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ABSTRACT

The rapid growth of Artificial Intelligence-Generated Content (AIGC) raises con-
cerns about the authenticity of digital media. In this context, image self-recovery,
reconstructing original content from its manipulated version, offers a practical so-
lution for understanding the attacker’s intent and restoring trustworthy data. How-
ever, existing methods often fail to accurately recover tampered regions, falling
short of the primary goal of self-recovery. To address this challenge, we propose
ReImage, a neural watermarking-based self-recovery framework that embeds a
shuffled version of the target image into itself as a watermark. We design a gener-
ator that produces watermarks optimized for neural watermarking and introduce
an image enhancement module to refine the recovered image. We further ana-
lyze and resolve key limitations of shuffled watermarking, enabling its effective
use in self-recovery. We demonstrate that ReImage achieves state-of-the-art per-
formance across diverse tampering scenarios, consistently producing high-quality
recovered images.

1 INTRODUCTION

Recent advances in Artificial Intelligence-Generated Content (AIGC) (Betker et al., 2023; Blattmann
et al., 2023; Esser et al., 2023; Liu et al., 2024; Luo et al., 2023) have led to models capable of pro-
ducing content nearly indistinguishable from real data. While these advancements offer significant
benefits in fields such as media, entertainment, and digital communication, they also pose serious
risks. The ease of generating hyper-realistic modified content has raised concerns about the un-
intentional spread of misinformation and potential ethical and legal challenges. These risks are
particularly concerning in cases where manipulated media—such as forged news or altered legal
evidence—can distort public perception, influence opinion, or undermine societal trust.

To mitigate this risk, prior efforts have focused on detecting or localizing tampered regions. Among
these, watermarking-based image tamper localization methods (Sander et al., 2025; Zhang et al.,
2024b) have shown promise by embedding watermark into images that can later indicate whether
tampering has occurred. While such methods are helpful for interpreting the attacker’s intent or
enabling partial reuse of trustworthy regions, they do not provide access to the original image. As a
result, it remains challenging to assess the significance of altered regions or the extent of semantic
shifts from the original content.

Image self-recovery (Cao et al., 2024b; Ying et al., 2021; 2023) offers a promising alternative by
aiming to reconstruct the original content from its tampered version. These methods embed informa-
tion about the target image into itself as a watermark, allowing the original content to be recovered
through watermark extraction. This enables not only a better understanding of the attacker’s in-
tent but also the complete reuse of the restored content. However, existing image self-recovery
techniques suffer from notable limitations. They often fail to accurately reconstruct the tampered re-
gions—the core objective of self-recovery—resulting in blurry restorations, which lack fine-grained
structural and semantic details. This limits their utility in high-fidelity applications.

In this work, we propose ReImage, a self-recovery framework based on neural watermarking, where
a shuffled version of the original image is embedded into itself as a watermark. To ensure high
visual fidelity and accurate reconstruction, we design a generator that produces watermarks opti-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

mized for neural watermarking. This design induces misalignment between tampered regions and
their corresponding watermark locations, allowing corrupted areas to be replaced with intact coun-
terparts and further refined via an image enhancement module. We also analyze the limitations of
shuffling, where increased high-frequency components in the watermark degrade both visual quality
and extraction accuracy. By addressing this, we enable its practical use in neural watermarking.
ReImageachieves state-of-the-art performance across diverse tampering scenarios, and consistently
produces high-quality recovered images. In summary, our overall contributions are:

• We analyze key limitations of shuffled watermark embedding in neural watermarking and
enable its practical use previously infeasible in prior works.

• We introduce a novel framework that leverages a watermark generator and an image en-
hancement module to achieve high-fidelity image self-recovery.

• The proposed model achieves state-of-the-art performance across diverse tampering sce-
narios in image self-recovery.

2 RELATED WORKS

Neural Watermarking Neural watermarking aims to imperceptibly embed data within cover
content for secure, authenticated, or traceable media transmission. Traditional watermarking tech-
niques (Chan & Cheng, 2004; Chantrapornchai et al., 2014; Wong et al., 2009) embed watermark in
either the spatial or frequency domains, but often face limitations in capacity and robustness. With
the advancements in deep learning, recent approaches such as Tree-Rings (Wen et al., 2023), RoS-
teALS (Bui et al., 2023), and others (Tang et al., 2019; Zhao et al., 2024) have achieved improved
embedding capacity and robustness. Invertible Neural Networks (INNs) (Dinh et al., 2015) provide
bijective mappings that enable precise data embedding and extraction, making them well-suited for
neural watermarking. HiNet (Jing et al., 2021) pioneered INN-based neural watermarking with a
high-capacity approach, while ISN (Lu et al., 2021a) proposed a method to embed images within
images, using a key for extraction. We adopt neural watermarking for self-recovery. Unlike prior
methods that embed external or fixed watermarks, our approach embeds a shuffled version of the
target image itself, enabling redundant encoding of image content for self-recovery.

Image Self-Recovery Image self-recovery aims to recover the original image from a tampered
version, even under various manipulation attacks such as inpainting and splicing. Traditional image
self-recovery methods (Cao et al., 2024a; He et al., 2006; Molina et al., 2019) are based on Least
Significant Bit (LSB) embedding. However, they are highly susceptible to common degradations
such as JPEG compression, and often fail to recover the original content when the tampering rate is
high. Imuge (Ying et al., 2021) introduces a self-embedding strategy, where the original image is
embedded into itself to reconstruct an original image. Imuge+ (Ying et al., 2023) improves recon-
struction quality by adopting an invertible neural network architecture. However, both approaches
limit their robustness against unseen attack types and low recovery quality in tampered region. The
W-RAE (Cao et al., 2024b) method addresses this issue by embedding a 2×2 shuffled version of the
original image, enabling the replacement of tampered regions with their intact counterparts. How-
ever, 2× 2 shuffling fails to recover when the attacked region also covers its corresponding shuffled
area. In our work, we address this issue by applying shuffling with a finer grid, made possible
through our novel watermark generation and image enhancement techniques for robust recovery.

3 METHODS

Image self-recovery aims to restore a tampered or corrupted image to its original, authentic from
tampering attack (Betker et al., 2023; Blattmann et al., 2023). This restoration process is performed
without relying on any external reference or manual intervention. By facilitating the reconstruction
of the original image, this process helps in understanding the attacker’s intent, evaluating the extent
of tampering, and ultimately enhancing trust in the authenticity of the content. In this work, we focus
on watermarking-based approaches, where the information necessary for self-recovery is embedded
into the original image as an invisible watermark. Specifically, let Iorg denote the original image. We
embed information, derived from the original image Iorg, into itself for self-recovery and produce
the container image Icon. This container image may subsequently undergo tampering or corruption,
resulting in an attacked image Iatt. The goal of image self-recovery is to learn a function f that
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Figure 1: Overall architecture of the proposed methods. In our framework, given a target image
Iorg, module (a) generates a secret image Isec optimized for watermarking. The image is shuffled to
obtain S(Isec), which is then embedded into the cover image Icov—identical to Iorg—via module
(b), yielding the container image Icon. An attacker may generate a tampered image using an AI
tool, resulting in the attacked image Iatt. During image self-recovery, Noise Estimator predicts the
discarded noise component Înoise, which is used in module (c) to recover the shuffled secret image
S(Îsec) from Iatt. This image is then unshuffled to obtain Îsec and passed through module (d) to
reconstruct the target image Îorg. Module (e) refines Îorg using contextual information, producing
an enhanced recovered image Îenh. Finally, module (f) locates tampered regions and restores them
using corresponding untampered areas from Iatt, yielding Îrec.

reconstructs the original image from the attacked image, i.e., Iorg = f(Iatt), where f denotes the
self-recovery function.

