Under review as a conference paper at ICLR 2026

ENUMERATE—CONJECTURE—PROVE: FORMALLY SOLV-
ING ANSWER-CONSTRUCTION PROBLEMS IN MATH
COMPETITIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Mathematical reasoning is central to artificial intelligence, with applications in edu-
cation, code generation, and research-level mathematical discovery. Mathematical
competitions highlight two problem types: theorem-proving, requiring rigorous
proofs, and answer-construction, requiring creative generation and formal verifi-
cation of mathematical objects. Existing research reveals that LLMs can tackle
difficult answer-construction tasks but are prone to errors from hallucinations and
unverifiable steps, while symbolic methods guarantee rigor but falter in creative
answer construction. This raises a key understudied question: how fo solve answer-
construction problems while preserving both LLM creativity and mathematical
rigor? To address this problem, we introduce the Enumerate—Conjecture—Prove
(ECP) framework, a modular neuro-symbolic method integrating LLM-based enu-
meration and pattern-driven conjecturing with formal theorem proving in Lean, and
ConstructiveBench, a dataset of 3,640 formal answer-construction problems from
math competitions. ECP is model-agnostic and shows consistent improvements
over pure LLM baselines: on the subset of PutnamBench for answer construction,
ECP formally solves 6 out of 337 answer-construction problems end-to-end (up
from 4 without ECP) using GPT-5 mini and DeepSeek-Prover-V2-7B. On Con-
structiveBench, ECP achieves 33.1% end-to-end state-of-the-art accuracy (up from
32.5%), demonstrating its potential to advance formal mathematical reasoning by
combining LLM conjecturing with formal verification.

1 INTRODUCTION

Mathematical reasoning is fundamental to artificial intelligence (Newell & Simon), |1956), enabling
significant progress in domains such as mathematics education, formally verified software, and
mathematical research itself (Li et al., 2024). Recent advancements show that LLMs, when guided
by careful prompting and tool integration, excel in solving straightforward high-school mathematics
problems, but substantial challenges remain in problems requiring formal proof or the construction
and verification of complex mathematical objects (Yang et al.,2024). MathArena (BalunoviC et al.,
2025)) explicitly highlights this gap, noting that state-of-the-art LLMs achieve near-perfect accuracy
on answer-only contests like the American Invitational Mathematics Examination (AIME), yet
consistently fail on the United States of America Mathematical Olympiad (USAMO), which demands
rigorous proofs and creative answer construction.

Mathematical competitions, in particular, present two challenging problem types: theorem-proving,
requiring rigorous proofs of stated conclusions, and answer-construction, involving hypothesizing
and formally verifying mathematical objects. In theorem-proving problems, a clear conclusion is
stated, and the goal is a formal proof based on provided hypotheses. Conversely, answer-construction
problems require the construction of specific mathematical objects (e.g., functions, numbers, sets)
that satisfy given conditions, along with proofs of correctness. Representative examples of these
problems appear in Table (1] Crucially, answer-construction problems present the unique challenge of
identifying the correct candidate object or structure prior to formal verification.

We distinguish between informal mathematics, characterized by intuitive reasoning and natural
language arguments, and formal mathematics, represented explicitly in machine-verifiable proof

Under review as a conference paper at ICLR 2026

Answer-Construction Problem: Theorem-Proving Problem:
Find all functions f : RT — RT such that Let x1, ..., x2023 be distinct positive numbers such
Vz,y € RT, that foralln € {1,...,2023},
2(f@) + f®) = (F(F@) +) FW) n ;]
— 4+ = 1+ -+ xn) €

Answer: All f(x) = £ for some ¢ > 0. <w1 xn) (2)
Proof: ...

Prove that x2023 > 2024.

Proof: ...

Table 1: Examples of competition-level problems. The left panel shows an answer-construction
problem requiring a candidate answer and proof. The right panel shows a standard theorem-proving
problem.

assistants such as Lean (Moura & Ullrich, 2021)). Autoformalization is an automated process that
translates informal problem statements into formal representations. While LL.Ms are effective at
creative and exploratory reasoning, they frequently generate unverifiable and incorrect assertions
due to hallucinations (Huang et al., [2025)). Symbolic reasoning tools, such as SMT solvers (e.g.,
Z3 (De Moura & Bjgrner, |2008))), serve as the logical backbone of automated reasoning tools but
cannot feasibly discover closed-form answers in the vast space of candidates.

Inspired by Pélya’s problem-solving methodology (Polyal 2014)), which emphasizes systematically
exploring simpler cases, identifying patterns, and rigorously proving general cases, we introduce the
ECP framework. Our framework combines the exploratory strengths of LLMs, which enumerate
candidate answers through programmatic execution and generalize patterns to form conjectures, with
the rigor of formal theorem-proving methods that verify these conjectures. ECP thus effectively
addresses the critical limitation of prior approaches by formally solving answer-construction problems,
filling a significant gap in the mathematical reasoning landscape.

Our contributions are twofold: (i) ECP, a modular framework that unifies LLM-driven code gen-
eration for enumeration, pattern-based conjecture for answer construction, and formal theorem
proving in Lean; (ii) ConstructiveBench, an autoformalized dataset of 3640 competition-level answer-
construction problems with verified Lean formalizations, validated through experiments with LLMs
and state-of-the-art theorem-proving techniques.

2 RELATED WORK

Formal Theorem Proving Formal methods such as SMT solvers (e.g., Z3 (De Moura & Bjgrner,
2008), CVCS5 (Barbosa et al.| [2022)) and first-order provers (e.g., Vampire (Kovacs & Voronkov,
2013)), E (Schulz, [2002)) are widely used for formal verification and logical reasoning. Interactive
theorem provers (ITPs) like Isabelle (Paulson,|1994) and Lean (Moura & Ullrich,|2021)) allow step-by-
step formal proof development, often integrating automation via tools such as Sledgehammer (Bohme
& Nipkow, [2010) and LeanCopilot (Song et al.| 2024).

Recent neuro-symbolic systems integrate LLMs with formal proof environments. Goedel-Prover (Lin
et al.| 2025)), the DeepSeek-Prover series (Xin et al., [2024; Ren et al., [2025)), InternLM-Math (Ying
et al., 2024b), SeedProver (Chen et al., |2025), Kimina-Prover (Wang et al., [2025) and Al-
phaProof (Teams),2024) scale formal data generation and RL-style training to improve Lean proof
success on miniF2F, PutnamBench, and related evaluations. Domain-specific systems, including
AlphaGeometry (Trinh et al., 2024} [Chervonyi et al., [2025) and PyEuclid (Li et al.| 2025b) for
Euclidean geometry, LIPS for inequalities (Li et al., 2025a), target particular subfields with symbolic
search and automation. Beyond theorem proving, |Liu et al.|(2025b)) introduce a search-based formal
problem-solving framework (FPS/D-FPS) with new benchmarks for process-verified solutions.

