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Abstract
Satisfiability Modulo Counting (SMC) is a re-
cently proposed general language to reason about
problems integrating statistical and symbolic Ar-
tificial Intelligence. An SMC problem is an ex-
tended SAT problem in which the truth values of
a few Boolean variables are determined by prob-
abilistic inference. Approximate solvers may re-
turn solutions that violate constraints. Directly in-
tegrating available SAT solvers and probabilistic
inference solvers gives exact solutions but results
in slow performance because of many back-and-
forth invocations of both solvers. We propose
KOCO-SMC, an integrated exact SMC solver
that efficiently tracks lower and upper bounds
in the probabilistic inference process. It enhances
computational efficiency by enabling early estima-
tion of probabilistic inference using only partial
variable assignments, whereas existing methods
require full variable assignments. In the exper-
iment, we compare KOCO-SMC with currently
available approximate and exact SMC solvers on
large-scale datasets and real-world applications.
The proposed KOCO-SMC finds exact solutions
with much less time.

1. Introduction
Symbolic and statistical Artificial Intelligence (AI) are two
foundations with distinct strengths and limitations. Sym-
bolic AI, exemplified by SATisfiability (SAT) and constraint
programming, excels in constraint satisfaction but cannot
handle probability distributions. Statistical AI captures prob-
abilistic uncertainty but does not guarantee satisfying sym-
bolic constraints. Integrating symbolic and statistical AI
remains an open field and has gained much research atten-
tion (d’Avila Garcez et al., 2015; Li et al., 2023; Dennis
et al., 2023; Sheth & Roy, 2024).
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Figure 1. (Left) Compared to exact solvers, our KOCO-SMC
solves 45% of SMC problems within a 10-second time limit,
whereas baselines require up to 3 hours for a similar rate of comple-
tion. (Right) Compared with approximate methods, KOCO-SMC
finds exact solutions for most cases (lower segment), whereas the
approximate solvers may handle some hard instances (upper seg-
ment) but often yield lower-quality results.

Satisfiability Modulo Counting (SMC) is a recently pro-
posed general language to reason about problems integrat-
ing statistical and symbolic AI (Fredrikson & Jha, 2014; Li
et al., 2024). An SMC problem is an extended SAT problem
in which the truth values of certain Boolean variables are
determined through probabilistic inference, which assesses
whether the marginal probability meets the given require-
ments. Solving SMC problems poses great challenges since
they are NPPP-complete (Park & Darwiche, 2004).

Taking robust supply chain design as an example (Figure 2),
a manager must choose a route on the road map to ensure
sufficient materials for production, while accounting for
stochastic events such as natural disasters. This problem ne-
cessitates both symbolic reasoning to find a satisfiable route
and statistical inference to ensure the selected roads are ro-
bust to stochastic natural disasters. The SMC formulation is
further detailed in Section 3.1. Slightly modified problems
can be found in many real-world applications, including
vehicle routing (Toth & Vigo, 2002), internet resilience (Is-
raeli & Wood, 2002), social influence maximization (Kempe
et al., 2005), energy security (Almeida et al., 2019), etc.

Several approximate SMC solvers have been pro-
posed (Kleywegt et al., 2002; Li et al., 2024). Among
them, Sample Average Approximation (SAA)-based meth-
ods (Kleywegt et al., 2002) are the most widely adopted,

1



Solving Satisfiability Modulo Counting Exactly with Probabilistic Circuits

For Route 1: 

For only one route: 

Ensure a valid route

Ensure sufficient connectivity

(b) SMC Formulation(a) Pick Route 1 or Route 2?
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Figure 2. Formulation of the robust supply chain problem into an SMC problem. (a) A road map containing 4 locations and the road
between them. The connectivity of each road is denoted by a random variable xi, where xi = True indicates the corresponding road is
selected. (b) Model the supply routine planning as an SMC problem. (c) The probability of every connectivity situation is represented as
the Probabilistic Circuit. Each xi or xi node denotes a leaf node that encodes a Bernoulli distribution. The symbols ⊕ and ⊗ represent
the sum and product nodes, respectively. The values next to the edges are weights for the sum nodes.

estimating marginal probabilities using sample means. An-
other approach, XOR-SMC (Li et al., 2024) provides
a constant-factor approximation guarantee by leveraging
XOR-sampling to estimate marginals. Nevertheless, even
the solutions found by XOR-SMC may violate a fraction of
constraints because of the approximate bound. Overall, ap-
proximate solvers may be insufficient for certain scenarios
where complete constraint satisfaction is essential.

In the absence of existing exact SMC solvers, an intuitive
method to solve SMC problems exactly requires integrating
SAT solvers and probabilistic inference solvers. Specifically,
the SAT solver first gives a feasible variable assignment for
the Satisfiability part, which is then evaluated by a prob-
abilistic inference solver. This setup leads to excessive
back-and-forth communication between the two solvers. A
motivating example is in Section 3.1. For unsatisfiable in-
stances, in particular, such exact solvers may exhaustively
enumerate all possible assignments before concluding unsat-
isfiability, resulting in significant computational overhead.

We introduce KOCO-SMC, an exact and efficient SMC
solver, mitigating the extreme slowness typically encoun-
tered in unsatisfiable SMC problems. KOCO-SMC saves
time by detecting the conflict early with partial variable
assignments. The proposed Upper Lower Watch (ULW) al-
gorithm tracks the upper and lower bounds of probabilistic
inference when new variables are assigned. When these
bounds violate the satisfaction condition—for example, if
the upper bound of the probability falls below the required
threshold—the conflict is recorded as a learned clause. This
clause is then used to prune the search space, preventing
redundant exploration in subsequent iterations.

In our experiments, we evaluate all existing approximate
and exact solvers by creating a large-scale dataset contain-
ing 1,350 SMC problems–based on the UAI Competition

benchmark held between 2010 and 2022. Figure 1 shows the
comparison with state-of-the-art solvers. Compared with ex-
act solvers, KOCO-SMC scales the best. Our KOCO-SMC
solves 45% of instances within 10 seconds, whereas baseline
methods require 3 hours. Given a 3-hour runtime, our ap-
proach can solve 85% of instances. Compared with approx-
imate solvers under a 10-minute time limit, KOCO-SMC
reliably delivers exact solutions for most cases, whereas
approximate solvers solve some problems (including a few
hard ones that KOCO-SMC cannot) but may return results
that do not fully satisfy constraints or cannot be verified.

To summarize, our main contributions are:

1. We propose KOCO-SMC, an efficient exact solver for
SMC problems, integrating probabilistic circuits with ULW
algorithm for effective conflict detection.

2. Experiments on large-scale datasets illustrate KOCO-
SMC’s superior performance compared to state-of-the-art
approximate and exact baselines in solution quality or time
efficiency.

3. In the case study, we also demonstrate the process of
formulating real-world problems into SMC problems, and
highlight the strong capability of our solver in addressing
these problems1.

2. Preliminaries
Satisfiability Modulo Counting (SMC) provides a general
language to reason about problems integrating symbolic
and statistical constraints (Fredrikson & Jha, 2014; Li et al.,
2024). Specifically, the symbolic constraint is character-

1Code implementation is available at: https://github.
com/jil016/koco-smc
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ized by a Boolean formula ϕ, and the statistical constraint
is captured by constraints involving marginal probability∑

fj .

