
DROP: Dexterous Reorientation via Online Planning

Albert H. Li†, Preston Culbertson‡, Vince Kurtz‡, and Aaron D. Ames†,‡
† Department of Computing and Mathematical Sciences
‡ Department of Mechanical and Civil Engineering

California Institute of Technology
{alberthli, pculbert, vkurtz, ames}@caltech.edu

Abstract: Achieving human-like dexterity is a longstanding challenge in robotics,
in part due to the complexity of planning and control for contact-rich systems.
In reinforcement learning (RL), one popular approach has been to use massively-
parallelized, domain-randomized simulations to learn a policy offline over a vast
array of contact conditions, allowing robust sim-to-real transfer. Inspired by recent
advances in real-time parallel simulation, this work considers instead the viability
of online planning methods for contact-rich manipulation by studying the well-
known in-hand cube reorientation task. We propose a simple architecture that
employs a sampling-based predictive controller and vision-based pose estimator to
search for contact-rich control actions online. We conduct thorough experiments
to assess the real-world performance of our method, architectural design choices,
and key factors for robustness, demonstrating that our simple sampling-based
approach achieves performance comparable to prior RL-based works. For the
extended conference version of this paper, see: https://arxiv.org/abs/2409.14562.

Keywords: In-Hand Manipulation, Contact-Rich Planning, Sampling-based MPC

1 Introduction

1.1 Background

Achieving dexterity comparable to human hands has been a longstanding challenge in robotics
research. While even simple robots can produce dynamic, contact-rich behavior [1, 2], general
methods for achieving these behaviors are still scarce. Thus far, reinforcement learning (RL) has
been the dominant paradigm for many contact-rich tasks due to its ability to generate real-world
robust plans. One such well-studied task is in-hand cube reorientation, where a hand must rotate
a cube to match as many consecutive goal orientations as possible. Pioneered by OpenAI [3]
and further studied by [4, 5], RL policies trained with massively-parallelized, domain-randomized
simulations have achieved robust sim-to-real transfer for cube rotation. But, this offline approach
requires substantial pre-execution computation and is inflexible to changing task specifications.

Leveraging recent advances in real-time parallel simulation (e.g., MJPC) [6], we instead study the
online approach of sampling-based predictive control (SPC) methods for in-hand manipulation,
which continuously replan by simulating parallel rollouts and applying optimal control actions over
short time horizons. In contrast with RL, this method can adjust the task or model without re-training,
but may demand expensive online computation and simulation. While tools like MJPC have made
SPC feasible for many simulated contact-rich tasks, their real-world utility remains largely unproven.

We present DROP (Dexterous Reorientation via Online Planning), a system architecture (Fig. 1)
consisting of (i) a simple sampling-based planner and (ii) a vision-based cube pose estimator. DROP
is the first demonstration of an online planning method for cube reorientation on hardware (and the
first model-based approach), and has performance comparable with prior RL-based methods. We
provide extensive experiments and ablations to evaluate DROP’s performance and architecture.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://arxiv.org/abs/2409.14562

Keypoint Predictor

Smoother

Corrector

Q Q

Sampling-Based Planner

Q Q QQ QQ Q

Q

Algorithm 1: Sampling-based Predictive Control
Input: 𝜃, 𝑁 , planner-specific parameters.
while planning do

𝑥0 ← 𝑥(𝑡) ; // estimate curr state
for 𝑖 = 1 to 𝑁 ; // multi-threaded
do
𝑈 (𝑖) ∼ 𝜋𝜃 (𝑈) ; // sample controls
𝐽 (𝑖) ← 𝐽

(
𝑈 (𝑖) ; 𝑥0

)
; // eval rollout

𝜃 ← update params
(
𝑈 (1:𝑁) , 𝐽 (1:𝑁));

𝑢(𝑡) ← get action(𝜃, 𝑡) ; // async

Figure 1: The DROP Architecture and Algorithm. DROP consists of (i) a vision-based cube pose estimator
and (ii) a sampling-based planner that selects controls with model-based rollouts, iteratively improving the
sampling distribution online. The generic sampling-based predictive control algorithm is shown to the right.

