAT were implemented in JAX [8]] using Haiku and Jraph 22]. All
experiments were averaged over 3 seeds. Detailed hyperparameter and hardware settings can be
found in Appendices[G]and

4.2 Results on QM9

We evaluate two variants of our model on QM9 in Table [T, GNS-TAT with Noisy Nodes trained
from a random initialization versus pre-trained parameters. Pre-training is done on PCQM4Mv?2 via

*An earlier version of this dataset without any 3D structures, called PCQM4M, was used for supervised
pre-training [[77], but to our knowledge, this is the first time the 3D structures from v2 have been used and in a
self-supervised manner.



Table 1: Results on QM9 comparing the performance of GNS-TAT + Noisy Nodes (NN) with and
without pre-training on PCQM4Mv2 (averaged over three seeds) with other baselines.

Pre-trained
Target Unit SchNet E(n)-GNN DimeNet++ SphereNet PaiNN TorehMD-NET Ono ONSTAT Gy pat
+NN + NN + NN

s D 0.033  0.029 0.030 0.027  0.012 0.011 0.025 0.021 0.016
o a} 0235  0.071 0.043 0.047  0.045 0.059 0.052  0.047 0.040

como meV  41.0  29.0 24.6 236 276 20.3 204 173 14.9
caumo meV 340 250 19.5 189 204 18.6 175 171 14.7
Ae  meV 630 480 32.6 323 457 36.1 286 257 22.0
(R?) a 007 0.1 0.33 029  0.07 0.033 070 0.65 0.44
ZPVE meV 1.700  1.550 1210 1120 1.280 1.840 1.160  1.080 1.018
Uy meV 1400  11.00 6.32 626  5.85 6.15 730 639 5.76
U  meV 1900 12.00 6.28 733 5.83 6.38 757 639 5.76
H  meV 1400  12.00 6.53 640 598 6.16 743 642 5.79
G meV 1400  12.00 7.56 800 735 7.62 830  7.41 6.90
o =@l 0033 0031 0.023 0.022  0.024 0.026  0.025 0022  0.020

denoising. For best performance on QM9, we found that using atom type masking and prediction
during pre-training additionally helped [27]]. We fine-tune a separate model for each of the 12
targets, as usually done on QMD9, using a single pre-trained model. This is repeated for three seeds
(including pre-training). Following customary practice, hyperparameters, including the noise scale for
denoising during pre-training and fine-tuning, are tuned on the HOMO target and then kept fixed for
all other targets. We first observe that GNS-TAT with Noisy Nodes performs competitively with other
models and significantly improves upon GNS with Noisy Nodes, revealing the benefit of the TAT
modifications. Utilizing pre-training then further improves performance across all targets, achieving
a new state-of-the-art compared to prior work for 10 out of 12 targets. Interestingly, for the electronic
spatial extent target <R2>, we found GNS-TAT to perform worse than other models, which may be
due to the optimal noise scale being different from that of other targets.

4.3 Results on OC20

Next, we consider the Open Catalyst 2020 benchmark focusing on the downstream task of predicting
the relaxed energy from the initial structure (IS2RE). We compared GNS with Noisy Nodes trained
from scratch versus using pre-trained parameters. We experimented with two options for pre-training:
(1) pre-training via denoising on PCQM4Myv2, and (2) pre-training via denoising on OC20 itself.
For the latter, we follow |Godwin et al[s [2022]] approach of letting the denoising target be the
relaxed structure, while the perturbed input is a random interpolation between the initial and relaxed
structures with added Gaussian noise — this corresponds to the IS2RS task with additional noise. As
shown in Figure [3| (left), pre-training on PCQM4Mv?2 offers no benefit for validation performance
on IS2RE, however pre-training on OC20 leads to considerably faster convergence but the same
final performance. The lack of transfer from PCQM4Mv2 to OC20 is likely due to the difference in
nature of the two datasets and the small element overlap as discussed in Section {. 1] and Figure[2]
(right). On the other hand, faster convergence from using parameters pre-trained on OC20 suggests
that denoising learned meaningful features. Unsurprisingly, the final performance is unchanged since
the upstream and downstream datasets are the same in this case, so pre-training with denoising is
identical to the auxiliary task of applying Noisy Nodes. The performance achieved is also competitive
with other models in the literature as shown in Table[7l

4.4 Results on DES15K

In our experiments so far, all downstream tasks were based on DFT-generated datasets. While DFT
calculations are more expensive than using neural networks, they are relatively cheap compared to
even higher quality methods such as CCSD(T) [3]]. In this section, we evaluate how useful pre-training
on DFT-generated structures from PCQM4Myv?2 is when fine-tuning on the recent DES15K dataset
which contains higher quality CCSD(T)-generated interaction energies. Moreover, unlike QM9, inputs
from DES15K are systems of two interacting molecules and the dataset contains only around 15,000
examples, rendering it more challenging. We compare the test performance on DES15K achieved by
GNS-TAT with Noisy Nodes when trained from scratch versus using pre-trained parameters from
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Figure 3: Left: Validation performance curves on the OC20 IS2RE task (ood_both split) See
Table [7] for a comparison to other models in the literature. Right: Test performance curves for
predicting interaction energies of dimer geometries in the DES15K dataset. “PT” and “NN” stand for
pre-training and Noisy Nodes respectively.

