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ABSTRACT

A convenient approach to optimally solving combinatorial optimization tasks is
the Branch-and-Bound method. The branching heuristic in this method can be
learned to solve a large set of similar tasks. The promising results here are
achieved by the recently appeared on-policy reinforcement learning (RL) method
based on the tree Markov Decision Process (MDP). To overcome its main dis-
advantages, namely, very large training time and unstable training, we propose
TreeDQN, a sample-efficient off-policy RL method trained by optimizing the ge-
ometric mean of expected return. To theoretically support the training procedure
for our method, we prove the contraction property of the Bellman operator for
the tree MDP. As a result, our method requires up to 10 times less training data
and performs faster than known on-policy methods on synthetic tasks. Moreover,
TreeDQN significantly outperforms the state-of-the-art techniques on a challeng-
ing practical task from the ML4CO competition.

1 INTRODUCTION

Industrial tasks in multiple areas such as logistics (Bertsimas & Van Ryzin, 1991), portfolio man-
agement (Markowitz, 1952), manufacturing (Barahona et al., 1988), etc., can be formulated as
combinatorial optimization problems, such as Mixed Integer Linear Programs (MILP), (Wolsey &
Nemhauser, 1999). Solving a large set of similar MILP tasks with varying parameters corresponding
to different numbers of vehicles, customer demands, locations, etc., is usually necessary. If each task
is solved independently, the optimal solution can be efficiently obtained with the Branch-and-Bound
algorithm (B&B) (Land & Doig, 2010). The B&B algorithm employs divide-and-conquer approach.
It iteratively builds a tree, where the root node corresponds to the initial problem, and child nodes
correspond to problems with the restricted domains. The performance of the B&B algorithm hardly
depends on two sequential decision-making processes: variable selection and node selection. Node
selection picks the next node in the B&B tree to evaluate, and variable selection chooses the next
variable to split the domain (Linderoth & Savelsbergh, 1999). The efficiency of the solver depends
on the number of the destination/leaf nodes of the tree. The variable selection method (branching
rule) should produce trees of the smallest possible size. Although the optimal branching rule is
unknown (Lodi & Zarpellon, 2017), modern solvers implement human-crafted heuristics designed
to perform well on a wide range of tasks (Gleixner et al., 2021).

Suppose a set of similar tasks with varying parameters is solved frequently. In that case, the B&B
method can be significantly accelerated if a branching rule is adapted to the distribution of tasks by
using the reinforcement learning (RL) paradigm (Etheve et al., 2020; Scavuzzo et al., 2022). To solve
a MILP task, the B&B method generates a tree of nested subtasks. The typical RL algorithms are
designed to process sequential data Sutton & Barto (2018). Hence, they cannot be directly applied
to the tree structure in the B&B algorithm. Indeed, the RL method, which learns optimal branching
decisions, should map this tree structure to an episode. A promising approach to such mapping is
to consider the decision-making process of a tree MDP instead of a temporal MDP Scavuzzo et al.
(2022). However, there exist several difficulties of known RL methods to the variable selection pro-
cess Etheve et al. (2020); Scavuzzo et al. (2022), namely: 1) the computational complexity of MILP
is very high, which limits the applicability of on-policy algorithms such as tMDP+DFS Scavuzzo
et al. (2022); 2) it is challenging to accurately predict the resulting tree sizes, whose distributions
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usually have extremely high variance; and 3) there is no theoretical evidence of convergence for tree
MDP of such methods as FMSTS Etheve et al. (2020).

To overcome these difficulties, this paper presents a novel RL method. In particular, our contribution
is as follows:

1. We present a novel sample efficient off-policy RL algorithm for the tree Markov Decision
Process, TreeDQN, which is trained significantly faster than existing on-policy techniques
for combinatorial optimization.

2. To overcome the issue with high variance of tree size distribution, we propose a loss func-
tion that optimizes the geometric mean of expected return.

3. We provide a theoretical basis for using the Bellman operator to train the RL agent in our
TreeDQN by proving that the Bellman operator in the tree Markov Decision Process is
contracting in mean.

4. We demonstrate our method’s superior performance and learning efficiency on a set of
synthetic and practical MILP tasks. In particular, our TreeDQN is the first successful RL
algorithm to learn an efficient variable selection policy for the complex practical task from
the ML4CO competition (Gasse et al., 2022).

2 BACKGROUND

We formally define the task as solving a set of similar MILP non-convex optimization problems:

min
x

{
c⊤x : Ax ≤ b , x ∈

[
l, u

]
, x ∈ Zm × Rn−m

}
. (1)

It is assumed that objective coefficient vectors c ∈ Rn, right-hand-side constraints b ∈ Rm, con-
straint matrices A ∈ Rm×n, lower and upper bound vectors l ∈ Rn, u ∈ Rn, and integrality
constraints m ≥ 1 are taken from a corresponding joint probability distribution. A most commonly
used method of finding the optimal solution for each MILP problem with fixed c, b, A, l, u,m is the
B&B (Alg. 2 in Appendix A) (Land & Doig, 2010). It builds a tree of nested MILP subproblems
with non-overlapping feasibility sets. The algorithm computes a lower bound (LB, dual bound) for
each subproblem and updates a global upper bound (GUB, primal bound) for the whole space of so-
lutions. The lower bound is an optimal solution for LP relaxation of the subproblem. LP relaxation
considers all discrete variables continuous and maintains all the other constraints. The GUB is the
minimum over the found feasible solutions. A solution of LP relaxation is feasible if it satisfies the
integrality constraints of the original problem. B&B uses these bounds to enforce its efficiency by
pruning the tree. Pruning discards subtrees that can not contain a feasible solution better than the
current GUB. Visiting every open node guarantees that the B&B eventually finds the best integer-
feasible solution. The efficiency of the B&B depends on the variable selection process (branching
rule), which selects an integer variable for splitting, and the node selection strategy, which arranges
the open leaves for visiting.