1.2 Mathematical Notation

We model the continuous-time cube-in-hand dynamics as
¤𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)) , (1)

where 𝑥 is the state and 𝑢 are control inputs. We do not assume access to 𝑓 except via a simulator
(MuJoCo [7]) that generates state trajectories 𝑥(𝑡) given an initial state 𝑥0 and control sequence 𝑢(𝑡).
The state 𝑥 consists of the positions and velocities of both the cube (𝑞𝑐, 𝑣𝑐) and hand (𝑞ℎ, 𝑣ℎ):

𝑥 = [𝑞, 𝑣] = [𝑞𝑐, 𝑞ℎ, 𝑣𝑐, 𝑣ℎ] . (2)
The controls 𝑢 are position setpoints for the hand, which are tracked by a lower-level PD controller
internal to the model 𝑓 . We represent a control trajectory 𝑢(𝑡) on 𝑡 ∈ [0, 𝑇] with 𝐾 spline knots,

𝑈 = [𝑢1, 𝑢2, . . . , 𝑢𝑘 , . . . , 𝑢𝐾], (3)
which are the decision variables for online planning. The objective is encoded by a cost functional

𝐽 (𝑈; 𝑥0) =
∫ 𝑇

0
ℓ (𝑥(𝑡), 𝑢(𝑡)) 𝑑𝑡, (4)

where querying 𝐽 (𝑈; 𝑥0) requires simulating 𝑓 using an open-loop control signal 𝑢(𝑡) from 𝑥0.

2 The DROP Architecture

DROP consists of (i) a sampling-based planner and (ii) a keypoint-based cube pose estimator (see
Fig. 1). The planner continually updates the control spline 𝑈 via SPC. We use MJPC [6] to handle
both parallel rollouts and policy updates. The estimator details are elided to the appendix.

Algorithm 1 describes a generic SPC procedure. At time 𝑡 ∈ R, the planner receives a state estimate
𝑥(𝑡) and rolls out 𝑁 open-loop control sequences 𝑈 (𝑖) drawn from some parametric distribution
𝜋𝜃 (𝑈). Each trajectory is simulated (in parallel) to obtain a cost 𝐽 (𝑖) , which are jointly used to
update the sampling parameters 𝜃. The control input 𝑢(𝑡) can be obtained for any time 𝑡 from the
spline parameters𝑈, allowing asynchronous planning and 𝜃 to be updated as quickly as possible.

We test two planning strategies that both use a diagonal Gaussian distribution 𝜋𝜃 (𝑈) = N (𝑈, Σ)
with 𝜃 = (𝑈, Σ). In Algorithm 1, get action(𝜃, 𝑡) is a spline interpolation with knots𝑈.

Predictive sampling (PS) repeatedly updates 𝑈 to be the best sample, fixing Σ = 𝜎2𝐼. Despite its
simplicity, PS has demonstrated surprisingly effective performance on complex robot manipulation
and locomotion tasks in simulation [6].

2

A B

C D

E F

Figure 2: Examples of rotations. CEM can discover many contact-rich plans for cube reorientation. The red
arrows show where forces are primarily applied to achieve rotations. (A) The middle finger pushes down on a
cube edge while the base of the thumb lifts the opposite corner, rotating the Q face up. (B) The ring finger and
base of the index finger push on opposite corners to rotate the T face up. (C) The thumb pulls down on the W
face while the base of the ring finger pushes on the opposite corner to rotate the Y face up. (D) The index finger
pushes down on the edge of the T face while the ring finger swipes left on the E face to rotate it up. (E) The
ring finger first swipes inwards, then the thumb quickly follows to pull the W face up. (F) The thumb and the
ring finger pinch and lift the cube, then the index finger pushes on an edge to rotate the Y face up. The cube is
calmly lowered onto the palm.

The cross-entropy method (CEM) instead fits both 𝑈 and Σ = diag(𝑠) to the sample mean and
variance of the 𝑀 best elite samples, where 𝑠 is a vector of covariances. CEM is only marginally
more complex than PS, but has long been used for general gradient-free optimization [8].

As in prior work [4], we use a dexterous hand to rotate a cube to within 0.4 rad of as many goal
orientations in a row as possible without dropping. The goals are uniformly sampled over 𝑆𝑂 (3).
Unlike [4], to ensure sufficient task difficulty, each new goal must be at least 90◦ from the prior one.