Let lowercase letters be random variables (i.e., x, y, z, and
b) and let bold symbols (i.e., x, y, z and b) denote vectors
of Boolean variables, e.g., x = (x1, . . . , xN ). All variables
take binary values in {False, True}.
Given a formula ϕ for Boolean constraints and two sets
of weighted functions, {fj}Mj=1 and {gk}Kk=1, representing
discrete probability distributions, the SMC problem is to de-
termine if the following formula is satisfiable over Boolean
variables x and b:

ϕ(x,b),where bj ⇔
∑

yj

fj(x,yj) ≥ qj (1)

or bj ⇔
∑

yj

fj(x,yj) ≥
∑

zk

gk(x, zk)

for j = 1, ...,M

Each function fj (or gk) is an unnormalized discrete prob-
ability function over Boolean variables x and yj (respec-
tively, x and zk). The summation

∑
fj and

∑
gk compute

the marginal probabilities, where yj and zk are latent vari-
ables and will be marginalized out. Thus, only x and b are
decision variables.

Each bj is referred to as a Probabilistic Predicate, which
is evaluated as true if and only if the inequality over the
marginalized probability is satisfied. Each probabilistic con-
straint is in the form of either (1) the marginal probability
surpassing a given threshold qj , or (2) one marginal proba-
bility being greater than another. Note that the biconditional
“⇔” can be relaxed to “⇒” or “⇐”, and the “≥” inequality
can be generalized to “=, >”, or to the reversed direction.
In this paper, we focus on the form given in the first line of
equation (1).

Probabilistic Circuits (PCs) are a broad class of probabilis-
tic models that support a wide range of exact and efficient
inference tasks (Darwiche, 2002; 1999; Poon & Domingos,
2011; Rahman et al., 2014; Kisa et al., 2014; Dechter &
Mateescu, 2007; Vergari et al., 2020; Peharz et al., 2020).
Formally, a PC is a computational graph that encodes a
probability distribution P (x) over a set of random variables
x. The graph consists of three types of nodes: leaf nodes,
product nodes, and sum nodes. Each node represents a
distribution over a subset of the variables.

Figure 2(c) illustrates an example PC over four variables.
A leaf node u encodes a tractable univariate distribution
Pu(xi) over a single variable xi, such as a Gaussian or
Bernoulli distribution. A product node u defines a factor-
ized distribution Pu(x) =

∏
v∈ch(u) Pv(x), where ch(u)

denotes the children of node u. A sum node u represents
a mixture distribution Pu(x) =

∑
v∈ch(u) wvPv(x), where

wv are normalization weights associated with each child v.

The root node of PCs encodes the full joint distribution over
all variables.

When equipped with certain structural properties, PC en-
ables efficient inference tasks—including computing par-
tition functions, marginal probabilities, and MAP esti-
mates—that scale polynomially with the graph size (Dar-
wiche & Marquis, 2002; Choi et al., 2022).

3. Methodology
3.1. Motivation

We use robust supply chain design as a motivating example
to illustrate the limitations of intuitive exact SMC solvers,
which we construct as baselines in the absence of existing
exact solvers. In Figure 2(a), the task is to deliver suffi-
cient materials from suppliers to demanders on a road map.
Various random events, such as natural disasters and car
accidents, may affect road connectivity. The goal is to pick
a route with a sufficient road connection probability.

Let xi denote the i-th road segment on the map, for
i = 1, . . . , 4. In the Boolean formula ϕ, the assign-
ment xi = True indicates that road segment xi is se-
lected. The uncertainty due to random events is mod-
eled by a joint probability distribution over all road seg-
ments, P (x1, x2, x3, x4). Figure 2(c) uses a probabilistic
circuit to represent P (x1, x2, x3, x4). We represent the
route selection using Boolean variables b1 and b2, where
b1 = True corresponds to choosing route 1, which requires
x1 = x2 = True. The probability that route 1 is fully
connected—that is, all required segments are accessible—is
given by the marginal probability:

P (b1 is assessible) =
∑
x3,x4

P (x1 = x2 = True, x3, x4).

Let q ∈ [0, 1] denote the minimum required probability for
reliable connectivity along the selected route. The goal is
to select either route 1 (b1 = True) or route 2 (b2 = True)
such that the corresponding route’s connectivity probability
exceeds q. This can be summarized as the SMC problem:

ϕ(x,b) = (b1 ⊕ b2)︸ ︷︷ ︸
(a)

∧ (b1 ⇒ x1 ∧ x2)︸ ︷︷ ︸
(b)

∧ (b2 ⇒ x3 ∧ x4)︸ ︷︷ ︸
(c)

,

where b1 ⇔
∑
x3,x4

P (x1, x2, x3, x4) ≥ q︸ ︷︷ ︸
(d)

,

b2 ⇔
∑
x1,x2

P (x1, x2, x3, x4) ≥ q︸ ︷︷ ︸
(e)

,

where ⊕ is the logical “exclusive or” operator. In part (a),
the constraint ensures that only one route is selected. In part

3
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(b), the constraint indicates that: if route 1 is selected, both
x1 and x2 must be assigned True. Part (c) applies a similar
condition for route 2. In part (d),

∑
x3,x4

P (x1, x2, x3, x4)
marginalizes out x3 and x4, representing the probability
of route 1’s connectivity condition under random natural
disasters. Part (e) is analogous to part (d).

Since no general exact SMC solver currently exists, solv-
ing SMC problems exactly requires combining tools from
different domains. Assume q = 0.5, we have:

1. It first uses an SAT solver to solve the Boolean SAT
problem ϕ(x,b) and proposes a solution, e.g., x1 = x2 =
b1 = True, x3 = x4 = b2 = False. It implies that only
route 1 is selected.

2. Then, it infers the marginal probability
∑

x3,x4
P (x1 =

x2 = True, x3, x4) = 0.1 < q, which violates the prob-
abilistic constraint. The detailed calculation is shown in
Figure 7.

3. Since variables within the probabilistic constraint cause
a conflict, it adds the negated clause ¬(x1 ∧ x2 ∧ b1) to
formula ϕ to omit this assignment in the future, and then
returns to step 1 to find a new assignment.

The process exhibits a sequential dependency between the
SAT solver and probabilistic inference, wherein each com-
ponent must await the completion of the other. This mutual
blocking results in suboptimal computational efficiency, and
in the worst-case scenario, the SAT solver is required to
exhaustively enumerate all feasible solutions.

To address this issue, our KOCO-SMC immediately detects
a conflict upon the partial assignment x1 = True, sav-
ing time by avoiding further assignments to the remaining
variables. Although x2 remains unassigned, the maximum
achievable probability under any completion of the assign-
ment is already below the threshold q:

max
x2

∑
x3,x4

P (x1 = True, x2, x3, x4) = 0.1 < q.

This should trigger an immediate conflict, rather than de-
ferring conflict detection until the SAT solver assigns x2.
As a result, KOCO-SMC achieves greater efficiency than
existing exact SMC solvers by pruning infeasible branches
earlier in the search process.

3.2. Main Pipeline of KOCO-SMC

This section outlines the detailed procedure of the proposed
KOCO-SMC for solving SMC problems. As SMC prob-
lems extend standard SAT by incorporating probabilistic
constraints, KOCO-SMC builds upon and extends the clas-
sical Conflict-Driven Clause Learning framework (Silva &
Sakallah, 1996; Eén & Sörensson, 2003), which comprises

four components: variable assignment, propagation, con-
flict clause learning, and backtracking. Each component is
systematically adapted to handle probabilistic constraints.
A high-level overview is provided in Algorithm 1.

Compilation. Initially, knowledge compilation transforms
all probability distributions into PCs with smooth and de-
composable properties. This can be achieved by advanced
tools (Darwiche & Marquis, 2002; Darwiche, 2004; Lagniez
& Marquis, 2017). An example of compiled PCs is provided
in Figure 2(c).