To solve the task (1), RL techniques have recently been implemented to optimize these strate-
gies Etheve et al. (2020). Let us discuss the connections between the variable selection process and
the Markov Decision Process (MDP). Usually, MDP is defined by the tuple (S,A, pinit, p, r), where
S is the set of states, A is the set of actions, pinit(s0) is the distribution of initial states, p(s′|s, a) is
transition probability i.e. probability of transitioning to state s′ ∈ S if taken action a ∈ A in a state
s ∈ S and r(s, a, s′) is the reward function. Although the next state s′ can be chosen stochastically,
in each transition, state action pair (s, a) should have exactly one next state:

∑
s′∈S p(s′|s, a) = 1.

The Markovian property says that p(s′|s, a) should be a function of state, and action, and r(s, a, s′)
should be a function of state, action, and next state. So, the episode in such MDP will have a linear
structure containing tuples of (s, a, s′). Here, we will use the extended formulation of MDP called
tree MDP (Scavuzzo et al., 2022). Unlike the usual formulation of (temporal) MDP, in tree MDP,
each state can have multiple next states, i.e.,

∑
s′∈S p(s′|s, a) ≥ 1, so the episodes will have a tree

structure. Since the B&B algorithm splits the domain of an integer variable into two parts, we can
formally define the variable selection process as a tuple (S,A, pinit, p+, p−, r), where state s ∈ S
is (MILPt, GUBt), action a ∈ A is the fractional variable chosen for splitting, pinit(s0) is the initial
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state distribution of MILP tasks, p+(s+t+1|st, at) and p−(s−t+1|st, at) denotes probabilities of visit-
ing left (s+t+1) and right (s−t+1) next states and r : S → R is the reward function. MILPt is defined
as a bipartite graph in which the edges correspond to connections between constraints and variables.
The tree MDP defines the value function V (s) as a sum of reward and value functions of the next
states:

V π(st) = r(st, at, s
±
t+1) + p+V π(s+t+1) + p−V π(s−t+1) (2)

The next states s+t+1, s−t+1 are unambiguously determined by the state st and action at. Probabilities
p+, p− are defined by the node selection strategy. Their values indicate the likelihood of visiting
the corresponding state. The episode ends when the agent reaches a terminal state containing the
optimal solution. The goal of the agent is to find a policy that would maximize the expected return.
For instance, if the reward at each step equals −1, the value function equals the tree size with a
negative sign. Hence, the agent maximizing the expected return would minimize the tree size. Tree
MDP provides an efficient mapping between the variable selection process employed by the B&B
algorithm and the Markov Decision Process, which can be used to train a reinforcement learning
agent. The remaining task is constructing an efficient and stable sample training algorithm.

3 RELATED WORK

3.1 HEURISTIC METHODS

Practical implementations of the B&B algorithm in SCIP (Bestuzheva et al., 2021) and CPLEX
(Cplex, 2009) solvers rely on handcrafted heuristics for node selection and variable selection. A
straightforward strategy for node selection is Depth-First-Search (DFS), which aims to find any
integer feasible solution faster to prune branches that do not contain a better solution. The default
node selection heuristic in the SCIP tries to estimate the node with the lowest feasible solution. One
of the best-known heuristics for the variable selection is Strong Branching. It is a tree-size efficient
and computationally expensive branching rule (Achterberg, 2007). For each fractional variable with
integrality constraint, Strong Branching computes the lower bounds for the left and right child nodes
and uses them to choose the variable for splitting.

3.2 SUPERVISED LEARNING

A statistical approach to learning a branching rule was applied in Khalil et al. (2016) for the first time.
Authors used SVM (Cortes & Vapnik, 1995) to predict the variable ranking of an expert for a single
task instance. Later works (Khalil et al., 2017) and (Selsam et al., 2018) proposed methods based
on Graph Convolutional Networks (GCNN) (Kipf & Welling, 2017) to find an approximate solution
of combinatorial tasks. In Gasse et al. (2019), authors applied the same neural network architecture
to imitate the Strong Branching heuristic in sophisticated SCIP solver (Bestuzheva et al., 2021).
The imitation learning agent can not produce trees shorter than the expert. However, it solves the
variable selection task much faster, especially if running on GPU, thereby significantly speeding up
the whole B&B algorithm. In Gupta et al. (2020), the authors examined the choice of architectures
and proposed a hybrid model that combines the expressive power of GCNN with the computational
efficiency of multi-layer perceptrons. Despite the decrease in running time, imitation learning cannot
lead to better heuristics.

3.3 REINFORCEMENT LEARNING

RL is a promising direction to learn a variable selection rule for the B&B algorithm. It keeps
the guarantees of the B&B method to find an optimal solution and can significantly accelerate the
algorithm by optimal choices of branching variables. A natural minimization target for an agent
in the B&B algorithm is the size of the resulting tree. One of the main challenges here is to map
the variable selection process to the MDP and preserve the Markov property. In the B&B search
trees, probabilities of visiting descendant nodes p+, p− depend on the global upper bound that
can be changed by the future branching decisions, which violate the Markov property. To learn a
branching rule, the FMSTS (Fitting for Minimizing the SubTree Size) algorithm was introduced in
Etheve et al. (2020). In their method, an agent plays an episode until termination, fitting the Q-
function to the bootstrapped return. The authors used the DFS node selection strategy to enforce the
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Markov property during training. This method is sample efficient since training data can be sampled
from a buffer of past experiences. However, it may not converge to the optimal policy because its
training data was obtained by older and less efficient versions of the Q-function. In Scavuzzo et al.
(2022), the authors proposed setting the global upper bound to the optimal solution for a MILP as
an alternative method to ensure the Markov property. They derived the policy gradient theorem for
the tree MDP (tMDP) and evaluated the REINFORCE-based agent on challenging tasks similar to
(Gasse et al., 2019). This method could learn an optimal policy because the agent uses only the latest
data. Still, it is sample inefficient since a single gradient step of the REINFORCE agent requires
solving a batch of MILP tasks. Both works (Etheve et al., 2020; Scavuzzo et al., 2022) use the
cumulative return to update the agent. We improve their approaches in terms of sample efficiency
and agent performance. We apply the tree Bellman operator to train the agent efficiently with the
buffer of previous experiences. We use a novel learning objective that stabilizes the training in the
presence of high-variance returns.