PCQM4Mv2. As a baseline, we also include pre-training on PCQM4Mv?2 using 2D-based AttrMask
by masking and predicting atomic numbers. Figure 3] (right) shows that using Noisy Nodes
significantly improves performance compared to training from scratch, with a further improvement
resulting from using pre-training via denoising. AttrMask underperforms denoising since it likely
does not fully exploit the 3D structural information. Importantly, this shows that pre-training by
denoising structures obtained through relatively cheap methods such as DFT can even be beneficial
when fine-tuning on more expensive and smaller downstream datasets. See Appendix [[.2]for similar
results on another architecture.

5 Analysis
5.1 Pre-training a Different Architecture

To explore whether pre-training is beneficial beyond GNS/GNS-TAT, we applied pre-training via
denoising to the TorchMD-NET architecture [65]. TorchMD-NET is a transformer-based architecture
whose layers maintain per-atom scalar features x; € R*" and vector features v; € R3*¥, where
F is the feature dimension, that are updated in each layer using a self-attention mechanism. We
implemented denoising by using gated equivariant blocks applied to the processed scalar and
vector features. The resulting vector features are then used as the noise prediction.

In Table 2] we evaluate the effect of adding

Noisy Nodes and pre-training to the archi- Taple 2: Performance of TorchMD-NET with Noisy

tecture on the HOMO and LUMO targets  Nodes and pre-training on PCQM4Mv2.
in QM9. Pre-training yields a boost in per-

formance, allowing the model to achieve Method €HOMO €LUMO

SOTA results. Note that the results shown TorchMD-NET 22.0£0.6 18.7+0.4
for TorchMD-NET are from our runs us- + Noisy Nodes 18.1£0.1 15.6=£0.1
ing [Tholke and De Fabritiis's [2022] open- + Pre-training  15.6 £ 0.1 13.24+0.2

source code, which led to slightly worse
results than their published ones (our pre-training results still outperform their published results). Our
code for experiments on TorchMD-NET is available open-source

5.2 Varying Dataset Sizes

We also investigate how downstream test performance on the HOMO target in QM9 varies as
a function of the number of upstream and downstream training examples. First, we compare
the performance of GNS-TAT with Noisy Nodes either trained from scratch or using pre-trained
parameters for different numbers of training examples from QM?9; we also include the performance
of just GNS-TAT. As shown in Figure [ (left), pre-training improves the downstream performance
for all dataset sizes. The difference in test MAE also grows as the downstream training data reduces.

3GitHub repository: https://github.com/shehzaidi/pre-training-via-denoising,
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Figure 4: Left: Impact of varying the downstream dataset size for the HOMO target in QM9 with
GNS-TAT. Middle: Impact of varying the upstream dataset size for the HOMO target in QM9. Right:
Validation performance curves on the OC20 S2EF task (ood_both split) for different model sizes.
“PT” and “NN” stand for pre-training and Noisy Nodes respectively.

Second, we assess the effect of varying the amount of pre-training data while fixing the downstream
dataset size for both GNS and GNS-TAT as shown in Figure @] (middle). For both models, we find that
downstream performance generally improves as upstream data increases, with saturating performance
for GNS-TAT. More upstream data can yield better quality representations.

5.3 Varying Model Size

We study the benefit of pre-training as models are scaled up on large downstream datasets. Recall
that the S2EF dataset in OC20 contains around 130 million DFT evaluations for catalytic systems,
providing three orders of magnitude more training data than QM9. We compare the performance
of four GNS models with sizes ranging from 10 million to 1.2 billion parameters scaled up by
increasing the hidden layer sizes in the MLPs. Each is pre-trained via denoising using the trajectories
provided for the IS2RE/IS2RS tasks as described in Section [4.3] We also compare this to a 130
million parameter variant of GNS trained from scratch. As shown in Figure [ (right), the pre-trained
models continue to benefit from larger model sizes.We also observe that pre-training is beneficial,
as the model trained from scratch underperforms in comparison: the 130 million parameters model
trained from scratch is outperformed by a pre-trained model of less than half the size.

5.4 Additional Experimental Results

Additional experiments can be found in Appendix [I|

Freezing pre-trained parameters. Appendix demonstrates that the features learned during
pre-training are significantly more discriminative than random features, by considering the effect of
freezing the parameters of the model backbone during fine-tuning.

Denoising improves force prediction. In Appendix we empirically verify that pre-training
via denoising also improves atomic force prediction, as suggested by our analysis in Section [3.2.1]
We apply TorchMD-NET to MD17 (aspirin) and GNS to OC20 for force prediction tasks, finding
improved performance as a result of pre-training in both cases.