Variable Assignment. Pick one variable among the
remaining free variables and assign it with a value in
{True, False}. Practical heuristics on the choice of vari-
able and value to accelerate the whole process can be
found in Moskewicz et al. (2001); Eén & Sörensson (2003);
Hamadi et al. (2009).

Propagation. Given partial variable assignments, this step
simplifies the formula by propagating their logical impli-
cations. For Boolean constraints, unit propagation (Zhang
& Stickely, 1996) is used to infer additional variable as-
signments and detect conflicts. For example, consider the
Boolean formula ϕ = (x1 ∨¬x2)∧ (x2 ∨ x3). If we assign
x1 = False, unit propagation forces x2 = False to sat-
isfy the clause (x1 ∨ ¬x2), which subsequently propagates
x3 = True to satisfy the clause (x2 ∨ x3). This cascad-
ing effect significantly improves the efficiency of solving
Boolean constraints.

However, existing propagation techniques are specifically
designed for purely Boolean formulas. Extending this pro-
cess to incorporate probabilistic constraints—by extracting
useful information from partial assignments and efficiently
detecting conflicts—remains a challenging open problem.
To address this, we propose the Upper-Lower Watch (ULW)
method (see Section 3.3), a novel propagation technique for
probabilistic constraints. ULW leverages tractable proba-
bilistic circuits, enabled by advances in modern knowledge
compilers, to efficiently track the upper and lower bounds
of marginal probabilities.

Conflicts Clause Learning. A conflict occurs when the
current partial assignment violates either a Boolean con-
straint or a probabilistic constraint, indicating that the cur-
rent branch of the search cannot lead to a satisfying solution.
In such cases, a learned clause is derived and added to the
Boolean formula to prevent the solver from revisiting the
same conflicting assignment in the future. This mechanism
enables KOCO-SMC to effectively prune the search space
and significantly accelerate the solving process.

When a conflict is detected within a Boolean clause, there
are existing techniques to add a learned clause to the orig-
inal Boolean formula, preventing the same conflict from
occurring in the future (Hamadi et al., 2009).

4
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When a conflict arises from a probabilistic constraint,
KOCO-SMC generates a learned Boolean clause that cap-
tures the root cause of the violation. This clause is con-
structed by negating the current partial assignment respon-
sible for making the constraint unsatisfiable. For exam-
ple, consider the probabilistic constraint

∑
x3,x4

P (x1 =
True, x2, x3, x4) < q, which is unsatisfiable under the
current assignment x1 = True. KOCO-SMC derives the
learned clause ¬x1. This clause is then added to the Boolean
formula, resulting in an updated constraint ϕ∧(¬x1), which
prevents the solver from repeating the same conflict and
eliminates the need to re-evaluate the same probabilistic
inference in future branches.

Backtracking. This step undoes variable assignments when
a conflict is detected, enabling the solver to backtrack and
explore alternative branches of the search space.

3.3. Upper-Lower Watch for Conflict Detection in
Probabilistic Constraints

The satisfaction or conflict of a probabilistic constraint is
determined by the involved marginal probability. By main-
taining an interval that bounds this marginal probability and
refining it with each new variable assignment, we can detect
satisfiability or conflict early when the range significantly
deviates from the threshold.

Let xassigned be the assigned variables, xrem denote the
unassigned variables, and y be the marginalized-out latent
variables. Determining the range of a marginal probability
involves estimating the appropriate interval [LB, UB], such
that for all possible values assigned to xrem:

LB ≤
∑

y
P (xassigned,xrem,y) ≤ UB, (2)

where UB (resp. LB) is an estimated “upper bound” (resp.
“lower bound”) of the probabilistic constraint given current
partial assignment xassigned.

The proposed Upper-Lower Watch (ULW) algorithm mon-
itors both values to track constraint violations. We show
that computing sufficiently tight bounds can be reduced to a
traversal of these circuits.

Specifically, each node v in the probabilistic circuit repre-
sents a distribution Pv over variables covered by its children.
Our ULW algorithm associates each node with an upper
bound UB(v) and a lower bound LB(v) for the marginal
probability of Pv under the current assignment xassigned.
Therefore, the UB(r) and LB(r) at the root node r are the
upper and lower bounds of the whole probability.

To initialize or update the bounds, we traverse the proba-
bilistic circuits in a bottom-up manner. The update rule for
the leaf nodes is:

• For a leaf node v over an assigned variable x ∈ xassigned,

where variable x is assigned to val, update UB(v) =
LB(v) = Pv(x = val).

• For a leaf node v over an remaining variable x ∈ xrem,
update UB(v) = max{Pv(x = True), Pv(x = False)}
and LB(v) = min{Pv(x = True), Pv(x = False)}.

• For a leaf node v over y ∈ y (the variable to be marginal-
ized), update UB(v) = LB(v) = 1.

Let ch(v) be the set of child nodes of v. Intermediate nodes,
i.e., product nodes and sum nodes, can be updated by:

• For a product node p, update UB(p) =
∏

u∈ch(p) UB(u),
and LB(p) =

∏
u∈ch(p) LB(u).

• For a sum node s, UB(s) =
∑

u∈ch(s) wuUB(u), and
LB(s) =

∑
u∈ch(s) wuLB(u). Here, wu is the weight as-

sociated with each child node u.

During initialization, the entire probabilistic circuit is tra-
versed once to compute the bounds for every node. As the
solving process proceeds, assigning a free variable triggers
updates only along the path from the affected leaf nodes
to the root, ensuring computational efficiency. The correct-
ness of the whole execution procedure is guaranteed by the
smoothness and decomposability properties of probabilistic
circuits. A former justification is provided in Lemma 3.1.

The bounds at the root node r correspond to the bounds
of the marginal probability in the probabilistic constraint.
These estimated bounds are then used for conflict detection.
Basically, if the lower bound LB(r) at the root exceeds the
threshold q in Equation (1), the constraint is guaranteed to
be satisfied. Conversely, if the upper bound UB(r) is less
than q, the constraint is unsatisfiable.

Lemma 3.1. Let probabilistic circuit P (x,y) defined over
Boolean variables x and y. If the probabilistic circuit sat-
isfies the smooth and decomposable property, our ULW
guarantees that Equation 2 holds. The equality is attained
for both LB and UB when all variables are assigned.

Sketch of Proof. The result follows from applying the prop-
erties of smooth and decomposable probabilistic circuits to
the marginal probability inference problem. For a detailed
proof, please refer to Appendix B.

4. Related Works
Satisfiability Problems. Satisfiability (SAT) determines
whether there exists an assignment of truth values to
Boolean variables that makes the entire logical formula
true. Numerous SAT solvers show great performance in var-
ious applications (Moskewicz et al., 2001; Silva & Sakallah,
1999; Eén & Sörensson, 2003; Hamadi et al., 2009).
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Algorithm 1 Solving Satisfiability Modulo Counting Exactly with Probabilistic Circuits.

Input: Boolean formula ϕ; M weighted functions {fj}Mj=1 and thresholds {qj}Mj=1; Boolean variables x = (x1 . . . , xN )
and b = (b1, . . . , bM ).