4 OUR METHOD

In this section, we prove the “contraction in mean” property of the tree Bellman operator and intro-
duce our sample-efficient RL method for finding the optimal solution of a MILP task.

4.1 CONTRACTION IN MEAN PROPERTY OF THE TREE BELLMAN OPERATOR

From the theoretical point of view, RL methods converge to an optimal policy due to the contraction
property of the Bellman operator (Jaakkola et al., 1993). To apply RL to the tree MDP, we need to
justify the contraction property of the tree Bellman operator (Borovkov, 2013).
Definition 4.1. We consider operator T is contracting in mean if:

∥TV − TU∥∞ = p · ∥V − U∥∞,

E p < 1,
(3)

where E p is the expected value of random variable p and the infinity norm is defined as follows:

∥V − U∥∞ = max
s∈S
|V (s)− U(s)| (4)

Theorem 4.2. Tree Bellman operator is contracting in mean.

Proof. Bellman operator for a tree MDP is defined similarly to a temporal MDP:

TπV (s)) = r(s, π(s)) + γ
[
p+V (s+) + p−V (s−)

]
. (5)

We assume the probability of having a left (p+) and a right (p−) child does not depend on the state.
This assumption is close to the B&B tree pruning process, where the decision depends on the global
upper bound. Using the definition of tree Bellman operator (Eq. 5) and the definition of the infinity
norm (Eq. 4), we derive the following inequality:

∥TπV (s)− TπU(s)∥∞ = γ∥p+V (s+) + p−V (s−)− p+U(s+)− p−U(s−)∥∞ =

γmax
s±∈S

[
p+|V (s+)− U(s+)|+ p−|V (s−)− U(s−)|

]
≤ γ(p+ + p−)max

x∈S
|V (x)− U(x)|

In a finite rooted tree with K nodes, every node except the root has exactly one incoming edge.
Hence, the number of edges is one less than the number of nodes. So the expected number of child
nodes E(p+ + p−) = K−1

K < 1. This leads to the following equations:

∥TV − TU∥∞ = (p+ + p−) · ∥V − U∥∞,

E(p+ + p−) < 1,

that meets the definition of contraction in mean (Eq. 3).

This theorem supports the assumption that our method, which utilizes the Bellman update operator,
should be able to learn the optimal variable selection policy.
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4.2 LOSS FUNCTION

RL methods generally regress the expected return with the mean squared error (MSE) loss function,
thereby optimizing the prediction of the arithmetic mean. When solving a MILP problem, non-
optimal branching decisions lead to weakly pruned trees with a size growing exponentially as a
function of the number of integer-valued variables. As a result, the distribution of tree sizes produced
by the B&B method will have a long tail (Fig. 3 in Appendix B). As the standard metric to compare
the average performance of different branching rules is the geometric mean of the final tree size
and execution time Gasse et al. (2019), we propose to optimize the geometric mean of the expected
return, i.e., use mean squared logarithmic error (MSLE) instead of MSE. For a variable y and targets
t loss L(y, t) is defined as follows:

L(y, t) =
1

B

∑
i

(log(|y|)− log(|ti|))2, (6)

where B is the batch size. Since log(|y|) = 1/B
∑

log(|ti|) minimizes the MSE function, then
the optimal value for y equals to geometric mean |y| = exp(1/B

∑N
i=1 log(|ti|)). Thus, the agent

trained with our loss (6) will be optimized to predict the geometric mean of the expected return.

4.3 TREEDQN

The TreeMDP significantly differs from the usual temporal MDP process, so the standard RL algo-
rithms would not work in this formulation. Thus, we proposed a computationally efficient TreeDQN
method shown in Alg. 1.

Algorithm 1 TreeDQN with experience replay
Input: Buffer size N , buffer min size n, discount factor γ, number of updates t, ε decay function,
batch size b, target update frequency tup, random number generator R
Initialize: Qtarget, Qnet, D ← ∅, ε← 1
Result: Qnet

s← env.reset()
while i ≤ t do

if R(0, 1) < ε then
a← random action

else
a← argmaxa (− exp (Qnet(s, a)))

end if
snext, r, s+, s−, done = env.step(a)
D ← D ∪ (s, a, r, s±)
if done then
snext← env.reset()

end if
s← snext, ε← decay(ε), i← i+ 1
if i > n then

sample batch (s, a, r, s±) ∼ D
a± ← argmaxa± (− exp (Qnet(s

±, a±)))
target = r − γ exp [Qtarget(s

+, a+)]−
γ exp [Qtarget(s

−, a−)]

loss = (Qnet(s, a)− log(|target|))2
Qnet ← optimize(Qnet, loss)

end if
if i mod tup = 0 then

Qtarget ← Qnet

end if
end while

According to Theorem 4.1, the Bellman operator for a tree MDP process is contracting in mean.
Hence, it can be used to learn a Q-function for the tree MDP process. Our method is inspired by the
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Table 1: Loss functions used by RL algorithms to learn variable selection task.

METHOD LOSS FUNCTION

TREEDQN (OURS) LTreeDQN =
(
Q(st, at)− log

(∣∣∣r − eQtarget(s
+
t+1,a

+
t+1) − eQtarget(s

−
t+1,a

−
t+1)

∣∣∣))2

TMDP+DFS LtMDP+DFS = − log πθ(at|st)R(st)− λH(πθ(·|st))

FMSTS LFMSTS =

(
Q(st, at)−R(st)

size(root(st))

)2

Double Dueling DQN (Deep Q-Network) (Mnih et al., 2015) algorithm for a tree MDP process (2),
but it has several key differences.