6 Conclusion

We investigated pre-training neural networks by denoising in the space of 3D molecular structures.
We showed that denoising in this context is equivalent to learning a force field, motivating its ability
to learn useful representations and shedding light on successful applications of denoising in other
works [23]]. This technique enabled us to utilize existing large datasets of 3D structures for improving
performance on various downstream molecular property prediction tasks, setting a new SOTA in
some cases such as QM9. More broadly, this bridges the gap between the utility of pre-training in
vision/NLP and molecular property prediction from structures. We hope that this approach will be
particularly impactful for applications of deep learning to scientific problems. Limitations of our
work and avenues for future work are discussed in Appendix [D}]
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A Related Work

Pre-training of GNNs. Various recent works have formulated methods for pre-training using graph
data [40, 27, [74}132]), rather than 3D point clouds of atom nuclei as in this paper. Approaches based on
contrastive methods rely on learning representations by contrasting different views of the input graph
[63 168, [78l 37]], or bootstrapping [64]. Autoregressive or reconstruction-based approaches, such as
ours, learn representations by requiring the model to predict aspects of the input graph [27} 128,149, 136]].
Most methods in the current literature are not designed to handle 3D structural information, focusing
instead on 2D graphs. The closest work to ours is GraphM VP [37]], where 3D structure is treated as
one view of a 2D molecule for the purpose of upstream contrastive learning. Their work focuses on
downstream tasks that only involve 2D information, while our aim is to improve downstream models
for molecular property prediction from 3D structures. After the release of this pre-print, similar ideas
have been studied by Jiao et al. [[30]] and Liu et al. [38]].

Denoising, representation learning and score-matching. Noise has long been known to improve
generalization in machine learning [59,[7]. Denoising autoencoders have been used to effectively learn
representations by mapping corrupted inputs to original inputs [[70,[71]. Specific to GNNs [} 154, [10],
randomizing input graph features has been shown to improve performance [27} 52]. Applications to
physical simulation also involve corrupting the state with Gaussian noise [50,51,!46]. Our work builds
on Noisy Nodes [23]], which incorporates denoising as an auxiliary task to improve performance,
indicating the effectiveness of denoising for molecular property prediction (c¢f Section [3.2.2).
Denoising is also closely connected to score-matching [69], which has become popular for generative
modelling [611 162, 25 26} 75| 157]. We also rely on this connection to show that denoising structures
corresponds to learning a force field.

Equivariant neural networks for 3D molecular property prediction. Recently, the dominant
approach for improving models for molecular property prediction from 3D structures has been
through the design of architectures that incorporate roto-translational inductive biases into the model,
such that the outputs are invariant to translating and rotating the input atomic positions. A simple way
to achieve this is to use roto-translation invariant features as inputs, such as inter-atomic distances
[55L167]], angles [34.[33L 158 139], or the principal axes of inertia [23]]. There is also broad literature
on equivariant neural networks, whose intermediate activations transform accordingly with roto-
translations of inputs thereby naturally preserving inter-atomic distance and orientation information.
Such models can be broadly categorized into those that are specifically designed for molecular
property prediction [65] 156, 16l |1} 142]] and general-purpose architectures [53) 20| [29] 166} 35, [9]].
Our pre-training technique is architecture-agnostic, and we show that it can be applied to enhance
performance in both a GNN-based architecture [51] and a Transformer-based one [65]. We conjecture
that similar improvements will hold for other models.
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B Architectural Details

B.1 Standard GNS

As our base model architecture we chose a Graph Net Simulator (GNS) [51], which consists of an
ENCODER which constructs a graph representation from the input .S, a PROCESSOR of repeated
message passing blocks that update the latent graph representation, and a DECODER which produces
predictions. Our implementation follows |[Godwin et al.[s [[2022] modifications to enable molecular
and graph-level property predictions which has been shown to achieve strong results across different
molecular prediction tasks without relying on problem-specific features.

In the ENCODER, we represent the set of atoms S = {(a1,p1), (a2,P2),---, (a5, P|s))} as a
directed graph G = (V, E) where V' = {vi,va,...,V|g/} and E = {e;};; are the sets of
“featurized” vertices and edges, respectively. Edges e; ; € E' are constructed whenever the distance
between the i-th and j-th atoms is less than the connectivity radius R, in which case we connect v;
and v; with a directed edge e; ; from i to j that is a featurization of the displacement vector p; — p;.
Meanwhile, for the i-th atom, v; is given by a learnable vector embedding of the atomic number a;.

The PROCESSOR consists of I message-passing steps that produce intermediate graphs Gy, ..., Gy,
(with the same connectivity structure as the initial one). Each of these steps computes the sum of
a shortcut connection from the previous graph, and the application of an Interaction Network [4]].
Interaction Networks first update each edge feature by applying an “edge update function” to a
combination of the existing feature and the features of the two connected vertices. They then update
each vertex feature by applying a “vertex update function” to a combination of the existing feature and
the (new) edge features of incoming edges. In GNS, edge update functions are 3 hidden layer fully-
connected MLPs, using a “shifted softplus” (ssp(z) = log(0.5¢® + 0.5)) activation function, applied
to the concatenation of the relevant edge and vertex features, followed by a layer normalization layer.
Vertex update functions are similar, but are applied to the concatenation of the relevant vertex feature
and sum over relevant edge features.

In our implementation of GNS we applied the same PROCESSOR in sequence three times (with shared
parameters), with the output of each being decoded to produce a prediction and corresponding loss
value. The loss for the whole model is then given by the average of these. (Test-time predictions are
meanwhile computed using only the output of the final PROCESSOR.)