Output: Satisfiability, variable assignment.
1: Compile M weighted functions {fj}Mj=1 into probabilistic circuits {Cj}Mj=1. ▷ Compilation
2: loop
3: Assign a free variable x to a value in {True, False}; ▷ Variable assignment
4: Perform unit propagation on ϕ.
5: for each probabilistic constraint Cj do
6: Update bounds for probabilistic constraint Cj . ▷ ULW algorithm
7: Detect conflicts by comparing bounds with threshold qj .
8: if no conflict is detected then
9: if all variables are assigned then

10: return SAT, variable assignments.
11: else
12: Propose a learned clause cl and update Boolean formula ϕ← ϕ ∧ cl. ▷ Clause learning
13: if no variable has been assigned then
14: return UNSAT, no assignment.
15: else
16: Undo assignments. ▷ Backtracking

Conflict-Driven Clause Learning (CDCL) (Silva & Sakallah,
1996) is a modern SAT-solving framework that has been
widely applied. The process begins by making decisions to
assign values to variables and propagating the consequences
of these assignments. If a conflict is encountered, i.e., a
clause is unsatisfied, the solver performs conflict analysis
to learn a new clause that prevents the same conflict in the
future. The solver then backtracks to an earlier decision
point, and the process continues. Through clause learning
and backtracking, CDCL improves efficiency and increases
the chances of finding a solution or proving unsatisfiability.
Our KOCO-SMC extends every component in the CDCL
framework to handle probabilistic constraints.

Probabilistic Inference and Model Counting. Probabilis-
tic inference encompasses various tasks, such as calculating
conditional probability, marginal probability, maximum a
posteriori probability (MAP), and marginal MAP (Cheng
et al., 2012). Each of them is essential in fields like machine
learning, data analysis, and decision-making processes.
Model counting calculates the number of satisfying assign-
ments for a given logical formula, and is closely related to
probabilistic inference (Gomes et al., 2006; Achlioptas &
Theodoropoulos, 2017). In discrete probabilistic models,
computing probabilities can be translated to model count-
ing (Chavira & Darwiche, 2008).

Our KOCO-SMC efficiently tracks upper and lower bounds
for probabilistic constraints with partial variable assign-
ments. In literature, Dubray et al. (2024); Ge & Biere (2024)
compute approximate bounds for probabilistic constraints
based on the DPLL algorithm. Marinescu et al. (2014); Ping

et al. (2015); Choi et al. (2022) provide exact bounds by
solving marginal MAP problems, yet they are more time-
consuming than our method.

Probabilistic Circuit with specific structural properties,
i.e., decomposability (Darwiche, 2001a; 1999), smoothness
(Darwiche, 2001b), and determinism (Darwiche & Marquis,
2002), enable efficient probability inferences, scaling poly-
nomially with circuit size. For example, partition functions
and marginal probabilities are computed efficiently due to
decomposability and smoothness, MAP requires determin-
ism for maximization, and Marginal MAP further requires
Q-determinism (Choi et al., 2022).

The process of transforming a probability distribution into a
probabilistic circuit with a specific structure is referred to
as knowledge compilation (Darwiche, 1999; 2001b;a; Dar-
wiche & Marquis, 2002). Several knowledge compilers,
such as ACE (Darwiche & Marquis, 2002), C2D (Darwiche,
2004), and D4 (Lagniez & Marquis, 2017), have been de-
veloped to convert discrete distributions into tractable PCs
for various probabilistic inference tasks.

Specialized Satisfiability Modulo Counting. Stochas-
tic Satisfiability (SSAT) (Papadimitriou, 1985) can encode
SMC problems with a Boolean constraint and one single
probabilistic constraint by integrating Boolean SAT with
probabilistic quantifiers. Advances in SSAT solvers (Lee
et al., 2017; 2018; Fan & Jiang, 2023; Cheng et al., 2024)
have improved their efficiency, but these solvers remain
limited to problems with a single probabilistic constraint.

Stochastic Constraint Optimization Problems can model
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Figure 3. (Left) The running time (horizontal axis) of different solvers on a selected SMC instance with varying thresholds (vertical axis).
Our method is slower before the critical point due to the overhead of compilation time, but becomes much faster than the baselines beyond
it due to early conflict detection. Additional results are in appendix Figures 13-15. (Right) The percentage of instances from the entire
dataset solved within the time limit. Compared to exact solvers, KOCO-SMC solves 80% of SMC problems in 20 minutes, whereas
baselines solve at most 40% of instances in a 3-hour time limit.

SMC problems by incorporating stochastic constraints. Ex-
isting approaches solve them using techniques from Mixed-
Integer Linear Programming or Constraint Programming
(Latour et al., 2019; 2017).

5. Experiments
In the experiments, Figure 3 shows KOCO-SMC ’s superior
time efficiency compared to available exact solvers. Fig-
ure 4 demonstrates KOCO-SMC ’s advantage in finding
exact solutions over approximate solvers. Figure 5 shows
that the proposed ULW algorithm accelerates solving SMC
problems. Finally, Figure 6 demonstrates that KOCO-SMC
can efficiently handle two real-world applications.

5.1. Experiment Settings

Dataset. We fix the number of probabilistic constraints
to one. For the weighted function f , we use benchmark
instances from the partition function task in the Uncertainty
in Artificial Intelligence (UAI) Challenges, held between
2010 and 2022. We retain 50 instances defined over binary
variables and group them into six categories: Alchemy (1
model), CSP (3 models), DBN (6 models), Grids (2 models),
Promedas (32 models), and Segmentation (6 models). For
the Boolean formula ϕ, we generate 9 random 3-coloring
map problems using CNFgen (Lauria et al., 2017). These
instances involve binary encodings with variable counts
ranging from 75 to 675. Unless noted otherwise, each task
uses three thresholds q obtained by multiplying the model’s
partition function by 10−20, 10−10, and 10−1. This yields
1,350 data points in total.

Baselines We consider several approximate SMC solvers
and exact SMC solvers. For the approximate solver, we
include the Sampling Average Approximation (SAA) (Kley-
wegt et al., 2002)-based method. Specifically, we use Lin-

geling SAT solver (Heule et al., 2019) to enumerate solu-
tions and estimate

∑
y f(xf ,y) using sample means, which

enables approximate inference of marginal probabilities.
We Gibbs Sampler (Shapiro, 2003) (Gibbs-SAA) and Be-
lief Propagation (BP-SAA) (Ding & Xue, 2020) to draw
samples. We also include XOR-SMC (Li et al., 2024), an
approximated solver specifically for SMC problems.

The exact solver baseline is composed of an exact SAT
solver and probabilistic inference solvers. This approach
first identifies a solution to the Boolean formula and then
verifies it with the probabilistic constraints. For the Boolean
SAT solver, we use Lingeling (Heule et al., 2019), CaDi-
Cal (Biere et al., 2024), MiniSAT (Eén & Sörensson, 2003)
for their superior performance. For probabilistic inference,
we use the UAI2010 winning solver implemented in lib-
DAI (Mooij, 2010) (UAI10) and the solver based on the
hybrid best-first branch-and-bound algorithm (HBFS) de-
veloped by Toulbar2 (Cooper et al., 2010). Due to the
underlying connection between probabilistic inference and
weighted model counting, we also include model counters
from recent Model Counting competitions (Fichte et al.,
2021) from 2020 to 2023: D4 solver (Lagniez & Marquis,
2017), ADDMC (Dudek et al., 2020), and SSTD (Korhonen
& Järvisalo, 2023).

Implementation of KOCO-SMC. We applied ACE (Dar-
wiche & Marquis, 2002) as the knowledge compiler. The
CDCL skeleton of KOCO-SMC is implemented on top of
MiniSAT (Eén & Sörensson, 2003), for its easily extensi-
ble structure. Appendix D collects the detailed experiment
settings.