First, we operate with multiple next states denoted in the Algorithm by s+, s−. Thus, to compute
the target for the Q-function, we predict the returns for all sub-trees. In Alg. 1, we store previous
experiences in the form of (st, at, rt, s+t+1, s−t+1) in the buffer with capacity N . The number of
stored next nodes varies since the node st can have 0, 1, or 2 next nodes. The agent starts training
when the buffer size reaches minimum capacity n; the agent starts training. In our implementation,
we update the agent at each step of the environment using a batch of previous experiences from the
replay buffer. This dramatically improves the sample efficiency compared to the on-policy method
proposed for variable selection (Scavuzzo et al., 2022).

Second, the size of the tree can grow exponentially, we propose a different loss function that can
be computed in a numerically stable way. We approximate a wide range of expected returns by
exploiting a Graph Convolutional Neural Network with activation f = − exp(·) applied to the
output layer. Using logits before activation, we implement the MSLE loss (Eq. 6) in a numerically
stable way for this activation function:

LTreeDQN =
(
Q(st, at)− log

(∣∣∣r − eQtarget(s
+
t+1,a

+
t+1) − eQtarget(s

−
t+1,a

−
t+1)

∣∣∣))2

, (7)

where −eQ(st,at) predicts the expected return for state-action pair (st, at), Qtarget is the delayed
version of Q(s, a). The proposed loss function serves two purposes simultaneously: it optimizes the
target value and geometric mean of expected return and stabilizes the learning process.

5 EXPERIMENTAL RESULTS

5.1 SYNTHETIC DATA

We compare the performance of our TreeDQN agent with the Strong Branching rule, Imitation
Learning (IL) (Gasse et al., 2019), tMDP+DFS (on-policy, REINFORCE-based method) (Scavuzzo
et al., 2022), and FMSTS (off-policy method) (Etheve et al., 2020) agents. We use the same Graph
Convolutional Neural Network encoder architecture for all agents in our benchmarks. In addition,
we present evaluation results for the SCIP solver with default parameters. However, it is not a direct
competitor to our method since internal branching rules can make several modifications to the state
of the solver except branching (Gamrath & Schubert, 2018).

The detailed comparison of our loss function with existing losses from tMDP+DFS (LtMDP+DFS)
and FMSTS (LFMSTS) are provided in Table 1. Here, R(st) is cumulative discounted reward,
H(πθ(·|st)) is the entropy of the policy πθ(·|st); size(root(s)) is the size of tree which contains
node st; Qtarget is a delayed version of the state-action value function Q, actions in the next states
a±t+1 are selected to maximize the expected return a± = argmaxa±

(
− exp

(
Q(s±t+1, a

±
t+1)

))
.

5.1.1 ENVIRONMENT

We use an open-source implementation of the B&B algorithm in SCIP solver with Ecole (Prouvost
et al., 2020) v0.8.1 package, which represents nodes in the B&B tree as bipartite graphs and provides
an interface for learning a variable selection policy.
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Observation. The agent observes a bipartite graph. In this graph, edges correspond to connec-
tions between constraints and variables with weight equal to the coefficient of the variable in the
constraint. Each variable and constraint node is represented by a vector of 19 and 5 features, re-
spectively. The variables and constraints are represented by their properties, such as type (integer,
binary, or continuous), upper and lower bounds, average incumbent value, dual bound value, and
tightness of the constraint.

Actions. The agent selects one of the fractional variables for splitting. Since the number of fractional
variables decreases during an episode, we apply a mask to choose only among available variables.

Rewards. At each step, the agent receives a negative reward r = −1. The total cumulative return
equals the resulting tree size with a negative sign.

Episode. In each episode, the agent solves a single MILP instance. We limit the solving time for
one task instance during training to 10 minutes and terminate the episode if the time is over.

5.1.2 TRAINING AND EVALUATION

We train our agent on a traditional set of NP-hard tasks, namely, Combinatorial Auction (Leyton-
Brown et al., 2000), Set Cover (Balas & Ho, 1980), Maximum Independent Set (Bergman et al.,
2016), Facility Location (Cornuejols et al., 1991) and Multiple Knapsack (Fukunaga, 2009). During
training, we randomly generate MILP instances (e.g., capacities of knapsacks and values of items
in the Multiple Knapsack task). Depending on sampled parameters, the task could be easy (LP
relaxation of the initial problem provides an integer feasible solution, so the resulting B&B tree
contains only the root node) or require multiple branching decisions to find an optimal solution. We
use DFS for node selection for training and switch to SCIP default node selection policy for testing.
For evaluation, we generate 40 task instances for each set of tasks and evaluate our agent with five
random seeds. The parameters of the task distributions are shown in Appendix C, Tab. 5.

We use the same set of hyperparameters (Appendix C, Tab. 6) to train our agent for each task. The
TreeDQN algorithm is robust to the hyperparameter choices. The number of training episodes was
adjusted so the validation tree size converges. The epsilon decay parameter was adjusted to decay
exploration to zero at the end of training. We seed the parameter γ, which defines the greediness
of the agent, to 1 since it needs to minimize the tree size, and each tree node should have the same
impact on the training. The rest of the hyperparameters have standard values from the literature.
Total training time did not exceed four days on an Intel Xeon 6326, NVIDIA A100 machine. To
select the best checkpoint for testing, we perform validation using 20 fixed task instances with five
random seeds every 50 training episodes. The validation plot in Fig. 1 shows the geometric mean
of tree sizes as a function of the number of training episodes. During training, the TreeDQN agent
learns to solve variable selection tasks better, generating smaller B&B trees. As seen from Fig. 1,
our off-policy TreeDQN method trains much faster than the on-policy tMDP+DFS method. The
number of episodes it took to reach the best checkpoint and validation plots for all tasks is shown in
Appendix C, Tab. 7, and Fig. 4.
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Figure 1: The geometric mean of tree size as a function of the number of training episodes. Orange
- TreeDQN, black - FMSTS, green - tmdp+DFS.The dashed black and orange lines denote the best
performance of the FMSTS and TreeDQN agents, respectively on the validation tasks trained on 10k
episodes

To collect the dataset for the imitation learning method, we solve the MILP tasks with the B&B
algorithm. At each step, we make a branching decision according to either the strong branching
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heuristic with p = 0.3 or the pseudocost heuristic with p = 0.7 (see (Prouvost et al., 2020) for
more details on the pseudocost heuristic). We add to the dataset only the branching decisions of the
strong branching heuristic. The pseudocost heuristic acts as an exploration policy to provide more
diversity to the dataset. For all tasks, we used 83000 data points for training and 17000 for validation
to prevent overfitting.

