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Abstract

ScatterMoE is an implementation of Sparse Mixture-of-Experts (SMoE) on
GPUs. ScatterMoE builds upon techniques in existing implementations,
and overcoming some of the current limitations to improve batched infer-
ence, training speed, and memory footprint. This implementation achieves
this by avoiding both padding and making excessive copies of the input.
We also fuse expert linear transforms and reordering operations with Par-
allelLinear, a module that can be used to extend the concept of SMoEs.
We benchmark our implementation against Megablocks, and show that it
enables a higher throughput and lower memory footprint. We also show
how ParallelLinear enables extensions of the Mixture-of-Experts concept
via a demonstration with a Mixture of Attention implementation.

� https://github.com/shawntan/scattermoe

1 Introduction

Sparse Mixture of Experts (SMoEs; Shazeer et al. 2017) have become increasingly popular
for scaling up Transformer-based language models. While applications of SMoEs like the
Switch Transformer (Fedus et al., 2022) use SMoEs to scale “outrageously” large models
by distributing computation of experts across compute nodes, it has proven useful even in
scaling up smaller models where device memory is an issue.

For SMoEs, sparsity is key in reducing computation costs. However, fully exploiting the
sparsity to improve the throughput of MoE modules is challenging. While a lot of deep
learning research is implemented in PyTorch (Paszke et al., 2019), the naive implementation
of SMoEs does not take full advantage of the parallelism of GPUs and are slow as a result.
Initial implementations on Tensor Processing Units (TPUs) for Switch Transformers require
all tensor sizes, or capacity, to be specified at compilation, which ensures that all load for
every expert is equal (Fedus et al., 2022). This creates issues when experts are imbalanced:
When the router assigns more tokens than capacity allows to a particular expert, some
tokens are dropped. Likewise, when experts are underused, the tensors are padded, which
creates unnecessary memory allocation. Later, Megablocks (Gale et al., 2023) and PIT (Zheng
et al., 2023) framed the SMoE computation as a sparse matrix multiplication problem, which
can be computed efficiently with sparse matrix optimised algorithms. In both these cases,
the authors were able to create a more efficient GPU-based implementation of SMoEs.

Despite these recent advances, there is still room for improvement. First, existing implemen-
tations of SMoEs, performs a scatter-to-group initial copy of the input, creating a memory
allocation overhead during training because of tensors stored for used in the backward
pass. Some implementations pad the routed tensors so they are equal-sized blocks, which
further increases the memory overhead. Second, Megablocks and PIT requires a translation
of the SMoE problem into a sparse matrix format. While this incurs only a small part of
the computation overhead, the sparse matrix format makes the intermediate representation
harder to extend upon.
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Figure 1: Current implementations of SMoE Multi-layer Perceptrons (MLPs) require a
copy of the embeddings when grouping (left), while ScatterMoE fuses the grouping and
linear transformation step (right), reducing the memory footprint of our method. The
various colours represent different experts, while the vertical rectangular boxes represent
embeddings with their associated time steps labelled above or below them.

In this paper, we present ScatterMoE, an SMoE implementation that minimises this memory
overhead. This is made possible by ParallelLinear, a primitive we introduce that performs
grouped matrix operations on scattered vectors. The resulting intermediate representations
(e.g. hidden state of an SMoE MLP) can be exposed as standard PyTorch tensors, allowing for
easy extensions of present SMoE methods to other types of expert modules. We demonstrate
the utility of this representation by implementing SMoE Attention with ParallelLinear,
following the specification in Tan et al. (2023). In the final section, we benchmark ScatterMoE
against a naive PyTorch implementation and Megablocks.

2 Related Work

Other implementations & Dependencies The core parts of ScatterMoE is implemented
with Triton1 (Tillet et al., 2019), a tile-based language for GPU programming in Python,
making it the most accessible for modification and extension. Our main comparison is
against Megablocks2, which is implemented using the STK framework3 which also uses
Triton. Megablocks is also used in the Megatron-LM model (Shoeybi et al., 2019; Narayanan
et al., 2021; Korthikanti et al., 2023), and its widespread use as an efficient method for
training SMoEs. Another popular library for implementing SMoEs is CUTLASS4(Kim et al.,
2022), with which Megablocks uses as its grouped option.