3 Experiments

We conducted experiments to evaluate DROP’s performance on hardware on the PS and CEM
planners as well as the gradient-based iLQR planner. In addition to setup details, the appendix also
contains ablations of various parts of the DROP architecture and simulated robustness studies.

We study each planner by running 10 trials of the cube reorientation task and analyzing the associated
rotation and timing statistics. For examples of interesting rotations, see Fig. 2, and for quantitative
results, see Table 1B. Following prior work, we report statistics assuming the run ends if 80s have
elapsed without reaching a goal. Since this cutoff is arbitrary and we used a fairly conservative cost
that slows rotation rate, we also report results for the same runs while ignoring the timeout period,
ending only when the cube is dropped. For iLQR and PS, this did not change the results.

CEM greatly outperforms PS and iLQR. While iLQR is unable to achieve any rotations and
PS only achieves single-digit rotations in hardware, CEM is able to achieve dozens of rotations.
Moreover, the rate that it can rotate the cube is also nearly 50% faster than PS, suggesting that it can
discover and/or execute contact-rich plans much more effectively.

CEM discovers nontrivial contact sequences. CEM finds contact-rich plans that leverage contacts
with all parts of the hand. Many rotations are only feasible when the hand first partially rotates the
cube using an initial contact sequence, then completes the rotation by gaiting the cube to a different
set of contacts. For example, in Fig. 2D, the cube is first pushed forward and continually supported

3

Planner Num Rots (Sorted) Mean Rots Median Rots Mean Rot/s ↑ Median Rot/s ↑

(A) Prior Work Dactyl [3] 9, 12, 13, 19, 28, 29, 29, 32, 43, 50 26.4 ± 13.4 28.5 Not Reported Not Reported
Dextreme [4] 1, 6, 6, 10, 10, 18, 18, 36, 61, 112 27.8 ± 19.0 14.0 Not Reported Not Reported

(B) Main Results

iLQR 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0 ± 0 0 N/A N/A
PS 0, 0, 1, 1, 1, 2, 2, 3, 4, 5 1.9 ± 1.58 1.5 0.063 ± 0.070 0.033 (0.021, 0.061)

CEM 2, 2, 11, 11, 17, 22, 27, 34, 39, 48 21.3 ± 14.8 19.5 0.090 ± 0.081 0.062 (0.038, 0.106)
CEM (No T/O) 2, 10, 11, 11, 22, 39, 48, 53, 59, 81 33.6 ± 24.9 30.5 0.086 ± 0.085 0.063 (0.038, 0.103)

(C) CEM Ablations
(No T/O)

RGB Only 1, 1, 12, 13, 20, 37, 52, 79, 94, 128 43.7 ± 41.4 28.5 0.081 ± 0.106 0.053 (0.030, 0.089)
No Corrector 3, 4, 6, 9, 11, 14, 17, 20, 40, 97 22.1 ± 27.0 12.5 0.065 ± 0.063 0.046 (0.029, 0.080)
Half Rollouts 2, 7, 17, 21, 21, 27, 29, 37, 44, 65 27.0 ± 17.4 24.0 0.062 ± 0.070 0.040 (0.022, 0.072)

Table 1: Hardware experiments. (A) Prior works using RL for cube reorientation. Note that [3] performs
axis-aligned rotations. Best results are shown. (B) Among online planners, CEM clearly performs the best.
All planners use 120 threads, RGBD images, and the cube pose corrector. We note that when ignoring the 80s
timeout imposed in [3, 4], CEM achieves higher mean and median rotation counts than Dactyl and Dextreme.
(C) Hardware ablations show that using depth images slightly improves rotation rate, but using the corrector
and as many threads as possible substantially boosts performance.

by the thumb, allowing the index and ring fingers to then swipe in opposite directions to rotate the
cube. Similarly, in Fig. 2F, the thumb and ring finger pinch and lift the entire cube, which allows the
index finger to rotate it about the pinched axis before the cube is safely lowered back onto the palm.

Moreover, many discovered plans exploit contact modes that are traditionally challenging to find,
like sliding on edges and corners. To execute these motions, the planner employs intuitive strategies
like maximizing torque by levering the cube close to a corner or edge. Lastly, our conservative cost
function also induced safeguarding behavior, where fingers preemptively blocked the cube from the
palm’s edges or carefully supported the cube during risky rotations.