LLMs for Mathematical Reasoning Beyond formal proof generation, the broader math-reasoning
literature explores prompting, learning, and tool use. Prompting-based approaches (e.g., chain-of-
thought) encourage explicit intermediate reasoning (Wei et al.,[2023). Reinforcement learning has
recently become central: GRPO—popularized in |Shao et al.| (2024)—and large-scale systems like
DAPO (Yu et al., [2025a) improve step-wise reasoning via preference/advantage signals at scale. Com-

Under review as a conference paper at ICLR 2026

plementary to policy learning, tool-integrated multi-turn training frameworks such as ReTool (Feng
et al., [2025)) explicitly train agents to plan, call tools, and verify intermediate computations. Or-
thogonal “code-as-tool” frameworks, including PAL (Gao et al.l2023) and Tora (Gou et al.||2023)),
and logic-solver integration such as SATLM (Ye et al.,[2023), demonstrate the benefits of executing
verifiable intermediate steps. |Liu et al.|(2025b) propose a broader formal problem-solving framework
(FPS/D-FPS) with new benchmarks for process-verified solutions.

Evaluation Benchmarks We group evaluation datasets into informal and formal categories. Early
works in mathematical evaluations, such as GSM8K (Cobbe et al., [2021)), MATH (Hendrycks et al.,
2021)), and MathQA (Amini et al2019) assess numerical/short-answer problem solving in natural
language. Follow-up works include harder answer-only suites like OlympiadBench (He et al.,[2024),
Omni-Math (Gao et al.,|2024a), and MathOdyssey (Fang et al., [2024)) though they still rely on string
matching for answer verification. In parallel, formal benchmarks like miniF2F (Zheng et al., 2022)),
FIMO (Liu et al.,2023)), PutnamBench (Tsoukalas et al.| 2024), ProofNet (Azerbayev et al.| 2023)),
LeanWorkBook (Ying et al.,|2024a), Herald (Gao et al.,[2024b), and the recent FormalMATH (Yu
et al., 2025b)) enable machine-verifiable evaluation in Lean/HOL. ProverBench (Xin et al., [2024)
contributes a mixed set of 325 formalized problems, including AIME-style items, expanding coverage
toward competition math. MathConstruct (Balunovic et al.,[2025) targets constructive proof tasks.
CombiBench (Liu et al.,[2025a) focuses on combinatorics in Lean.

3 METHODS

3.1 PROBLEM FORMULATION

Problems in math competitions can generally be classified into two categories: theorem-proving tasks
and answer-construction tasks. In a theorem-proving task, the problem explicitly presents a set of
hypotheses P and a target conclusion (), and the objective is to formally prove that P implies ().
Prior benchmarks and research on Al for formal mathematics, such as MiniF2F (Zheng et al., 2022)
and FIMO (Liu et al., 2023), focus on this theorem-proving task format, which aligns with traditional
first-order theorem proving.

In contrast to theorem-proving tasks, an answer-construction task asks for the construction of
mathematical objects satisfying specified constraints, without an explicitly stated conclusion. We
define an answer-construction task by the following components in the context of Lean dependent
type theory:

Context Variables: The unassigned context variables a := (a1, ..., a) (with type a := a3 X -+ - X
ay) in the problem.

Context Property: The predicate P : v — Prop that the context variables satisfy.
Answer Variables: The unknown answer b (with type [3) to be constructed.
Answer Function: f : o — Set 8 mapping each context instance to a set of valid answers.

Problem Predicate: A Boolean predicate) : « X 8 — Prop such that P(a, b) = True if and only
if b is a valid answer under context a.

We demonstrate the definition with a simple, straightforward example: “Given a,b € Z with
b # 0, find all x € R such that az = b." Here, the context variables are (a,b) with type Z x Z
and property P(a,b) := a # 0. The answer variable is 2 with type R, the problem predicate is
Q(a,b,x) := ax = b, and the answer function is f(a,b) = {g}

In general, the task of answer-construction can be formulated in Lean’s dependent type theory as
follows:

Af :a— Set B, V(a: a), Pla) = V(b:), Qla,b) + b e f(a).

Intuitively, the task is to construct a function f such that for any context parameter a that satisfies
property P, f(a) precisely captures all and only the valid answers. Variants of format constraints on
answers can be incorporated by refining the problem predicate (). For example, to enforce minimality,
it is sufficient to define Q,,in(a,b) := P(a,b) A Ve < b, =P(a,c) or use Lean’s built-in notions

Under review as a conference paper at ICLR 2026

such as IsLeast or IsGreatest. When the problem admits a single unique solution, f degenerates to
a — (3, and it becomes sufficient to show

If :a— B, V(a:), Pla) — (V(b:ﬁ), Q(a,b) < b= f(a)).

When there are no context variables, the formulation reduces to 3f : Set 8, Vb : 8, P(b) <> b € f.

To ensure answers are not only correct but also semantically meaningful, we further require that

constructed answers be expressed in closed-form canonical format without echoing the problem state-

ment’s syntax or structure. For example, in the following task: theorem test: (x y : N) (hpos :
0<KxAO<y) :x~3+y~3=x"2+42*xx*xy+y"~ 2<% (x,y) € answer

the answer {(7, 1), (1, 7), (22, 22)}islegal,but {(x,y):N | x ~ 3 +y =~ 3 =x ~ 2 + 42
* x * y +y ~ 2}isillegal because it trivializes the problem.

The formal answer-construction task is expressed as a theorem statement with a placeholder or an
existentially quantified answer. The autoformalization process will be discussed in Section {.3]in
detail.

3.2 ENUMERATE—CONJECTURE—-PROVE FRAMEWORK

ECP enables LLM to perform multi-turn tool calls with Python and Lean in the ReAct manner (Yao
et al.l 2023). The framework and structured output are implemented using the APPL prompt
programming language (Dong et al., [2024), and we include the prompt template in Appendix
Figure [I] visualizes the workflow of ECP applied to an example answer-construction problem end-to-
end.