1� https://github.com/openai/triton
2� https://github.com/stanford-futuredata/megablocks
3� https://github.com/stanford-futuredata/stk
4� https://github.com/NVIDIA/cutlass
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(a) Grouped to grouped (b) Scattered to grouped

(c) Scattered to scattered (d) Grouped to scatter

Figure 2: ParallelLinear allows for performing different combinations of SMoE transfor-
mations allowing for the input and output to be either grouped or scattered. This basic
functionality forms the basis of both forward and backward passes of ScatterMoE. Unlike
existing implementations, these operations are performed without additional copying (or
padding) of the input and output tensors.

Other applications of SMoEs Aside from MLPs, SMoE versions of the attention module
have also been proposed (Zhang et al., 2022; Csordás et al., 2023). These mixture-of-attention
(MoA) implementations have been used to scale up Universal Transformers (Dehghani et al.,
2018; Tan et al., 2023), and also for applications to continual learning in a fully modularised
Transformer (Shen et al., 2023). Computing SMoEs efficiently will bring huge benefits to the
training and inference of these models.

3 Method

In this paper, we will maintain the notation convention of boldface for matrices, i.e. X.
Unless otherwise stated, the first dimension is batch-time (batch and time dimensions
flattened) for ease of understanding. Additionally, Xi denotes the i-th row of X.

3.1 Sparse Mixture-of-Experts

SMoE modules are made up of E experts which are typically sub-modules of a similar
architecture. Each of the T tokens in the input is routed via a routing module, and then
based on the router output weights, assigned to k experts, where k ≤ E. However, the naive
method of computing an SMoE (iterating over all tokens and evaluating the respective
expert output) is far too slow, and does not exploit the full parallelism of GPU computation.
In practice, SMoE implementations often perform the following main steps:

1. Routing – Based on each token embedding Xt, the router assigns the weights for
each expert g (Xt), and only the top-k experts are selected.

2. Grouping – This step groups all tokens that are assigned to the same expert together.
If k > 1, as is often the case, then this also results in a “fan out” of tokens, resulting
in kN embeddings in total.

3. Expert transform – Now that the tokens are grouped by expert, each expert (a
linear transform) can be efficiently computed by batched vector transformations
(matrix-matrix multiplications).

4. Scattering – This step returns each token to be grouped by its original time-step.
This still results in a kN embeddings in total.
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5. Weighted sum – This step combines the k outputs per token by its original routing
weight,

Yt = ∑
e∈topk(g(Xt))

ge (Xt) · fe (Xt)

resulting in N embeddings.

Typically, each expert is a Multi-layer Perceptron (MLP) with one hidden layer of dimension
dexpert.

In Megablocks, steps (1) and (4) result in a copy of the original input. They further pad the
per-expert blocks of tokens so that they fit into equal count for convenient GPU computation
(See Figure 1). This allocates the padded array for the embeddings in High Bandwidth
Memory (HBM) and copies the original embeddings in sorted order into it. A Grouped
GeMM is then performed on the expert-sorted array.

ScatterMoE, on the other hand, avoids realising the entire padded array in HBM. Instead
of copying all the embeddings into a padded array, we sort the tokens according to the
experts, and pad the indices instead. When loading a tile into Static RAM (SRAM), we load
according to the padded indices, resulting in a padded tile.

3.2 ParallelLinear operation

Our implementation of SMoE relies on ParallelLinear, which allows for different combina-
tions of grouped General Matrix Multiplications (GeMMs). In order to achieve this, we wrote
a Triton kernel, scatter2scatter, that enables all combinations of operations shown in Figure
2. This operation fuses grouped GeMMs and scattered read and write operations, which
allows us to skip an intermediate group and copy step. ParallelLinear allows options for
grouped and scattered for both input and output, resulting in the four possible combina-
tions seein in Figure 2. With combinations of these operations, we can implement both the
forward and backward passes of ParallelLinear.