The DECODER is responsible for computing graph-level and vertex-level predictions from the output
of each PROCESSOR. Vertex-level predictions, such as noise as described in Section 3.2} are decoded
using an MLP applied to each vertex feature. Graph-level predictions (e.g. energies) are produced by
applying an MLP to each vertex feature, aggregating the result over vertices (via a sum), and then
applying another MLP to the result.

B.2 GNS with Tailored Activation Transformation (GNS-TAT)

Tailored Activation Transformation (TAT) [79]] is a method for initializing and transforming neural
networks to make them easier to train, and is based on a similar method called Deep Kernel Shaping
(DKS) [41]]. TAT controls the propagation of “q values”, which are initialization-time approximations
to dimension-normalized squared norms of the network’s layer-wise activation vectors, and “c
values”, which are cosine similarities between such vectors (for different inputs). In other words,
q values approximate ||z(z)||?/ dim(z(x)), where z(z) denotes a layer’s output as a function of
the network’s input x, and ¢ values approximate z(z) " z(2")/(||z(z)||||z(z")||), where 2’ is another
possible network input. In standard deep networks, ¢ values will converge to a constant value
Coo € [0, 1], so that “geometric information™ is lost, which leads to training difficulties [41]]. DKS/TAT
prevents this convergence through a combination of careful weight initialization, and transformations
to the network’s activation functions and sum/average layers.

Oversmoothing [14} 12} 48], 81176, 80} [17] is a phenomenon observed in GNN architectures where
vertex/edge features all converge to approximately the same value with depth, and is associated with
training difficulties. It is reminiscent of how, when c,, = 1, feature vectors will converge with
depth to a constant input-independent vector in standard deep networks. It therefore seems plausible
that applying TAT to GNNs may help with the oversmoothing problem and thus improve training
performance.
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Figure 5: Diagram showing the edge update for a single step ¢ of the PROCESSOR. Left: Edge update
for GNS. Right: Edge update for GNS-TAT (with modifications shown in red).
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Figure 6: Diagram showing the vertex update for a single step ¢ of the PROCESSOR. Left: Vertex
update for GNS. Right: Vertex update for GNS-TAT (with modifications shown in red).

Unfortunately, the GNS architecture violates two key assumptions of TAT. Firstly, the sums over edge
features (performed in the vertex update functions) violate the assumption that all sum operations
must be between the outputs of linear layers with independently sampled initial weights. Secondly,
GNS networks have multiple inputs for which information needs to be independently preserved
and propagated to the output, while DKS/TAT assumes a single input (or multiple inputs whose
representations evolve independently in the network).

To address these issues we introduce a new initialization scheme called “Edge-Delta”, which initializes
to zero the weights that multiply incoming vertex features in the edge update functions (and treats
these weights as absent for the purpose of computing the initial weight variance). This approach is
inspired by the use of the “Delta initialization" 2} [73]] for convolutional networks in DKS/TAT, which
initializes filter weights of the non-central locations to zero, thus allowing geometric information, in
the form of ¢ values, to propagate independently for each location in the feature map. When using
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the Edge-Delta initialization, edge features propagate independently of each other (and of vertex
features), through what is essentially a standard deep residual network (with edge update functions
acting as the residual branches), which we will refer to as the “edge network™.

Given the use of Edge-Delta we can then apply TAT to GNS as followsﬂ First, we replace GNS’s
activation functions with TAT’s transformed Leaky-ReL.U activation functions (or “Tailored ReLUs”),
which we compute with TAT’s 1 parameter set to 0.8, and its “subnetwork maximizing function”
defined on the edge networkﬂ We also replace each sum involving shortcut connections with weighted
sums, whose weights are 0.9 and +/1 — 0.92 for the shortcut and non-shortcut branches respectively.
We retain the use of layer normalization layers in the edge/vertex update functions, but move them
to before the first fully-connected layer, as this seems to give the best performance. As required by
TAT, we use a standard Gaussian fan-in initialization for the weights, and a zero initialization for the
biases, with Edge-Delta used only for the first linear layer of the edge update functions. Finally, we
replace the sum used to aggregate vertex features in the DECODER with an average. See Figures 3]
and [] for an illustration of these changes.

We experimented with an analogous “Vertex-Delta” initialization, which initializes to zero weights
in the vertex update functions that multiply summed edge features, but found that Edge-Delta gave
the best results. This might be because the edge features, which encode distances between vertices
(and are best preserved with the Edge-Delta approach), are generally much more informative than the
vertex features in molecular property prediction tasks. We also ran informal ablation studies, and
found that each of our changes to the original GNS model contributed to improved results, with the
use of Edge-Delta and weighted shortcut sums being especially important.

C Denoising as Learning a Force Field

We specify a molecular structure as x = (x(V), ... x(V)) € R3N, where x(V) € R? is the coordinate
of atom 4. Let E(x) denote the total (potential) energy of x, such that —Vx F(x) are the forces on
the atoms. As discussed in Section learning the force field, i.e. the mapping x — —VE(x),
is a reasonable pre-training objective. Furthermore, learning the force field can be viewed as score-
matching if we define the distribution pphysica(x) o< exp(—F(x)) and observe that the score of
Dphysical 18 the force field: Vi log pphysical(X) = — V< E(x%).

