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Abstract

Pest insects are a problem in horticulture, so early detection is key for their con-
trol. Sticky traps are an inexpensive way to obtain insect samples in crops, but
identifying them manually is a time-consuming task. Building computational
models to identify insect species in sticky trap images is therefore highly desir-
able. However, this is a challenging task due to the difficulty in getting size-
able sets of training images. In this paper, we studied the usefulness of three
neural network generative models to synthesize pest insect images (DCGAN,
WGAN, and VAE) for augmenting the training set and thus facilitate the in-
duction of insect detector models. Experiments with images of seven species
of pest insects of the Peruvian horticulture showed that the WGAN and VAE
models are able to learn to generate images of such species. It was also found
that the synthesized images can help to induce YOLOv5 detectors with signif-
icant gains in detection performance compared to not using synthesized data.
A demo app that integrates the detector models can be accessed through the
URL https://bit.ly/3uXW0Ee . The repository of the project is available at
https://github.com/weirdfish23/pest-insects-GAN

1 Introduction

One of the main problems in horticulture are pest insects. These can affect the productivity and
quality of crops. In Peru, this problem represents a great challenge due to the artisanal nature of the
activity and the lack of affordable technological tools to deal with local pests. The usual way that
horticulturists approach the problem is through the scheduled and intensive application of pesticides,
which generates negative impacts on the environment and people [Cañedo et al., 2011].

A way to improve the manner of dealing with insect pests is by collecting timely information on
the distribution of insect populations and species in crops. This can help implement on-necessity
pesticide application strategies, which can reduce production costs and environmental impacts. Sticky
traps are simple devices for collecting insect samples in crops [Li et al., 2021]. These are pieces of
colored sticky paper that attract and immobilize insects when land on them. Despite its low cost, the
process of identifying and classifying insect species in sticky traps is a time-consuming task that
requires specialized personnel. It has been suggested that computer vision and machine learning
techniques could help automate this process [Wang et al., 2021, Li et al., 2021, Zhong et al., 2018].

Indeed, some deep learning models have recently been proposed to identify insect species in sticky
trap images [Espinoza et al., 2016, Huang et al., 2019, Lu et al., 2019, Rustia et al., 2019, Xia et al.,
2015, Zhong et al., 2018, Zhou et al., 2019, Wang et al., 2021, Li et al., 2021]. However, most of
these works assume that a large set of insect images is available for training or have invested effort in
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getting it. Obtaining a sizeable set of pest insects images could be one of the most expensive parts
in building insect detectors. For the case of Peru, at the best of our knowledge there is not a public
collection of images of the most relevant insect species for the Peruvian horticulture.

In this paper we investigated the application of generative neural network models in order to build a
sizeable and realistic set of training images that serve to induce effective models for the identification
and classification of insect species in sticky traps for Peruvian horticulture. The investigated models
are three recent neural network architectures: Conditional Deep Convolutional Generative Adversarial
Network (DCGAN) [Radford et al., 2016, Goodfellow et al., 2014], Conditional Wasserstein GAN
(WGAN) [Arjovsky et al., 2017] and Conditional Variational Autoencoder (VAE) [vae]. These
techniques are evaluated in their usefulness to induce effective insect classifiers and compared
against the classical data augmentation technique based on image perturbations (rotations, mirroring,
modifications of brightness, contrast, etc.). To the best of our knowledge, this is the first study to
investigate and compare different generative neural models for artificially creating images of pest
insects for inducing detectors.

The rest of the paper is organized as follow. Section 2 describe the data collection and pre-processing,
the generative models and the detection model considered in the study. Section 3 presents the
experiments and results obtained. Finally, Section 4 concludes the work and suggests future works.

2 Materials And Methods

2.1 Data collection and pre-processing

For training the generative models we collected an initial set of images of the following insect species
relevant in the Peruvian horticulture: Prodiplosis longifila, Liriomyza huidobrensis, Brevicoryne
brassicae, Trips tabaci, Bemisia tabaci, Macrolophus pygmaeus, Nesidiocoris tenuis. For the last
three species we use images of the "Yellow Sticky Trap Dataset" [Nieuwenhuizen et al., 2019].
For the other species we scraped web pages with information of pest insects. All the images were
pre-processed (cut, filled and scaled) to obtain patches of 64x64 pixels containing each one a single
insect. The number of collected images for each specie is showed in table 1.

Table 1: Total of pest insects images per species and source.