Algorithm 1 provides the pseudo-code of ParallelLinear. It is a thin wrapper around
the scatter2scatter kernel, and the grouping options are provided as arguments to Paral-
lelLinear. This is the main workhorse of our SMoE implementation, and can be used for
both implementing an MLP and an attention layer. We implemented the backward pass of
ParallelLinear independently of its downstream usage to allow it to be used as a primitive
to build other experts upon.

Algorithm 1 ParallelLinear FORWARD

Input:
X T × din input matrix o T order indices

W E× din × dout transform tensor k top-k
default k = 1

p S× j routing weights
where Sj = Tk default p : (Tk× 1) = 1

*options
grouped in True, False grouped out True, False

Output:
Y S× dout output matrix

Ŷ← scatter2scatter (X, W, o, k, *options)
if p ̸= ∅ then

Ŷ← view
(
Ŷ, S, j,−1

)
// reshape and weighted sum if p is provided.

Y← bmm
(
p, Ŷ

)
else

Y← Ŷ
end if
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3.2.1 Backward pass

In a typical batched linear transformation Y = XW, we need to compute the gradients ∇X
and ∇W.

∇X = ∇YW⊤, ∇W = X⊤∇Y,
In ParallelLinear, we will need to compute these gradients for each of the E experts. While
this could be computed in a way where X and∇Y are both scattered, the implementation of
this operation is fastest when both X and ∇Y are grouped5 .

Algorithm 2 ParallelLinear BACKWARD

Input:
∇Y S× dout gradient matrix Ŷ Tk× dout from forward pass

W E× din × dout transform tensor X T × din from forward pass
k top-k o Tk from forward pass

default k = 1
column p S× j routing weights

where Sj = Tk default p : (T × 1) = 1
Output:

∇X same size as X ∇W same size as W
∇p same size as p

if p ̸= ∅ then
∇p← bmm

(
∇Y, Ŷ

)
∇̄Y← group(∇Y, o, p) // weight and group

else
∇̄Y← Y

end if
if X is not grouped then

X̄← group(X, o,∅)
else

X̄← X
end if
∇W← groupXTY

(
X̄, ∇̄Y

)
∇̄X← scatter2scatter

(
∇̄Y, W⊤, o, 1

)
// grouped to scatter or group depending on original input

Algorithm 2 groups the embeddings when they are not grouped in order to compute ∇W.
groupXTY is the kernel that implements this grouped matrix multiplication. While this
grouping incurs additional memory allocations for potentially very large matrices, these
array allocations could be reused. Once the gradients ∇p has been computed, the array
for Ŷ can be used as the output for ∇̄Y. X̄ can be reused for ∇̄X as they are of the same
dimensions. We can then further minimise the use of memory during the backward pass by
re-using the arrays used for the grouping operations. We colour the reused arrays in blue
and orange respectively in Algorithm 2.

3.2.2 SMoE Multi-layer Perceptron (SMoE MLP)

In the context of an SMoE MLP, we can reduce the memory footprint even further. The
MLP requires two linear transformations, and could be naively implemented with two
ParallelLinear operations set to perform scatter-to-scatter transformations. However, we
can configure these two linear transforms to be scattered-to-grouped then grouped-to-
scattered respectively. This will allow each ParallelLinear transform in the SMoE MLP to
require only one group operation during the backward pass.

3.3 Extensibility: Mixture-of-Attention (MoA)

There have been several proposals for applying SMoEs to the attention layer (Zhang et al.,
2022; Csordás et al., 2023; Tan et al., 2023). Regardless of formulation, before the attention

5We tested scatterXTY and found it to be slower than a grouping operation followed by groupXTY
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Algorithm 3 SMOE MULTI-LAYER PERCEPTRON

Input:
X T × dmodel input matrix o T vector of grouped ordering

W1 E× dmodel × dexpert transformation tensor
W2 E× dexpert × dmodel transformation tensor
Output:

Y T × dmodel output matrix
H← ParallelLinear (X, W1, o,∅, grouped in=False, grouped out=True)
H← σ

(
Ĥ
)

// where σ is any point-wise non-linearity
Y← ParallelLinear (H, W2, o, p, grouped in=True, grouped out=False)

layer is applied, the embeddings should be in chronological order (scattered) to facilitate
the application of positional embeddings and to compute the result of the attention weights
and value embeddings. With existing SMoE implementations, there would be an additional
pair of group-scatter operations, incurring additional memory costs.