However, a technical caveat is that ppysical 1S an improper probability density, because it cannot
be normalized due to the translation invariance of E. Writing the translation of a structure as
x+t = (xM +t,...,xM 4 t) where t € R? is a constant vector, we have E(x + t) = E(x).
This implies that the normalizing constant fRS ~ Pphysical (x) dx diverges to infinity. To remedy this, we

can restrict ourselves to the (3N — 3)-dimensional subspace V := {x € R3 | 3", x()) = 0} C R3N
consisting of the mean-centered structures, over which pppysica can be defined as a normalizable
distribution.

Proceeding similarly as Section [3.2.1] let x1,...,x, € V be a set of mean-centered equilibrium
structures. For any x € V, we now approximate

~ B R U
pphysical(x) ~ %(X) = E z;%(x | Xi)7
P
where the Gaussian distributions ¢, (X | x;) are defined on V" as:

- 1 1. 2
qg(x|xi):mexp *ﬁHX*Xi” .

For convenience, we have expressed structures as vectors in the ambient space R3"V, however they are
restricted to lie in the smaller space V. Note that the normalizing constant accounts for the fact that

%Note that Edge-Delta initialization is compatible with TAT, since for the purposes of g/c value propagation,
zero-initialized connections in the network can be treated as absent.

"For the purposes of computing the subnetwork maximizing function we ignore the rest of the network and
just consider the edge network. While the layer normalization layer (which we move before the MLP) technically
depends on the vertex features, this dependency can be ignored as long as the q values of these features is 1
(which will be true given the complete set of changes we make to the GNS architecture).
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Vis (3N — 3)-dimensional. As before, we define go(x) = 2 37" | 6(x = x;) to be the empirical
distribution and ¢, (X, %) = ¢, (X | X)go(x). The score-matching objective is given by:

J1(0) = Eq, ) [ l6NN0 (%) — Vxlog o (%] 5)

where the expectation is now over V. As shown by Vincent [69]], minimizing the objective above is
equivalent to the minimizing the following objective:

Jo(0) = By 2 [||GNN9(5<) — Viloggo (% | x)||2] . ©6)

This is recognized as a denoising objective, because Vx log ¢, (X | x) = (x — X)/0?. A practical
implication of this analysis is that the noise (x — x)/0? € V should be mean-centered, which is
intuitive since it is impossible to predict a translational component in the noise.

We include a proof of the equivalence between Equations (3)) and (6) for completeness:

Proposition 1 (Vincent [69])). The minimization objectives J1(0) and J2(0) are equivalent.
Proof. We first observe:

1(6) = By ) [[6NN0(3)|*| = 2E,, ) [(6NNo (%), Vi Log g ())] + C

J2(6) = By, 50 [loNNo ()| = 2By, 5.0 (6NN (%), Vs log g, (% | x))] + Cs,

where C', Cs are constants independent of 6. Therefore, it suffices to show that the middle terms on
the RHS are equal. Since expectations over ¢, (%) and g, (X, x) are restricted to V' C R3", we apply
a change of basis to write them as integrals against the (3N — 3)-dimensional Lebesgue measure. Pick
an orthonormal basis {v1, ..., vsn_3} C R3N for V and let Py = [vy,...,v3y_3] € RINX3NV-1)
be the projection matrix, so z = Pl x expresses a mean-centered structure x in terms of the
coordinates of the chosen basis for V. Noting that Py has orthonormal columns and that it yields a
bijection between V and R3V 3, we calculate:

40 (%) [(GNNg (%), Vx log g (x))]
P\/Z GNNQ(PVZ) Vlogqg(PVz»d

an(PVZ)> ~
———=)dz
R3N-— 3 QU(PVZ)

/ (GNNo(Py2), Vao (Py 7)) d2

R3N—3

- / <GNN9(PVZ Zng Pyz | xl)>
R3N-3

i=1

R3N-—3

PVz <GNN9(Pvi),

= / <GNN0(PVZ an Pyz | x;)Vlegq,(Pvz | Xz)> dz
R3N-3

n

1
= fo s D 0ol ) (0NN, Vg 0o (3 ) 02
R

—E, (20 [(GNN@( ), Vzlog ¢, (X | x))]

D Limitations & Future Work

We have shown that pre-training can significantly improve performance for various tasks. One
additional advantage of pre-trained models is that they can be shared in the community, allowing
practitioners to fine-tune models on their datasets. However, unlike vision and NLP, molecular
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networks vary widely and the community has not yet settled on a “standard” architecture, making
pre-trained weights less reusable. Moreover, the success of pre-training inevitably depends on the
relationship between the upstream and downstream datasets. In the context of molecular property
prediction, understanding what aspects of the upstream data distribution must match the downstream
data distribution for transfer is an important direction for future work. More generally, pre-training
models on large datasets incurs a computational cost. However, our results show that pre-training for
3D molecular prediction does not require the same scale as large NLP and vision models. We discuss
considerations on the use of compute and broader impact in Appendix [E]

E Broader Impact

Who may benefit from this work? Molecular property prediction works towards a range of
applications in materials design, chemistry, and drug discovery. Wider use of pre-trained models may
accelerate progress in a similar manner to how pre-trained language or image models have enabled
practitioners to avoid training on large datasets from scratch. Pre-training via denoising is simple to
implement and can be immediately adopted to improve performance on a wide range of molecular
property prediction tasks. As research converges on more standardized architectures, we expect
shared pre-trained weights will become more common across the community.