F=E==============-= q M Enumerate T T777 |
| Autoformalize numerate

def find_solutions():
max_n = 100
for x in range(1, max_n + 1): -

|

|

|

| for y in range(1, max_n + 1):

| lhs = x¥¥3 + y#k3

| rhs = X#k2 + 42 % X % y + y¥¥2
|

|

|

|

l
| Find all ordered pairs of positive integers (x, y) such
InP ut > that: xA\3+y"3=x"2+42xy+y"2.

v !

|
|
|
|
|
import Mathlib |
|
|
|
|

if lhs == rhs:
print(f"({x}, {yH")

theorem omnimath3940 :
3 Answer: Set (Z x Z), {p : Z x Z | let

(x, y) :=p; x>0 Ay >04Aax"3 if __name__ == "__main__": [.
+y"3=xX"2+42%kXx*xy+y"2}= find_solutions() |
Answer := by (1, 7), (7, 1), (22, 22) &y |
r_Pt;v: _____________ A I::C::.:t:::::::::::::‘
n urt ..
use {(1, 7), (7, 1), (22, 22)} onjecture) o
ext (x, y) We aim to find all integer solutions (x, y) such

simp only [Set.mem_setOf_eq, that x >0, y >0 and equation holds true.

| | |
| | |
: Set.mem_insert_iff, Set.mem_sing'Leton_ifflr : **Step 1: Rearranging ﬂ?eEquaﬁon*"
Prod.ext_iff] Move all terms to one side:
_:N/I\I I constructor le— 1| X3+ yA3 - x 2 -42xy -y"2=0
| - rintro (ha, hz, h3) | |
| have hs : x = 42 := by | |
nlinarith [pow_two_nonneg (x - y),

: pow_two_nonneg (x + y)] : :

| | |

From the brute-force computation and step-
by-step reasoning, the only solutions are:
“lean

{1, 7), (7, 1), (22, 22)}
<;> norm_num ™

Figure 1: Illustration of the ECP framework applied to a formalized Balkan MO Shortlist problem in
OmniMath dataset (Gao et al., [2024a).

Enumerate Stage. In the initial Enumerate stage, the LLM is given a formal answer-construction
task, and the goal is to enumerate the candidate answers by generating Python programs. The model
performs multi-turn interaction to refine the program and produce enumeration: {<reasoning_1>
<python_call_1> <python_response_1><reasoning_2>...}. For problems with unassigned context
variables or infinitely many answers, the model is encouraged to explore small customized setups and
return bounded enumerations, guided by the system prompt with constraints of timeout=60s and a
maximum of 100 enumerated answers.

Conjecture Stage. In the Conjecture (i.e. answer-construction) stage, given the answer-construction
task and the enumerations as hint, the LLM reasons about the problem, generalizes beyond enu-
meration and attempts to propose a syntactically valid closed-form answer in Lean, following the
workflow {<reasoning_1> <lean_call_1> <lean_response_1><reasoning_2> ...}. To prevent potential
answer “hacking” described in Section [3.1] we design the system prompt to explicitly disallow such
illegal answers that lead to trivial or vacuous versions of the Lean theorem statement.

Under review as a conference paper at ICLR 2026

Prove Stage. In the final Prove stage, the candidate answer is substituted into the theorem statement,
reducing the answer-construction problem into a standard theorem-proving task. Our framework
supports invoking theorem-proving models, such as DeepSeek-Prover-V2 (Ren et al.|[2025)), Kimina-

Prover (Wang et al.| [2025), and Goedel-Prover (Lin et al.| 2025), to generate proofs of the theorem,

and Lean verifies whether the proof closes the goal. Additionally, we implement pure symbolic
methods as a sequence of automation tactics as follows, which will be used to verify equivalence
between constructed and ground-truth answer in evaluation:

. simp: Simplifies expressions by rewriting.

1

2. aesop (Limperg & From| [2023)): Proves the goal via a best-first search proof engine.
3. nlinarith: Solves nonlinear arithmetic problems over the integers and rationals.
4
5

. ring: Proves equalities in commutative (semi)-rings.

. norm_num: Evaluates and proves numeral equalities and inequalities.

Successful Lean verification of the proof concludes the ECP pipeline.

4 CONSTRUCTIVEBENCH DATASET

In this section, we introduce the ConstructiveBench dataset, detailing its sources, curation method-
ology, and contents, alongside special considerations such as data contamination and a human
evaluation of autoformalization quality.

4.1 DATA SOURCES AND SCOPE

ConstructiveBench is curated by aggregating and rigorously filtering problems from reputable
mathematical sources. Primary sources include official competition archives such as AMC 12 A/B
(from 2000 onward), AIME I/II, HMMT, regional Olympiads, and the IMO Shortlist and Longlist.
Additionally, we integrate data from established informal math datasets including OlympiadBench
2024), Omni-Math (Gao et al.| 2024a)), and MathOdyssey 2024). We employ
structural filtering to retain exclusively answer-construction problems—those requiring numerical
or symbolic answers alongside proofs—and exclude purely theorem-proving tasks without explicit
answer-construction components.

4.2 DATA DEDUPLICATION

The raw source dataset contains 5,555 problems. To remove duplicates, we apply both string-based
matching and embedding-based filtering using Sentence-BERT (Reimers & Gurevych, 2019) and
FAISS (Douze et all, [2024) with a 90% semantic-similarity threshold. This process yields 5,316
unique problems spanning a broad difficulty range—from challenging high-school problems to
sophisticated Olympiad-style questions that cover diverse domains including algebra, number theory,
combinatorics, probability, and calculus.

Problem sources:

. HMMT
AMC Problem categories:

- AIME 21.1% mmm Algebra
IMO Number Theory

EE ARML | = W= Combinatorics
EMC) Prealgebra

Wl Pascal mmm Equations and Inequalities
Fermat \ 12.4% Probability

W Cayley \ 4 mmm Polynomial Operations
USAMO Other

B MathOdyssey
Other contests

(a) Problem sources (b) Problem domains

Figure 2: Problem sources and domains in ConstructiveBench. Only the top 11 sources and top 7
domains are shown; the remainder are grouped under ‘Other’.

Under review as a conference paper at ICLR 2026

4.3 PROBLEM AUTOFORMALIZATION

To formally solve answer-construction problems in Lean, we first autoformalize each informal
problem into the formal task described in Section [3.1]

Autoformalization with LLMs. We leverage state-of-the-art autoformalization models Herald-
Translator (Gao et al.,|2024b) and Kimina-Autoformalizer-7B (Wang et al.||2025)), together with the
commercial model GPT-5 mini using a 3-shot prompt. We also use GPT-5 mini as an LLM judge. A
candidate formalization is accepted if and only if both conditions hold: (i) the Lean compiler returns
no errors; and (ii) the LLM judge deems the formalization semantically equivalent to the informal
statement, with correct use of key definitions and no trivial restatement.

Information Retrieval in Lean. To mitigate hallucinations and errors arising from scarce aligned
informal-to-formal data (Wu et al.,|2022)) and rapidly evolving Lean syntax, we construct an external
Lean knowledge base and an interactive loop for interaction between LLM and Lean. The knowledge
base contains approximately 385K entries from the Lean 4.23.0 documentation and the mathlib
repository (mathlib Community} 2020). After filtering to retain entries most relevant to high-school-
level formalizations (Appendix [A]), the database is reduced to 57K items. Each entry is embedded
with Sentence-BERT (Reimers & Gurevych, 2019) and indexed by FAISS (Douze et al [2024);
when error messages indicate missing or hallucinated definitions, we retrieve the top 5 candidates by
semantic similarity and the top 5 by edit distance on the symbol name.