ScatterMoE provides an advantage. Since we can retain the scattered order-
ing through a ParallelLinear transform, we can implement MoAs without allocat-
ing the extra arrays for grouping and scattering. Figure 3 shows the opera-
tions used for SMoE Attention. In this report, we specifically implement and
benchmark the Mixture of Multi-head Attention variant found in Tan et al. (2023).

Figure 3: ParallelLinear allows
for scattered to scattered trans-
formations which retains the
chronological order.

This version resembles Grouped-query Attention (GQA;
Ainslie et al. 2023), where each key head has multiple
possible query heads, while in the SMoE setting, there
would be hexpert key heads, with k · hexpert query heads
selected from a possible E · hexpert heads, where hexpert is
the number of heads per expert.

Following the standard attention implementation con-
ventions, we set dout = dexpert · dhead, where dhead is the
number of dimensions for each head. We then reshape
accordingly when we perform the attention operation so
that the separate heads interact independently.

In Algorithm 4, we also consider the time dimension,
so we express the inputs and intermediate arrays as 3-
dimensional tensors with the dimensions for batch, time,
and embedding dimensions (B× T × d). In practice, we
assume that the input is contiguous and is batch-time
ordered, allowing us to flatten the tensor and proceed as
we did in the case of the MLP. Note that for the SMoE attention, a key distinction is that
we require ParallelLinear to give an ungrouped output after the first transformation, and
it takes an ungrouped input for the output transform, which means both ParallelLinear
transformation use a scattered to scattered configuration (Figure 2c).

4 Performance

In this section, we cover the performance of our implementation for both training and
inference. As an overall integrated test, we benchmark our method within Mixtral (Jiang
et al., 2024), using a ∼1.5B parameter configuration,

dmodel = 1024, dexpert = 3584, k = 2, E = 8, L = 16,

We compare against the naive implementation from HuggingFace (Naive HF impl.), then
swapping out the SMoE layer with Megablocks sparse (MB (Sparse)) and grouped memory
efficient (MB (Mem. eff.)), and finally ScatterMoE (Ours). Our goal is to measure the overall
throughput in a training setting.

We ran the training for 100 training updates, with an effective batch size of 256 and 2048
tokens per instance, across 8 A100 GPUs on the same compute node. For both the naive and
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Algorithm 4 SMOE MULTI-HEAD ATTENTION

Input:
X B× T × dmodel input matrix k top-k
o BTk grouped indices p B× T × k router weights

WK dmodel × dout key transform WV dmodel × dout value transform
WQ E× dmodel × dout query transform WO E× dout × dmodel output transform
Output:

O B× T × dmodel output matrix

V← X⊤WV
K← X⊤WK
Q← ParallelLinear

(
X, WQ, o,∅, grouped in=False, grouped out=False

)
Ô← Attention (Q, K, V)
O← ParallelLinear

(
Ô, WO, o, p, grouped in=False, grouped out=False

)

(a) 1.5B model training throughput (b) SMoE MLP unit throughput (c) SMoE MLP unit memory use

Figure 4

ScatterMoE, this resulted in an actual batch size of 128 and 2 accumulation steps, while the
Megablocks benchmarks required a batch size if 64 and 4 accumulation steps. We ran the
training for a 100 steps and computed the overall throughput. Our method outperforms
both the Sparse Megablocks implementation by 38.1% in this setting. This indicates the
importance of the smaller memory footprint, but at larger dimensions with equivalent batch
sizes, the gains are not as significant.