Potential negative impact and ethical considerations. Pre-training models on large structure
datasets incurs additional computational cost when compared to training a potentially smaller model
with less capacity from scratch. Environmental mitigation should be taken into account when pre-
training large models [45]]. However, the computational cost of pre-training can and should be offset
by sharing pre-trained embeddings when possible. Moreover, in our ablations of upstream dataset
sizes for GNS-TAT, we observed that training on a subset of PCQM4Mv?2 was sufficient for strong
downstream performance. In future work, we plan to investigate how smaller subsets with sufficient
diversity can be used to minimize computational requirements, e.g. by requiring fewer gradient steps.

F Datasets

PCQM4Myv2. The main dataset we use for pre-training is PCQM4Mv2 [43]] (license: CC BY 4.0),
which contains 3,378,606 organic molecules, specified by their 3D structures at equilibrium (atom
types and coordinates) calculated using DFT. Molecules in PCQM4Myv2 have around 30 atoms on
average and vary in terms of their composition, with the dataset containing 22 unique elements in
total. The molecules in PCQM4Mv2 only contain one label, unlike e.g. QM9, which contains 12
labels per molecule, however we do not use these labels as denoising only requires the structures.

QM9. QMDY is a dataset [47] (license: CCBY 4.0) with approximately 130,000 small organic
molecules containing up to nine heavy C, N, O, F atoms, specified by their structures. Each molecule
has 12 different labels corresponding to different molecular properties, such as highest occupied
molecular orbital (HOMO) energy and internal energy, which we use for fine-tuning.

0C20. Open Catalyst 2020 [13]] (OC20, license: CC Attribution 4.0) is a recent large benchmark
containing trajectories of interacting surfaces and adsorbates that are relevant to catalyst discovery
and optimization. This dataset contains three tasks: predicting the relaxed state energy from the initial
structure (IS2RE), predicting the relaxed structure from the initial structure (IS2RS) and predicting
the energy and forces given the structure at any point in the trajectory (S2EF). For IS2RE and IS2RS,
there are 460,000 training examples, where each data point is a trajectory of a surface-adsorbate
molecule pair starting with a high-energy initial structure that is relaxed towards a low-energy,
equilibrium structure. For S2EF, there are 113 million examples of (non-equilibrium) structures with
their associated energies and per-atom forces.

DES15K. DESI15K [18] (license: CCO 1.0) is a small dataset containing around 15,000 interacting
molecule pairs, specifically dimer geometries with non-covalent molecular interactions. Each pair
is labelled with the associated interaction energy computed using the coupled-cluster method with
single, double, and perturbative triple excitations (CCSD(T)) [3]], which is widely regarded as the
gold-standard method in electronic structure theory.

Usage of DFT-generated structures for pre-training. The structures in PCQM4Mv2 are obtained
using DFT calculations, which in principle could have also been used to generate labels for molecular
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properties in DFT-generated downstream datasets, such as QM9. However, there are multiple reasons
why denoising remains a desirable pre-training objective in such settings. First, although there is a
computational cost for generating datasets such as PCQM4Myv2, it is now openly available and part
of our aim is to understand how to leverage such datasets for tasks on other datasets (analogous to
how ImageNet is expensive to build, but once it is available, it is important to understand how it can
improve downstream performance on other datasets). Second, even if PCQM4Mv2 contained all the
labels in QM9, pre-training via denoising structures allows one to pre-train a single, label-agnostic
model which can be individually fine-tuned on any of the targets in QM9. This is substantially cheaper
than per-target pre-training, and the resulting pre-trained model is also re-useable for differing needs
and downstream tasks.

In other settings where the downstream dataset is generated using more expensive methods than DFT,
pre-training via denoising DFT-relaxed structures can also be helpful and has a clear benefit, as shown
by our experiment on the CCSD(T)-generated dataset DES15K where denoising on PCQM4Mv?2
improves performance for a downstream task involving a “higher” level of theory such as CCSD(T).
Generally, we emphasize that the methodology of denoising structures can be applied to any dataset
of structures (regardless of whether they are computed using DFT or not). We hope that denoising
will be useful in the future for learning representations by pre-training on structures obtained through
other methods such as experimental data (in which case labeling may be expensive) and databases
generated by other models such as AlphaFold (where only structures are available) [31]].

G Experiment Setup and Compute Resources

Below, we list details on our experiment setup and hardware resources used.