3.1 PRELIMINARY: INVERTIBLE NEURAL NETWORK

Invertible Neural Networks (INNs) (Dinh et al., 2016) are architectures that consist of invertible
blocks with the unique property of reversibility, enabling the exact recovery of inputs from their
outputs. Specifically, given inputs X1 and X2, an invertible block maps them to outputs Y1 and Y2,
and exactly recovers the inputs via the inverse mapping. At layer l, the forward process takes input
X l

1 and X l
2, and produces X l+1

1 and X l+1
2 as follows:

X l+1
1 = X l

1 + ϕ(X l
2), (1)

X l+1
2 = X l

2 ⊙ exp(σ(ρ(X l+1
1 ))) + η(X l+1

1 ), (2)
where ϕ, ρ, and η are neural networks, σ is a sigmoid activation function, and ⊙ denotes element-
wise multiplication. The inversion operation does not require explicit inversion of the internal net-
works ϕ, ρ, and η. Instead, the original inputs can be precisely reconstructed from their outputs
using the following invertible formulations:

X l
2 = (X l+1

2 − η(X l+1
1 ))⊙ exp(−σ(ρ(X l+1

1 ))), (3)

X l
1 = X l+1

1 − ϕ(X l
2). (4)

An INN with L blocks takes an input pair X1 and X2, designated as X0
1 and X0

2 , and produces an
output pair XL

1 and XL
2 . The original X1 and X2 can then be recovered from these outputs through

the inverse process.

3.2 NEURAL WATERMARKING WITH INN

Image watermarking is the process of invisibly embedding a secret image, referred to as the water-
mark, into a cover image, resulting in a container image. The embedded watermark in the container
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Figure 2: Effects of Pixel Shuffling. (a) Visualization of pixel-shuffled images with different
grid configurations, defining how the image is divided into equally sized patches: finer grids in-
troduce higher variance between neighboring pixels, indicating increased high-frequency content.
(b) Magnitude spectra of the images in (a), obtained via FFT: a brighter center indicates dominant
low-frequency content, suggesting a smoother image. As the patch size decreases, spectral energy
spreads outward, indicating an increase in high-frequency components. (c) PSNR of container and
recovered images under varying the grid configurations: both degrade significantly as the grid be-
comes finer, due to the increased high-frequency component.

must be extractable later, enabling applications such as copyright protection and tampering detec-
tion. Due to its reversibility, the INN is well-suited for this task, allowing both watermark embedding
and extraction within a unified framework. Specifically, given a cover image Icov and a secret image
Isec, the INN takes both as input and generates a container image Icon as follows:

Icon, Inoise = IW(Icov, Isec), (5)

where IW denotes the INN-based watermarking module composed of L invertible blocks. After
this process, the extra output Inoise is discarded. The resulting container image Icon stays visually
similar to the cover image Icov while invisibly containing the information of the secret image Isec.
In inverse process, IW extract Icov and Isec from the tampered container image Iatt as follows:

Îcov, Îsec = IW−1(Iatt, Înoise), (6)

where IW−1 is the inverse process of IW. Here, Înoise is an estimate of the discarded noise Inoise,
which is not available for watermark extraction in practice. We adopt the network architecture
from Zhang et al. (2024a) for this noise estimator to predict Înoise from the attacked image Iatt.
Similarly, the internal sub-networks ϕ, ρ, and η at layers of IW are implemented following Huang
et al. (2017). Specifically, each subnetwork consists of five convolutional layers with a kernel size
of 3× 3, followed by Leaky ReLU.

For training, we enforce visual consistency between Icon and Icov by applying an L2 loss combined
with the VGG loss (Zhang et al., 2018) LLPIPS, which measures perceptual similarity in VGG fea-
ture space. The overall watermarking loss is defined as LW = ∥Icon−Icov∥22+λLLPIPS(Icon, Icov).
Additionally, to recover the secret image Isec, we define the extraction loss LE = ∥Isec − Îsec∥22.

Since our goal is self-recovery, we may set the original image Iorg as both the cover Icov and the
secret Isec, resulting in a container image Icon. The output Icon closely resembles Iorg while em-
bedding hidden redundant information necessary for image self-recovery. As prior work (Lu et al.,
2021b) has demonstrated the effectiveness of the above image watermarking, this self-embedding
approach may seem sufficient to recover the original image when the container is corrupted. How-
ever, recent work (Zhang et al., 2024a) has shown that INNs exhibit fragility and locality properties.
In particular, corrupted regions in the attacked image Iatt tend to align with missing content in the
extracted secret image Îsec, making accurate recovery challenging in those corrupted regions.

3.3 SHUFFLED WATERMARK GENERATOR

3.3.1 PIXEL SHUFFLING AND UNSHUFFLING

In self-recovery, restoring corrupted regions is essential for reconstructing the original content, as
the uncorrupted areas remain intact. However, due to the fragility and locality of the IW, tampering
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affects corresponding regions in both the container image Icon and the embedded secret Isec, often
causing recovery to fail. To address this, we intentionally disrupt this spatial alignment. Specifically,
instead of directly using the secret image, we apply a predefined pixel shuffling algorithm S to obtain
a shuffled version S(Isec), which is used as the watermark. As a result, the corrupted regions in Isec
are no longer spatially aligned with those in the container. We apply the unshuffling algorithm S−1

to rearrange S(Îsec), which is the recovered watermark, into the original spatial configuration of
Isec. In this process, the missing information in Îsec is likely to differ from that in the container
image Icon, meaning that information lost in Icon may still be present in Îsec.

Shuffling vs Shifting To induce spatial misalignment between corrupted regions in the container im-
age and those in the secret image, shifting may be an alternative option. However, shifting becomes
less effective when the inverse shifting is applied to the reconstructed secret image, where tamper-
ing typically takes the form of bulk attacks. In the case of shifting, the corrupted region remains
spatially clustered even after the inverse transformation. This makes recovery difficult, as the lack
of surrounding uncorrupted pixels limits the available cues for reconstruction—contradicting the
objective of restoring tampered regions accurately. In contrast, with shuffling, mapping each pixel
back to its original location disperses the majority of the corruption throughout the entire image,
thereby providing sparse cues for reconstruction across the whole image.

Shuffling and Watermarking Quality Shuffling also exhibits some challenges. As shown in Fig-
ure 2, applying fine-grained pixel shuffling intensifies high-frequency components in image, which
are clearly visible in Figure 2a. To visualize this effect, we present the magnitude spectra obtained
from the FFT across different block sizes (Figure 2b), thereby confirming the increase in high-
frequency components induced by finer shuffling. This phenomenon leads to a noticeable degraded
visual quality of both the container and recovered images, as shown in Figure 2c. This is because
a higher proportion of high-frequency components reduces compressibility, making it more difficult
to embed the watermark imperceptibly. Similar trends have also been observed in Cao et al. (2024b).

3.3.2 WATERMARK GENERATION

To address the visual quality degradation caused by high-frequency dominance, we propose a Wa-
termark Generator (WG) composed of stacked INN blocks, which transforms the original image into
a secret image optimized for neural watermarking, as follows:

Isec = WG1(Iorg, Iorg) (7)

where WG1 refers to the first output component of WG. The secret image Isec is subsequently
shuffled using the predefined shuffling process S. Given a fixed shuffle, WG is trained to generate
a image suitable for watermarking after the shuffling. Hereafter, we refer to Isec as the output of
WG. Since WG is implemented using an INN block, we can approximately reconstruct the original
image Iorg through inverse transformations as follows:

Îorg = WG−1
1 (Îsec, Îsec) (8)

where WG−1
1 refers to the first output component of WG−1 and Îsec is obtained by unshuffling

extracted secret image S(Îsec). We adopt transformer encoder (Vaswani et al., 2017) for the internal
subnetworks ϕ, ρ, and η within each INN block. Each transformer encoder block processes image
patches of size P using GELU activations, resulting in a feature map of spatial dimensions RH

P ×W
P .

To restore the original resolution RH×W , two transposed convolutional layers are subsequently
applied. This architecture captures long-range dependencies across spatial positions.