The rest of this section covers the other benchmarking experiments we performed in more
detail, testing for the effects of decreasing sparsity, and increasing granularity of experts,
and benchmarking of our Mixture of Attention implementation.

4.1 Unit Benchmarking on the SMoE MLP

Unless otherwise stated, we use the following model hyperparameters,

dmodel = 4096, dff = 2dmodel, dexpert = dff/k, E = 8k

For example, the active hidden units for an MLP is 2 · 4096 = 8192. If k = 4, then E = 4 · 8 =
32, with each expert being 8192/k = 2048 dimensions. Each datapoint on the plot is the
median and 5-th and 95-th percentiles of 100 runs of the module. In this unit test, we use a
more efficient PyTorch implementation from the implementation of Tan et al. (2023) 6

Figure 4a summarises the overall performance for an SMoE MLP where E = 32, k = 4, and
T = 30 · 2048. All benchmark times are measured on an Nvidia A100 GPU. Generally, we
find that ScatterMoE has slightly higher throughput during training, for the same input
sizes. Our method shows a larger margin of improvement for inference.

On memory consumption, our implementation for the SMoE MLP uses 66.2% of the memory
Megablocks uses during training, while using only 53.6% of the memory of Megablocks if
we consider only inference.

6� https://github.com/shawntan/SUT/tree/main/sut layer/parallel linear/parallel experts
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(a) Training throughput (b) Inference throughput

Figure 5: Increasing k and E while fixing the number of active parameters and total param-
eters. We find that our implementation scales better with higher k. Inference granularity
scaling performance. The difference in relative throughput is higher if we consider only the
forward pass.

4.2 Granularity and Throughput

Krajewski et al. (2024) defines the concept of granularity. Given a SMoE MLP with the
equivalent active parameters as an MLP with intermediate dimension layer of dimension
dff, and with each expert of dimension dexpert, then granularity is defined as,

G =
dff

dexpert

Here, we measure the effect of throughput as we vary G while fixing dff. Accordingly, with
higher values of G, we need to increase values of k and E — more granularity requires more
experts to achieve the same active parameters.

We test values of k ∈ {1, 2, 4, 8, 16}, and E = 8k for divisibility of dimension sizes. Figure
5 shows how throughput of both methods vary relative to a model with equivalent active
parameters. Since we maintain constant active and total parameters for these runs, these
results are also constant for all G.

We find that ScatterMoE scales with G with better throughput. This may be related to
the increase in zero-padding required for higher number of E in the case of Megablocks
— as the number of experts grows and the embeddings assigned to each expert decreases,
there will be more padding introduced. If we consider only the forward pass, the relative
gap between our method and Megablocks is also much higher than in the case of training.
This makes our method favourable for batched inference, especially with high granularity
settings. The results of Krajewski et al. (2024) suggests higher G for SMoE models, and our
implementation seems suited for this application.

4.3 Decreasing sparsity

We can view the SMoE as an interpolation between a model with the size of just the active
parameters k · dexpert and a large fully dense model with E · dexpert. However, SMoE comes
with additional overhead (e.g. routing, sorting), and we want to measure how much
reducing sparsity will affect throughput, in comparison to a fully dense model.

In this experiment, we tested on increasing values of k ≤ 30. Further increasing k reaches the
limit of device memory for Megablocks. We maintain E = 64 for all runs, and compare the
performance of both Megablocks and ScatterMoE to a dense model with a dff = E · dexpert.
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(a) MoA throughput (b) Training throughput (c) Inference throughput

Figure 8: The curves for increasing granularity for the MoMHA implementation. In this
case, the Active params baseline varies in throughput because of the shared key and value
vectors across the experts.

Figure 6: Relative throughput curves as
we decrease sparsity (increasing k)

Generally, we find that while our implemen-
tation performs with slightly better through-
put overall, both Megablocks and our imple-
mentations are still more efficient than a large
dense MLP with equivalent parameters. How-
ever, note that in this case, the throughput for
k = 30, E = 64 is already reaching the through-
put for an equivalent dense model with the same
parameters. Further increasing k exceeds the
memory of the device we ran the benchmarks
on for Megablocks.