GNS & GNS-TAT. GNS-TAT training for QM9, PCQM4Myv?2 and DES15K was done on a cluster
of 16 TPU v3 devices and evaluation on a single V100 device. GNS training for OC20 was done
on 8 TPU v4 devices, with the exception of the 1.2 billion parameters variant of the model, which
was trained on 64 TPU v4 devices. Pre-training on PCQM4Mv?2 was executed for 3 - 10° gradient
updates (approximately 1.5 days of training). Fine-tuning experiments were run until convergence for
QM9 (10° gradient updates taking approximately 2 days) and DES15K (10° gradient updates taking
approximately 4 hours) and stopped after 5 - 10° gradient updates on OC20 (2.5 days) to minimize
hardware use (the larger models keep benefiting from additional gradient updates).

TorchMD-NET. We implemented denoising for TorchMD-NET on top of [Tholke and De Fabritiis|s
[2022] open-source codeﬂ Models were trained on QM9 using data parallelism over two NVIDIA
RTX 2080Ti GPUs. Pre-training on PCQM4Mv?2 was done using three GPUs to accommodate the
larger molecules while keeping the batch size approximately the same as QM9. All hyperparameters
except the learning rate schedule were kept fixed at the defaults. Pre-training took roughly 24 hours,
whereas fine-tuning took around 16 hours.

Hyperparameter optimization. We note that effective pre-training via denoising requires sweeping
noise values, as well as loss co-efficients for denoising and atom type recovery. For GNS/GNS-TAT,
we relied on the hyperparameters published by Godwin et al. [23] but determined new noise values
for pre-training and fine-tuning by tuning over a grid of approximately 5 values each on PCQM4Mv2
and QMO (for the HOMO target). We used the same values for DES15K without modification. We
also ran a similar number of experiments to determine cosine cycle parameters for learning rates.

H Hyperparameters

We report the main hyperparameters used for GNS and GNS-TAT below.

8 Available on GitHub at: https://github.com/torchmd/torchmd-net,
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Table 3: GNS-TAT hyperparameters for pre-training on PCQM4Mv2.

Parameter

Value or description

Gradient steps

Optimizer

o3}

P2

Warm up steps

Warm up start learning rate
Warm up max learning rate
Cosine min learning rate
Cosine cycle length

3-10°

Adam with warm up and 1-cycle cosine decay schedule
0.9

0.95

104

1075

1074

1077

5-10°

Loss type Mean squared error

Batch size Dynamic to max edge/vertex/graph count

Max vertices in batch 256

Max edges in batch 9216

Max graphs in batch 8

Distance featurization Bessel first kind (7, = 0,0 = 1.0)

Max edges per vertex 20

MLP number of layers 3

MLP hidden sizes 1024

Activation Tailored ReLU (with negative slope chosen using TAT)

message passing layers

Block iterations

Vertex/edge latent vector sizes
Decoder aggregation

10

3

512
Mean

Position noise

Parameter update

EMA decay

Position loss coefficient
Atom type mask probability
Atom type loss coefficient

Gaussian (4 = 0,0 = 0.02)

Exponentially moving average (EMA) smoothing
0.9999

1.0

0.75

4.0

I Additional Experimental Results

I.1 Freezing Pre-trained Parameters

We perform an experiment to assess how useful the features
learned by pre-training are if they are not fine-tuned for the
downstream task but kept fixed instead. Specifically, on the
HOMO target in QM9, we freeze the backbone of the model
and fine-tune only the decoder (c¢f. Appendix [B). To evaluate
this, we compare it to using random parameters from initializa-
tion for the model’s backbone, which allows us to isolate how
useful the pre-trained features are. As described in Appendix[B]
the decoder is a simple module involving no message-passing.
Figure [7] shows that only training the decoder while keeping
the pre-trained parameters fixed results in test MAE of 40 meV,
which is worse than fine-tuning the entire model but substan-
tially better than the performance of >100 meV in test MAE
resulting from training the decoder when the remaining param-
eters are randomly initialized. This suggests that the features
learned by denoising are more discriminative for downstream
prediction than random features. We note that training only the
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—— Decoder training w/ random features
—— Decoder training w/ PT features
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Figure 7: Training only the decoder
results in significantly better perfor-

man

ce when using pre-trained fea-

tures rather than random ones.

decoder is also substantially faster than training the entire network — one batch on a single V100 GPU
takes 15ms, which is 50X faster than one batch using 16 TPUs for the full network.
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Table 4: GNS-TAT hyperparameters for fine-tuning on QM9 and DES15K.

Parameter

Value or description

Gradient steps

Optimizer

o3}

P2

Warm up steps

Warm up start learning rate
Warm up max learning rate
Cosine min learning rate
Cosine cycle length

105 QM9 / 10° DES15K

Adam with warm up and 1-cycle cosine decay schedule
0.9

0.95

104

1075

1074

3-1077

10% QM9 / 10° DES15K

Loss type Mean squared error

Batch size Dynamic to max edge/vertex/graph count

Max vertices in batch 256

Max edges in batch 3072

Max graphs in batch 8

Distance featurization Bessel first kind (7, = 0,0 = 1.0)

Max edges per vertex 20

MLP number of layers 3

MLP hidden sizes 1024

Activation Tailored ReLU (with negative slope chosen using TAT)

message passing layers

Block iterations

Vertex/edge latent vector sizes
Decoder aggregation

10

3

512
Mean

Position noise

Parameter update

EMA decay

Position loss coefficient
Atom type mask probability
Atom type loss coefficient

Gaussian (4 = 0,0 = 0.05)

Exponentially moving average (EMA) smoothing
0.9999

0.01

0.0

0.0

1.2 Performance of TorchMD-NET on DES15K

In addition to the experiments involving GNS-TAT on DES15K in Section .4} we also consider
the performance of TorchMD-NET on DES15K with and without pre-training on PCQM4Mv2. As
shown in Table [6] TorchMD-NET outperforms GNS-TAT when trained from scratch, and pre-training
then yields a further boost in performance as with GNS-TAT.