5.2. Result Analysis

Comparison with Exact Solvers. We begin by examining
how exact SMC solvers perform on problems with varying
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Figure 4. Comparison of KOCO-SMC and approximate solvers on
datasets partitioned by threshold values. Each gap marks the point
at which instances become exceedingly difficult for KOCO-SMC.
Divided by this gap, we show the performance of approximate
solvers accordingly. KOCO-SMC solves many instances exactly
(lower segment), but it can time out on the complex cases (upper
segment). Approximate solvers may produce answers to these
challenging problems, but at the expense of solution quality.

numbers of satisfying solutions. This is done by adjust-
ing the threshold value q and measuring the corresponding
solving time. As q increases, satisfying assignments be-
come increasingly rare, eventually resulting in unsatisfiable
instances. Specifically, Figure 3(left) shows results for a
single SMC instance under different q values, where the
Boolean constraint is derived from a 3-coloring problem
on a 5 × 5 grid, and the probabilistic constraint is based
on the smokers-10.uai instance from the UAI 2012
Competition.

At low threshold values, all solvers are able to quickly find
satisfying assignments; however, KOCO-SMC incurs ad-
ditional overhead due to the knowledge compilation step.
As the threshold increases, satisfying assignments become
rarer, leading to increased solving time across all methods.

Notably, when the threshold becomes sufficiently high such
that the instance is unsatisfiable, KOCO-SMC exhibits re-
duced solving time, while the runtimes of other solvers re-
main high. This efficiency gain stems from KOCO-SMC’s
integrated ULW algorithm, which enables early detection
of unsatisfiability—unlike baseline solvers, which must ex-
haustively enumerate all candidate assignments before con-
cluding infeasibility.

The efficiency of KOCO-SMC is further validated by evalu-
ating it on the full dataset. Figure 3 (right) shows the per-
centage of solved instances as a function of runtime. This
figure extends the results in Figure 1 (right) by including
additional configurations of KOCO-SMC using different
Boolean SAT solvers—Lingeling (Lingeling-), MiniSAT
(MiniSAT-), and CaDiCaL (CaDiCal-). Among all config-
urations and baseline methods, KOCO-SMC consistently
achieves the best overall performance.

Comparison with Approximate Solvers. We compare
KOCO-SMC with approximate solvers under a 10-minute
time limit. For fairness, approximate solvers may run mul-
tiple times within this limit. Because approximate solvers
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Figure 5. The ULW in KOCO-SMC is crucial for speeding up SMC
problem solving. (Left) The running time with varying thresholds.
ULW propagation accelerates KOCO-SMC by 10 times compared
with KOCO-SMC without ULW when the threshold reaches 106.
(Right) The percentage of instances solved in 3 hours. ULW helps
KOCO-SMC to solve more instances within a given running time.

cannot guarantee correctness, we classify their outputs as
follows. If an output is verifiable, either because an exact
solver supplies a reference solution or because the returned
assignment can be checked by an exact model counter, we
classify the output as correct or wrong; otherwise, it is un-
verifiable. Then for repeated runs, an instance is labeled
Correct if any run produces a correct solution, Timeout if
no run finishes in time, Wrong if all runs are wrong, and Un-
verifiable otherwise. The comparison between KOCO-SMC
and approximate solvers is shown in Figure 4.
The SAA-based method provides rapid count estimates from
samples. However, like the exact baselines, it can time out
while searching for satisfying assignments, especially as
the threshold rises and satisfying assignments become rarer.
XOR-SMC efficiently reduces an SMC problem to a surro-
gate SAT instance with guarantees, but its solution quality
degrades on the hardest (medium-threshold) cases, where
many SMC instances lie near the SAT–UNSAT transition
point. We found that XOR-SMC sometimes finds solu-
tions that violate constraints. This is because it only checks
the approximate bound. More careful parameter tuning
and additional runs may improve its performance. Overall,
KOCO-SMC solves most instances exactly but may time out
on complex cases. Approximate solvers sometimes return
answers for these difficult problems, yet their solutions are
often of lower quality, being incorrect or cannot be verified.

Effectiveness of Upper-Lower Bound Watch Algorithm.
In Figure 5(left), ULW propagation accelerates KOCO-SMC
by 10 times compared with KOCO-SMC without ULW
when the threshold reaches 106. Figure 5(right) further
demonstrates the contribution of ULW, where KOCO-SMC
is 10 times faster than KOCO-SMC without ULW for SMC
problems solvable in around 10 minutes.

5.3. Case Studies

Application: Robust Supply Chain Design. In a supply
chain network, each supplier is represented as a node that
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Figure 6. (Left) Running time of each method for identifying the best trading plan. All methods are tested on three real-world supply
chain networks of different sizes. (Right) Running time for identifying the best delivery path. All methods are tested on three road maps
of different sizes. Our KOCO-SMC finds all the exact satisfying solutions significantly faster.

purchases raw materials from upstream suppliers and sells
products to downstream customers. The objective is to en-
sure a valid trading path from the source provider to the end
demander, while maximizing the overall success probabil-
ity in the presence of disruptions such as natural disasters.
The problem formulation includes two types of constraints:
(1) The Boolean constraint ensures the existence of a valid
path from the source provider to the end demander. (2)
The probabilistic constraint evaluates the reliability of roads,
which may be disrupted by stochastic events such as natural
disasters, traffic accidents, or political instability.

Let xi ∈ {True, False} represent the selection of trade be-
tween nodes connected by i-th edge, where xi = True if the
trade is selected. Combining the requirements (1) and (2),
we have the SMC formulation: ϕ(x) ∧

(∑
y P (x,y) > q

)
where the marginal probability

∑
y P (x,y) is the probabil-

ity that all selected trades are carried out successfully and q
is the minimum requirement of successful probability.

We use 4-layer supply chain networks from the wheat-to-
bread network with 44 nodes (Large) (Zokaee et al., 2017),
where each layer represents a supplier tier. We also create
synthetic networks with 20 (Small) and 28 (Medium) nodes.
To identify the plan with the highest success probability, we
incrementally raise the threshold q from 0 to 1 by 1× 10−2

until the SMC problem becomes unsatisfiable. Detailed
settings are in Appendix D.4. The running time for finding
the best plan is shown in Figure 6(left). Our KOCO-SMC
needs much less time than baselines to find the optimal plan.

Application: Package Delivery. The task is to find a
path that visits all specified delivery locations exactly once
while minimizing the probability of encountering heavy
traffic (Hoong et al., 2012). Delivery locations and roads
are modeled as nodes and edges in a graph, respectively.
The problem involves two key components: (1) A Boolean
constraint that ensures each location is visited exactly once,
with road availability based on real-world data from Google
Maps. (2) A probabilistic constraint that limits the likeli-
hood of encountering heavy traffic on any road segment

to below a specified threshold. This probability accounts
for factors such as congestion, extreme weather, and road
construction.

Suppose there are N delivery locations, and let xi,j =
True denote that the j-th location is visited in the i-th
position of the path. Combining constraints (1) and (2),
we formulate the problem as an SMC instance: ϕ(x) ∧(∑

y P (x,y) < q
)

, where x = {xi,j | i, j ∈ {1, . . . , N}}
is the set of decision variables representing the path, and y is
the set of latent environmental variables. The term P (x,y)
denotes the probability of encountering heavy traffic given
path x with environmental conditions y. Detailed settings
are provided in Appendix D.5.

We use three sets of delivery locations in Los Angeles:
8 Amazon Lockers, 10 UPS Stores, and 6 USPS Stores.
The experimental graphs are: Amazon Lockers only (Ama-
zon), Amazon Lockers plus UPS Stores (UPS), and the
UPS graph extended with USPS Stores (USPS), with 8, 18,
and 24 nodes, respectively. Traffic congestion probabilities
are modeled using a Bayesian network trained on LA traf-
fic data (West, 2020). Figure 6 (right) shows the runtime
required to find the optimal delivery route. KOCO-SMC
efficiently discovers high-quality delivery plans under real-
world uncertainty.