We regularize WG to generate a smooth and high-frequency suppressed watermark after applying
the shuffle operation by reducing spatial variation between neighboring pixels, which is expressed
by the following Total Variation loss (Rudin et al., 1992):

LTV =

H−1∑
i=1

W−1∑
j=1

[(
S(I(i,j)sec )− S(I(i,j+1)

sec )
)2

+
(
S(I(i,j)sec )− S(Ii+1,j

sec )
)2

]
(9)

where i and j denote pixel indices and H , W are the image height and width. This loss penalizes
abrupt changes between adjacent pixels, resulting in a high-frequency suppressed S(Isec). Addition-
ally, we introduce a reconstruction loss LWG = ∥Iorg − Îorg∥22 to ensure that the predicted original
image Îorg remains close to the original image Iorg.
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3.4 IMAGE ENHANCEMENT

Since we apply the shuffling algorithm, the recovered image Îorg exhibits globally distributed degra-
dation. To address this, we propose an Image Enhancement (IE) module that leverages contextual
information from Îorg to improve its perceptual quality. Specifically, we employ an IE module,
which refines Îorg by utilizing the sparsely reconstructed regions, producing the enhanced recovered
image Îenh. To implement this module, we adopt the architecture from Liu et al. (2025), which was
originally developed for the super-resolution. As a result, the recovered output exhibits significantly
improved perceptual and structural quality. To ensure the enhanced recovered image Îenh closely
resembles the original image Iorg, we apply an L2 loss combined with the VGG loss LLPIPS:

LIE = ||Îenh − Iorg||22 + λLLPIPS(Îenh, Iorg). (10)

3.5 TAMPER LOCALIZATION

During inference, we generate the final output Îrec by selectively combining the enhanced image
Îenh with the attacked image Iatt, in order to preserve untampered content and enhance overall visual
quality. Accordingly, we employ a Tamper Localization (TL) module to identify manipulated re-
gions. We leverage the inherent fragility and locality of the IW, where tampering causes corruptions
in the embedded secret image, regardless of the attack method. This enables model-agnostic tamper
localization based on the output of the IW. To leverage these properties, we adopt a U-Net-based
TL, inspired by Zhang et al. (2024a), to generate pixel-wise tampering masks M̂ . The final output
is computed based on the predicted mask as Irec = M̂ ⊙ Îenh + (1− M̂)⊙ Iatt. To train the tam-
per localization module, we apply a pixel-wise binary cross-entropy loss between the ground-truth
tampering mask and the predicted mask. This loss is denoted as LTL.

3.6 TRAINING

Common Degradation To enhance robustness, we introduce random common degradations—such
as Gaussian Noise, JPEG Compression, Gaussian Filter and Median Filter—applied to the container
image during training. These transformations simulate real-world degradations that may uninten-
tionally affect the container image. Although they preserve the semantic content, they alter image
quality, thereby improving the model’s robustness to such distortions.

Random Masking Strategy We simulate attacks by applying random masking strategies during
training. Specifically, we replace a randomly sampled region, covering 10% to 50% of the entire
image, with a random image selected from the dataset. We use two different shapes for the random
region, as described in Sander et al. (2025). Additional details are provided in the Appendix.

Final Loss Function The total loss is defined as the weighted sum of all loss components:

Ltotal = λWLW + λELE + λTVLTV + λWGLWG + λIELIE + λTLLTL. (11)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset We use MS-COCO2017 (Lin et al., 2014) for both training and evaluation. For training,
we utilize the images from the regular train split of Lin et al. (2014), which contains 118K images,
without any annotations. For evaluation, we adopt the valAGE-Set split with 1,000 images, as
proposed in Zhang et al. (2024a). This subset is drawn from the regular validation set. Segmentation
annotations from this subset are used as target regions for simulating tampering with AIGC models.
(Stable Diffusion Inpaint (SD-Inpaint) (Rombach et al., 2022), Stable Diffusion XL (SDXL) (Podell
et al., 2023) and Splicing). To assess the robustness of the models, we apply a random combination
of Gaussian Noise, JPEG Compression and Poisson Noise during the evaluation.

Evaluation Metrics To assess the quality of both container and recovered images, we employ Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Learned Perceptual
Image Patch Similarity (LPIPS). These metrics are commonly used to compare the original image
with the container and recovered images (Sander et al., 2025; Ying et al., 2023; Zhang et al., 2024b).
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Table 1: Impact of Core Components in ReImage. ”PS”, ”IE” and ”WG” indicate Pixel Shuffling,
Image Enhancement module and Watermark Generator, respectively. Using all components yields
the best performance in terms of the visual quality of both container and recovered images. M-PSNR
denotes the PSNR of the recovered image computed only over the tampered regions.

Container Image Icon Recovered Image Îrec
Methods PS IE WG PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ M-PSNR ↑

(a) ✗ ✗ ✗ 35.93 0.93 0.10 25.82 0.85 0.18 16.44
(b) ✓ ✗ ✗ 25.78 0.64 0.40 22.95 0.58 0.44 18.32
(c) ✓ ✓ ✗ 26.19 0.65 0.35 24.25 0.65 0.37 18.91
(d) ✓ ✓ ✓ 36.10 0.93 0.10 30.57 0.87 0.17 23.93

(a) (b) (c) (d)
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Figure 3: Qualitative Comparison across Component Configurations. We qualitatively analyze
the visual impact of each core component. The settings (a) to (d) correspond to those in Table 1.
Tampering is simulated using SD Inpaint, and the red box indicates the region that is magnified
for closer inspection. As components are progressively added, the recovery of tampered regions
improves. While settings (a), (b), and (c), which exclude the WG, exhibit visible artifacts in the
container image, setting (d) produces a cleaner result that closely resembles the ground truth.

Implementation Details We employ 12 invertible blocks for IW and 3 for WG, using a patch size
of P = 4. All models are trained for 200K iterations using the Adam optimizer (Kingma & Ba,
2014) with a learning rate of 2× 10−4, β1 = 0.9, and β2 = 0.5. The input image resolution is fixed
to 256× 256. The loss weights are configured as follows: λ = 10, λW = 150, λE = 10, λTV = 10,
λWG = 10, λIE = 20, and λTL = 1. During training, tampered regions are excluded from the
computation of LE so that only the uncorrupted areas contribute to the loss.

4.2 RESULTS

Results in Ablation Study Table 1 shows the ablation results analyzing the contributions of each
core component in our method: Pixel Shuffling (PS), Watermark Generator (WG) and Image En-
hancement (IE) module. All models are trained independently using only the target components
along with the TL module. For all experiments, we simulate tampering using Stable Diffusion
Inpaint (SD Inpaint) (Rombach et al., 2022). In addition to the standard metrics, we also report M-
PSNR, which measures PSNR specifically within the tampered regions. This metric is particularly
focused on the reconstruction of the manipulated area, a key objective of the self-recovery task.

When embedding the input image into itself using the IW module (a) from Table 1, the container
maintains good quality, while the recovered image exhibits significantly lower quality. Furthermore,
when measuring the recovered quality within the tampered region alone, the scores decline even
further. This degradation is due to the pixel alignment between the container and the secret image,
as discussed in Section 3.3.1. With this alignment, the specific region we aim to recover—namely,
the tampered region in the container—becomes significantly disrupted shown by low M-PSNR. This
is also qualitatively observed in Figure 3, where the recovered image within the tampered region
appears blurry with limited information.
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Table 2: Comparison of Different Self-Recovery Methods on valAGE-Set. Tampering is sim-
ulated using three methods: SD Inpaint (Rombach et al., 2022), SDXL (Podell et al., 2023), and
splicing following Hou et al. (2024). To evaluate the visual quality of the recovered and container
images, we use PSNR, SSIM, and LPIPS. † We retrained W-RAE with common degradations to
ensure fair comparisons, as the original model, which was trained without them, exhibited poorer
recovery performance.