In Tab. 2, we show the geometric mean of execution time and standard deviation. Bold numbers
indicate the best-performing RL method (TreeDQN, FMSTS, tmdp+DFS). All RL methods perform
much faster than the Strong branching, with execution time proportional to the number of nodes in
the B&B trees (see Appendix D, Tab. 8). The SCIP default and the Strong branching have higher
execution times when compared to the learning-based methods due to the computational complexity
of their branching rules. Additional analysis of tree size distributions and running time is available
at Appendix D.

To prove the statistical significance of our results, we perform paired difference test (Wilcoxon,
1945) between our method and baselines. Our null hypothesis is that TreeDQN performs similarly
to our baselines, so the distribution of differences in execution times should be symmetric about
zero. The results, shown at the bottom of Tab. 2, indicate strong evidence against the null hypothesis
for almost all test tasks except Facility Location, where TreeDQN performs close to IL and Multiple
Knapsack where RL methods (TreeDQN, FMSTS, and tmdp+DFS) perform close to each other.

Table 2: Geometric mean of execution time. TreeDQN(MSE) is a TreeDQN agent trained with MSE
loss function. W() denotes the Wilcoxon test between TreeDQN and methods in brackets.

MODEL COMB. AUCT. SET COVER MAX. IND. SET FACILITY LOC. MULT. KNAP.

SCIP DEFAULT 2.01 ± 1.58 2.87 ±1.58 3.69 ± 2.08 7.27 ± 2.54 0.52 ± 1.94
STRONG BRANCHING 3.36 ± 2.21 5.33 ± 2.22 57.03 ± 3.48 24.81 ± 4.85 1.94 ± 4.76
IL 0.77 ± 1.49 1.07 ± 1.50 1.75 ± 1.65 3.99 ± 2.92 1.83 ± 4.42

TREEDQN (OURS) 0.79 ± 1.53 1.09 ±1.52 1.86 ± 1.88 3.90 ± 2.84 0.90 ± 2.75
TREEDQN (MSE) 0.81 ± 1.54 1.18 ± 1.55 1.97 ± 1.74 4.60 ± 3.02 1.11 ± 2.93
FMSTS 0.82 ±1.58 1.21 ± 1.63 2.45 ±2.41 5.39 ± 3.49 0.93 ± 2.95
TMDP+DFS 0.90 ± 1.64 1.69 ± 2.01 1.96 ± 1.61 5.29 ± 3.62 0.90 ± 2.89

W(IL) 2.37 · 10−9 1.08 · 10−3 2.68 · 10−4 2.66 · 10−1 4.38 · 10−9

W(MSE) 1.86 · 10−3 6.88 · 10−29 1.26 · 10−8 4.17 · 10−6 4.31 · 10−2

W(FMSTS) 7.47 · 10−5 1.61 · 10−27 2.16 · 10−26 1.44 · 10−14 9.77 · 10−1

W(TMDP+DFS) 1.34 · 10−27 2.39 · 10−34 5.00 · 10−9 1.40 · 10−13 5.28 · 10−1

We compared the performance of our agent and the TreeDQN agent trained with standard MSE loss
function. Our modified learning objective prevents explosions of gradients and significantly stabi-
lizes the training process. Training with smoother gradients should lead to a better policy to solve
the MILP tasks faster. As seen from Tab. 2 in all tasks, the agent trained with a modified loss func-
tion achieves a lower geometric mean of the execution time. The Wilcoxon test (Wilcoxon, 1945)
indicates statistical significance that our modified loss function allows our agent to learn a better
policy for all tasks. Additionally, we tested the generalization ability of our agent and evaluated
the trained agent on the large instances from the transfer distribution. Refer to the Appendix E for
details.

The experimental results on synthetic tasks demonstrate that our TreeDQN agent outperforms base-
line RL methods. However, strong branching is often close to the optimal policy on simple tasks.
Consequently, the IL will be a strong baseline for such tasks. In the next section, we demonstrate the
performance of our method on more complex tasks with different maximization objectives, where
imitation learning is not as close to optimal as in synthetic tasks.

5.2 REAL DATA

We evaluate our method on a challenging Balanced Item Placement dataset (ML4CO competi-
tion Gasse et al. (2022), BSD-3-Clause license). The latter focuses on a data-driven design of
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application-specific branching algorithms. The balanced item placement problem is computation-
ally demanding and requires efficient sample algorithms to learn a branching policy. In the dataset,
problem instances are modeled as multi-dimensional multi-knapsack MILP tasks. Each task repre-
sents the spread of items across containers, e.g., files across disks or distributing processes across
different machines with even utilization. The number of movable items is constrained to model the
real-life situation of a live system. The dataset contains 9900 train instances, 100 validation, and
100 test instances.

5.2.1 ENVIRONMENT

Observations and actions. The agent observes a bipartite graph and returns an index of a variable
for splitting.

Rewards. We train the agent to maximize the dual integral. The dual integral measures the area
under the curve of the solver’s global lower bound (dual bound), corresponding to a solution of LP
relaxation of the MILP. When the agent chooses branching variables, the domain of integer variables
gets tightened, and the dual bound increases over time. The dual integral is defined as follows:

Id =

∫ T

t=0

z∗t dt,

where T is the time limit, and z∗t is the best dual bound found at time t. At each time step, the
agent receives the reward equal to the dual integral since the previous state, so the cumulative return
equals the dual integral Id.