Error-Guided Feedback Loop. Each of the three LLMs receives the informal problem with a
3-shot prompt and drafts a formalization. Lean compiler error messages, retrieved definitions, and
LLM-judge feedback are then fed back to the model for iterative refinement, up to 7' = 5 iterations. A
problem is considered successfully autoformalized if any model produces an accepted formalization
within the budget (a best-of-N strategy across models).

Candidate Formal Statement Error Message
theorem omnimath897 1. invalid field 'card’,
(D Z : Set N) the environment does not contain
(hD : D ={d: N |d] 100}) 'Set.card’. D has type Set N
(hz : Z = SEt-ICCII 100) : . @V/N 2. application type mismatch. d | Error free?
(3'p:Q p=(3'd:D, 3"z z. argument z has type tZ : Type N
zZ, ifd | z t_hen 1. else @) / (D..card * but is expected to have type Passed
Z.card) A p = omnimath897_solution) —_— D : Type
1= ¢ Typ LLM Check?
sorry &
edéa
&m T % Analyze
Informal Statement - X Source
Let D be the set of divisors of 100, Information Retriever L
$Z=\{1,...,100\ }$. Mark chooses $d\in D$ 1: def Finset.card {a : Type u_1} (s ean i
andmelement$z\mZ$Lmiform1y at : Finset a) : N. [Description] Docume.ntahon,
random. 2. def Set.encard {«a i Type u_1} (s P LeanD'olo-Traced
What is the probability that d divides i Set @) 1 Ne. [Description] Mathlib,
z2. Answer: 217/900

Figure 3: Overview of the autoformalization pipeline: the LLM drafts a formal statement; when
compilation or semantic checks fail, error messages and retrieved Lean references are fed back; the
loop repeats until both checks pass.

4.4 DATASET VALIDATION

Outputs and Coverage. Starting from 5,316 deduplicated informal problems, we runup to 7' = 5
refinement iterations per model. This produced 4,729 Lean-compilable formalizations in the correct
format; among these, 3,640 also pass the LLM-judge semantic check and constituted the final
ConstructiveBench dataset. Each accepted entry includes the informal statement, the formal Lean
theorem, the ground-truth answer, an informal solution, and metadata such as source and difficulty.
Figure [shows an example dataset entry and the distribution of answer types. The diversity of answer
types enables comprehensive evaluation across a wide range of problem formats.

After-Cutoff Subset. To mitigate contamination from pretraining corpora—where LLMs might
inadvertently memorize training examples—we include a test split of 106 problems created after

Under review as a conference paper at ICLR 2026

N "name": "P2020AIMEI_14",
"source": "AIME",
"'category": "Algebra”,
"problem": "Let P(x) be a quadratic polynomial
with complex coefficients whose x*2 coefficient
is 1. Suppose the equation P(P(x))=0 has four
distinct solutions, x=3,4,a,b. Find the sum of
all possible values of (a+b)~2.”,
"solution": "There are two cases to consider
based on the values of P(3) and P(4). In the
first case,..",
"formalization": "theorem P2020AIMEI_14 : 3
P2020AIMEI_14_answer : C, Ya b : C,
{s | 3 P, P.degree = 2 A P.leadingCoeff = 1 A
(P.comp P).roots.toFinset = {3, 4, a, b} A s
(a + b) ~ 2} = {P2020AIMEI_14_answer}",
"answer_content": "85",
0 200 400 600 800 100012001400 answer_type": "C”,

Number of problems

R

Set answer

Answer with context

Q

Answer type

Prop

Vector answer

Figure 4: Left: Distribution of answer types in ConstructiveBench (top 8 shown; the remainder are
grouped as ‘Other’). Right: Example dataset entry.

June 2024 (beyond the knowledge cutoff date of most LLMs we will evaluate), ensuring fair evaluation
on unseen problems.

Human Evaluation. To estimate the quality of autoformalized theorem statements in Construc-
tiveBench, we conducted a human evaluation on a random slice of 100 formalizations from the 3,640
accepted problems. Following the rubric in|Gao et al.|(2024b)), each formalization was labeled as
completely correct, minor error, or major error. We found 77 were fully correct, 6 had minor errors,
and 17 had major errors; examples and analyses appear in Appendix [C] This result aligns with human
evaluations of existing autoformalized benchmarks (66.9% accuracy on Herald (Gao et al.,[2024b)
and 72.1% on FormalMath (Yu et al., 2025b)), highlighting the high quality of ConstructiveBench.

5 EMPIRICAL EVALUATION

We evaluate whether ECP outperforms a classic chain-of-thought (CoT) baseline on two tasks:

1. Answer-Construction. Given a formal answer-construction problem, can the conjecturer
produce a Lean expression provably equivalent to the ground truth under a fixed set of
automation tactics?

2. End-to-End Problem Solving. Given a formal answer-construction problem, can the system
both conjecture a correct answer and close the Lean goal using a prover?

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate on ConstructiveBench (3,640 Lean-verified answer-construction prob-
lems) and the PutnamBench answer-construction subset (337 problems). We additionally report
a contamination-controlled After-Cutoff split of 106 ConstructiveBench problems (created after
June 2024).

Models and Hyperparameters. For conjecturing we use GPT-5 (mini, nano), GPT-4.1 (mini,
nano), and DeepSeek (V3.1, V3). For reasoning models (GPT-5 families and DeepSeek-V3.1) and
lightweight non-reasoning models (GPT-4.1 families and DeepSeek-V3), we set reasoning_effort to
medium and None, respectively. We use each model’s recommended decoding default parameters;
for sampling we set max_tokens=4096, coder_max_attempt=3, and conjecturing_attempt=5. For
proving, we use DeepSeek-Prover-V2-7B, Goedel-Prover-SFT, and Kimina-Prover-Preview-7B, with
hyperparameters top_p=0.95, temperature=1.0, and max_tokens=4096. We evaluate using Pass@32
with a 120s Lean verification timeout.

Under review as a conference paper at ICLR 2026

Metrics. Answer-construction accuracy marks a problem correct if the conjectured answer a is
provably equal to the ground truth ag via the following Lean automation tactics: simp, aesop (Limperg
& From), 2023)), nlinarith, ring, and norm_num. End-to-end accuracy marks a problem correct if
the answer is constructed by the conjecturer and the prover produces a Lean-verified proof to the
theorem statement after substituting the conjectured answer. We use Pass @32 for prover, meaning
that each prover model is sampled 32 outputs independently and is marked correct if at least one
proof passes Lean check. Given the fixed model choice, union accuracy simply measures the fraction
of successfully solved problems by any of CoT and ECP.