Species Total of images Source
Prodiplosis longifila 35 Web
Liriomyza huidobrensis 112 Web
Brevicoryne brassicae 58 Web
Trips tabaci 53 Web
Bemisia tabaci 5807 Yellow Sticky Trap Dataset
Macrolophus pygmaeus 1619 Yellow Sticky Trap Dataset
Nesidiocoris tenuis 688 Yellow Sticky Trap Dataset
Total 8372

The collected dataset was further increased using a series of image transformation procedures. We
applied: random horizontal and vertical flip, random rotation and color jitter. Fig. 1 shows an
example of the result of applying these transformation procedures several times to a single base
image. Original and pre-processed images are available in our repository.

Figure 1: Images resulting of applying traditional image data augmentation procedures to a single
insect image (leftmost image).
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2.2 Generative models

We adjusted three generative models (DCGAN, WGAN and VAE) to acquire the capacity to synthesize
pest insect images to be used as data augmentation procedures for subsequent classifier induction.
Details of the model architectures and their training process can be found in Appendix A. The models
are conditioned on the species to be generated. All generative models were adjusted with the data
generated as described in the previous section. The trained models can be found in our repository.

2.3 Generation of sticky trap images

The trained generative models, WGAN and VAE, were used to synthesize sticky trap images to
train and validate insect species detectors. We constructed yellow sticky trap images by placing
model-generated insect images randomly in an area of dimensions compatible with what is found in
real settings. Original images obtained in the pre-processing step (Section 2.1) are also considered to
be placed in the resulting images using a mixing ratio. In the experimental phase we tested different
mixing ratios. To simulate realistic conditions we also considered the addition of different objects in
the sticky traps images, like sticks, rocks and random noise. All the information about the class of the
images added, the location of the pest insects in the image as bounding boxes and the proportion of
generated and real images is stored in separated files. These files were required to train the detection
model.

2.4 Insect detection and classification with YOLOv5

In order to detect the pest insects in the yellow sticky traps images we use the pretrained model
YOLOv5m [Jocher et al., 2021] and fine tuned it in the custom datasets. In this version of the model,
Cross Stage Partial Network (CSPNet) [Wang et al., 2020] is used as the model back- bone and Path
Aggregation Network (PANet) [Liu et al., 2018] as the neck for feature aggregation. The head is
retrained to make the prediction of the desired classes and bounding boxes of the species of insects.
In appendix B we show the high level architecture of this model.

3 Results And Discussion

In this section we describe the experiments performed and results obtained. First, we evaluate the
three types of generative models described above in their ability to reproduce the diversity of the insect
images of each target specie in the original dataset. Next, we present results about the usefulness
of the synthesized datasets to induce good models for detection and classification of pest insects in
sticky trap images.

All models were implemented in Python language using the Pytorch deep learning library. Experi-
ments were carried on a Lambda Deep Learning Workstation (lambdalabs.com) with two GeForce
RTX 2080 Ti GPU cards installed in a system running Ubuntu 18.04.5 LTS operating system.

3.1 Performance evaluation of pest insect image synthesis

Each trained generative model was qualitatively and quantitatively evaluated on its ability to generate
realistic insect images and their variabilities of the target species.

For the qualitative evaluation, we generated 500 images of each insect specie with each generative
model. Then, we applied the t-SNE technique [van der Maaten and Hinton, 2008] to find a low-
dimension representation of the images. This procedure was also performed in the original image
set obtained in Section 2.1. Fig. 2 a) shows a scatter plot of the 2D representation of the original
images mapped with t-SNE. In figure 2 b), c) and d) show equivalent representations for the images
generated with each generative model. We can visually appreciate that the models WGAN and VAE
seems to have learned closely the distribution of the original image set. All separated clusters and
overlapped clusters in the original set are also reproduced in the synthetic sets generated with that
models. The DCGAN model seems to have had difficulty learning the variety of the images in most
species since it tends to produce very similar images for each specie (very narrow clusters in the
t-SNE representation in Fig. 2 b) ), problem known as mode collapse. This can happen because the
discriminator learns faster than the generator during the training procedure and the generator doesn’t
have to opportunity to learn better representations.
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Figure 2: Two-dimensional t-SNE representations of 3500 pest insects images each one. a)Real im-
ages, the rest are from generated images as follow: b)DCGAN, c)WGAN and d)VAE. Colors identify
the insect species ( Blue: Bemisia tabaci, Orange: Macrolophus pygmaeus, Green: Nesidiocoris
tenuis, Red: Brevicoryne brassicae, Purple: Liriomyza huidobrensis, Brown: Prodiplosis longifila
and Pink: Trips tabaci ).