Models Container Image Icon
Recovered Image Îrec

SD Inpaint SDXL Splicing
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Imuge 31.23 0.89 0.02 22.32 0.62 0.27 22.76 0.64 0.26 22.15 0.63 0.26
Imuge+ 32.38 0.77 0.17 23.59 0.64 0.23 22.55 0.64 0.23 24.26 0.63 0.25
W-RAE 38.04 0.96 0.01 21.58 0.56 0.36 18.53 0.48 0.42 21.61 0.57 0.36
W-RAE† 29.27 0.76 0.18 23.61 0.63 0.34 23.63 0.63 0.34 23.08 0.63 0.35
ReImage 36.10 0.93 0.10 30.57 0.87 0.17 30.59 0.87 0.17 29.75 0.87 0.17

Imuge Imuge+ W-RAE† ReImage
GT Attacked Container Recovered Container Recovered Container Recovered Container Recovered

SD
In

pa
in

t
SD

X
L

Sp
lic

in
g

Figure 4: Qualitative Results of Different Self-Recovery Methods. Visual tampering is simulated
as outlined in Table 2. We compare our method with Imuge, Imuge+, and W-RAE†, showing that
our approach yields clearer and more complete restorations.

When PS is applied (b), both the container and recovered images show degraded visual quality,
compared to (a). This degradation results from the dominant high-frequency components within the
watermark introduced by shuffling, as discussed in Section 3.3.1. However, the higher M-PSNR
compared to (a) suggests that the tampered regions are better reconstructed thanks to the misalign-
ment between the container and the secret images. The qualitative example in Figure 3 demonstrates
increased noise in both the container and recovered images, while the original structure of the cor-
rupted region is more clearly reconstructed, though still sparsely.

Applying IE (c) improves the visual quality of the recovered image by filling the dispersed broken
regions by leveraging the sparse contextual information. The container image also benefits, as IE
helps to restore missing details, enabling IW to embed less information while still enabling effective
recovery. The improved M-PSNR compared to (b) demonstrates the effectiveness of this module.
Qualitatively, it reduces noise in the tampered regions.

Finally, WG (d) significantly enhances the quality of both the container and recovered images,
achieving relative gains of 38% and 26% in PSNR, respectively, compared to (c), by optimizing
the watermark for image self-recovery. The notable 26% improvement in M-PSNR highlights the
substantial contribution of the quality enhancement in the tampered region to the overall improve-
ment in the recovered image. Qualitatively, the magnified regions of the container image, (b) and
(c) exhibit noticeable noise, whereas (d) closely resemble the GT. The recovered image also demon-
strates effective restoration of fine details, indicating the fidelity of the proposed approach. For
completeness, results for all component combinations are provided in the Appendix.

Comparisons to SOTA Methods for Image Self-Recovery We compare our method against recent
state-of-the-art self-recovery approaches, including Imuge (Ying et al., 2021), Imuge+ (Ying et al.,
2023), and W-RAE (Cao et al., 2024b). Tampering is simulated using Stable Diffusion Inpaint (SD
Inpaint) (Rombach et al., 2022), Stable Diffusion XL (SDXL) (Podell et al., 2023), and splicing
adopted from Zhang et al. (2024a;b), guided by mask annotations from the valAGE-Set. Since W-
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Table 3: Comparison of Self-Recovery Performance under Various Common Degradations.
We evaluate robustness of models by measuring the quality of recovered images under six com-
mon degradation types: Gaussian Noise (G.N.), JPEG Compression (JPEG), Gaussian Filter (G.F.),
Median Filter (M.F.), Poisson Noise (P.N.), Hue Adjustment, Brightness Adjustment and Contrast
Adjustment, along with ”Clean” where no degradation is applied. Note that † indicates models
retrained with these degradations.

Metrics Methods Clean G.N. JPEG G.F. M.F. P.N. Hue Brightness Contrast

PNSR↑
Imuge+ 24.11 23.02 23.88 23.80 22.46 23.84 23.49 23.53 20.25
W-RAE † 26.63 25.77 18.44 10.81 10.16 26.36 22.41 25.16 24.19
ReImage 31.91 30.21 29.69 28.94 27.97 31.74 28.68 29.09 27.87

SSIM↑
Imuge+ 0.69 0.63 0.62 0.59 0.56 0.68 0.61 0.56 0.65
W-RAE† 0.72 0.68 0.50 0.21 0.10 0.71 0.66 0.72 0.70
ReImage 0.91 0.83 0.89 0.87 0.85 0.90 0.90 0.89 0.88

LPIPS↓
Imuge+ 0.19 0.25 0.24 0.26 0.28 0.21 0.25 0.29 0.21
W-RAE† 0.23 0.27 0.53 0.66 0.66 0.24 0.33 0.24 0.25
ReImage 0.13 0.18 0.16 0.20 0.21 0.14 0.18 0.13 0.14

RAE (Cao et al., 2024b) does not use common degradations during training, we evaluate both the
original version and a variant, retrained with common degradations.

In Table 2, our method consistently achieves the highest recovery performance across all tamper-
ing types. Compared to the best-performing baselines, it achieves an PSNR improvement of 29%,
29% and 23% in SD Inpaint, SDXL and Splicing, respectively. These results are further supported
by the qualitative examples shown in Figure 4, where prior method often struggle to accurately lo-
calize tampered regions, leading to incomplete or low-fidelity recovery. Even when localization is
successful, restoration quality remains limited. Additionally, in row 3, W-RAE fails to recover the
original content when shuffled regions are also attacked, as the corresponding information has al-
ready been lost. In contrast, our method achieves significantly improved recovery results regardless
of the attack. Due to the inherent trade-off between preserving the quality of the container image and
maximizing the quality of the recovered image, our container images exhibit slightly lower SSIM
and LPIPS values compared to W-RAE. However, this degradation is marginal considering the sub-
stantial improvement in recovery performance. Notably, our method also achieves the highest PSNR
among all methods, including for the container image. Additional results with baseline models on
diverse datasets and attacks are provided in the Appendix.

Robustness against Common Degradation To evaluate the robustness of ReImage, we conduct
experiments under various common degradation settings, including Gaussian Noise (G.N.), JPEG
Compression (JPEG), Gaussian Filter (G.F.), Median Filter (M.F.), Poisson Noise (P.N.), Hue Ad-
justment, Brightness Adjustment and Contrast Adjustment, as shown in Table 3. The Clean setting
refers to the absence of any degradation. ReImage consistently shows significant improvements
over the best-performing baselines, Imuge+ (Ying et al., 2023) and W-RAE (Cao et al., 2024b)
across all degradation types, even when W-RAE is trained with common degradations. Compared
to the Clean setting, performance shows a slight degradation across common distortions, with an av-
erage drop of 2.5 dB in PSNR, 0.035 in SSIM, and an increase of 0.04 in LPIPS. Nevertheless, our
model demonstrates strong recovery capability, with the performance under Poisson Noise remain-
ing nearly comparable to the Clean case. Details of common degradations and additional robustness
results are provided in the Appendix.

5 CONCLUSION

In this paper, we presented ReImage, a neural watermarking-based image self-recovery framework
that embeds a shuffled, high-frequency suppressed version of the original image into itself. By inte-
grating four key components—Invertible Watermarking (IW) module, Watermark Generator (WG),
Image Enhancement (IE) module, and Tamper Localization (TL) module—our method enables ac-
curate and resilient recovery of tampered regions. Extensive experiments demonstrate that ReImage
consistently outperforms existing approaches in terms of both the visual quality of the container
and recovered images. This capability of ReImage is crucial for protecting users from manipulated
content and enhancing the reliability of visual media.
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LLM USAGE

We used large language models (LLMs) solely as writing assistants to improve grammar, clarity,
and readability. No part of the research ideation, experimental design, or substantive content relied
on LLMs.

REFERENCES

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, Varun Jampani, and Robin Rom-
bach. Stable video diffusion: Scaling latent video diffusion models to large datasets, 2023. URL
https://arxiv.org/abs/2311.15127.