5.2 ANSWER-CONSTRUCTION ACCURACY

In this section, we analyze the results of formal answer-construction accuracies with different
conjecturer models on ConstructiveBench and PutnamBench shown in Table 2]and Table[3] Complete
results for six models, including evaluations on the after-knowledge-cutoff dataset, are listed in

Appendix D]

Results show that ECP consistently improves answer construction across conjecturers and datasets.
On ConstructiveBench, GPT-5 mini rises from 69.7% to 73.6%, and DeepSeek-V3.1 increases
from 65.4% to 75.0%, indicating that stronger conjecturers still benefit from enumeration signals.
The largest absolute gains occur for lightweight non-reasoning models: DeepSeek-V3 increases
from 17.3% to 40.7%. These patterns persist on the after-knowledge-cutoff split; for example,
DeepSeek-V3 improves from 44.3% to 67.9%, showing robustness of ECP when data contamination
is controlled.

On PutnamBench, absolute accuracies are lower due to the difficulty of the dataset, but ECP remains
beneficial for all models. DeepSeek-V3.1 achieves state-of-the-art performance with 210 correct
answer constructions via ECP, up from 181 problems with the CoT baseline.

In addition, analysis of union accuracy shows that CoT and ECP correctly construct answers for
overlapping but distinct subsets. For example, with DeepSeek-V3.1 as conjecturer, ECP can construct
correct answers for 13.8% problems that CoT baseline fails. Still, 4.2% problems fail by ECP but
successful with CoT baseline because ECP’s enumeration may under-generalize or fail on several
problems, misleading the conjecturer in answer construction.

Answer Construction End-to-End Problem Solving

Conjecturer

CoT /ECP Union CoT /ECP Union
GPT-5 mini 69.7% 1 73.6% 78.9% 32.5%/33.1% 35.0%
DeepSeek-V3 17.3%/40.7% 43.4% 10.1% /18.0% 18.7%
DeepSeek-V3.1 65.4%/75.0% 79.2% 31.1%/32.7% 34.3%

Table 2: Answer-construction accuracy and end-to-end problem solving accuracy of CoT baseline
and ECP on ConstructiveBench (3640 problems in total). The first column shows the conjecturer
models for answer construction, and the second column shows the answer-construction accuracies
under CoT and ECP methods, along with their union accuracy. the third column shows end-to-end
accuracies using DeepSeek-Prover-V2-7B for proof generation.

Answer-Construction End-to-End Problem Solving

Conjecturer

CoT/ECP Union CoT/ECP Union
GPT-5 mini 185/194 242 4/6 6
DeepSeek-V3 64 /107 124 1/3 3
DeepSeek-V3.1 181/210 248 4/4 5

Table 3: Number of correct answer constructions and end-to-end solved problems on PutnamBench
(337 problems in total). The first column shows the conjecturer models for answer construction, with
CoT and ECP results as well as their union. The second column shows the number of problems
solved end-to-end with the DeepSeek-Prover-V2-7B prover (Pass @32).

Under review as a conference paper at ICLR 2026

5.3 END-TO-END PROBLEM-SOLVING ACCURACY

In this section, we discuss the results of end-to-end problem solving across various combinations
of conjecturer and prover models. The rightmost columns of Table [2]and Table [3]report accuracies
using different conjecturer models for answer construction, combined with DeepSeek-Prover-V2-7B
for proving. The complete full per-prover tables (including Goedel-Prover-SFT and Kimina-Prover-
Preview-Distill-7B) for each dataset are placed in Appendix

Overall, DeepSeek-Prover-V2-7B outperforms the other two prover models in these benchmarks.
The strongest end-to-end problem-solving result on ConstructiveBench pairs GPT-5 mini as the
conjecturer with DeepSeek-Prover-V2-7B as the prover, reaching 33.1% (up from 32.5% with CoT),
with DeepSeek-V3.1 a close second at 32.7% (up from 31.1%). Even on the difficult PutnamBench
answer-construction problems, ECP still solves 6 out of 337 problems end-to-end with GPT-5 mini
and DeepSeek-Prover-V2-7B, compared to 4 out of 337 for CoT.

The lower overall accuracy and smaller improvements are mainly due to two factors. First, incorrectly
constructed answers lead to logically wrong statements that waste prover effort. Second, the prover
models have limited power and often lack the capability to formally prove difficult theorems, espe-
cially ones in PutnamBench. Overall, ECP still provides consistent end-to-end gains over CoT, with
the best-performing configuration given by GPT-5 mini as conjecturer and DeepSeek-Prover-V2-7B
as prover.

6 LIMITATIONS AND FUTURE WORK

Quality of Autoformalized Theorem Statements. The ConstructiveBench depends on the quality
of black-box LLM autoformalizations and LLM judge. In particular, quantitatively evaluating the
quality of autoformalized statements remains a challenge in Al for mathematics. While manual
evaluation offers high fidelity and we evaluated the autoformalization quality of a subset of 100
problems, it is still time-consuming and intractable to large scale datasets. Proxy metrics such as
compile success rates or BLEU scores are more efficient but often fail to capture logical equivalence
with the original problem. Future work should explore improved evaluation metrics for formalization
quality and expand datasets that better align informal and formal representations of mathematical
problems.

Theorem-Proving. State-of-the-art LLM is capable of winning gold medal in IMO exam (Huang
& Yang, [2025)), yet this achievement is out of reach for symbolic and LLM-based theorem provers
in formal environment such as Lean. Our proving stage leverages off-the-shelf theorem provers,
which still leaves significant room for optimization. Designing specialized domain-specific languages
with inference rules tailored to high-school Olympiad mathematics could improve both success rates
and runtime. Another limitation is the combinatorial explosion during the enumeration phase for
difficult IMO problems, where the time complexity of the enumeration program grows rapidly as
the in-context parameter increases. Scaling beyond enumeration demands insight and creativity akin
to expert mathematicians, guiding the search toward promising conjectures rather than exhaustively
exploring the entire solution space.

7 CONCLUSION

We introduced the Enumerate—Conjecture—Prove (ECP) framework, a modular neuro-symbolic
approach that combines LLM-driven code enumeration, answer construction, and formal theorem
proving in Lean. To support this work, we curated ConstructiveBench, a dataset of 3,640 answer-
construction problems formally verified through an iterative autoformalization pipeline with error
feedback. In empirical evaluations, ECP improved the state of the art on ConstructiveBench, raising
GPT-5 mini’s answer-construction accuracy from 69.7% to 73.6% and its end-to-end problem-solving
accuracy from 32.5% to 33.1%. On the PutnamBench subset, ECP solves 6 out of 337 problems
compared to 4 for the CoT baseline. These results demonstrate that systematically integrating
enumeration and conjecture with formal verification can significantly advance the state of the art in
competition-level mathematical reasoning. Future research includes enhancing autoformalization
alignment and developing specialized symbolic provers tailored to Olympiad and research-level
mathematical problems.

Under review as a conference paper at ICLR 2026

REFERENCES

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
Mathga: Towards interpretable math word problem solving with operation-based formalisms.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 2357-2367, 2019.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev,
and Jeremy Avigad. ProofNet: Autoformalizing and Formally Proving Undergraduate-Level
Mathematics. arXiv preprint arXiv:2302.12433, 2023.

