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Abstract

Large width limits have been a recent focus of deep learning research: modulo com-
putational practicalities, do wider networks outperform narrower ones? Answering
this question has been challenging, as conventional networks gain representational
power with width, potentially masking any negative effects. Our analysis in this
paper decouples capacity and width via the generalization of neural networks to
Deep Gaussian Processes (Deep GP), a class of nonparametric hierarchical models
that subsume neural nets. In doing so, we aim to understand how width affects
(standard) neural networks once they have sufficient capacity for a given mod-
eling task. Our theoretical and empirical results on Deep GP suggest that large
width can be detrimental to hierarchical models. Surprisingly, we prove that even
nonparametric Deep GP converge to Gaussian processes, effectively becoming
shallower without any increase in representational power. The posterior, which
corresponds to a mixture of data-adaptable basis functions, becomes less data-
dependent with width. Our tail analysis demonstrates that width and depth have
opposite effects: depth accentuates a model’s non-Gaussianity, while width makes
models increasingly Gaussian. We find there is a “sweet spot” that maximizes test
performance before the limiting GP behavior prevents adaptability, occurring at
width = 1 or width = 2 for nonparametric Deep GP. These results make strong
predictions about the same phenomenon in conventional neural networks trained
with L2 regularization (analogous to a Gaussian prior on parameters): we show
that such neural networks may need up to 500− 1000 hidden units for sufficient
capacity—depending on the dataset—but further width degrades performance.

1 Introduction

Research has shown that deeper neural networks tend to be more expressive and efficient than
wider networks under a variety of metrics [e.g. 21, 63, 67, 70, 74, 75, 78, 83]. Nevertheless, there
is resurgent interest in wide models due in part to empirical successes [e.g. 92] and theoretical
analyses of limiting behavior. When randomly initialized to create a distribution over functions,
neural networks converge to Gaussian processes (GP) as width increases. This result, first proved
for 2-layer networks [69], has been extended to deeper networks [56, 64], convolutional networks
[38, 71], and other architectures [50, 88]. A similar limit exists for gradient-trained networks, which
behave increasingly like kernel machines under the neural tangent kernel [e.g. 6, 8, 28, 39, 52, 57, 89].

While these limits simplify analyses, there is something unsettling about reducing neural networks
to kernel methods. Neal [69, p. 161] describes the GP limit as “disappointing,” noting that “infinite
networks do not have hidden units that represent ‘hidden features’. . . often seen [as the] interesting
aspect of neural network learning.” Recent work indeed shows that learned hierarchical features can
be exponentially more efficient than the fixed shallow representations of kernels [e.g. 4, 5, 8, 11, 13,
21, 41, 42, 60, 91]. At the same time, wider networks can more accurately model complex functions
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[44]. Thus, wide limits appear to confound opposing phenomenon: increased capacity makes them
more expressive, yet the loss of hierarchical features seems to make them less expressive. This may
explain the mixed empirical performance of limiting models: outperforming finite width models in
some scenarios [e.g. 9, 38, 39, 58], yet falling short on more complex tasks [e.g. 8, 11, 35, 57, 81].

This paper aims to decouple these effects of large width. Our goal is to understand the inductive
biases of wide networks, after a network has “sufficient” capacity for a given modeling task. We ask:
If we control for the effects of increased capacity, what—if any—value remains in wide networks?

To achieve this control, we note that a typical neural network layer corresponds to a finite basis,
where elementwise nonlinearities transform each hidden feature into a single basis function. In
order to decouple width from capacity, one could generalize these layers so that each nonlinearity
produces any number of basis functions; if each hidden feature gives rise to an infinite and universal
basis, then hidden layers would have infinite representational capacity regardless of width. This
generalization is in fact a well-studied class of hierarchical models—Deep Gaussian Processes (Deep
GP) [19, 24, 26, 27, 30, 32, 46, 79]—where standard neural net layers are replaced with vector-valued
Gaussian processes. Indeed, typical neural networks are a degenerate Deep GP subclass [1, 2, 33, 72].

We therefore have a generalization of neural networks where capacity is controlled, from which we
can glean insights about conventional networks that have sufficient representational power for a given
modeling task. Surprisingly, despite using Gaussian processes as the primary hierarchical component,
we prove that Deep GP converge to (single-layer) GP in their infinite width limit (Thm. 1). Troubling
implications immediately ensue: large width is strictly detrimental to Deep GP, as the limiting model
collapses to a shallower version of itself. We support this theorem with an analysis of neural network
and Deep GP posteriors, which become less adaptable as width increases. Specifically, we show
that the posterior mean corresponds to a mixture of functions drawn from data-dependent (and thus
adaptive) reproducing kernel Hilbert spaces, formalizing the above claim from Neal [69]. As width
increases, this mixture collapses to the data-independent kernel of the limiting GP, implying that
wider models have less feature learning. Finally, we present a novel tail analysis which indicates
that width and depth have opposite effects: depth accentuates non-Gaussianity, sharpening peaks and
fattening tails, whereas width increases Gaussianity (Thms. 2 and 3).