6. Conclusion
We introduced KOCO-SMC for exact solving of Satisfiabil-
ity Modulo Counting problems. Unlike existing methods
that combine SAT solvers with model counters, KOCO-
SMC employs an early conflict detection mechanism by
comparing the upper and lower bounds of probabilistic infer-
ences. Our Upper-Lower Watch algorithm efficiently tracks
these bounds, enabling efficient solving. Experiments on
large-scale datasets show that KOCO-SMC delivers higher
solution quality than approximate solvers and significantly
outperforms existing exact solvers in efficiency. Real-world
applications further demonstrate its potential for solving
practical problems.
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Impact Statement
Satisfiability Modulo Counting (SMC) extends traditional
Boolean satisfiability by incorporating constraints that in-
volve probability inference (model counting). This exten-
sion allows for solving complex problems where both log-
ical and probabilistic constraints must be satisfied. SMC
has wide applications in supply chain design, shelter allo-
cation, scheduling problems, and many others in Operation
Research. For example, in scheduling problems, SMC can
ensure that selected schedules meet probabilistic events,
while in shelter allocation, it can verify that the accessibility
under random disasters is above a specified threshold.
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A. Probabilistic Inference in Probabilistic Circuits
Probabilistic inference in a probabilistic circuit can be highly efficient. Figure 7 illustrates a decomposable and smooth
probabilistic circuit, where each node corresponds to a binary distribution. To compute P (x1 = x3 = x4 = True, x2 =
False), set the values of nodes x1, x2, x3, and x4 to 1, and set x2 and x1 to 0. Finally, evaluate the root node to obtain the
probability, which in this case is 0.1.

For the marginal probability, the circuit must be both decomposable and smooth to ensure correctness and efficiency. In
Figure 7 (b), to calculate P (x3 = x4 = True), set the values of nodes x3 and x4 to 1, reflecting their assigned values. For
the marginalized variables x1 and x2, set all associated nodes — x1, x1, x2, and x2 — to 1. Then evaluate the root node,
which should yield a probability of 1.0.

x2

True

x1

False

x2

False

x1

True

××××

x4

True

++x3

True

××

+

P (x1 = x3 = x4 = True, x2 = False) = 0.1

0.80.20.80.2

0.50.5

(a) compute probability P (x1 = x3 = x4 = True, x2 = False)

x2x1x2x1

××××

x4

True

++x3

True

××

+

∑
x1,x2

P (x3 = x4 = True) = 1.0

0.80.20.80.2

0.50.5

(b) compute marginal probability
∑

x1,x2
P (x3 = x4 = True).

Figure 7. Example of probability inference in a decomposable and smooth probabilistic circuit. To infer the probability P (x1 = x3 =
x4 = True, x2 = False), set the value of nodes x1, x2, x3, and x4 to 1. Also set the value of nodes x1 and x2 to 0. The circuit evaluates
to the probability 0.1. To infer the marginal probability P (x3 = x4 = True), set nodes x3 and x4 to 1. For the marginalized-out variables
x1 and x2, set all related nodes to 1. The circuit evaluates to the marginal probability 1.0.

B. Proof of Lemma 3.1
Assumption B.1 (Smooth and Decomposable (Choi et al., 2022)). A smooth probabilistic circuit when all children of every
sum node share identical sets of variables; A probabilistic circuit is decomposable if the children of every product node have
disjoint sets of variables; Smoothness and decomposability enable tractable computation of any marginal probability query.
Definition B.2. Denote assigned variables in x as xe and those not assigned as xh. The exact upper and lower bounds of
the marginal probability with the partial variable assignment are maxxh

∑
y P (xe,xh,y) and minxh

∑
y P (xe,xh,y).

Proof. To prove that UB ≥ maxxh

∑
y P (xe,xh,y) and LB ≤ minxh

∑
y P (xe,xh,y), we need to relate the updating

scheme with the marginal probability inference. We focus on the upper bound case (UB); the lower bound follows by a
symmetric argument. Let x∗

h = argmaxxh

∑
y P (xe,xh,y) denotes the assignment to xh that maximizes the marginal

probability. We now show that the updates in our ULW algorithm guarantee UB ≥∑
y P (xe,x

∗
h,y) by recursion.

• Base case. Consider a leaf node v corresponding to a single variable: (1) If x ∈ xe is already assigned, then UB(v) =
Pv(x). (2) If x ∈ xh is unassigned, then UB(v) = maxx Pv(x) ≥ Pv(x

∗). (3) If y ∈ y is marginalized out, then
UB(v) =

∑
y Pv(y) = 1.

From these cases, we observe that the upper bound computation potentially overestimates the contributions from leaf
nodes associated with unassigned variables in xh, while the contributions from xe and y remain unchanged. Once all
variables are assigned, the leaf evaluations match those used in exact marginal inference.
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×

v1 v2

Pp(x1,x2)

Pv1(x1) Pv2(x2)

+

v1 v2

Ps(x1,x2)

Pv1(x1,x2) Pv2(x1,x2)

w1 w2

Figure 8. (Left) Example of a decomposable product node (colored blue). Denote the product node as p, and it has two children v1 and v2.
Child nodes encode Pv1(x1) and Pv2(x2) respectively and the product node encodes Pp(x1,x2) = Pv1(x1)Pv2(x2). Decomposability
ensures x1 and x2 are disjoint. (Right) Example of a smooth sum node (colored red). Denote the sum node as s, and it has two
children v1 and v2 with weights w1 and w2. Child nodes encode Pv1(x1,x2) and Pv2(x1,x2) respectively and the sum node encodes
Ps(x1,x2) = w1Pv1(x1,x2) + w2Pv2(x1,x2). Smoothness ensures all nodes encode probabilities over the same set of variables.

• Induction step for a product node. Suppose v is a product node (see Figure 8 for an illustration). Without loss of
generality, assume v has two child nodes, v1 and v2, which represent Pv1(x

(1)
e ,x

(1)
h ,y(1)) and Pv2(x

(2)
e ,x

(2)
h ,y(2)),

respectively.

By the decomposability property, the scopes of v1 and v2 are disjoint, i.e., they do not share any variables. This allows the
maximization over the product to be decomposed into the product of maximization over the children. More formally, we
have

UB(v) = UB(v1) · UB(v2) ≥max
x
(1)
h

∑
y(1)

Pv1(x
(1)
e ,x

(1)
h ,y(1)) ·max

x
(2)
h

∑
y(2)

Pv2(x
(2)
e ,x

(2)
h ,y(2))

=max
x′
h

∑
y(1)

∑
y(2)

Pv1(x
(1)
e ,x

(1)
h ,y(1))Pv2(x

(2)
e ,x

(2)
h ,y(2))

=max
x′
h

∑
y′

Pv1
(x(1)

e ,x
(1)
h ,y(1))Pv2(x

(2)
e ,x

(2)
h ,y(2))

=max
x′
h

∑
y′

Pv(x
′
e,x

′
h,y

′)

• Induction step for a sum node. Suppose v is a sum node. Since the probabilistic circuit is smooth, all of its children must
share the same scope of variables. Without loss of generality, assume v has two child nodes, v1 and v2, which represent
Pv1 and Pv2 , with corresponding weights w1 and w2. Then we can derive

UB(v) = w1UB(v1) + w2UB(v2) ≥max
x′
h

∑
y′

w1Pv1(x
′
e,x

′
h,y

′)

+max
x′
h

∑
y′

w2Pv2(x
′
e,x

′
h,y

′)


=max

x′
h

∑
y′

Pv(x
′
e,x

′
h,y

′)

By recursive application of the update rules, we conclude that the upper bound satisfies UB ≥ maxxh

∑
y P (xe,xh,y)

at the root node. A similar argument applies to the lower bound. Our proposed ULW algorithm follows this computation
exactly, requiring only a single pass through the probabilistic circuit via bottom-up traversal.