Mislav Balunovié, Jasper Dekoninck, Nikola Jovanovié, Ivo Petrov, and Martin Vechev. Mathcon-
struct: Challenging 1lm reasoning with constructive proofs. arXiv preprint arXiv:2502.10197,
2025.

Mislav Balunovié, Jasper Dekoninck, Ivo Petrov, Nikola Jovanovié¢, and Martin Vechev. Math-
arena: Evaluating llms on uncontaminated math competitions, February 2025. URL https:
//matharena.ai/.

Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdal-
rhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres No6tzli, et al. CVC5: A Versatile
and Industrial-Strength SMT Solver. In Proceedings of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, 2022.

Sascha Bohme and Tobias Nipkow. Sledgehammer: Judgement Day. In Proceedings of the Interna-
tional Joint Conference on Automated Reasoning, 2010.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
Xing Jin, Chenggang Li, Kaijing Ma, et al. Seed-prover: Deep and broad reasoning for automated
theorem proving. arXiv preprint arXiv:2507.23726, 2025.

Yuri Chervonyi, Trieu H Trinh, Miroslav Ol§dk, Xiaomeng Yang, Hoang Nguyen, Marcelo Menegali,
Junehyuk Jung, Vikas Verma, Quoc V Le, and Thang Luong. Gold-medalist performance in
solving olympiad geometry with alphageometry2. arXiv preprint arXiv:2502.03544, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In Proceedings of the
International Conference on Tools and Algorithms for the Construction and Analysis of Systems,
2008.

Honghua Dong, Qidong Su, Yubo Gao, Zhaoyu Li, Yangjun Ruan, Gennady Pekhimenko, Chris J
Maddison, and Xujie Si. Appl: A prompt programming language for harmonious integration of
programs and large language model prompts. arXiv preprint arXiv:2406.13161, 2024.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv preprint
arXiv:2401.08281, 2024.

Meng Fang, Xiangpeng Wan, Fei Lu, Fei Xing, and Kai Zou. Mathodyssey: Benchmarking mathe-
matical problem-solving skills in large language models using odyssey math data. arXiv preprint
arXiv:2406.18321, 2024.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark for
large language models. arXiv preprint arXiv:2410.07985, 2024a.

10

https://matharena.ai/
https://matharena.ai/

Under review as a conference paper at ICLR 2026

Guoxiong Gao, Yutong Wang, Jiedong Jiang, Qi Gao, Zihan Qin, Tianyi Xu, and Bin Dong. Herald:
A natural language annotated lean 4 dataset. arXiv preprint arXiv:2410.10878, 2024b.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764-10799. PMLR, 2023.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, and
Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving. arXiv
preprint arXiv:2309.17452, 2023.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information
Systems, 43(2):1-55, 2025.

Yichen Huang and Lin F Yang. Gemini 2.5 pro capable of winning gold at imo 2025. arXiv preprint
arXiv:2507.15855, 2025.

Laura Kovécs and Andrei Voronkov. First-Order Theorem Proving and Vampire. In Proceedings of
the International Conference on Computer Aided Verification, 2013.

Zenan Li, Zhaoyu Li, Wen Tang, Xian Zhang, Yuan Yao, Xujie Si, Fan Yang, Kaiyu Yang, and
Xiaoxing Ma. Proving olympiad inequalities by synergizing llms and symbolic reasoning. In
Proceedings of the International Conference on Learning Representations, 2025a.

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie
Si. A survey on deep learning for theorem proving, 2024. URL https://arxiv.org/abs/2404,
09939.

Zhaoyu Li, Hangrui Bi, Jialiang Sun, Zenan Li, Kaiyu Yang, and Xujie Si. Pyeuclid: A versatile formal
plane geometry system in python. In International Conference on Computer Aided Verification, pp.
405-420. Springer, 2025b.

Jannis Limperg and Asta Halkjer From. Aesop: White-box best-first proof search for lean. In
Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and
Proofs, pp. 253-266, 2023.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
Dangi Chen, Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated
theorem proving. arXiv preprint arXiv:2502.07640, 2025.

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju,
Chuanyang Zheng, Yichun Yin, Lin Li, et al. FIMO: A Challenge Formal Dataset for Automated
Theorem Proving. arXiv preprint arXiv:2309.04295, 2023.

Jungi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman Soletskyi,
Haiming Wang, Yunzhou Xie, Beibei Xiong, Zhengfeng Yang, Jujian Zhang, Lihong Zhi, Jia Li,
and Zhengying Liu. Combibench: Benchmarking 1lm capability for combinatorial mathematics,
2025a. URL https://arxiv.org/abs/2505.03171.

Qi Liu, Xinhao Zheng, Renqiu Xia, Xingzhi Qi, Qinxiang Cao, and Junchi Yan. Beyond theorem
proving: Formulation, framework and benchmark for formal problem-solving. arXiv preprint
arXiv:2505.04528, 2025b.

11

https://arxiv.org/abs/2404.09939
https://arxiv.org/abs/2404.09939
https://arxiv.org/abs/2505.03171

Under review as a conference paper at ICLR 2026

The mathlib Community. The Lean Mathematical Library. In Proceedings of the ACM SIGPLAN
International Conference on Certified Programs and Proofs, 2020.

Leonardo de Moura and Sebastian Ullrich. The Lean 4 Theorem Prover and Programming Language.
In Proceedings of the International Conference on Automated Deduction, 2021.

Allen Newell and Herbert Simon. The logic theory machine—a complex information processing
system. IRE Transactions on information theory, 2(3):61-79, 1956.

Lawrence C Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994.

George Polya. How to solve it: A new aspect of mathematical method. In How to solve it. Princeton
university press, 2014.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019.

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical
reasoning via reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801,
2025.

Stephan Schulz. E-A Brainiac Theorem Prover. AI Communications, 2002.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu,
and Daya Guo. DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language
Models. arXiv preprint arXiv:2402.03300, 2024.

Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Towards Large Language Models as Copilots
for Theorem Proving in Lean. arXiv preprint arXiv:2404.12534, 2024.

AlphaProof Teams. Ai achieves silver-medal standard solving international mathematical olympiad
problems. IRE Transactions on information theory, 2024.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving Olympiad Geometry
without Human Demonstrations. Nature, 2024.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. PutnamBench: Evaluating Neural Theorem-Provers on the
Putnam Mathematical Competition. arXiv preprint arXiv:2407.11214, 2024.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood Sung,
Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large formal
reasoning models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903,

Yuhuai Wu, Albert Q Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. Autoformalization with Large Language Models. In Proceedings of the International
Conference on Neural Information Processing Systems, 2022.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale
Synthetic Data. arXiv preprint arXiv:2405.14333, 2024.