Our theoretical results hold for Deep GP and conventional (parametric) neural networks alike.
Experiments confirm that—after a model achieves sufficient capacity1—width can become harmful
to model fit and performance. For nonparametric Deep GP, a width of 1 or 2 often achieves the
best performance. Neural networks—because of their parametric nature—naturally require more
hidden units before achieving optimal accuracy. Nevertheless, for Bayesian neural networks and
conventional (optimized) neural networks trained with L2 regularization, performance degrades after
a certain width. On small datasets (N ≤ 1000) with low dimensionality, we find that models with
≤ 16 hidden units achieve best test set performance. On larger datasets like CIFAR10, this “sweet
spot” occurs later (at ≈ 500 hidden units for sufficiently deep models), yet performance degrades
beyond this width. We note that these trends do not necessarily hold for models that do not have a
probabilistic interpretation—i.e. optimized neural networks trained without (or nearly without) L2
regularization. Nevertheless, our findings suggest that narrower models have better inductive biases,
and wide models perform well in spite of —not because of—large width.

2 Setup

2.1 Related Work

Effects of width. Works have shown that, given finite parameters, deeper models are more expressive
than wider models [63, 67, 74, 75, 83]. Similarly to our work, Aitchison [2] recognises the link
between finite neural networks and Deep GP, and argues that finite neural networks have flexibility
in the top-layer representation that is absent in the infinite-width limit. Halverson et al. [45] draw
a connection to quantum field theory to argue that neural networks become “simpler” near their
infinite-width limit. In the non-probabilistic setting, it is worth noting that wide models have been
shown to have favorable optimization landscapes [7, 28, 59, 70, 82] and are resistant to overfitting
via double descent [12, 20, 68]. Our work controls for these factors by examining nonparametric
hierarchical models with exact Bayesian inference, and thus does not disagree with these other works.

1We offer a formal notion of “sufficient capacity” in Appx. B.5.
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Infinite width limits have received renewed interest in Bayesian [38, 50, 57, 64, 69, 71, 88] and
non-Bayesian [6, 8, 22, 28, 43, 52, 57, 65, 89, 90] settings. Most of these works show that neural
networks converge to kernel methods, though recent work suggests that this limiting behavior can be
avoided with different parameterizations [e.g. 22, 43, 65, 90]. Similarly to Lee et al. [57], our Deep
GP limit analysis sequentially increases the width of each layer, though we hypothesize a similar
proof exists where the width of all layers increases simultaneously (akin to [64]).

Deep GP are introduced by Damianou and Lawrence [27]. A large portion of Deep GP research
has thus far focused on scalable approximate inference methods [19, 24, 25, 32, 46, 72, 79, 85].
Though prior work has studied tail properties of neural networks [84, 93] and Deep GP with RBF
kernels [62], our work is—to the best of our knowlege—the first general result for Deep GP tails.
Duvenaud et al. [33] and Dunlop et al. [29] investigate pathological behaviors that arise with depth,
while Agrawal et al. [1] note that “bottlenecked” Deep GP have better performance and correlations
among predictive tasks. Our work complements these analysis by characterizing the effects of width.

Connections between Deep GP and neural networks. Many researchers have noted connections
between neural networks and Deep GP [e.g. 24, 31, 36, 61]. Duvenaud et al. [33] suggest that
infinitely-wide neural networks with intermediate bottleneck layers are nonparametric Deep GP.
Agrawal et al. [1] formalize this connection, but note that not all Deep GP can be constructed from
bottlenecked neural networks (see Appx. E). In contrast to these prior works, we avoid reducing Deep
GP to neural networks, and instead reduce neural networks to degenerate Deep GP.

2.2 A Covariance Perspective on Gaussian Process Limiting Behavior

To decouple the effects of increasing width and capacity, we first prove a new result about GP limits
for a more general class of models, including Deep GP as well as typical neural networks. This
result forms a necessary foundation for the subsequent theorems that are a main contribution of
this work. To begin, note that the proof technique introduced by Neal [69] and extended by others
[38, 50, 56, 64, 71, 88] relies on the multivariate central limit theorem, which requires a model with
additive structure. Deep GP do not generally decompose in an additive manner, so we establish a
more general proof technique. For simplicity, we first present it in the context of neural networks,
and then extend it to a more general class of models.

Consider the 2-layer neural network f2(f1(x)), with f1 : RD → RH1 and f2 : RH1 → R:

f1(·) = W>
1 (·) + βb1, f2(·) = 1√

H1
w>2 σ(·) + βb2. (1)

σ(·) is an elementwise nonlinearity, β is a positive constant, and W1, b1, w2, and b2 are i.i.d.
Normal. With randomly initialized parameters, f2(f1(·)) : RD → R is a prior distribution over
functions, and this distribution converges to a GP in the infinite width limit [69].