Tu Bui, Shruti Agarwal, Ning Yu, and John Collomosse. Rosteals: Robust steganography using
autoencoder latent space. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), pp. 933–942, 2023. doi: 10.1109/CVPRW59228.2023.00100.

Fang Cao, Haowei Ye, Lin Huang, and Chuan Qin. Multi-image based self-embedding watermark-
ing with lossless tampering recovery capability. Expert Systems with Applications, 258:125176,
2024a.

Xu Cao, Ju Liu, Jinghui Yin, Xuejun Cheng, Jing Li, Hao Ma, and Guanghui Luo. Reversible
adversarial examples based on self-embedding watermark for image privacy protection. In 2024
International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2024b. doi: 10.1109/
IJCNN60899.2024.10650535.

Chi-Kwong Chan and L.M. Cheng. Hiding data in images by simple lsb substitution. Pattern
Recognition, 37(3):469–474, 2004. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.
2003.08.007. URL https://www.sciencedirect.com/science/article/pii/
S003132030300284X.

Chantana Chantrapornchai, Kornkanok Churin, Jitdamrong Preechasuk, and Suchitra Adulkasem.
Video steganography for hiding image with wavelet coefficients. In International Conference on
Multimedia and Ubiquitous Engineering, 2014. URL https://api.semanticscholar.
org/CorpusID:14936540.

Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: non-linear independent components es-
timation. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings,
2015. URL http://arxiv.org/abs/1410.8516.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and Anastasis Ger-
manidis. Structure and content-guided video synthesis with diffusion models, 2023. URL
https://arxiv.org/abs/2302.03011.

HongJie He, JiaShu Zhang, and Heng-Ming Tai. A wavelet-based fragile watermarking scheme for
secure image authentication. In International workshop on digital watermarking, pp. 422–432.
Springer, 2006.

Jianpeng Hou, Xiaofeng Wang, Ruidong Han, Mao Jia, Dong Liu, Qinhua Yu, and Shanmin Pang.
Image splicing region localization with adaptive multi-feature filtration. Expert Systems with
Applications, 247:123250, 2024.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

10

https://arxiv.org/abs/2311.15127
https://www.sciencedirect.com/science/article/pii/S003132030300284X
https://www.sciencedirect.com/science/article/pii/S003132030300284X
https://api.semanticscholar.org/CorpusID:14936540
https://api.semanticscholar.org/CorpusID:14936540
http://arxiv.org/abs/1410.8516
https://arxiv.org/abs/2302.03011


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Junpeng Jing, Xin Deng, Mai Xu, Jianyi Wang, and Zhenyu Guan. Hinet: Deep image hiding by
invertible network. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 4733–4742, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 4015–4026, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, pro-
ceedings, part v 13, pp. 740–755. Springer, 2014.

Xin Liu, Jie Liu, Jie Tang, and Gangshan Wu. Catanet: Efficient content-aware token aggregation
for lightweight image super-resolution. arXiv preprint arXiv:2503.06896, 2025.

Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue
Huang, Hanchi Sun, Jianfeng Gao, Lifang He, and Lichao Sun. Sora: A review on back-
ground, technology, limitations, and opportunities of large vision models, 2024. URL https:
//arxiv.org/abs/2402.17177.

Shao-Ping Lu, Rong Wang, Tao Zhong, and Paul L. Rosin. Large-capacity image steganography
based on invertible neural networks. In 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 10811–10820, 2021a. doi: 10.1109/CVPR46437.2021.01067.

Shao-Ping Lu, Rong Wang, Tao Zhong, and Paul L Rosin. Large-capacity image steganography
based on invertible neural networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10816–10825, 2021b.

Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang, Liang Wang, Yujun Shen, Deli Zhao,
Jingren Zhou, and Tieniu Tan. Videofusion: Decomposed diffusion models for high-quality video
generation, 2023. URL https://arxiv.org/abs/2303.08320.

J Molina, V Ponomaryov, R Reyes, and C Cruz. Watermarking-based self-recovery and authen-
tication framework for colour images. In 2019 7th international workshop on biometrics and
forensics (IWBF), pp. 1–6. IEEE, 2019.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 60(1-4):259–268, 1992.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Tom Sander, Pierre Fernandez, Alain Durmus, Teddy Furon, and Matthijs Douze. Watermark any-
thing with localized messages. In International Conference on Learning Representations (ICLR),
2025.

Weixuan Tang, Bin Li, Shunquan Tan, Mauro Barni, and Jiwu Huang. Cnn-based adversarial em-
bedding for image steganography. IEEE Transactions on Information Forensics and Security, 14
(8):2074–2087, 2019. doi: 10.1109/TIFS.2019.2891237.

11

https://arxiv.org/abs/2402.17177
https://arxiv.org/abs/2402.17177
https://arxiv.org/abs/2303.08320


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. Tree-rings wa-
termarks: Invisible fingerprints for diffusion images. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural In-
formation Processing Systems, volume 36, pp. 58047–58063. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/b54d1757c190ba20dbc4f9e4a2f54149-Paper-Conference.pdf.

KokSheik Wong, Kiyoshi Tanaka, Koichi Takagi, and Yasuyuki Nakajima. Complete video quality-
preserving data hiding. IEEE Transactions on Circuits and Systems for Video Technology, 19(10):
1499–1512, 2009. doi: 10.1109/TCSVT.2009.2022781.

Qichao Ying, Zhenxing Qian, Hang Zhou, Haisheng Xu, Xinpeng Zhang, and Siyi Li. From image
to imuge: Immunized image generation. In Proceedings of the 29th ACM international conference
on Multimedia, pp. 3565–3573, 2021.

Qichao Ying, Hang Zhou, Zhenxing Qian, Sheng Li, and Xinpeng Zhang. Learning to immunize
images for tamper localization and self-recovery. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(11):13814–13830, 2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Xuanyu Zhang, Runyi Li, Jiwen Yu, Youmin Xu, Weiqi Li, and Jian Zhang. Editguard: Versatile
image watermarking for tamper localization and copyright protection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11964–11974, 2024a.

Xuanyu Zhang, Zecheng Tang, Zhipei Xu, Runyi Li, Youmin Xu, Bin Chen, Feng Gao, and Jian
Zhang. Omniguard: Hybrid manipulation localization via augmented versatile deep image water-
marking. arXiv preprint arXiv:2412.01615, 2024b.

Lin Zhao, Hongxuan Li, Xuefei Ning, and Xinru Jiang. Thinimg: Cross-modal steganography
for presenting talking heads in images. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 5553–5562, 2024.

Hao Zhu, Wayne Wu, Wentao Zhu, Liming Jiang, Siwei Tang, Li Zhang, Ziwei Liu, and
Chen Change Loy. Celebv-hq: A large-scale video facial attributes dataset. In European con-
ference on computer vision, pp. 650–667. Springer, 2022.

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/b54d1757c190ba20dbc4f9e4a2f54149-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b54d1757c190ba20dbc4f9e4a2f54149-Paper-Conference.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ETHICS STATEMENT

Our work addresses ethical concerns around the authenticity of AI-generated and tampered media.
ReImage is designed to restore original content rather than generate new content, thereby reducing
risks of misuse common in generative models. Its primary social impact is in enhancing trustworthi-
ness of visual media, mitigating misinformation, and supporting fair evaluation of digital evidence
in domains such as journalism, law, and public communication.

B MORE DETAILS

B.1 COMMON DEGRADATION

B.1.1 TRAINING

In this section, we detail the common degradations applied during training. Specifically, we im-
plement four typical types of degradation: Gaussian Noise, JPEG Compression, Gaussian Filter,
Median Filter. The details of each degradation are as follows:

• Gaussian Noise A Gaussian-distributed noise with a randomly selected standard deviation
σ ∈ [1, 16] is added to the container image.