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn
Song. Formal mathematical reasoning: A new frontier in ai. arXiv preprint arXiv:2412.16075,
2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

12

https://arxiv.org/abs/2201.11903

Under review as a conference paper at ICLR 2026

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. SATLM: Satisfiability-Aided Language Mod-
els using Declarative Prompting. In Proceedings of the International Conference on Neural
Information Processing Systems, 2023.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean Workbook: A
Large-Scale Lean Problem Set Formalized from Natural Language Math Problems. arXiv preprint
arXiv:2406.03847, 2024a.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, et al. InternLM-Math: Open Math Large Language Models
Toward Verifiable Reasoning. arXiv preprint arXiv:2402.06332, 2024b.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025a.

Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan Zhang,
Zheng Yuan, Huajian Xin, Wenhao Huang, Yandong Wen, Ge Zhang, and Weiyang Liu. For-
malmath: Benchmarking formal mathematical reasoning of large language models, 2025b. URL
https://arxiv.org/abs/2505.02735.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. MiniF2F: A Cross-System Benchmark for
Formal Olympiad-Level Mathematics. In Proceedings of the International Conference on Learning
Representations, 2022.

13

https://arxiv.org/abs/2505.02735

Under review as a conference paper at ICLR 2026

USE OF LARGE LANGUAGE MODELS

We used LLMs to refine grammar in the paper and to assist with code implementation. All outputs
were reviewed and verified by the authors.

REPRODUCIBILITY STATEMENT

We uploaded an anonymous repository for dataset and code implementation to the supplementary
materials, with a detailed README describing how to run the experiments.

APPENDIX

A LEAN DEFINITION FILTERING

To filter out the rarely-used definitions in autoformalization, we prioritize the definitions and theorems
within the following namespaces in Lean:

Nat, Int, Rat, Real, Complex, ENat, NNReal, EReal, Monoid, CommMonoid,
Group, CommGroup, Ring, CommRing, Field, Algebra, Module, Set, Finset,
Fintype, Multiset, List, Fin, BigOperators, Filter, Polynomial, Order,
SimpleGraph, Equiv, Embedding, Injective, Surjective, Bijective, Topology

14

Under review as a conference paper at ICLR 2026

“° B PROMPT
757
;23 B.1 PROMPT FOR AUTOFORMALIZATION
761
62 You are given a math problem that requires answer-construction.
763 Your task is to formalize the problem in Lean 4 (v4.23.0).
764
765 1. Start with imports and namespaces such as “import Mathlib®~ and “open Real".
766
er 2. Define the ground-truth answer as an abbrev:
768 “abbrev <problem_name>_answer : [3 := <expression>"
769 or
770 “abbrev <problem_name>_answer : « — [:= fun x => <expression>’
771 (Don't put “(n : N)° before : a — [7; encode inputs inside “fun x =>
- 500" 0
773 3. Theorem skeleton (leave proof as sorry):
774 “theorem <problem_name> (x : «) (hypotheses about x) (y :)
775 P(x, y) < y = <problem_name>_answer x := by sorry’
776]
777 Other ?uggestl?ns:\ . .
- Use “IsLeast™ / ~IsGreatest™ for optimal answers.
778 - Use “Set B and membership if there are multiple answers.
779
780
781
- B.2 PROMPT FOR ENUMERATOR
784
785
You will be given a math problem that requires answer construction in Lean.
786 Your task is to write a Python program to enumerate possible answers to
787 assist in conjecturing and proving the true answer.
788 For problem with unfixed context parameters or infinite answers, try
789 several parameters and bound the number of enumerations to 100.
790
791
792 B.3 PROMPT FOR CONJECTURING
793
795
796
797 You will be given a math problem that requires answer construction in Lean.
798 Your task is to reason about the problem and clearly state the
799 closed-form final answgr in Lean exprssion with explanations. .
You do not have to derive the whole proof. The program enumeration can be
800 used as a hint.
801 You must not "cheat" by an answer echoing problem statement.
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C HUMAN EVALUATION EXAMPLES

To verify dataset quality and estimate the false-positive error rate, we randomly sampled 100 for-
malizations (from the 3,640 problems which have passed both the compiler and LLM judge) for
manual evaluation, labeling each as: - Correct formalization - Formalization with minor error -
Formalization with major error

Below, we illustrate one example for each category. For clarity, we separate the answer and the
statement, and use a placeholder for the answer variable in the Lean formalization.

1. Correct formalization: omnimath19 (Chinese Mathematical Olympiad). Problem. Let f :
X — X,where X = {1,2,...,100}, be a function satisfying: 1. f(z) # x forallz = 1,2,...,100;
2. For any subset A C X such that |A| = 40, we have AN f(A) # (0. Find the minimum & such that
for any such function f, there exists a subset B C X with |B| = k and BU f(B) = X. The answer
is 69.

Formalization.

Listing 1: omnimath19 (correct formalization)

import Mathlib
open Set Function
abbrev omnimath19_answer : N := 69

theorem omnimathl9 :
IsLeast {k : N | 0 < k A
V (£ : Fin 100 — Fin 100),
~Vx, £fx#zx) —
(V A : Finset (Fin 100), A.card = 4

0 — (A N A.image f).Nonempty) —
d B : Finset (Fin 100), B.card = k A B

U B.image f = Finset.univ }

omnimathl9_answer := by
sorry
Analysis. The constraint X = {1,...,100} is equivalently captured by Fin 100. The condition

1, f(x) # z, is formalized in (V x, £ x # x). The constraint 2, |A] = 40 and AN f(A4) # (0 is
captured in using Finset.image, Finset.card and Nonempty syntax. The conditions regarding set B
is correctly formalized in similar manner. Finally, the target minimality condition is encoded using
IsLeast. Overall, the formalization is correct without error.

2. Formalization with minor error: omnimath1410 (HMMT). Problem. For positive integers

a,b, let M(a,b) = lgccﬂéZ’Z;, and for n > 2 define

@ = M(1,M(2,M(3,...,M(n—2,M(n—1,n))...))).

Compute the number of positive integers n such that 2 < n < 2021 and 5z2 + 522 | = 26T, T4 1.
The answer is 20.

Listing 2: omnimath1410 (formalization with minor error)

import Mathlib
open Nat

abbrev omnimath1410_answer : N := 20
def M (ab: N) : N :=Nat.lcm a b / Nat.gcd a b

def x : N —» N

| 0=>0
| 1 =>1
In+2=>M @+ 1) (x (n+ 1)) -- off-by-one here on purpose

theorem omnimath1410 :
Finset.card
(Finset.filter

16

Under review as a conference paper at ICLR 2026

(funn =>5x* (xn)"2+5* (x (n+1))"2=26*xnx*xx (n+ 1))
(Finset.Icc 2 2021))

= omnimath1410_answer := by

sorry

Analysis. The definition of M and the theorem statement are correctly formalized, but the recursive
definition of z is off by one. Specifically, in this formalization x5 = M (1,z(1)) = 1, but the
intended definition gives x5 = M (1,2) = 2. This can be fixed by changingM (n + 1) (x (n + 1))
toM (n +2) (x (@ + 1)).