Lemma 1. The neural network defined in Eq. (1) is a Gaussian process if and only if—for any finite
set of inputs X = [x1, . . . ,xN ]—the conditional prior covariance Ef2|X,W1,b1

[f2f
>
2 ] is almost surely

equal to the marginal prior covariance Ef2|X[f2f
>
2 ], where f2 | X , [f2(f1(x1)), . . . , f2(f1(xN ))].

Proof. By definition, f2(f1(·)) is a GP if and only if f2 | X is multivariate Gaussian for any X.
From Eq. (1), we have p(f2 | X,W1,b1) = N (0,KW1,b1(X,X)), where [KW1,b1(X,X)]ij =
β2+ 1

H1
σ(W>

1 xi+βb1)
>σ(W>

1 xj +βb1) is the appropriate kernel Gram matrix. Using Jensen’s
inequality, we have a lower bound on the characteristic function of f2 | X:

E
f2|X

[
exp

(
it>f2

)]
= E

W1,b1

[
E

f2|X,W1,b1

[
exp

(
it>f2

)]]
(law of total expectation)

= EW1,b1

[
exp

(
− 1

2t
>KW1,b1

(X,X)t
)]

(char. func. of a Gaussian)

≥ exp

(
− 1

2t
> E

W1,b1

[KW1,b1(X,X)] t

)
. (convexity of exp)

This lower bound happens to be the characteristic function ofN (0,EW1,b1 [KW1,b1(X,X)]). Since
exp is strictly convex, the characteristic function of f2 | X equals the Gaussian lower bound ∀t if and
only if p(KW1,b1

(X,X) |W1,b1) = Ef |X,W1,b1
[f2f
>
2 ] is a constant with probability 1.
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Seeing that 1
H1

σ(W>
1 xi + βb1)

>σ(W>
1 xj + βb1) becomes a.s. constant as H1 →∞, Lemma 1

re-establishes the result of Neal [69] (see Appx. E.1). Critically, unlike Neal’s proof, Lemma 1
neither relies on the central limit theorem nor requires f2(f1(·)) to be a neural network; it holds if
p(f2 | f1(x1), . . . , f1(xN )) is Gaussian. Therefore, we can generalize it to a larger class of models:

Lemma 2. Let f2(f1(·)) : RD → R be a hierarchical model where f2(·) : RH1 → R is a GP and
f1(·) : RD → RH1 is a random vector-valued function (including a multilayer hierarchical model).
Then f2(f1(·)) is a GP if and only if Ef2|X,f1(·)[f2f

>
2 ] = Ef2|X[f2f

>
2 ] a.s. for all X = [x1, . . . ,xN ].

The covariance perspective from Lemmas 1 and 2 is revealing about GP limits. As Ef2|X,f1(·)[f2f
>
2 ]

converges to Ef2|X[f2f
>
2 ] the model output becomes less and less dependent on f1(·). In other words,

f2(f1(·)) loses its hierarchical nature. We reiterate that Lemma 2 has no requirements about f2(f1(·))
transitioning from a finite to infinite basis, nor does it require f2(f1(·)) to have additive structure. We
demonstrate its generality in the next section with surprising—and troubling—implications.

3 Deep Gaussian Processes Collapse to Shallow Gaussian Processes

Deep GP [19, 26, 27, 79] are hierarchical models where layers f1(·) . . . fL(·) are (vector-valued) GP:

DGP(x) = fL ◦ . . . ◦ f1 (x) , fi(·) = [f
(1)
i (·), . . . , f (Hi)

i (·)], f
(j)
i (·) i.i.d∼ GP [0, ki(·, ·)] . (2)

Hi is the width of the ith GP layer, and the output dimensions of each fi(·) are independent. By using
GP as the primary hierarchical building blocks, Deep GP are generally nonparametric and, assuming
the GP layers use universal kernels [66], have infinite representational capacity (see Appx. B.1).

Deep GP versus GP. Deep GP seek to offer more expressivity: conventional single-layer GP—though
also nonparametric—are inherently limited by the choice of the prior covariance function [19, 79].
For example, a GP with a RBF covariance is not suitable for data with discontinuities or sharp
changes. However, stacking two RBF GP together—f2(f1(·))—can overcome this limitation, since
f1(x) can encode a warping of x that “smoothes” the input data for f2(·) (as we will show in Fig. 1).
Empirically, Deep GP have been shown to offer much more accurate predictive posteriors than
standard GP [e.g. 17, 24, 26, 27, 30, 46, 79].

Deep GP versus neural networks. (Bayesian) feed-forward neural networks are a strict subclass
of Deep GP, albeit a degenerate one [2, 61, 72]. The first neural network layer is a GP with a linear
kernel, while subsequent layers are GP with the kernel k(z, z′) = β2 + 1

Hi−1

∑Hi−1

i=1 σ(zi) σ(zi). A
neural network, unlike other Deep GP, does not have infinite capacity. Put loosely, a single neural
network hidden unit corresponds to a single basis, while in general a single Deep GP unit corresponds
to a potentially-infinite basis. See [1, 2, 24, 31, 33, 72] and Appx. B.2 for more discussion on this
connection. The critical takeaway is that all of our Deep GP results apply to neural networks as well.