The gradient-based iLQR planner is not viable. Corroborating recent work [6, 9], we find that stiff
contact dynamics prevent gradient-based methods from effectively finding good plans due to poor
numerical conditioning, causing erratic behaviors that do not lead to coherent rotation sequences.

DROP performs comparably to RL. While it is challenging to compare our results to prior RL-based
methods like Dactyl [3] or Dextreme [4] due to many factors distinguishing each setup, like hand
morphology, cube size, physical properties, camera type, or vision model, Table 1A/B shows that
our simple CEM planner approaches the performance of RL-based rotation policies (outperforming
them when ignoring timeouts) with similar dexterity (see Fig. 2).

4 Conclusion and Future Directions

We present DROP, an online planning method for in-hand manipulation that achieves robust cube
rotations in hardware. While promising, there are many avenues for future research.

Better planners. While we found that vanilla CEM already achieved impressive results, many more
sophisticated algorithms exist, such as CMA-ES [10], MPPI [11], etc.

Robustness. DROP often plans “risky” actions, possibly due to differences between real-world
and simulated physics. Incorporating domain randomization or risk-sensitivity into search-based
planners, like successful RL approaches, remains an open challenge, especially due to the extra
computation required to simulate randomized physics online.

Enhanced, data-driven search. As noted in our ablations, finding good plans via search demands
many threads; indeed, our reported results rely on a server-grade CPU. Thus, improving efficiency is
key for better performance. Promising directions include sampling from imitation-learned policies
[12], learning value functions for rollout evaluation [13], and exploring alternate spline parameter-
izations [10] or action spaces [14]. Searching for high-level commands to provide to a lower-level
RL policy could perhaps yield systems with both the flexibility of search and robustness of RL.

The simplicity of DROP opens many paths for advancing contact-rich manipulation. It is our hope that
algorithms like DROP can generalize to more challenging real-world tasks than cube reorientation,
permitting tool use, enhanced human-robot collaboration, and more.

4

References
[1] T. Ishihara, A. Namiki, M. Ishikawa, and M. Shimojo. Dynamic pen spinning using a high-

speed multifingered hand with high-speed tactile sensor. In 2006 6th IEEE-RAS International
Conference on Humanoid Robots, pages 258–263, 2006. doi:10.1109/ICHR.2006.321394.

[2] N. Chavan-Dafle, A. Rodriguez, R. Paolini, B. Tang, S. Srinivasa, M. Erdmann, M. T. Mason,
I. Lundberg, H. Staab, and T. Fuhlbrigge. Extrinsic dexterity: In-hand manipulation with external
forces. In Proceedings of (ICRA) International Conference on Robotics and Automation, pages
1578 – 1585, May 2014.

[3] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng,
and W. Zaremba. Learning dexterous in-hand manipulation. CoRR, abs/1808.00177, 2018. URL
http://arxiv.org/abs/1808.00177.

[4] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk, K. V.
Wyk, A. Zhurkevich, B. Sundaralingam, Y. Narang, J.-F. Lafleche, D. Fox, and G. State.
Dextreme: Transfer of agile in-hand manipulation from simulation to reality, 2024. URL
https://arxiv.org/abs/2210.13702.

[5] T. Chen, M. Tippur, S. Wu, V. Kumar, E. Adelson, and P. Agrawal. Visual dexterity: In-hand re-
orientation of novel and complex object shapes. Science Robotics, 8(84), Nov. 2023. ISSN
2470-9476. doi:10.1126/scirobotics.adc9244. URL http://dx.doi.org/10.1126/
scirobotics.adc9244.

[6] T. Howell, N. Gileadi, S. Tunyasuvunakool, K. Zakka, T. Erez, and Y. Tassa. Predictive sam-
pling: Real-time behaviour synthesis with mujoco, 2022. URL https://arxiv.org/abs/
2212.00541.

[7] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,
2012.

[8] R. Rubinstein. The cross-entropy method for combinatorial and continuous optimization, 1999.

[9] H. J. T. Suh, M. Simchowitz, K. Zhang, and R. Tedrake. Do differentiable simulators give better
policy gradients?, 2022. URL https://arxiv.org/abs/2202.00817.