• JPEG Compression A differentiable JPEG compression is applied to the container image,
with the quality factor Q ∈ [75, 95].

• Gaussian Filter A Gaussian smoothing filter with a randomly selected kernel size k = 3
and standard deviation σ = 1.0 is applied to the container image.

• Median Filter A median filter with a randomly selected kernel size k = 3 is applied to the
container image to simulate nonlinear smoothing effects.

B.1.2 EVALUATION

In this section, we detail the common degradations applied during evaluation. Specifically, we
implement eight typical types of degradation: Gaussian Noise, JPEG Compression, Poisson Noise,
Gaussian Filter, Median Filter, Hue Adjustment, Brightness Adjustment and Contrast Adjustment.
The details of each degradation are as follows:

• Gaussian Noise A Gaussian-distributed noise with a randomly selected standard deviation
σ ∈ [1, 9] is added to the container image.

• JPEG Compression A differentiable JPEG compression is applied to the container image,
with the quality factor Q = 90.

• Poisson Noise A Poisson-distributed noise with an intensity parameter α = 4 is added to
the container image.

• Gaussian Filter A Gaussian smoothing filter with a randomly selected kernel size k = 3
and standard deviation σ = 1.0 is applied to the container image.

• Median Filter A median filter with a randomly selected kernel size k = 3 is applied to the
container image to simulate nonlinear smoothing effects.

• Hue Adjustment The hue of the container image is adjusted by a random shift ∆h ∈
[−0.1, 0.1] in HSV color space to simulate color perturbations.

• Brightness Adjustment The brightness of the container image is adjusted by a random
scaling factor β ∈ [0.9, 1.1].

• Contrast Adjustment The contrast of the container image is modified by a random scaling
factor γ ∈ [0.7, 1.3].

B.2 MASKING STRATEGY

As illustrated in Figure 5, we adopt two masking strategies from Sander et al. (2025) during train-
ing—Irregular Masking and Box-shaped Masking—to simulate tampering attacks. For each training
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(a) Irregular Masking (b) Box-shaped Masking

Figure 5: Masking Strategy (a) Irregular masking is implemented using random brush strokes and
(b) box-shaped masking produces rectangular masked regions.

Table 4: Computational Cost Comparison of Different Methods. We compare the number of pa-
rameters (Param), floating-point operations (FLOPs), memory usage, and multiply–add operations
(MAdd) across representative self-recovery models.

Methods Param FLOPs Memory MAdd
W-RAE 1.11M 18.35G 557MB 18.42G
Imuge 13.3M 90.52G 969MB 90.37G
Imuge+ 32.0M 190.88G 1580MB 191.03G
ReImage 9.94M 64.76G 4570MB 36.44G

sample, one of the two strategies is randomly selected with equal probability (i.e., 50%), and a sam-
pled region is replaced with a randomly chosen image. The details of each masking strategies are as
follows:

• Irregular Masking uses random brush strokes, where parameters such as stroke angle (up
to 4 degrees), length, and width (ranging from 20 to 50 pixels) are varied. Each image is
overlaid with between 1 and 5 such strokes.

• Box-shaped Masking generates rectangular regions with a fixed 10-pixel margin. The
dimensions of each box are randomly sampled between 50 and 150 pixels for both width
and height, and 1 to 3 boxes are applied per image.

B.3 ADDITIONAL IMPLEMENTATION DETAILS

We use an NVIDIA RTX 3090 Ti (24GB) for training and evaluation. The watermarking stage
requires approximately 46 ms, and the self-recovery stage takes 166 ms. Thus, the total time for a
full pipeline execution is approximately 212 ms.

We apply the discrete wavelet transform (DWT) and its inverse (IWT) with the Haar wavelet to
the input and output of the Invertible Watermarking (IW) modules, respectively. DWT changes
the image shape from I ∈ RH×W×3 to I ∈ RH

2 ×W
2 ×12 and this transformation is reversed by

IWT. The transformer encoder within the Watermark Generator (WG) consists of multi-head self-
attention layers with 6 heads and a token embedding dimension of 192. The Image Enhancement
(IE) modules adopt the configuration from the original paper (Liu et al., 2025), with an upscale
factor of 1, indicating that the resolution remains unchanged.

B.4 COMPUTATIONAL COST

We compare the computational cost of ReImage and baseline models in terms of parameter size
(Param), FLOPs, memory usage (Memory), and multiply–add operations (MAdds), all measured
with an input image size of 256 × 256. As shown in Table 4, ReImage achieves lower FLOPs
(64.76G) and MAdd (36.44G) compared to Imuge and Imuge+, while requiring fewer parameters
overall. This indicates that ReImage is computationally more efficient in practice. Although the
memory usage of ReImage (4570MB) is relatively higher than that of baseline methods, ReImage
runs smoothly on widely accessible mid-range GPUs such as the RTX 3090 or even RTX 2080,
demonstrating its practical deployability in real-world applications.
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Table 5: Comparison of Self-Recovery Methods under Various Levels of Noise. We evaluate
model robustness by measuring the quality of recovered images across varying levels of Gaussian
Noise, JPEG Compression and Gaussian Filter. Note that † denotes models retrained with these
degradations.

Gaussian Noise JPEG Compression Gaussian Filter
Metrics Methods σ = 1 σ = 3 σ = 5 QF = 60 QF = 70 QF = 80 QF = 90 k = 3 k = 5

PNSR↑
Imuge+ 24.02 23.42 22.85 22.87 23.19 23.53 23.88 23.80 23.53

W-RAE † 26.60 26.30 25.76 16.10 17.13 17.95 18.44 10.81 11.63
ReImage 31.85 31.29 30.13 27.10 27.81 28.61 29.07 28.94 27.36

SSIM↑
Imuge+ 0.69 0.66 0.62 0.56 0.58 0.60 0.62 0.59 0.56

W-RAE † 0.72 0.70 0.67 0.33 0.39 0.44 0.5 0.21 0.25
ReImage 0.91 0.88 0.82 0.83 0.85 0.86 0.88 0.87 0.84

LPIPS↓
Imuge+ 0.20 0.22 0.26 0.29 0.27 0.26 0.24 0.26 0.29

W-RAE † 0.24 0.25 0.27 0.61 0.59 0.57 0.53 0.66 0.66
ReImage 0.13 0.15 0.19 0.23 0.22 0.20 0.16 0.20 0.24

Table 6: Comparison of Self-Recovery Methods under Common Geometric Distortions. We
evaluate the robustness of ReImage against three types of geometric distortions: Cropping, Rotation,
and Resizing. Across all cases, ReImage consistently achieves higher PSNR performance compared
to Imuge+.

Methods Crop Rotate Resize
Imuge+ 22.58 20.12 24.81
ReImage 23.81 22.61 30.21

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 RECOVERY QUALITY UNDER VARYING LEVEL OF NOISE

To evaluate the robustness of ReImage, we additionally conduct experiments under varying levels of
distortion. Specifically, we evaluated our method under JPEG compression (QF ∈ 60, 70, 80, 90),
Gaussian noise (σ ∈ 1, 3, 5), and Gaussian filter (k ∈ 3, 5). As shown in Table 5, the performance
of all models degrades as distortions become more severe. Nevertheless, ReImage consistently
outperforms the baselines across the entire range of settings. Under Gaussian noise, the PSNR of all
models decreases as the standard deviation increases. However, ReImage consistently outperforms
both Imuge+ and W-RAE by 8dB and 5dB, respectively, across all noise levels. A similar trend
is observed under Gaussian Filter, where the baselines show lower reconstruction quality at larger
kernel sizes, while ReImage continues to achieve higher PSNR and SSIM. In the case of JPEG
Compression, even at the lowest quality factor (QF = 60), ReImage attains superior PSNR, SSIM,
and LPIPS compared to baselines, and its results at QF = 60 already surpass those of the baselines
at QF = 90. These results indicate that although performance inevitably declines with stronger
distortions, ReImage retains a consistent advantage over the baselines, achieving higher fidelity and
perceptual quality across all tested settings.