3.1 Wide Deep GP are Gaussian Processes

Having established a model where width does not effect capacity, we now establish what remaining
effects width has. Empirical evidence suggests that the choice of width impacts Deep GP predictions
[19, 46]. In practice it is common to make Deep GP as wide as comparably-sized neural networks;
Salimbeni and Deisenroth [79] for example train Deep GP with ≥ 30 units per layer.

Surprisingly, here we prove that—in the limit of infinite width—Deep GP collapse to single-layer
Gaussian processes. Our proof relies on the conditional covariance analysis of the previous section.
If the GP layers have non-pathological covariance functions2—the Deep GP conditional covariance
becomes almost surely constant with width (see Lemma 3, Appx. E). Combining this with Lemma 2:

Theorem 1. Let fL ◦ . . .◦ f1 (x) be a zero-mean Deep GP (Eq. 2), where each layer satisfies Assump-
tions 1 and 2 (non-pathological prior covariances that scale with dimensionality—see Appx. E.3).
Then limHL−1→∞ · · · limH1→∞ fL ◦ . . . ◦ f1 (x) converges in distribution to a (single-layer) GP.

2Any textbook kernel (isotropic kernels, dot product kernels, etc.) or any covariance function with a
Fourier-Steiljes representation is “non-pathological;” see Appx. E.3 for formal assumptions.
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Figure 1: Top: Posterior of 2-layer RBF Deep GP fit to a noisy step function. A width-1 Deep GP fits
the discontinuity at x = 0. As width increases, the Deep GP converges to a GP with a stationary covari-
ance unable to fit the step. Bottom: Average posterior covariance Ef1(x),f1(x′)|y[k2(f1(x), f1(x

′))].
The width = 1 posterior covariance is non-stationary, with little covariance around x = 0. As width
increases, the posterior covariance becomes stationary (as seen by the kernel’s constant diagonals).

(See Appx. E for proof.) The implications of Thm. 1 are paradoxical and unsettling. Deep GP are
motivated as a more powerful model than standard GP. However, as we make the model wider, we
arrive back where we started—a Gaussian process (although one with a different prior covariance).

A neural network gains representational power in its GP limit, transitioning from a finite-basis model
to a nonparametric model. The Deep GP limit on the other hand has no additional representational
power, since Deep GP are already universal approximators at any width. (Indeed this fact motivates
their use as a control.) The only difference between finite and infinite width Deep GP is the prior
distribution itself: transitioning from non-Gaussian to Gaussian with increasing width. In the next
section, we investigate how this transition affects model performance.

4 Large Width Limits the Adaptability of Hierarchical Posteriors

Even with Thm. 1 and its troubling suggestions, it is not immediately clear exactly what is lost
in the infinite-width limit. Here, we quantify specific differences in the predictive capabilities of
narrow versus wide models. In particular, we analyze Deep GP/neural network posterior distributions,
rather than focusing on a single model trained through optimization. We show that these posteriors
correspond to a mixture of data-dependent adaptable bases; however, as width increases this mixture
collapses to the (data-independent) basis of the limiting GP. This result formalizes the often vague
notion of feature learning, and demonstrates that it is indeed lost in kernel limits.

Hierarchical posteriors correspond to a data-adaptable bases. Consider the (finite-width) 2-
layer Deep GP f2(f1(·)), where k1(·, ·) and k2(·, ·) are the covariance functions of f1(·) and f2(·).
Given training data X,y, define F1 , [f1(x1), . . . , f1(xN )] and f2 , [f2(f1(x1)), . . . , f2(f1(xN ))].
Let x∗ be a test input, and let f∗1 and f∗2 equal f1(x∗) and f2(f1(x∗)) (see Fig. 5 in Appx. B.3
for a graphical model). Crucially, f2 and f∗2 only depend on F1 and f∗1 through the covariances
K2(F1,F1), k2(F1, f

∗
1 ), and k2(f∗1 , f

∗
1 ) (which we abbreviate as K2, k∗2, and k∗∗2 ):

p(f2 | K2) ∼ N (0,K2) , p(f∗2 | k∗∗2 ,k∗2,K2, f2) ∼ N
(
k∗>2 K−12 f2, k

∗∗
2 − k∗>2 K−12 k∗2

)
,

By D-separation [e.g. 16, Ch. 8], we can factorize the posterior distribution as:

p(f∗2 , f2,K2,k
∗
2, k
∗∗
2 | y) = p(f∗2 | f2,K2,k

∗
2, k
∗∗
2 ) p(f2 | K2,y) p(K2,k

∗
2, k
∗∗
2 | y). (3)

See derivation in Appx. B.3. Applying the factorization in Eq. (3), the posterior mean is:

E
f∗2 |y

[f∗2 ] = E
K2,k∗2 |y

[
E

f2|K2,y

[
k∗>2 K−12 f2

]]
= E

K2,k∗2 |y

[
k∗>2

α

K−12 E
f2|K2,y

[f2]
]

(4)

= E
f1(x∗),f1(x1),...,f1(xN )|y

[∑N
i=1 αi k2(f1(xi), f1(x

∗))
]
, (5)
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where the second line follows from K2 and k∗2 being deterministic given f1(x
∗), f1(x1), . . ., f1(xN ).