[10] J. Jankowski, L. Brudermüller, N. Hawes, and S. Calinon. Vp-sto: Via-point-based stochastic
trajectory optimization for reactive robot behavior. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 10125–10131, 2023. doi:10.1109/ICRA48891.2023.
10160214.

[11] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou. Information-theoretic
model predictive control: Theory and applications to autonomous driving. IEEE Transactions
on Robotics, 34(6):1603–1622, 2018. doi:10.1109/TRO.2018.2865891.

[12] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics
Research, 2024.

[13] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis. Mastering the game of go with deep neural networks and tree search. Na-
ture, 529(7587):484–489, Jan. 2016. ISSN 1476-4687. doi:10.1038/nature16961. URL
http://dx.doi.org/10.1038/nature16961.

5

http://dx.doi.org/10.1109/ICHR.2006.321394
http://arxiv.org/abs/1808.00177
https://arxiv.org/abs/2210.13702
http://dx.doi.org/10.1126/scirobotics.adc9244
http://dx.doi.org/10.1126/scirobotics.adc9244
http://dx.doi.org/10.1126/scirobotics.adc9244
https://arxiv.org/abs/2212.00541
https://arxiv.org/abs/2212.00541
https://arxiv.org/abs/2202.00817
http://dx.doi.org/10.1109/ICRA48891.2023.10160214
http://dx.doi.org/10.1109/ICRA48891.2023.10160214
http://dx.doi.org/10.1109/TRO.2018.2865891
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature16961

[14] R. Martı́n-Martı́n, M. Lee, R. Gardner, S. Savarese, J. Bohg, and A. Garg. Variable impedance
control in end-effector space. an action space for reinforcement learning in contact rich tasks. In
Proceedings of the International Conference of Intelligent Robots and Systems (IROS), 2019.

[15] Z.-H. Yin, B. Huang, Y. Qin, Q. Chen, and X. Wang. Rotating without seeing: Towards in-hand
dexterity through touch. Robotics: Science and Systems, 2023.

[16] L. Röstel, J. Pitz, L. Sievers, and B. Bäuml. Estimator-coupled reinforcement learning for
robust purely tactile in-hand manipulation. In 2023 IEEE-RAS 22nd International Conference
on Humanoid Robots (Humanoids), pages 1–8. IEEE, 2023.

[17] T. Chen, J. Xu, and P. Agrawal. A system for general in-hand object re-orientation, 2021. URL
https://arxiv.org/abs/2111.03043.

[18] M. Posa, C. Cantu, and R. Tedrake. A direct method for trajectory optimization of rigid bodies
through contact. The International Journal of Robotics Research, 33:69 – 81, 2014. URL
https://api.semanticscholar.org/CorpusID:6532910.

[19] N. Doshi, K. Jayaram, B. Goldberg, Z. Manchester, R. Wood, and S. Kuindersma. Contact-
implicit optimization of locomotion trajectories for a quadrupedal microrobot. In Robotics:
Science and Systems XIV, RSS2018. Robotics: Science and Systems Foundation, June 2018. doi:
10.15607/rss.2018.xiv.041. URL http://dx.doi.org/10.15607/RSS.2018.XIV.
041.

[20] S. L. Cleac’h, T. Howell, S. Yang, C.-Y. Lee, J. Zhang, A. Bishop, M. Schwager, and Z. Manch-
ester. Fast contact-implicit model-predictive control, 2023. URL https://arxiv.org/
abs/2107.05616.

[21] V. Kurtz, A. Castro, A. Özgün Önol, and H. Lin. Inverse dynamics trajectory optimization for
contact-implicit model predictive control, 2023. URL https://arxiv.org/abs/2309.
01813.

[22] A. Aydinoglu and M. Posa. Real-time multi-contact model predictive control via admm, 2022.
URL https://arxiv.org/abs/2109.07076.

[23] W. Yang and M. Posa. Dynamic on-palm manipulation via controlled sliding. In Proceedings
of Robotics: Science and Systems, July 2024.

[24] W. Yang and W. Jin. Contactsdf: Signed distance functions as multi-contact models for
dexterous manipulation, 2024. URL https://arxiv.org/abs/2408.09612.