Note the different reward functions here. In the synthetic experiments, we use the final tree size as
our reward since the tasks are sufficiently simple and can be solved conveniently. Thus, the agent
trained to minimize the tree size could solve the underlying MILP faster since it would require fewer
branching decisions. However, the ML4CO tasks are much harder, and the optimal solutions can not
be obtained in a reasonable time. So, we use a different reward metric that does not rely on solving
the task optimally.

Episode. In each episode, the agent solves a single MILP instance. The episode duration is limited
to 15 minutes during both training and evaluation.

5.2.2 TRAINING AND EVALUATION

We train our agents with the same hyperparameters and the same architecture as in synthetic tasks.
Since each episode in this environment takes 15 minutes to complete, we decrease the number of
training episodes to 500. This environment highlights the sample efficiency of our method because
training on policy is computationally complex.

Table 3: Evaluation on balanced item placement task.

MODEL REWARD PRIMAL BOUND DUAL BOUND # NODES ×103 # LPS ×103

SCIP DEFAULT 3885.24 18.46 4.97 258.36 5037.10
STRONG BRANCHING 3419.00 628.02 4.01 0.552 13.95

IL 4964.77 537.85 5.92 141.36 1911.16
TREEDQN (OURS) 5958.06 87.33 7.05 83.76 846.40

We compare the performance of the TreeDQN agent with the SCIP solver, Strong Branching heuris-
tic, and Imitation Learning agent on 100 test instances. Since the tasks are computationally de-
manding, all tasks for each branching method were finished by reaching the 15-minute time limit.
We present evaluation results in Tab. 3. Here, the TreeDQN agent achieves the highest cumulative
reward by a significant margin. Comparing the TreeDQN and IL agents, which use the same GCNN
architecture, we see that for the same amount of time, TreeDQN solves significantly fewer LP tasks.
This is because it creates more complex LPs, which increase the dual bound faster.

Fig. 2 shows the primal and dual bounds as a function of time. Our TreeDQN agent decreases the
primal bound and increases the dual bound much faster than the IL and Strong Branching agents.

9
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Figure 2: Primal bound (on the top) and dual bound (on the bottom) as a function of time. Red -
Imitation Learning, orange - TreeDQN, blue - Strong Branching.

Table 4: Dual bound distribution.

MODEL 25% 50% 75% 100%

SCIP DEFAULT 1.18 3.76 7.24 20.88
STRONG BRANCHING 1.72 3.54 5.88 12.95
IL 3.65 5.18 7.93 17.53

TREEDQN (OURS) 3.37 5.59 9.37 23.27

We present quantiles of the dual bound distributions in Tab. 4. Here, the dual bound distribution
of the TreeDQN agent has larger 50%, 75%, and 100% quantiles than the distributions of other
methods. These results demonstrate that our agent learns an effective branching policy, is sample-
efficient, and can be trained with only 500 training episodes.

6 CONCLUSION

In this paper, we have presented a novel data-efficient deep RL method to learn a branching rule
for the B&B algorithm (Alg. 1) and demonstrated its superiority over the existing RL-based tech-
niques (Tab. 2, 3). We provided statistical tests (Tab. 2) which confirm the statistical significance
of our experimental results. The synergy of the exact solving algorithm and data-driven heuristic
takes advantage of both worlds: guarantees the computation of the optimal solution from the B&B
algorithm and the ability to adapt to specific tasks from the learned branching heuristic. In particu-
lar, we introduced the novel loss function (7), which stabilizes the training process in the presence
of high-variance returns and proves its superiority over the alternative approaches listed in Tab. 1.
As a typical RL application to MILP, our method is designed to perform well on the distribution of
similar MILP tasks (see formal task definition in Section 2). Thus, transferring the trained policy
to significantly different MILP tasks is out of the scope of the present paper and is considered a
promising direction for future research. We experimentally demonstrated the high performance of
our method on a set of synthetic and practical tasks compared to previously known solutions. Our
TreeDQN method trains much faster than the previous RL methods, as shown in Fig. 1, it outper-
forms state-of-the-art RL methods as demonstrated in Tab. 2 and can learn an efficient branching
policy which outperforms imitation learning method in complex practical task when trained only on
500 episodes which would not be possible with sample inefficient on-policy methods. The source
code is available at https://anonymous.4open.science/r/treedqn-F72F.
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A BRANCH-AND-BOUND ALGORITHM

Algorithm 2 Branch-and-Bound
Set the original MILP problem as the root of the tree
Set GUB = +∞
while not solved do

1. Select a not visited node from the tree using node selection strategy. Compute the LB as a
solution of the relaxed problem: min(cT x̂ : Ax̂ ≤ b, x̂ ∈ [l, u], x̂ ∈ Rn)
2. Update the GUB if the relaxed problem provides a feasible solution
3. If LB < GUB and the corresponding MILP is feasible, choose one of the fractional variables
x̂i using the branching rule, split its domain into two parts with constraints li ≤ xi ≤ ⌊x̂i⌋ and
⌈x̂i⌉ ≤ xi ≤ ui, and produce two corresponding nodes as descendants of the visited nodes in
the tree
4. Mark the selected node as visited

end while

B DISTRIBUTION OF TREE SIZES

We present the distribution of tree sizes obtained with the Strong branching heuristic in Fig. 3. It is
seen that even the Strong branching heuristic produces a long-tailed distribution of tree sizes.

0 200 400 600

Combinatorial Auction
0 1000 2000

Set Cover

0 1000 2000

Maximum Independent
Set

Figure 3: Distributions of tree sizes for Combinatorial Auction (Leyton-Brown et al., 2000), Set
Cover (Balas & Ho, 1980) tasks and Maximum Independent Set (Bergman et al., 2016) using Strong
Branching heuristic for variable selection.

C TRAINING PARAMETERS

Tab. 5 shows the parameters used to generate synthetic tasks. The train, validation, and test tasks
share the same number of variables and constraints. Transfer tasks have a more significant number
of variables and constraints. Tab. 6 shows hyperparameters of our TreeDQN agent. The number of
training episodes was 1000 for synthetic tasks and 500 for the Balanced Item Placement task.