C.2 GEOMETRIC COMMON DEGRADATION

To further demonstrate the robustness of ReImage under diverse degradations, we conduct experi-
ments on three geometric distortions: Cropping, Rotation and Resizing, evaluated using PSNR. For
this setting, both ReImage and Imuge+ are additionally fine-tuned with geometric distortion types,
where Imuge+ is chosen as the strongest-performing baseline. As shown in Table 6, ReImage con-
sistently outperforms Imuge+ across all geometric distortions, with relative improvements of 5.4%
for cropping, 12.4% for rotation, and 21.8% for resizing. Although the performance under geo-
metric distortions is generally lower than that observed under valuemetric distortions such as noise
or compression, ReImage still achieves clear gains over the baseline. Notably, under the Resizing,
ReImage attains a performance level comparable to that achieved under valuemetric distortions.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Comparison of Self-Recovery Methods across Different Datasets. We further evaluate
the methods on additional datasets, including MS-COCO (Lin et al., 2014), CelebA-HQ (Zhu et al.,
2022), and ILSVRC (Russakovsky et al., 2015). M-PSNR denotes the PSNR of the recovered image
computed only over the tampered regions.

MS-COCO CelebA-HQ ILSVRC
Methods PSNR M-PSNR PSNR M-PSNR PSNR M-PSNR
Imuge+ 23.59 14.91 24.27 18.87 24.91 18.03
W-RAE† 23.61 20.98 22.99 20.22 21.28 21.36
ReImage 30.57 23.93 29.33 24.08 29.93 23.50

Table 8: Comparison of Tamper Localization Performance across Self-Recovery Methods We
simulate tampering using three methods: SD Inpaint (Rombach et al., 2022), SDXL (Podell et al.,
2023), and splicing. Tamper localization performance is evaluated on the valAGE-Set using IoU,
F1, and AUC metrics.

Models
Tamper Localization

SD Inpaint SDXL Splicing
IoU↑ F1↑ AUC↑ IoU↑ F1↑ AUC↑ IoU↑ F1↑ AUC↑

Imuge 0.61 0.69 0.90 0.60 0.68 0.90 0.61 0.69 0.90
Imuge+ 0.20 0.25 0.89 0.24 0.25 0.89 0.62 0.69 0.97
W-RAE† 0.49 0.61 0.71 0.49 0.61 0.72 0.50 0.61 0.73
ReImage 0.82 0.90 0.99 0.82 0.91 0.99 0.84 0.93 0.99

C.3 ABLATION STUDY ON VARIOUS DATASET

We conduct additional experiments on diverse datasets to assess the generalization ability of ReIm-
age. Specifically, we use CelebA-HQ (Zhu et al., 2022) and ILSVRC (Russakovsky et al., 2015).
Tampering is simulated with Stable Diffusion Inpaint (SD Inpaint). We generate masks to explicitly
define the tampered regions. For CelebA-HQ, we create masks based on facial attributes, and for
ILSVRC, we employed SAM (Kirillov et al., 2023) to obtain object-level masks. For evaluation, we
randomly sample the same number of images as reported in Imuge+ (520 for CelebA and 1,047 for
ILSVRC).

As shown in Table 7, ReImage achieves the highest performance across all datasets, consistently
outperforming Imuge+ and W-RAE. On CelebA-HQ, ILSVRC, and MS-COCO, our model yields on
average over 20% improvement in PSNR and 15% in M-PSNR compared to the baselines. Notably,
the performance is consistent across datasets, indicating no significant gap between them. These
results demonstrate that our model generalizes robustly and effectively to diverse datasets used in
prior studies.

C.4 TAMPER LOCALIZATION

To evaluate the effectiveness of the Tamper Localization (TL) module in ReImage, we compare
it against recent self-recovery methods, including Imuge (Ying et al., 2021), Imuge+ (Ying et al.,
2023), and W-RAE (Cao et al., 2024b). We simulate tampering using Stable Diffusion Inpaint-
ing (Rombach et al., 2022), Stable Diffusion XL (Podell et al., 2023), and splicing attacks, guided
by mask annotations from the valAGE-Set. Localization accuracy is measured using Intersection
over Union (IoU), F1 score, and Area Under the ROC Curve (AUC).

As shown in Table 8, ReImage consistently achieves the highest tamper localization performance
across various tampering types. Compared to Imuge (Ying et al., 2021), the strongest baseline
among existing methods, ReImage achieves relative improvements of 34%, 30%, and 10% in IoU,
F1, and AUC, respectively. Furthermore, while Imuge+ (Ying et al., 2023) performs poorly on
unseen attacks such as SD Inpaint and SDXL, ReImage remains effective. This demonstrates that
ReImage can accurately localize tampered regions even under unseen or diverse attack types.
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Table 9: Additional Comparison of Self-Recovery Methods on valAGE-Set We evaluate all base-
lines using M-PSNR to assess recovery quality specifically within tampered regions, reporting re-
sults under both predicted and GT mask settings. ”M-PSNR” denotes the PSNR of the recovered
image, computed only over the tampered regions. The ”GT mask” setting uses ground-truth tamper-
ing masks instead of predicted ones.

Models
Recovered Image Îrec

SD Inpaint SDXL Splicing GT mask
M-PSNR↑ M-PSNR↑ M-PSNR↑ M-PSNR↑

Imuge 10.66 10.59 10.61 11.23
Imuge+ 14.91 14.86 16.54 22.37
W-RAE† 20.98 21.00 19.86 21.64
ReImage 23.93 23.96 22.59 25.95
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Figure 6: Comparison of Self-Recovery Methods Across Various Masking Ratios. We evaluate
the recovery performance of all baseline methods under different masking ratios, ranging from 10%
to 60%. Tampering is simulated via splicing attacks, where tampered regions are randomly gener-
ated using a combination of circles and rectangles.

C.5 RECOVERY QUALITY IN TAMPERED REGIONS

We conduct additional experiments to evaluate image self-recovery performance on the valAGE-
Set, comparing ReImage with recent state-of-the-art methods, including Imuge (Ying et al., 2021),
Imuge+ (Ying et al., 2023), and W-RAE (Cao et al., 2024b). Specifically, we evaluate the M-PSNR
across the same tampering types as in Table 8. As shown in Table 9, ReImage consistently achieves
the highest performance, with relative improvements of 14%, 14%, and 14% over W-RAE. These
results demonstrate the effectiveness of our approach in recovering tampered regions across diverse
types of attacks.

We further evaluate all methods under the ground-truth (GT) mask setting, where ground-truth tam-
pering masks are used in place of predicted ones. This setting isolates the effect of recovery perfor-
mance from localization accuracy. As shown in Table 9, ReImage achieves the highest performance,
outperforming Imuge+ by a relative margin of 16% in M-PSNR. Notably, ReImage outperforms
both Imuge+ and W-RAE, even though they are provided with GT masks, whereas ReImage oper-
ates without them. These results highlight the effectiveness of our pipeline not only in self-recovery
but also in tamper localization. Moreover, these results suggest that ReImage could achieve even
greater performance with improved tamper localization accuracy.

C.6 RECOVERY QUALITY UNDER VARIOUS MASKING RATIOS

To evaluate the robustness of our method under varying tampering intensities, we conduct exper-
iments across different masking ratios. Specifically, we compare our approach with recent state-
of-the-art self-recovery methods. Tampering is simulated via splicing attacks, where each mask
contains 1 to 3 randomly placed geometric shapes (rectangles or circles). The masking ratio is var-
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Table 10: Additional Comparison of Self-Recovery Methods under Photoshop Editing. We
evaluate recovery quality of all baselines under Photoshop editing operations to assess robustness
against realistic manipulations. ”M-PSNR” denotes the PSNR of the recovered image, computed
only over the tampered regions.