The term inside the Eq. (5) expectation is a function from the reproducing kernel Hilbert space (RKHS)
defined by k2(f1(·), f1(·)). We can thus interpret this expectation as an infinite mixture of functions
from different Hilbert spaces. Because the mixture distribution p(f1(x∗), f1(x1), . . . , f1(xN ) | y)
depends on y, Eq. (5) is an adaptive data-dependent mixture of RKHS.

Adaptability is lost in the Gaussian process limit. What happens to Eq. (5) as f2(f1(·)) becomes
a Gaussian process in the limit of infinite-width? Recall from Lemma 2 that the conditional prior
covariance becomes deterministic as f2(f1(·)) converges to a GP. In other words, the prior and
posterior distributions over K2 and k∗2 become atomic: p(K2,k

∗
2) = p(K2,k

∗
2 | y) = δ [Klim,k

∗
lim ],

where Klim and k∗lim are shorthand for E[f2f>2 ] and E[f2f∗2 ] respectively. Eq. (4) thus collapses to:

lim
H1→∞

E
f∗2 |y

[f∗2 ] = E
δ[Klim,k∗lim]

[
k∗>2 α

]
=
∑N
i=1 αi klim(xi,x

∗), (6)

which is no longer a mixture of functions from different RKHS. It is instead a function from a single
RKHS (that of the limiting GP prior).3 In other words, while Deep GP (and neural networks) perform
kernel learning (or feature learning) to adapt to training data, this ability is lost with large width.

Example. Consider a Deep GP with RBF covariances k1(x,x′) = exp
(
−‖x− x′‖2/(2D)

)
and

k2(f1(x), f1(x
′)) = exp

(
−‖f1(x)− f1(x

′)‖2/(2H1)
)
. As we show in Appx. G, this Deep GP

converges to a GP with klim(x,x
′) = exp(exp(−‖x − x′‖2/(2D)) − 1). Note that this limiting

covariance is stationary and is ill-equipped to model the data step in Fig. 1. However, because
f1(·) is nonlinear, k2(f1(x), f1(x′)) is nonstationary. Fig. 1 (top left) shows that the width-1 Deep
GP posterior accurately models this data. The posterior covariance Ef1(x),f1(x′)|y[k2(f1(x), f1(x

′))]
(bottom left) features long-range correlations near x = ±1 and short-range correlations near x = 0.
As width increases, we lose this nonstationarity and the posterior becomes a worse fit.

5 The Difference Between Width and Depth: A Tail Analysis

Our work so far has troubling implications for large width. On the other hand, empirical evidence
has shown that depth improves Deep GP performance—as it does for neural nets [e.g. 46, 72, 79]
(though pathologies can emerge [29, 33]). Through a novel tail analysis, we show that width makes
Deep GP priors more Gaussian, while depth makes them less Gaussian. In other words, width and
depth have opposite effects on Deep GP tails, results that again also apply to typical neural networks.

Deep GP/neural networks are sharply peaked and heavy tailed. The proof technique used in
Lemma 1 can be used to similarly bound the moment generating function of Deep GP marginals:

E
f2

[
et
>f2
]
= E

F1

[
E

f2|F1

[
et
>f2
]]
≥ exp

(
1

2
t> E

F1

[K2(F1,F1)] t

)
= E

g∼N (0,Klim)

[
et
>g
]
, (7)

where Klim=Ef2 [f2f
>
2 ]=EF1 [K2(F1,F1)]. Generalizing these bounds to deeper models, we have:

Theorem 2. Let fL◦. . .◦f1(·) be a zero-mean Deep GP. Given a finite set of inputs X = [x1, . . . ,xN ],
define f` = [(f` ◦ . . . ◦ f1(x1)), . . . , (f` ◦ . . . ◦ f1(xN ))] for ` ∈ [1, L], and define Klim = EfL [fLf

>
L ].

Then, p(fL = 0) ≥ N (g = 0;0,Klim).

Theorem 3. Let t ∈ RN . Using the same setup, notation, and assumptions as Thm. 2, the
odd moments of t>fL are zero and the even moments larger than 2 are super-Gaussian, i.e.
EfL [(t

>fL)
r] ≥ Eg∼N (0,Klim)[(t

>g)r] for all even r ≥ 4. Moreover, if kL(·, ·) is bounded almost
everywhere, the moment generating function EfL [exp(t

>fL)] exists and is similarly super-Gaussian.

(See Appx. F for proofs.) Thm. 2 states that Deep GP marginals are more sharply peaked than a
moment-matched Gaussian, while Thm. 3 states that they are also more heavy tailed.