Table 5: Parameters used to generate train, validation, test, and transfer tasks. Combinatorial Auc-
tion (items/bids), Set Cover(rows/cols), Maximum Independent Set(nodes), Facility Location (clus-
ters/facilities), Multiple Knapsack (items/knapsacks).

COMB. AUCT. SET COVER MAX. IND. SET FACILITY LOC. MULT. KNAP.

TEST 100 / 500 400 / 750 500 35 / 35 100 / 6
TRANSFER 200 / 1000 500 / 1000 1000 60 / 35 100 / 12

Fig. 4 shows the geometric mean of the tree size as a function of number of training episodes for
a fixed 20 validation task instances evaluated with five random seeds. Tab. 7 shows the number of
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Table 6: Hyperparameters used in the training of the TreeDQN agent.

PARAMETER VALUE

γ 1
BUFFER SIZE 100’000
BUFFER MIN SIZE 1’000
BATCH SIZE 32
LEARNING RATE 10−4

ε-DECAY STEPS 100’000
NUMBER OF TRAINING EPISODES 1000
OPTIMIZER ADAM

episodes required to reach the smallest geometric mean on validation tasks for the RL methods used
in our benchmarks.

Table 7: Number of training episodes required to reach the best checkpoint.

MODEL COMB. AUCT. SET COVER MAX. IND. SET FACILITY LOC. MULT. KNAP.

TREEDQN 700 800 800 200 850
FMSTS 1000 950 50 200 400
TMDP+DFS 22500 3000 3500 6500 9500

50 500 103

50

60

70

80

90

100

110

120

103 104

Comb.Auct.
50 500 10350

100

150

200

250

300

103 104

Set Cover
50 500 103

50

100

150

200

103 104

Max.Ind.Set

50 500 103

100

200

300

400

500

103 104

Facil. Loc.
50 500 103

0

200

400

600

800

1000

1200

1400

103 104

Mult. Knapsack

Figure 4: The geometric mean of tree size as a function of the number of training episodes. Orange
- TreeDQN, black - FMSTS, green - tmdp+DFS.

D TEST TASKS

D.1 GEOMETRIC MEAN OF TREE SIZES

In Tab. 8, we show the geometric mean of the final tree size and geometric standard deviation.
Tab. 8 shows that the TreeDQN agent significantly exceeds the results of the tmdp+DFS and FMSTS
agents in all test tasks. The TreeDQN agent is close to the Imitation Learning agent in the first four
tasks and substantially outperforms the Imitation Learning and Strong Branching in the Multiple
Knapsack tasks.
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Table 8: Geometric mean of tree size with geometric std for test tasks.

MODEL COMB. AUCT. SET COVER MAX. IND. SET FACILITY LOC. MULT. KNAP.

TREEDQN (OURS) 58 ± 3 56 ± 2 42 ± 6 324 ± 8 290 ± 6
TREEDQN (MSE) 62 ± 3 63 ± 2 60 ± 5 398 ± 9 358 ± 7
FMSTS 65 ± 3 76 ± 3 96 ± 8 499 ± 10 299 ± 6
TMDP+DFS 93 ± 3 204 ± 3 88 ± 4 521 ± 10 308 ± 6

An important metric is the gap between primal and dual bounds as a function of time shown in
Fig. 5. In the B&B algorithm, the primal-dual gap monotonically decreases when solving a task
instance. The speed of the gap reduction is proportional to the number of nodes and mean execution
time.
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Figure 5: Primal-dual gap as a function of time. Red - IL, orange - TreeDQN, black - FMSTS, green
- tmdp+DFS.

D.2 PROBABILITY-PROBABILITY PLOTS

To further analyze the performance of our agent, we present distributions of tree sizes in the form of
probability-probability plots (P-P plots) in Fig. 6. P-P plot allows us to compare different cumulative
distribution functions (CDF). For a reference CDF F and a target CDF G P-P plot is constructed
similar to the ROC curve: we choose a threshold x, move it along the domain of F and draw
points (F (x), G(x)). To show multiple distributions on the same plot, we use Strong Branching as
reference CDF for all of them. If one curve is higher than another, the corresponding CDF is more
extensive so that the associated agent can solve more tasks in x or nodes or less. All our baselines
(except Strong Branching) have close complexity per call. So, if one curve is higher than another, the
corresponding agent can solve more tasks at the same time. This is related to winning rates, which
shows the number of instances solved in a specific time limit (see Appendix D.3, Tab. 9, 10, 9). From
the P-P plot for the Maximum Independent Set, we see that TreeDQN is good at solving simple
tasks where it performs better than Imitation Learning. When the tasks become more complex,
the performance of TreeDQN decreases. This behavior is the direct consequence of our learning
objective. We optimize the geometric mean of expected tree size, so complex task instances may
have less influence on the learning process.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Comb.Auct.
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Set Cover
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Max.Ind.Set

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Facil. Loc.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Mult. Knapsack

Figure 6: P-P plots of tree size distributions for test instances. Blue - Strong Branching, red -
Imitation Learning, orange - TreeDQN, black - FMSTS, green - tmdp+DFS.

D.3 WINNING RATES

We show winning rates for Combinatorial Auction and Set Cover tasks in Tab. 9, for Maximum
Independent Set and Facility Location tasks in Tab. 10, and for Multiple Knapsack task in Tab. 11.
The TreeDQN agent performs close to the IL agent in the first four tasks and outperforms it in the
Multiple Knapsack task.

Table 9: Number of instances solved to optimal solution simultaneously as IL agent solves 25%,
50%, 75%, and 100% of Combinatorial Auction and Set Cover tasks.