C. KOCO-SMC Implementation
Classical SAT solvers like MiniSAT (Eén & Sörensson, 2003) have achieved high performance in real-world applications.
We implement our method based on MiniSAT version 2.2.02. The decision, unit propagation, and backtracking steps
are primarily derived from their implementation. We introduce the ULW algorithm, which enables conflict detection
for probabilistic constraints in SMC problems. In this section, we present the implementation of the key components of
KOCO-SMC. The pseudocode is shown in Algorithm 1.

2MiniSAT: https://github.com/niklasso/minisat
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Figure 9. The process of constructing probabilistic circuits from probabilistic graphical models by ACE.

Compilation KOCO-SMC requires that all probability distributions in the SMC problem be compiled into smooth and
decomposable PCs. In our implementation, all distributions are represented as probabilistic graphical models, either in the
form of Bayesian networks or Markov Random Fields.

The pipeline introduced in (Darwiche, 2002) (Fig. 9) compiles a distribution into a Boolean formula augmented with literal
weights, which is then further compiled into a tractable algorithmic circuit. From this circuit, a tractable probabilistic circuit
is derived. We use ACE3 as the knowledge compilation tool.

ULW Algorithm After performing unit propagation on the Boolean constraints, we record the currently assigned variables
at the current decision level. Next, we update the bounds for each affected probability distribution. These updated bounds
are then compared to detect either a conflict or early satisfaction. If a probabilistic constraint is already satisfied, we mark
it and skip further updates until a future backtracking step. If a probabilistic constraint becomes unsatisfiable, we raise a
conflict using the same mechanism as for Boolean conflicts and record a corresponding conflict clause.

Conflict Clause from the Probabilistic Constraint The conflict clause derived from a probabilistic constraint is a
Boolean clause that captures the cause of the conflict. We construct this clause by taking the negation of the current variable
assignment. For example, if a constraint of the form

∑
x3

P (x1 = True, x2 = False, x3) > q triggers a conflict, we
generate the Boolean clause (x1 ∨ x2) as its negation. This ensures that any future assignment where x1 = True and
x2 = False will violate the new clause, preventing the same unsatisfiable condition. Similar to CDCL-based SAT solvers,
the learned clause is added to the Boolean formula so that the solver can avoid repeating the same conflict without needing
to re-evaluate probabilistic inference.

D. Experiment Setting
D.1. Dataset Specification

All SMC problems in this study are in the form of ϕ(xϕ,xf ) ∧
(∑

y f(xf ,y) > q
)

where ϕ(xϕ,xf ) is a CNF Boolean
formula, f is a (unnormalized) probability distribution. xϕ are decision variables that appear only in ϕ, xf are decision
variables shared by ϕ and f , and y are latent variables that are marginalized.

Boolean Formula We pick random variables from ϕ and f as shared variables uniformly at random. The number of
shared variables between ϕ and f (denoted as xf ) is determined as the lesser of either half the number of random variables
in f or the total number of random variables in ϕ; that is, the count of variables in xf will not exceed either half the total
number of variables in f or the total number of variables in ϕ.

All ϕ(xϕ,xf ) represent 3-coloring problems for graphs, which involve finding an assignment of colors to the nodes of
a graph such that no two adjacent nodes share the same color, using at most 3 colors in total. Each node in the graph
corresponds to 3 random variables, say x1, x2, and x3, where x1 = True if and only if the node is colored with the first
color. We consider only grid graphs of size k by k, resulting in k × k × 3 variables.

Those Boolean formulas are generated by CNFgen4 using the command

cnfgen kcolor 3 grid k k -T shuffle

where the graph size k is set to 5, 10, and 15. For each grid graph, we shuffle the variable names randomly and keep 3 of
them.

3ACE: http://reasoning.cs.ucla.edu/ace
4CNFgen: https://massimolauria.net/cnfgen/
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Probability Distribution We use probabilistic graphical models from the UAI competition 2010-20225 including Markov
random fields and Bayesian networks for the probabilistic constraints. Specifically, we pick the data for PR inference
task, which includes 8 categories: Alchemy (2 models), CSP (3), DBN (6), Grids (8), ObjectDetection (79), Pedigree (3),
Promedas (33), and Segmentation (6). The models with non-Boolean variables are removed, resulting in the remaining 50
models: Alchemy (1 model), CSP (3), DBN (6), Grids (2), Promedas (32), and Segmentation (6). All distributions are in
the UAI file format. Since model counters d4, ADDMC, and SharpSAT-TD only accept weight CNF format in the model
counting competition, we use bn2cnf6 to convert data.

D.2. Baselines

Gibbs-SAA and BP-SAA are approximate SMC solvers based on Sample Average Approximation. The marginal
probability in the form of

∑
y P (x, y) is approximated using samples. More specifically, we use a sampler to generate a set

of samples {(x, y(i))} according to a distribution proportional to P (x, y). Then the marginal probability is estimated as
the sample average 1

N

∑
y(i) P (x, y(i)), multiplied by the number of possible configurations of y. For binary variables of

length n, there are 2n possible configurations. We use the Gibbs Sampler (Gibbs-SAA) and Belief Propagation (BP-SAA)
implementations from (Ding & Xue, 2020) as the samplers. However, sampling is only an efficient probabilistic inference
method, it still requires fixing x in advance. Thus, we use Lingeling to enumerate solutions of ϕ(x).

Given a time limit of 1 hour, we set the number of samples to 10000 and the number of Gibbs burn-in steps to 40. For each
SMC problem in the benchmark dataset, we run each approximate solver 5 times, and the problem is considered ”solved” if
at least one of those runs produces a correct result. The percentage of solved SMC problems is shown in Figure 4.

XOR-SMC is an approximate solver from (Li et al., 2024). We set the parameter T (which controls the probability of
finding a satisfying solution—a higher T yields better performance at the cost of longer runtime) to 3, and incrementally
increase the number of XOR constraints from 0 until either a timeout or failure occurs. This process allows us to find the
most probable satisfying solution. Similar to the SAA-based approaches, we run XOR-SMC 5 times.

Lingeling-UAI10 and Lingeling-HBFS integrate the SAT solver Lingeling (Heule et al., 2019) with high-performance
probabilistic inference solvers from the UAI Approximate Inference Challenge. The procedure begins by running Lingeling
to produce a solution that satisfies the Boolean formula in the SMC problem. The resulting assignment is then passed to the
inference solver to compute the corresponding marginal probability. If this probability exceeds the specified threshold, the
solution is reported and the algorithm terminates. Otherwise, the SAT solver is invoked to generate a different solution, and
the process is repeated until all solutions have been enumerated. To ensure a fair comparison, repetitive file I/O and solver
initialization overheads have been minimized.

Lingeling-UAI10 uses the public inference solver LibDAI (Mooij, 2010), which participated in the UAI 2010 challenge
and is available on GitHub7. Lingeling-HBFS uses the Toulbar2 solver (Cooper et al., 2010), which implements a hybrid
best-first branch-and-bound algorithm (HBFS) for computing marginal probabilities. We use the public implementation of
Toulbar28 for the probabilistic reasoning task, with default parameter settings.