Increasing depth leads to sharper peaks and heavier tails. To understand how depth affects this
tail behavior, we examine the Jensen gap in Eq. (7). Consider a 3-layer Deep GP f3(f2(f1(·))). If we

3To rigorously argue that the infinite-width posterior collapses in this way, we can invoke Proposition 1 from
Hron et al. [49]. See Appx. B.4 for details.
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Figure 2: Marginal densities p(y1, y2 | x1,x2) for zero-mean Deep GP of various depths and widths
on the N = 2 dataset x1 = −0.5, x2 = 0.5. All 2-layer models have the same second moments
(covariance is that of the 3-layer width = 1 RBF-RBF-RBF Deep GP). Left to right: width increases,
marginals become increasingly Gaussian, tails become thinner, and the peak at [y1, y2] = 0 loses
density. Top to bottom: depth increases, tails become fatter, and the peak becomes sharper.

extend Eq. (7) to 3-layer models, we see that the Jensen gap cascades:

E
F1

[
E

F2|F1

[
exp

(
1

2
t>K3t

)]]
MGF of 3-layer Deep GP marginal

≥ E
F1

[
exp

(
1

2
t> E

F2|F1

[K3] t

)]
MGF of 2-layer Deep GP marginal

≥ exp

(
1

2
t>E

F1

[
E

F2|F1

[K3]

]
t

)
MGF ofN (0,EF1

[EF2|F1
[K3]])

,

where K3 is short for K3(F2(F1(X)),F2(F1(X))). The middle term is the moment generating func-
tion of a 2-layer Deep GP marginal (where the second layer has covariance Ef2(·)[k3(f2(·), f2(·))]).
The right-most term is the moment generating function of a (single-layer) Gaussian. Generalizing this
cascade, we see that deeper models are more heavy-tailed. A similar analysis on the characteristic
function shows that the peak at the prior mean also becomes sharper with depth (see Appx. F).

Adding additional layers to a Deep GP will change the model’s prior covariance, and thus the effects
of depth cannot solely be explained by a tail analysis [29, 33]. Nevertheless, if we control for this
change in covariance, we indeed see that depth leads to heavier tails. In Fig. 2 we compare 2-layer and
3-layer Deep GP. The 3-layer models use GP layers with additively-decomposing RBF covariances,
while the 2-layer models use layers constructed to match the 3-layer models’ prior covariance (see
Appx. H for construction details). The N = 2 marginal densities for the 3-layer models (bottom row)
are more stretched than the 2-layer densities (top row). We further confirm these effects in Appx. D.

Increasing width leads to flatter peaks and Gaussian tails. Conversely, consider what happens
when we make the model wider. We define the sequence of increasingly wide 2-layer Deep GP:{

DGP(m)(·) , 1√
m

m∑
i=1

f
(i)
2 (f

(i)
1 (·))

}
,

f
(i)
1 (·) i.i.d∼ GP [0, k1(·, ·)] ,

f
(i)
2 (·) i.i.d∼ GP [0, k2(·, ·)] .

(8)

DGP(m)(·) is a width-m Deep GP, where the second layer decomposes additively over the m
dimensions. By linearity of expectation, each model in the sequence shares the same prior covariance:
E[DGP(1)(x) DGP(1)(x′)] = E[DGP(2)(x) DGP(2)(x′)] = . . . , klim(x,x

′). Though each model
has the same marginal covariance, the conditional covariance Ef2|F1

[f2f
>
2 ] = 1

m

∑m
i=1 K2(f

(i)
1 , f

(i)
1 )

becomes increasingly concentrated around Klim(X,X) as m increases. This consequentially shrinks
the Jensen gap in Eq. (7), and so the Deep GP marginals become increasingly Gaussian. We again
visualize this effect in Fig. 2, which depicts marginal densities from 2-layer and 3-layer Deep GP of
various width (see Appx. H for details). Compared with the limiting GP (right), the width-1 densities
(left) appear sharper near [0, 0] and more stretched at the tails. As width increases, the peaks and tails
look increasingly Gaussian (see also Fig. 7 in Appx. D). In this sense, width has the opposite effect
as depth—deeper marginals are less Gaussian, while wider marginals are more Gaussian.
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Figure 3: Top: Test set log likelihood (LL) of 2-layer Deep GP (and neural networks) regression as a
function of width (higher is better). Numbers are shifted so that 0 corresponds to the limiting GP log
likelihood. Narrow models achieve the best log likelihood, and performance degrades with width.
Bottom: Fit of the posterior kernel k(f1(·), f1(·)) on the training data, as measured by Gaussian log
marginal likelihood (higher is better). 0 corresponds to the limiting GP log marginal likelihood. Fit
becomes increasingly worse with width.

Table 1: Test set log likelihood (LL) of Deep GP regression as a function of depth (higher is better).
Depth = 1 refers to the limiting GP. For each dataset, the models are constructed to have the same
first and second moments. Unlike width, deeper models generally have better performance.