COMB.AUCT SET COVER
MODEL 25% 50% 75% 100% 25% 50% 75% 100%

SCIP DEFAULT 0.00% 0.00% 0.00% 22.00% 0.00% 0.00% 0.00% 7.50%
STRONG BRANCHING 0.00% 0.00% 0.00% 20.00% 0.00% 1.50% 2.00% 12.50%
IL 25.00% 50.00% 75.00% 100.00% 25.00% 50.00% 75.00% 100.00%

TREEDQN 21.50% 47.50% 73.50% 96.50% 21.00% 53.00% 72.50% 97.50%
FMSTS 23.00% 43.50% 70.00% 94.50% 17.50% 36.50% 51.50% 93.00%
TMDP+DFS 16.50% 28.50% 61.50% 92.50% 6.50% 23.50% 35.00% 69.00%
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Table 10: Number of instances solved to optimal solution simultaneously as IL agent solves 25%,
50%, 75%, and 100% of Maximum Independent Set and Facility Location tasks.

MAX.IND.SET FACILITY LOC.
MODEL 25% 50% 75% 100% 25% 50% 75% 100%

SCIP DEFAULT 0.00% 0.00% 0.00% 99.00% 7.00% 16.00% 42.50% 100.00%
STRONG BRANCHING 0.00% 0.00% 0.00% 11.86% 2.15% 4.84% 18.82% 69.89%

TREEDQN 29.38% 53.09% 71.65% 97.42% 24.73% 48.92% 79.57% 99.46%
FMSTS 21.13% 32.99% 54.12% 95.36% 20.43% 38.71% 60.22% 97.85%
TMDP+DFS 10.82% 31.44% 57.22% 100.00% 20.97% 43.55% 61.29% 97.85%

Table 11: Number of instances solved to optimal solution simultaneously as IL agent solves 25%,
50%, 75%, and 100% of Multiple Knapsack tasks.

MODEL 25% 50% 75% 100%

SCIP DEFAULT 43.00% 94.00% 100.00% 100.00%
STRONG BRANCHING 16.93% 48.15% 74.60% 99.47%

TREEDQN 42.33% 76.72% 93.12% 100.00%
FMSTS 44.97% 76.19% 91.53% 100.00%
TMDP+DFS 34.39% 76.19% 93.12% 100.00%

E TRANSFER TASKS

Besides testing the performance of our agent, we also study its abilities to generalize. Tables 12
and 13 present evaluation results for complex transfer tasks solved with five different seeds. Since
solving complicated MILP problems is time-consuming, we limit the maximum number of nodes
in a B&B tree to 200′000. The number of transfer tasks terminated by this node limit is shown
in Tab. 14. We use node limit as tree size for terminated instances when computing the geometric
mean. It is seen from Tab. 12 that in the Set Cover, Facility Location, and Multiple Knapsack tasks,
our TreeDQN agent transfers well and performs better than the tmdp+DFS and FMSTS agents.
In the Combinatorial Auction task, the FMSTS agent transfers slightly better than TreeDQN. In
the Maximum Independent Set task, the TreeDQN agent falls behind the tmdp+DFS agent since it
adapted better for simple task instances.

Table 12: Geometric mean of execution time for transfer tasks.

MODEL COMB.AUCT SET COVER MAX.IND.SET FACILITY LOC. MULT.KNAP.

SCIP DEFAULT 42.47± 1.81 13.34± 1.93 116.29± 2.50 34.33± 3.78 44.29± 2.66
IL 19.93± 2.24 8.89± 2.17 171.89± 6.64 43.67± 6.83 514± 5.26

TREEDQN 42.01± 3.42 9.86 ± 2.34 204.99± 5.76 52.84 ± 3.85 302.43 ± 4.91
FMSTS 30.01 ± 2.66 13.28± 2.74 417.27± 7.31 82.43± 4.21 372.56± 5.12
TMDP+DFS 45.88± 2.96 42.33± 4.12 68.39 ± 3.55 66.90± 3.22 358.44± 5.65

W(IL) 6.33 · 10−34 6.71 · 10−21 4.03 · 10−1 8.09 · 10−3 1.78 · 10−7

W(FMSTS) 1.01 · 10−17 5.87 · 10−31 2.54 · 10−13 9.89 · 10−20 4.99 · 10−1

W(TMDP+DFS) 5.67 · 10−3 1.91 · 10−34 1.89 · 10−9 7.34 · 10−1 3.22 · 10−4

Tab. 14 shows the number of task instances finished by the node limit. It can be used to assess
the worst-case performance of the trained RL algorithms when transferred from test to transfer
distribution. In the Maximum Independent Set task, the FMSTS agent has the worst performance.
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Table 13: Geometric mean of tree size with geometric std for transfer tasks.

MODEL COMB.AUCT SET COVER MAX.IND.SET FACILITY LOC. MULT.KNAP.

TREEDQN (OURS) 1567 ± 4 174 ± 4 4541 ± 9 759 ± 11 35599 ± 4
FMSTS 1375 ± 3 252 ± 4 8647 ± 9 1135 ± 11 42461 ± 5
TMDP+DFS 2171 ± 4 858 ± 6 1713 ± 5 847 ± 10 40316 ± 5

In the Multiple Knapsack task, the TreeDQN agent transfers better than the other trained algorithms,
including imitation learning.

Table 14: Number of transfer tasks finished by node limit. The total number of instances with
different seeds is 200.

MODEL COMB. AUCT. SET COVER MAX. IND. SET FACILITY LOC. MULT. KNAP.

SCIP DEFAULT 0 0 0 0 2
STRONG BRANCHING 0 0 0 10 42
IL 0 0 5 0 44

TREEDQN 0 0 4 6 23
FMSTS 0 0 25 1 37
TMDP+DFS 0 0 1 2 36
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F LEARNING CURVES FOR TREEDQN

Fig. 7 shows the geometric mean of the tree size on validation task instances for TreeDQN (orange),
SCIP default (red), and strong branching (black) methods as a function of the number of training
episodes. As seen from Fig. 7, the variable selection policy of the TreeDQN agent improves during
the training.
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Figure 7: Geometric mean of tree size for as a function of the number of training episodes. Orange
- TreeDQN, black - strong branching, red - SCIP default.
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