To have a more objective analysis of the capabilities of the models in learning the varieties of each
species, we calculated the Universal Divergence (UD) [Wang et al., 2009]. The UD metric assess the
divergence between two distributions: the distribution of the t-SNE embedding of the original images
of a given insect species against the distribution of the t-SNE embedding of the model-generated
images of the same insect species. Lower UD values mean that the distributions are closer. Table 2
shows the resulting UD metrics for each insect species and generative model. These results suggest
that VAE and WGAN have similar capabilities to capture the distribution of the original images,
being the VAE model slightly better, as evidenced in the average UD. We also verify that DCGAN
model present the most divergent distributions compared to the original images, which was also
observed in the qualitative evaluation (Fig. 2).

3.2 Evaluation of pest insect detection and classification

To further assess the utility of the synthetic data, we induced YOLOv5m models with such data and
evaluated their performance in identifying and classifying insect species in test sticky trap images.

Following the procedure described in Section 2.3 we generated six sets of sticky trap images, each
set containing 300 yellow sticky trap images, each image with around 100 insects of the seven target

4



Table 2: Divergence between real images and genereted images per model and species.

DCGAN WGAN VAE
Bemisia tabaci 7.207 7.431 7.058
Macrolophus pygmaeus 6.953 7.227 7.264
Nesidiocoris tenuis 7.247 6.604 6.878
Brevicoryne brassicae 6.759 6.022 6.070
Liriomyza huidobrensis 5.721 5.880 5.742
Prodiplosis longifila 7.707 6.278 5.997
Trips tabaci 7.475 6.507 6.494
Average 7.010 6.564 6.500

Figure 3: Example of sticky trap image generated with 20% of synthetic pest insects images and
other elements found in the field.

species. Fig. 3 shows an example of a generated sticky trap. The difference between the sets is the
proportion of the synthetic insects added to the sticky trap. We tested the following proportions: 0%
(only real insects), 20%, 40%, 60%, 80% and 100% (only synthetic insects). Fig. 4 shows an example
of the output of a YOLOv5m model (bounding boxes and species labels) in some sticky trap image.

To evaluate the detection performance of the YOLOv5m models we use the area under the curve
precision-recall (AUC) in testing data. We evaluated this metric per species. Table 3 shows the AUC
metrics of the models trained with the 6 different datasets and for each species. We can observe
that in five of the seven species the AUC metric improves when we use a fraction of synthetic data
in the training set. In some cases the increase in performance has been more than 14% (Liriomyza
huidobrensis). In the species Prodiplosis longifila and Trips tabaci no performance improvement was
observed with any proportion of synthetic data. For the case of Prodiplosis longifila, this species
is quite different from the rest, as observed in the t-SNE plot (Fig. 6), so its identification is not
problematic and the generation of synthetic data is not very helpful. For the species trips tabaci, this
has high overlapping with Brevicoryne brassicae. Probably the base images of these species with
which the generative models were constructed have not had enough diversity to capture discriminating
features and it would be necessary to have more real data to learn more details about these species.

A demo web app was deployed integrating the detector models and a simple user interface. The user
can submit its sticky trap images and obtain the resulting detection bounding boxes as in Fig. 11.
This tool can be accessed through the url https://bit.ly/3uXW0Ee.
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Figure 4: Example of an output of the YOLOv5m model after detecting and classifying the insects in
a sticky trap image.

Table 3: AUC metrics of different YOLOv5m models (columns) trained with different proportions
of synthetic data and differentiated by insect species (rows). Last column indicates the percentage
difference in AUC of the best model using synthetic data in relation to the model trained without
synthetic data

Use of generated imgs.
Species # Imgs. 0% 20% 40% 60% 80% 100% Max. Diff.