Depth Yacht
(N = 231, D = 6)

Boston
(N = 378, D = 13)

Energy
(N = 576, D = 8)

Concrete
(N = 772, D = 8)

Power
(N = 1000, D = 4)

PolTele
(N = 1000, D = 26)

1 −0.532 −0.890 −0.477 −0.663 −0.249 −0.476
2 −0.520 −0.684 −0.434 −0.573 −0.260 −0.381
3 −0.482 −0.609 −0.383 −0.620 −0.251 −0.318

6 Experiments

6.1 Regression with Deep GP and Bayesian Neural Networks

To isolate the effects of width and depth, each experiment compares Deep GP/Bayesian neural
networks that share the same first and second prior moments, and the Deep GP models use GP layers
with universal kernels. To remove any potential side effects from approximate inference methods, we
sample Deep GP/neural network posteriors using NUTS [48] and do not use any stochastic inducing
point [46, 79] or finite basis [24] approximations. This inference is costly and scales cubically with
N ; therefore, we subsample all training datasets to N ≤ 1000. See Appx. H for experimental details.

Effect of width. We compare 2-layer Deep GP of various width on 6 regression datasets from the UCI
dataset repository [10] (see Appx. D for 3-layer results). The first GP layers use a RBF kernel for the
prior covariance, while the second layers use a sum of one-dimensional RBF covariance functions. We
additionally compare against the limiting (single-layer) GP with the same prior covariance (Lim. GP).
For each dataset, we choose hyperparameters that maximize the Lim. GP log marginal likelihood. In
Fig. 3 (top row) we see a near-monotonic performance degradation as width increases. The width = 2
optimum may represent the “sweet spot” for Deep GP width, but it may instead be a side-effect of
inference difficulties for width = 1 models (see Appx. D for a control experiment). Regardless, as
our theory predicts, width is detrimental to Deep GP predictive performance.

We repeat the experiment for 2-layer neural networks (and 3-layer models in Appx. D), where here
the Lim. GP corresponds to the arc-cosine kernel [23, 56]. Fig. 3 indicates an optimal width with
regards to test set log likelihood, usually between 8− 16 hidden units. We expect this optimum exists
(and differs from the Deep GP optimum) because narrow models have too few basis functions for
these datasets. Nevertheless, after sufficient capacity, width is harmful to Bayesian neural networks.

Adaptable versus non-adaptable RKHS. One way to measure the “fit” of a kernel k(·, ·) on a
regression training dataset X,y is the Gaussian log marginal likelihood logN (y;0,K(X,X)+σ2I),
where σ2 is an observational noise parameter [e.g. 77]. To demonstrate how Deep GP/neural network
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Figure 4: Effect of width on standard (non-Bayesian) neural networks. Shaded regions depict standard
error. Left: 3-layer MLP trained on subsets of MNIST. With large values of L2 regularization, model
performance is maximized when width ≤ 1,000. For small values of L2 regularization (e.g. 10−8,
which corresponds to a prior of N (0, 20,000) on the parameters), there is little accuracy loss with
increasing width. It is possible that our theory does not apply to models with little L2 regularization
which have little Bayesian interpretation. Right: Wide ResNet models (8-layer and 14-layer variants)
trained on CIFAR-10. For both depths, accuracy is optimal when width ≤ 500.

posteriors correspond to adaptable RKHS mixtures, the bottom row of Fig. 3 plots the “kernel fit” of
k2(f1(·), f1(·)) for posterior samples of f1(·) (see Eq. 5). A higher fit corresponds to a model that is
better adapted to the dataset X,y. We see that narrower Deep GP almost universally achieve better
kernel fit than wider Deep GP, which converge to the same fit as the limiting GP. (Standard deviations,
depicted by shaded regions, are generally imperceptible.) Bayesian neural networks achieve best
“kernel fit” at 8− 16 hidden units, and then converge to the limiting Deep GP with further width.

Effect of depth, controlling for covariance. Table 1 displays Deep GP test set log likelihood as a
function of depth. Again, we isolate the tail effects of depth by ensuring that all models share the
same first and second moments. We construct a GP and a 2-layer Deep GP that match the moments of
a 3-layer width = 2 Deep GP with RBF covariances, and we use hyperparameters that maximize the
limiting GP marginal likelihood for each dataset. Note that computing the limiting covariance of ≥ 3
layer models involves intractable integrals that we approximate with quadrature (see Appx. G). Our
findings confirm that—in this controlled setting—depth unlike width improves test set performance.

6.2 Standard (Optimized, Non-Bayesian) Neural Networks

We now turn to standard (optimized, non-Bayesian) neural networks. While our theoretical results
primarily apply to full posteriors over models, our goal is to see if our theory can also be predictive in
“real world” neural networks without a Bayesian treatment. There is reason to believe that our theory
should be applicable in these settings, since standard neural network training with L2 regularization
is equivalent to maximum a posteriori inference with Gaussian priors. To that end, we ensure some
correspondence between these experiments and our Bayesian experiments. In particular, we measure
the effects of width on networks with fixed values of L2 regularization,4 which corresponds to a fixed
prior on neural network parameters. Additionally, models are trained without data augmentation, as
data augmentation does not have a probabilistic interpretation [51].