3. Formalization with major error: IM02023SLN7 (IMO). Problem. Let a,b, c,d be positive
integers satisfying
ab cd (a+b)(c+d)

atb crd atbterd
Determine all possible values of a + b + ¢ + d. The answer is all positive integers that are not
square-free.

Listing 3: P2013AIMEII6 (formalization with major error)

import Mathlib
open Nat
noncomputable abbrev IM02023SLN7_answer : Set N := {n | 3p : N, 2 <p Apx*p |
n }
theorem IM02023SLN7(a b ¢ d : N)(ha : 0 < a) (b : 0 <b) (hc : 0 <c) (hd : 0 < d)
:C (ta * 1) / (ta + 1) + (Tc * 1) / (fc + td) = ((Ta + tb) * (fc + 1d)) /
(ta + ™ + fc + 7d)) <(a + b + ¢ + d) € IMO2023SLN7_answer := by sorry

Analysis. The logical shape is completely wrong. The problem asks for all possible values of
a + b+ ¢ + d that occur for some positive integers satisfying the equation. However, the formalized
theorem states that for some specific a, b, ¢, d > 0 the equation holds iff a + b + ¢ + d € answer,
which would mean the equation is true for those exact a, b, ¢, d precisely when the sum is not
square-free.

D FuULL TABLES

D.1 CONSTRUCTIVEBENCH FULL (3640 PROBLEMS)

DeepSeek-Prover-V2-7B Goedel-Prover-SFT Kimina-Prover-Preview-7B
Conjecturer CoT ECP Union CoT ECP Union CoT ECP Union
GPT-5 nano 288% 309% 345% 249% 261% 295% < 223% 23.2% 27.4%
GPT-5 mini 325% 331% 350% 272% 27.6% 291% 25.0% 252% 27.6%

DeepSeek-V3 10.1% 18.0% 18.7% 7.0% 15.0% 15.3% 7.8% 14.0% 14.8%
DeepSeek-V3.1 31.1% 32.7% 343% 262% 21.5% < 29.0% 23.8% @ 251% 27.6%
GPT-4.1 mini 7.3% 17.0% 17.7% 5.3% 11.1% 12.0% 6.0% 13.1% 13.9%
GPT-4.1 nano 9.8% 14.3% 16.7% 7.1% 10.0% 11.6% 7.9% 11.2% 13.1%

Table 4: ConstructiveBench full end-to-end results (Pass@32)

D.2 CONSTRUCTIVEBENCH AFTER-CUTOFF (106 PROBLEMS)

D.3 PUTNAMBENCH SUBSET (337 PROBLEMS)

17

Under review as a conference paper at ICLR 2026

DeepSeek-Prover-V2-7B Goedel-Prover-SFT Kimina-Prover-Preview-7B
Conjecturer CoT ECP Union CoT ECP Union CoT ECP Union
GPT-5 nano 132% 151% 18.9% 11.3% 123% 14.2% 104% 11.3% 13.2%
GPT-5 mini 17.9% 22.6% 22.6% 151% 16.0% 179% 132% 142% 15.1%
DeepSeek-V3 2.8% 5.7% 5.7% 1.9% 4.7% 4.7% 1.9% 3.8% 3.8%
DeepSeek-V3.1 17.0% 17.9% 20.8% 15.1% 16.0% 17.9% 13.2% 14.2% 15.1%
GPT-4.1 mini 4.7% 6.6% 6.6% 3.8% 5.7% 5.7% 3.8% 4.7% 4.7%
GPT-4.1 nano 2.8% 4.7% 5.7% 1.9% 2.8% 3.8% 1.9% 2.8% 3.8%

Table 5: ConstructiveBench After-Cutoff end-to-end results (Pass@32)

DeepSeek-Prover-V2-7B Goedel-Prover-SFT Kimina-Prover-Preview-7B
Conjecturer CoT ECP Union CoT ECP Union CoT ECP Union
GPT-5 nano 1.2% 1.5% 1.8% 09% 0.9% 1.2% 09% 1.2% 1.5%
GPT-5 mini 12% 1.8% 1.8% 09% 0.3% 0.9% 09% 0.6% 0.9%
DeepSeek-V3 03% 09% 0.9% 0.0% 0.3% 0.3% 0.0% 0.0% 0.0%
DeepSeek-V3.1 1.2% 12% 1.5% 0.6% 03% 0.6% 0.6% 0.6% 0.9%
GPT-4.1 mini 0.6% 0.6% 0.9% 0.6% 0.6% 0.9% 0.0% 0.0% 0.0%
GPT-4.1 nano 09% 0.6% 0.9% 03% 0.0% 0.3% 0.0% 0.0% 0.0%

Table 6: PutnamBench subset end-to-end results (Pass @32) with timeout=120s.

D.4 FULL ANSWER-CONSTRUCTION ACCURACIES

. ConstructiveBench (Full) ConstructiveBench (After-Cutoff) PutnamBench

Conjecturer

CoT /ECP Union CoT /ECP Union CoT /ECP Union
GPT-5 nano 45.1% 1 62.3% 66.9% 28.3% / 55.7% 57.6% 16.3% / 32.3% 36.8%
GPT-5 mini 69.7% 1 73.6% 78.9% 51.9% / 58.5% 64.2% 54.9% / 57.6% 71.8%
DeepSeek-V3 17.3% 1 40.7 % 43.4% 2.8% /26.4% 26.4% 19.0% / 31.8% 36.8%
DeepSeek-V3.1 65.4% 1 75.0% 79.2% 44.3% 1 67.9% 69.8% 53.7% 1 62.3% 73.6%
GPT-4.1 mini 16.6% / 36.5% 37.8% 11.3% / 23.6% 24.5% 15.1%/23.2% 29.4%
GPT-4.1 nano 15.3% /1 28.5% 33.0% 4.7% 1 18.9% 20.8% 7.7% 1 11.6% 17.2%

Table 7: Answer-construction accuracy. Note that, DeepSeek-V3.1 has knowledge cutoff after June
2024, so this model’s ConstructiveBench (After-Cutoff) accuracy may be contaminated.

18

	Introduction
	Related Work
	Methods
	Problem Formulation
	Enumerate–Conjecture–Prove Framework

	ConstructiveBench Dataset
	Data Sources and Scope
	Data Deduplication
	Problem Autoformalization
	Dataset Validation

	Empirical Evaluation
	Experimental Setup
	Answer-Construction Accuracy
	End-to-End Problem-Solving Accuracy

	Limitations and Future Work
	Conclusion
	Lean Definition Filtering
	Prompt
	Prompt for Autoformalization
	Prompt for Enumerator
	Prompt for Conjecturing

	Human Evaluation Examples
	Full Tables
	ConstructiveBench Full (3640 problems)
	ConstructiveBench After-Cutoff (106 problems)
	PutnamBench Subset (337 problems)
	Full Answer-Construction Accuracies