Bemisia tabaci 5807 0,91 0,91 0,92 0,87 0,93 0,90 2,10%
Macrolophus pygmaeus 1619 0,70 0,68 0,72 0,72 0,75 0,81 10,60%
Nesidiocoris tenuis 688 0,61 0,52 0,65 0,36 0,44 0,49 4,00%
Brevicoryne brassicae 58 0,47 0,51 0,37 0,26 0,40 0,47 4,50%
Liriomyza huidobrensis 112 0,81 0,81 0,87 0,86 0,89 0,95 14,60%
Prodiplosis longifila 35 0,77 0,75 0,61 0,44 0,44 0,51 0,00%
Trips tabaci 53 0,52 0,49 0,45 0,44 0,42 0,42 0,00%

4 Conclusion

Automating the identification of pest insects in sticky trap images is highly desirable. However, this
is a challenging task due to the difficulty in obtaining sizeble sets of training images. In this article
we studied the usefulness of three generative models in synthesizing pest insect images (DCGAN,
WGAN and VAE) in order to increase the training set and thus facilitate the induction of identification
and detection models. In a series of experiments with images of seven insect species of interest for
the Peruvian horticulture we demonstrated that the WGAN and VAE models are able to capture the
variability of the images of such species. Additionally, it was found the synthetic data generated by
such models can help to induce YOLOv5 detectors with significant gains in identification performance
compared to not using synthesized data.

The present work can be extended with the use of novel generative models. One example of this is
the model SAGAN [Zhang et al., 2019] that use self–attention layers in order to learn better spatial
and structural information from the images. This model could be better able to learn features such
as the shape of the insects. In some cases these features could be more relevant for distinguishing
insect species than the texture or color features that are well learned by the generative models based
on convolution layers, like the experimented in the present study.
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A Generative model

A.1 Conditional Deep Convolutional Generative Adversarial Network (DCGAN)

This model, initially proposed in Radford et al. [2016] and Goodfellow et al. [2014], is composed by
two modules: a generator and a discriminator, which are trained in an adversarial game. The goal
of the generator is to synthesize images that are similar to the original ones and the discriminator
tries to discriminate the original images from the synthetic ones. The output of the discriminator is
used as feedback to the generator to improve the quality of the images and fool the discriminator
so this can not discriminate if an image is real or fake. Both modules are trained jointly in order to
facilitate the task to the generator at the beginning of the training. If the discriminator is pre-trained
to discriminate the images, the generator would not have the opportunity to learn to produce good
quality images. Fig. 5 shows the high level architecture of the DCGAN with its integrating modules.

The generator is composed of five transposed convolutional layers. Each layer, except the last one, is
followed by a batch normalization layer and ReLu as activation function. In the last it is used the tanh
activation function. The input of this module is a vector of length 64 of random noise concatenated
with a one-hot label vector of the image class (insect specie) to be generated.

The discriminator is composed of four convolutional layers, each one followed by a batch normaliza-
tion layer and LeakyRelu as activation function. In this case the inputs of the module are the original
images or the fake ones concatenated with the one-hot label vector as channels.
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Figure 5: High level architecture of the generative DCGAN model used to synthesize images of pest
insects.

A.2 Conditional Wasserstein GAN (WGAN)

This model, originally proposed in Arjovsky et al. [2017], replaces the second module of the traditional
GAN, (the discriminator) with a module named critic. Instead of classifying the images into real or
fake labels, the critic outputs a numerical score that indicates how realistic an image is. This score
brings more information to the generator to improve the image generation. In order to ensure that the
output score is valid, the critic needs to be 1-Lipschitz continuous (1-L). In other words, the norm
of the gradient should be at most 1. A penalty factor is added to the loss function to enforce 1-L
continuity, this factor is calculated with the interpolation between real and generated images. Fig. 6
shows the high level architecture of the WGAN model.

Figure 6: High level architecture of the WGAN [Arjovsky et al., 2017] model used to synthesize
images of pest insects.

A.3 Conditional Variational Autoencoder (VAE)

This model, initially proposed in vae, is composed of an encoder and a decoder. The encoder has as
input the original image concatenated with the one-hot label vector of the image class. It encodes
the image to a set of normal distributions. Then, a vector is sampled from these distributions and
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concatenated again with the one-hot label vector in order to be passed to the decoder. The decoder
reconstructs the image from this vector. The decoder is used to generate images from a random noise
vector concatenated with the one-hot label vector of the target class. Fig. 7 shows the high level
architecture of the VAE model.

Figure 7: High level architecture of the model VAE [vae] model used to synthesize images of pest
insects.

B Detection model (YOLOv5)

In the Figure 8 we show the high level architecture of the model YOLOv5 with its main modules,
back–bone with Cross Stage Partial Network (CSPNet) [Wang et al., 2020], Path Aggregation
Network (PANet) [Liu et al., 2018] as the neck for feature aggregation and the head.

Figure 8: YOLOv5 Architecture [Jocher et al., 2021] (SPP: Spatial Pyramid Partial Network, CSP:
Cross Stage Partial Network, Conv: Convolutional layer)
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