Fig. 4 (left) depicts test set accuracy for increasingly wide models trained on MNIST [55]. Each
network is a MLP with 3 layers (i.e. 2 hidden layers). Following the GP-limiting neural network
construction in Eq. (1), we scale the outputs of layer ` by 1/

√
H`−1. We measure the effect of

width over networks with various L2 regularization constants (10−5, 10−6, 10−7, and 10−8) which
respectively correspond to priors of N (0, 2), N (0, 20), N (0, 200), and N (0, 2000) when N =
50,000. We train these sequences on various-sized subsets of the training data (N = 500, N = 5,000,
and N = 50,000). From this figure we can observe several phenomena. For larger values of L2
regularization, we see a distinct maximum in accuracy, typically around width ≈ 1,000. For smaller
values of L2 regularization, wider models tend to perform better (and indeed, for this dataset/model
combination it appears that less regularization tends to be beneficial to overall performance). We
would note that these low regularization constants correspond to arguably unreasonable parametric

4In other words, we do not consider the regularization constant to be a hyperparameter that we optimize over
for the purposes of these experiments.
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priors like N (0, 2000), and so a Bayesian interpretation of these models may not be applicable. In
such settings, it is more likely that the interpolation analysis of Belkin et al. [12] is a better model of
performance, since this analysis explicitly focuses on the low-regularization setting.

Fig. 4 (right) depicts 8- and 14-layer ResNets [47] trained on the CIFAR-10 dataset [54]. We use the
hyperparameters from the original ResNet paper, which have been shown to be efficacious on both
narrow and wide variants of ResNet models [92]. (This training procedure uses a L2 coefficient of
10−4, which corresponds to a prior of N (0, 0.2) for each parameter when N = 50,000.) For both
depths, we observe that performance is optimal when width is between 500 and 1,000. While it is
possible that different hyperparameters may yield different outcomes, these results indeed suggest
that large width can adversely affect standard neural networks once sufficient capacity is reached.

7 Discussion

This paper shows that, across typical neural networks (with L2 regularization), Deep GP, and Bayesian
neural networks, large width can be detrimental to model performance.

Even with these results, we can ask when width might be desirable? First, we note that our results
analyze exact posteriors or MAP solutions, and does not focus on practical considerations with regards
to obtaining these solutions. We do not consider the effect that width might have on approximate
inference methods, which are commonly used with Bayesian neural networks and Deep GP in
practice [e.g. 18, 34, 79]. For conventional neural networks, poor conditioning and non-convexity
make it challenging to obtain a MAP solution. The optimization dynamics—which depend on
numerous factors like learning rates, initializations, and choice of optimizer—may be improved by
width, as wider models tend to have more favorable optimization landscapes [7, 28, 59, 70, 82].
Consequentially, wider models may obtain better performance due to these practical considerations.

Secondly—as noted in Sec. 6.2—while we notice detrimental effects of width on neural networks
with a Bayesian interpretation (i.e. inferring a parameter posterior or optimizing parameters with
L2 regularization), we do not see these effects when such an interpretation does not exist (i.e.
optimizing parameters with almost no L2 regularization). Our theoretical findings assume that layers
are conditionally Gaussian, and different priors may have different effects. We note that much of
the preliminary works on NTK assume no explicit regularization during training [28, 52, 57] (with
the notable exception of Wei et al. [86]), and so our findings may be at odds with the empirical
findings around these models [e.g. 9, 38, 39]. Moreover, recent work has proposed (non-Bayesian)
infinite-width constructions that avoid any limiting kernel behavior [e.g. 22, 43, 65, 90], and so our
findings would not apply to these models. We emphasize that our results do not conflict with these
prior works, but rather reflect a different perspective. The models we study correspond to a Gaussian
prior on parameters, and so relaxing this correspondence may lessen the consequences of width that
we observe. Nevertheless, our results suggest that the inductive bias of width may be harmful, even if
these undesirable effects can be avoided via careful construction.

Finally, it is worth considering when one might still choose a conventional shallow GP over a deep
model. An often-touted benefit of Gaussian processes is the ability to encode prior domain knowledge
via the choice of covariance function. In Appx. C, we prove that certain prior covariances cannot be
expressed by adaptable hierarchical models. For example, a Deep GP that is composed of stationary
GP layers cannot model anti-correlations a priori (Thm. 4, Appx. C), whereas (single-layer) stationary
GP can have positive and negative prior covariances. Nevertheless, Deep GP are capable of modeling
many common covariance functions, including the RBF, Matérn, and rational quadratic kernels. In
Appx. C we demonstrate a 2-layer Deep GP construction of any width that is capable of producing
prior covariances that match most isotropic kernels (Thm. 5, Appx. C). In other words, a Deep GP
can match the first and second moments of most GP, while also offering an adaptable posterior.
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