[25] C. Chen, P. Culbertson, M. Lepert, M. Schwager, and J. Bohg. Trajectotree: Trajectory
optimization meets tree search for planning multi-contact dexterous manipulation. In 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 8262–
8268, 2021. doi:10.1109/IROS51168.2021.9636346.

[26] T. Pang, H. J. T. Suh, L. Yang, and R. Tedrake. Global planning for contact-rich manipulation
via local smoothing of quasi-dynamic contact models, 2023. URL https://arxiv.org/
abs/2206.10787.

[27] S. Lavalle and J. Kuffner. Rapidly-exploring random trees: Progress and prospects. Algorithmic
and computational robotics: New directions, 01 2000.

[28] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation,
12(4):566–580, 1996. doi:10.1109/70.508439.

[29] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. Stomp: Stochastic trajectory
optimization for motion planning. In 2011 IEEE International Conference on Robotics and
Automation, pages 4569–4574, 2011. doi:10.1109/ICRA.2011.5980280.

6

https://arxiv.org/abs/2111.03043
https://api.semanticscholar.org/CorpusID:6532910
http://dx.doi.org/10.15607/rss.2018.xiv.041
http://dx.doi.org/10.15607/rss.2018.xiv.041
http://dx.doi.org/10.15607/RSS.2018.XIV.041
http://dx.doi.org/10.15607/RSS.2018.XIV.041
https://arxiv.org/abs/2107.05616
https://arxiv.org/abs/2107.05616
https://arxiv.org/abs/2309.01813
https://arxiv.org/abs/2309.01813
https://arxiv.org/abs/2109.07076
https://arxiv.org/abs/2408.09612
http://dx.doi.org/10.1109/IROS51168.2021.9636346
https://arxiv.org/abs/2206.10787
https://arxiv.org/abs/2206.10787
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1109/ICRA.2011.5980280

[30] C. Pezzato, C. Salmi, M. Spahn, E. Trevisan, J. Alonso-Mora, and C. H. Corbato. Sampling-
based model predictive control leveraging parallelizable physics simulations, 2023.

[31] M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. D. Ratliff, D. Fox, F. Ramos, and B. Boots.
STORM: An integrated framework for fast joint-space model-predictive control for reactive
manipulation. In 5th Annual Conference on Robot Learning, 2021.

[32] C. Doersch, P. Luc, Y. Yang, D. Gokay, S. Koppula, A. Gupta, J. Heyward, I. Rocco, R. Goroshin,
J. Carreira, and A. Zisserman. Bootstap: Bootstrapped training for tracking-any-point, 2024.
URL https://arxiv.org/abs/2402.00847.

[33] N. Karaev, I. Rocco, B. Graham, N. Neverova, A. Vedaldi, and C. Rupprecht. CoTracker: It is
better to track together. 2023.

[34] Y. Xiao, Q. Wang, S. Zhang, N. Xue, S. Peng, Y. Shen, and X. Zhou. Spatialtracker: Tracking
any 2d pixels in 3d space. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2024.

[35] B. Wen, W. Yang, J. Kautz, and S. Birchfield. FoundationPose: Unified 6d pose estimation and
tracking of novel objects. In CVPR, 2024.

[36] K. Greff, F. Belletti, L. Beyer, C. Doersch, Y. Du, D. Duckworth, D. J. Fleet, D. Gnanapragasam,
F. Golemo, C. Herrmann, T. Kipf, A. Kundu, D. Lagun, I. Laradji, H.-T. D. Liu, H. Meyer,
Y. Miao, D. Nowrouzezahrai, C. Oztireli, E. Pot, N. Radwan, D. Rebain, S. Sabour, M. S. M.
Sajjadi, M. Sela, V. Sitzmann, A. Stone, D. Sun, S. Vora, Z. Wang, T. Wu, K. M. Yi, F. Zhong,
and A. Tagliasacchi. Kubric: a scalable dataset generator. 2022.

[37] A. Li. Drop: Dexterous reorientation via online planning. https://caltech-amber.
github.io/drop/, 2024.

[38] F. Dellaert and G. Contributors. borglab/gtsam, May 2022. URL https://github.com/
borglab/gtsam).