Models PSNR SSIM LPIPS M-PSNR
Imuge+ 21.13 0.62 0.24 13.50
W-RAE† 24.94 0.68 0.28 20.70
ReImage 28.85 0.88 0.15 22.75

Table 11: Additional Study on the Impact of Core Components in ReImage We examine the
contribution of the core components-Pixel Shuffling (PS), Image Enhancement (IE), and the Water-
mark Generator (WG)-by evaluating all possible combinations. Using the full set of components
consistently yields the best performance, both in terms of container and recovered image quality.
M-PSNR denotes the PSNR of the recovered image computed only over the tampered regions.

Container Image Recovered Image
PS IE WG PSNR↑ PSNR↑ M-PSNR↑
✗ ✗ ✗ 35.93 25.82 16.44
✓ ✗ ✗ 25.78 22.95 18.32
✗ ✓ ✗ 41.28 24.21 13.80
✗ ✗ ✓ 42.24 23.53 13.61
✓ ✓ ✗ 26.19 24.25 18.91
✗ ✓ ✓ 39.40 26.47 16.96
✓ ✗ ✓ 33.17 29.27 23.17
✓ ✓ ✓ 36.10 30.57 23.93

ied across 10%, 20%, 30%, 40%, 50%, and 60% of the total image area to reflect different levels of
tampering. We report PSNR and Mask PSNR (M-PSNR) as evaluation metrics.

As shown in Figure 6, our method consistently achieves strong performance across all evaluation
metrics and masking ratios. In particular, ReImage outperforms the best-performing baselines by
more than 5dB in both PSNR and M-PSNR. Even at a masking ratio of 60%, ReImage achieves a
higher PSNR than Imuge at 10%. Furthermore, while Imuge and W-RAE degrade significantly as the
masking ratios increases, ReImage shows only a slight decrease of approximately 4dB and 0.39dB
in PSNR and M-PSNR, respectively, between the 10% and 60% masking ratios. demonstrating
robustness to tampering intensity.

C.7 ABLATION STUDY ON PHOTOSHOP EDITING

We evaluate ReImage under realistic tampering scenarios. To simulate such manipulations, we em-
ploy Adobe Photoshop with the MS-COCO (Lin et al., 2014) dataset. Specifically, we select objects
within images and apply removal or inpainting operations using Photoshop’s integrated generative
model. A total of 100 attacked images are collected for evaluation. As shown in Table 10, ReImage
achieves the highest recovery performance compared to the baseline models Imuge+ and W-RAE.
Compared with the best-performing baseline, ReImage improves PSNR and M-PSNR by 3.91 dB
and 2.05 dB, respectively. While the results under Photoshop editing are slightly lower than those
in Table 2, our method still demonstrates strong recovery capability. Furthermore, as shown in Fig-
ure 8 qualitative results in clearly show that ReImage successfully restores tampered regions with
high visual quality.

D DISCUSSION

D.1 EFFECT OF EACH COMPONENT

Table 11 includes settings that are not presented in the main paper, allowing us to compare all
combinations of PS, WG, and IE components when combined with the results in Table 1. This
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Table 12: Impact of WG Loss in ReImage. We evaluate the contribution of WG Loss (LWG).
While using LIE alone provides lower recovery quality, combining it with LWG significantly en-
hances performance, demonstrating the importance of WG Loss in guiding more accurate image
reconstruction.

Container Image Icon Recovered Image Îrec
LWG LIE PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ M-PSNR ↑

✗ ✓ 36.56 0.94 0.11 25.00 0.85 0.20 15.78
✓ ✓ 36.10 0.93 0.10 30.57 0.87 0.17 23.93

enables a more comprehensive analysis of each component’s individual contribution. As shown in
the Table 11, each component of our model contributes to improved image self-recovery perfor-
mance. We observe consistent performance gains as more components are combined, with the best
results achieved when all three (PS, WG, and IE) are used together. This indicates that each module
contributes complementary benefits, rather than interfering with one another. Additionally, the rela-
tively high quality of the container image without PS can be attributed to the model embedding less
information, which in turn makes recovery more difficult.

D.2 EFFECT OF WG LOSS

The loss in LWG is additionally introduced to encourage the Watermark Generator (WG) to retain
some capability to recover the original image. To assess its necessity, we compare the performance
of using only LIE versus using both LWG and LIE. As shown in Table 12, we observe a clear im-
provement in the quality of the recovered image when both LWG and LIE are used. Specifically, LWG
encourages the inverse process of WG to retain a coarsely recovered version of the original image,
allowing the Image Enhancement (IE) module to focus only on restoring the remaining missing de-
tails. Without LWG, however, the combined WG and IE behave more like a single large watermark
decoder, lacking the structural separation between coarse recovery and refinement. This may pre-
vent the model from leveraging the inductive bias of performing a rough watermark recovery before
enhancement, leading to suboptimal performance.

E LIMITATIONS

ReImage consistently demonstrates high fidelity in both container and recovered images across var-
ious tampering methods, as verified through both qualitative and quantitative evaluations. Nonethe-
less, it exhibits limitations in certain scenarios. In particular, ReImage often fails to reconstruct tam-
pered regions when geometric transformations such as rotation and cropping are applied, as these
distort the embedded secret image and degrade the information necessary for accurate recovery.

In addition, tamper localization can impose constraints on performance. When the predicted region
is smaller than the actual tampered area, parts of the attacked content may remain unrecovered, since
the corresponding region from the container image—including tampered parts—is used to overwrite
the recovered image. This may lead to an underestimation of ReImage’s true capability.

F ADDITIONAL VISUAL RESULTS

In this section, we extend our evaluation by visualizing the robustness of ReImage against vari-
ous common degradations (i.e., Gaussian Noise (G.N.), JPEG Compression (JPEG), Gaussian Filter
(G.F.), Median Filter (M.F.), Poisson Noise (P.N.), Hue Adjustment, Brightness Adjustment and
Contrast Adjustment), as shown in Figure 7. These experiments show that ReImage remains ef-
fective under various content-preserving modifications. Additionally, we present further qualitative
comparisons on the valAGE-Set between ReImage and other baseline methods. As shown in Fig-
ure 9 and Figure 10, ReImage consistently generates high-fidelity container and recovered images,
even under tampering attacks and degradations. In contrast, other methods either fail in both aspects
or struggle to balance imperceptibility and accurate recovery.
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GT G.N. JPEG G.F. M.F.

Attacked P.N. Hue Brightness Contrast

GT G.N. JPEG G.F. M.F.

Attacked P.N. Hue Brightness Contrast

GT G.N. JPEG G.F. M.F.

Attacked P.N. Hue Brightness Contrast

Figure 7: Qualitative Results under Various Common Degradation Types We qualitatively eval-
uate the robustness of ReImage under eight common degradation types—Gaussian Noise (G.N.),
JPEG Compression (JPEG), Gaussian Filter (G.F.), Median Filter (M.F.), Poisson Noise (P.N.), Hue
Adjustment, Brightness Adjustment and Contrast Adjustment.
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GT Attacked Imuge+ W-RAE† ReImage

Figure 8: Visual Comparison of Recovered Images from Different Self-Recovery Methods un-
der Photoshop Editing Tampering is simulated using Adobe Photoshop. ReImage demonstrates
high-fidelity reconstruction of the original image under realistic manipulation
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GT Attacked Imuge Imuge+ W-RAE† ReImage

Figure 9: Visual Comparison of Recovered Images from Different Self-Recovery Methods on
valAGE-Set Tampering is simulated using SD Inpaint (Rombach et al., 2022). ReImage demon-
strates high-fidelity reconstruction of the original image.
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GT Imuge Imuge+ W-RAE† ReImage

Figure 10: Visual Comparison of Container Images from Different Self-Recovery Methods on
valAGE-Set Tampering is simulated using SD Inpaint (Rombach et al., 2022). ReImage demon-
strates the ability to embed watermarks into the target image with minimal visual distortion.
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