L3 Comparison of OC20 IS2RE Pre-training Performance with Other Architectures

Table|/|compares the performance of our models with various other architectures proposed in prior
work. GNS yields SOTA performance on each of the four validation sets for the direct IS2RE task. As
discussed in Section[d.3]and shown in Figure [3| (left), the model pre-trained on OC20 itself achieves
SOTA performance with faster convergence than all other GNS variants. Note that since we pre-train
on OC20 itself, the pre-trained model performs equally well at convergence as the model trained
from scratch with noisy nodes (cf. Section §.3).

1.4 Pre-training via Denoising Improves Force Prediction

As shown in Section [3.2.1] denoising structures corresponds to learning an approximate force field
directly from equilibrium structures. We explore whether pre-training via denoising would therefore
also improve models trained to predict atomic forces. First, we compare the performance of TorchMD-
NET for force prediction on the MD17 (aspirin) dataset with and without pre-training on PCQM4Mv?2.
Table 8| shows that pre-training improves force prediction.
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Table 5: GNS hyperparameters for OC20.

Parameter

Value or description

Gradient steps

Optimizer

o3}

P2

Warm up steps

Warm up start learning rate
Warm up max learning rate
Cosine min learning rate
Cosine cycle length

5-10°

Adam with warm up and 1-cycle cosine decay schedule
0.9

0.95

5-10°

1075

1074

5-1076

5-106

Loss type Mean squared error

Batch size Dynamic to max edge/vertex/graph count
Max vertices in batch 1024

Max edges in batch 12800

Max graphs in batch 10

Distance featurization Gaussian (u = 0,0 = 0.5)
Max edges per vertex 20

MLP number of layers 3

MLP hidden sizes 1024

Activation shifted softplus

message passing layers 5

Block iterations 5

Vertex/edge latent vector sizes 512

Decoder aggregation Sum

Position noise

Parameter update

EMA decay

Position loss coefficient
Atom type mask probability
Atom type loss coefficient

Gaussian (4 = 0,0 = 0.2)

Exponentially moving average (EMA) smoothing
0.9999

1.0

0.0

0.0

Table 6: Performance of TorchMD-NET with and without pre-training for interaction energy predic-
tion on DES15K.

Model Test MAE (kcal/mol)
TorchMD-NET 0.721
+ Pre-training on PCQM4Mv2 0.406

Table 7: Comparison of different variants of GNS with other baseline architectures on IS2RE

prediction for OC20.
Model Validation MAE for IS2RE

ID  OOD Adsorbate OOD Catalyst OOD Both Average
DimeNet ++ 0.5636 0.7127 0.5612 0.6492 0.6217
GemNet 0.5561 0.7342 0.5659 0.6964 0.6382
SphereNet 0.5632 0.6682 0.5590 0.6190 0.6024
SEGNN 0.5310 0.6432 0.5341 0.5777 0.5715
GNS 0.5233 0.6295 0.5202 0.5617 0.5587
GNS + NN 0.4196 0.4900 0.4316 0.4282 0.4424
GNS + NN (PT on PCQM4Mv2) 0.4135 0.4856 0.4245 0.4245 0.4370
GNS + NN (PT on OC20) 0.4164 0.4836 0.4267 0.4237 0.4376
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Second, the OC20 dataset contains a force prediction task Table 8: Performance of
(S2EF), where a model is trained to predict point-wise energy  TorchMD-NET for force predic-
and forces (each point being a single DFT evaluation during a  tion on MD17 (aspirin).
relaxation trajectory) from a given 3D structure. Tables [9]and

show the performance of GNS when trained from sc%tch [;1/;2] Method Test MAE
pre-trained via denoising on equilibrium structures in OC20, TorchMD-NET 0.268 £ 0.003
as described in Section[£.3] We show two metrics for measur- ~ + Pre-training  0.222 + 0.003
ing force prediction performance on each of the four validation
datasets: mean absolute error (lower is better) and cosine similarity (higher is better). We observe
that the pre-trained model improves upon the model trained from scratch for both metrics and all four
validation datasets, with improvements up to 15%.

Table 9: Force prediction on OC20 by MAE (lower is better).

Validation Dataset Model

GNS  Pre-trained GNS
1D 0.0332 0.0282
OOD Adsorbate 0.0366 0.0314
OOD Catalyst 0.0360 0.0335
OOD Both 0.0406 0.0382

Table 10: Force prediction on OC20 by cosine similarity (higher is better).

Validation Dataset Model

GNS  Pre-trained GNS
ID 0.4845 0.5517
OOD Adsorbate 0.4730 0.5414
OOD Catalyst 0.4553 0.4983
OOD Both 0.4417 0.4849
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