Lingeling-D4, Lingeling-ADDMC, and Lingeling-SSTD are integrations of the Lingeling SAT solver with the weighted
model counting solver in the Model Counting Competition from 2020 to 2023. Lingeling-D49 uses d4 solver based on
knowledge compilation. Lingeling-ADDMC uses the public implementation of the ADDMC solver 10. Lingeling-SSTD
uses SharpSAT-TD11 as the model counter.

5UAI2022: https://uaicompetition.github.io/uci-2022/
6bn2cnf: https://www.cril.univ-artois.fr/KC/bn2cnf.html
7LibDAI: https://github.com/dbtsai/libDAI/
8Toulbar2: https://toulbar2.github.io/toulbar2/
9d4: https://github.com/crillab/d4

10ADDMC: https://github.com/vardigroup/ADDMC
11SharpSAT-TD: https://github.com/Laakeri/sharpsat-td
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Wheat Farm Flour Factories Bread Factories Bakery store
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Figure 10. An example wheat to bread supply supply chain network. xi = True means the trade is selected from the supplier to the
demander.

D.3. Hyper-Parameter Settings

In all experiments, we use the public version of Lingeling implemented in PySAT12 with their default parameter. The time
limit for all approximate solvers (Gibbs-SAA, XOR-SMC) is set to 1 hour per SMC problem. The time limit for all exact
solvers is 3 hours. All experiments are executed on two 64-core AMD Epyc 7662 Rome processors with 16 GB of memory.

D.4. Application: Supply Chain Design

For the experiment on real-world supply chain network, we refer to a 4-layer supply chain network collected from real-world
observations (Zokaee et al., 2017). An example is shown in Figure 10.

Decision Variable. Each edge between two nodes represents a trade, and the selection of trades can be encoded as a binary
vector x ∈ {True, False}M , where M is the number of edges. Here, xi = True indicates that the i-th edge (trade) is
selected.

Boolean Constraints. Due to budget limitations, each node is assumed to receive raw materials from exactly 2 upstream
suppliers and sell its products to exactly 2 downstream demanders.

Probabilistic Constraints. The supply chain design problem in (Zokaee et al., 2017) does not consider stochastic
disasters; we address this by generating a Bayesian Network (BN) over all edges to model such random events. Let
P (x1 = True, x2 = False, . . .) denote the joint probability that trade on edge 1 will not be affected by the disaster, trade
on edge 2 will be affected, and so on. Suppose we choose to conduct trades only on edges 1 and 3. Then the marginal
probability P (x1 = True, x3 = True) =

∑
x2,x4,...

P (x1 = True, x2, x3 = True, . . .) denotes the likelihood that the
selected trades are all successful.

Ensuring that the probability of the selected trades not being affected by disasters exceeds a certain threshold can be
formulated as:

∑
xunselected

P (xselected,xunselected) > q

where we plan to execute trades on edges xselected. The marginal probability
∑

P corresponds to the likelihood that all
selected trades are successfully conducted. To find the optimal plan, we incrementally increase the threshold q from 0 to 1 in
steps of 1× 10−3, continuing until the SMC problem becomes infeasible. The last feasible solution is referred to as the best
plan.

Construction of dataset. This network consists of 4 layers of nodes representing suppliers, with each layer containing 9,
7, 9, and 19 nodes, respectively. Adjacent layers are fully connected, meaning each node can trade with any node in the
neighboring layers (i.e., the nearest upstream suppliers and downstream demanders). We evaluate all exact SMC solvers on

12PySAT: https://pysathq.github.io/

17

https://pysathq.github.io/


Solving Satisfiability Modulo Counting Exactly with Probabilistic Circuits

three supply chain networks: a small network [5, 5, 5, 5], a medium network [7, 7, 7, 7], and a large network [9, 7, 9, 19]. The
vector [9, 7, 9, 19] represents the structure of the real-world network, with 9, 7, 9, and 19 suppliers in each layer, respectively.
The other two networks are synthetic but of comparable scale. The results are shown in Figure 6.

For the specification of each generated disaster BN, each node can have at most 5 parents, and the number of BN edges is
approximately half of the maximum possible. The generated BN is included in our code repository.

D.5. Application: Package Delivery

For the case study of package delivery, our goal is to deliver packages to N residential areas. We want this path to be a
Hamiltonian Path that visits each vertex (residential area) exactly once without necessarily forming a cycle. The goal is to
determine whether such a path exists in a given graph.

Decision Variable. Using an order-based formulation with variables xi,j , where xi,j denotes that the i-th position in the
path is occupied by residential area j, i.e., residential area j is the i-th visited place.

xi,j =

{
True if area j is visited in the i-th position in the path,
False otherwise.

where the total number of variables is N2 (for N cities).

Boolean Constraints. ϕ is a CNF that checks if the variable assignment forms a Hamiltonian path. A Hamiltonian path in a
graph is a path that visits each vertex exactly once.

Probabilistic Constraints. Additionally, we want the schedule to have a very high probability (q) of encountering light
traffic.

P (xpath) =
∑
xenv

P (xpath, xenv) ≥ q

where P denotes the probability of light traffic, xpath represents the decision variables for the chosen path, and xenv refers
to latent environmental variables that affect traffic conditions, such as weather, road quality, and other external factors.
The marginal probability

∑
xenv

P then represents the average probability of light traffic, marginalized over all possible
environmental conditions.

Construction of dataset. The graph structures used in our experiments are based on cropped regions from Google Maps
(Figure 11). We consider three sets of delivery locations: 8 Amazon Lockers, 10 UPS Stores, and 6 USPS Stores. The three
maps we examine are: Amazon Lockers only (Amazon), Amazon Lockers plus UPS Stores (UPS), and UPS graph with the
addition of 6 USPS Stores (USPS). These graphs consist of 8, 18, and 24 nodes, respectively.

The traffic condition probability is modeled by a Bayesian network (Figure 11) simplified from Los Angeles traffic data
(West, 2020).

Extreme 
WeatherTraffic JamRoad 

Construction

stochasticity of random events

(b) Probability of light traffic over path P(x)(a) Example Hamiltonian path for visiting 7 UPS stores.

Figure 11. Bayesian network for a single road (Hoong et al., 2012; West, 2020).

To find the best route, we gradually decrease the threshold of the probability of encountering heavy traffic from 1 to 0 in
increments of 10−2, continuing until the threshold makes the SMC problem unsatisfiable. The running time for finding the
best plan is shown in Figure 6(right).
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E. Additional Results
E.1. Knowledge Compilation Time

The time for compiling graphical models to decomposable deterministic and smooth probabilistic circuits is shown in Figure
12.
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Figure 12. Histogram of the knowledge compilation time for all 50 probability distributions in the benchmark.

E.2. Comparison with Exact Solvers

Figure 3(left) is an example shown in the main text. Additional results on other SMCs consisting of different Boolean
formulas and probabilistic graphical models are shown below.
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Figure 13. Results of SMC problems that consist of a fixed CNF file (kcolor 3 5x5.cnf ) representing the 3 color problem on a 5× 5 grid
map and probabilistic graphical models from different categories.
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(a) Probabilistic model from Alchemy
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Figure 14. Results of SMC problems that consist of a fixed CNF file (kcolor 3 10x10.cnf ) representing the 3 color problem on a 10× 10
grid map and probabilistic graphical models from different categories.
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(a) Probabilistic model from Alchemy
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Figure 15. Results of SMC problems that consist of a fixed CNF file (kcolor 3 15x15.cnf ) representing the 3 color problem on a 15× 15
grid map and probabilistic graphical models from different categories.
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