4.4 Mixture-of-Attention

As previously mentioned, we implement the Mixture of Multi-head Attention (MoMHA)
variant of Attention SMoEs as described in Tan et al. (2023). This implementation allows for
multiple attention heads per expert, and shares the key and value embeddings across the
attention experts. This formulation is similar to Grouped-query Attention (GQA; Ainslie
et al. 2023), where each head of the key has several query heads, each of these forming a
group. MoMHA experts are the equivalent of groups in GQA, where each group is of size k.

For the following benchmarks, we adhere to the following parameters:

dmodel = 4096, dhead = 128, T = 16 · 2048, h = 32, hexpert = h/k, E = 8k

where dhead is the dimension of each attention head and h is the number of active attention
heads.

We implemented an equivalent baseline in Megablocks using the ‘dense’ configuration
in the library. This version still suffers from the issue with having to perform redundant
grouping and scattering steps.

For k = 8, we find that our implementation outperforms Megablocks, by 24.0% of througput
for inference. We also note from Figure 8, that as we increase granularity (fewer heads per
expert / smaller hexpert), the gap between our implementation and Megablocks grows as
well. Again, our method is favourable for use in high granularity settings for Mixture-of-
Attention
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Tasks Metric Hugging Face ScatterMoE Abs. Error

winogrande

accuracy

0.7632 0.7640 0.0008
sciq 0.9520 0.9580 0.0060
race 0.4057 0.4010 0.0047
piqa 0.8330 0.8368 0.0038

openbookqa 0.4680 0.4740 0.0060
hellaswag 0.8396 0.8405 0.0009

copa 0.9300 0.9300 0.0000
boolq 0.8523 0.8541 0.0018

arc easy 0.8350 0.8350 0.0000
arc challenge 0.5973 0.5981 0.0008

wikitext perplexity 5.6135 5.6142 0.0007

Table 1: Language Model Evaluation Harness results comparisons: Hugging Face v. Scatter-
MoE implementations. Differences in results between both implementations are negligible.

4.5 Mixtral Inference Comparison

Finally, we converted Mixtral 8x7B7 to use ScatterMoE, and ran the LM Evaluation Harness
(Gao et al., 2023) on several benchmarks (See Table 1). As ScatterMoE is an alternative
implementation of Sparse MoEs, we do not expect any differences in the final evaluation
results. The absolute error between the Hugging Face naive implementation and ScatterMoE
is sufficiently small, which demonstrates this.

We have included the script to convert the model parameters from Hugging Face’s format
to a format compatible for ScatterMoE8

5 Conclusion & Limitations

ScatterMoE is an implementation of SMoEs in Triton that reduces the memory footprint
and offers slightly higher throughput on the GPU compared to existing solutions. We have
also engineered ScatterMoE to use the ParallelLinear primitive, which we envision to be a
module that can be extended upon to build other SMoE-style modules that require grouped
or scattered linear transformations.

At present, ScatterMoE does not implement a specialised kernel for speeding up decoding,
and further work is required for parallelisation in a multi-node setting. These additional
features will be added in future iterations, and we believe further testing by us and the
open source community will iron out any remaining bugs and performance issues left
unoptimised.

Finally, we have also provided an implementation of an MLP and Attention layer based
on ScatterMoE, that we hope will benefit any future implementations of Mixture-of-Expert
based models, and serve as worked examples for extending the concept of SMoEs to other
variants of linear transformation based experts.

Acknowledgments

We would like to Bowen Pan and Mayank Mishra for their testing and feedback of Scatter-
MoE. Songlin Yang also gave valuable advice during the development of the ScatterMoE
kernels.

7https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
8https://github.com/shawntan/scattermoe/blob/main/examples/convert.py

10

https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
https://github.com/shawntan/scattermoe/blob/main/examples/convert.py


Published as a conference paper at COLM 2024

References
Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón,

and Sumit Sanghai. Gqa: Training generalized multi-query transformer models from
multi-head checkpoints. arXiv preprint arXiv:2305.13245, 2023.
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