[39] J. Abou-Chakra, K. Rana, F. Dayoub, and N. Sünderhauf. Physically embodied gaussian
splatting: A realtime correctable world model for robotics, 2024. URL https://arxiv.
org/abs/2406.10788.

[40] K. Shaw, A. Agarwal, and D. Pathak. Leap hand: Low-cost, efficient, and anthropomorphic
hand for robot learning, 2023. URL https://arxiv.org/abs/2309.06440.

[41] W. Li and E. Todorov. Iterative linear quadratic regulator design for nonlinear biological
movement systems. In Proceedings of the First International Conference on Informatics in
Control, Automation and Robotics - Volume 1: ICINCO,, pages 222–229. INSTICC, SciTePress,
2004. ISBN 972-8865-12-0. doi:10.5220/0001143902220229.

7

https://arxiv.org/abs/2402.00847
https://caltech-amber.github.io/drop/
https://caltech-amber.github.io/drop/
https://github.com/borglab/gtsam)
https://github.com/borglab/gtsam)
https://arxiv.org/abs/2406.10788
https://arxiv.org/abs/2406.10788
https://arxiv.org/abs/2309.06440
http://dx.doi.org/10.5220/0001143902220229

Figure 3: The safe regions S (green) for (a) when the cube’s 𝑥𝑦 coordinates lie in the palm, and (b) when the
cube’s 𝑥𝑦 coordinates lie outside the palm.

Appendix

A Related Work

The first viable methods for in-hand cube reorientation employed reinforcement learning (RL),
starting with Dactyl [3], which popularized domain randomization for sim-to-real transfer of RL
policies. Subsequent research built on Dactyl with improved domain randomization [4], tactile-only
sensing [15, 16], and “palm-down” rotations for various objects [17, 5]. While typically limited to
specific robots or object classes, RL’s robust hardware performance has established it as the standard
for in-hand manipulation.

Others have explored model-based approaches to contact-rich manipulation via contact-implicit
trajectory optimization (CITO). Originally used in locomotion [18, 19], recent work [20, 6] shows
that such planners can generate motions for simple contact-rich tasks like bimanual lifting [21] or
real-time planar rolling and sliding [22, 23]. Other approaches have combined CITO with learned
signed distance fields [24], global search [25], or smoothed dynamics [26].

Sampling-based planning has a long history in manipulation, starting with methods like RRT,
PRM, and STOMP [27, 28, 29]. Recent advances in SPC [11, 10] have enabled simple contact-
rich manipulation like pushing, sliding, and pick and place [30, 31], while new tools for real-time
parallel simulation of contact-rich tasks [6], have made SPC viable for simulated contact-rich tasks
with remarkably simple controllers. Still, little evidence exists to show the viability of SPC for
real-world contact-rich manipulation, and overall, model-based methods (like SPC or CITO) have
seldom studied tasks as hard as cube reorientation, which exhibits many simultaneous unpredictable
contact modes.

Lastly, high-quality object tracking is key for most of these methods, especially model-based online
search. RL approaches [3, 4] usually use deep neural networks for single-object pose estimation, but
recent computer vision advances suggest that more general tracking pipelines like frame-to-frame
point trackers [32, 33, 34] and foundation models for rigid body pose prediction [35] may boost
performance.

This appendix aims to make precise some of the technical details that were omitted from the main
body of the paper for brevity.

B Sampling-based Predictive Control Implementation

Warm-starts by time shifting. Recall the generic SPC procedure described in Algorithm 1. Because
the cost 𝐽 at some time depends on the current state 𝑥0 = 𝑥(𝑡), once time elapses, the optimization
problem (8) changes. Instead of solving the problem from scratch, the solution is warm started
by applying a time shift to the previous solution (e.g., as in [?]). For the last time step of the
warm-started solution, we simply copy the second-to-last spline parameter.

1

To be precise, let ℎ denote an iteration of the mean control spline knots 𝑈. Then, applying the shift
operation gives

𝑈 [ℎ] = [𝑢1 [ℎ], 𝑢2 [ℎ], . . . , 𝑢𝐾 [ℎ]] ,

shift
(
𝑈 [ℎ]

)
= [𝑢2 [ℎ], 𝑢3 [ℎ], . . . , 𝑢𝐾 [ℎ], 𝑢𝐾 [ℎ]] ,

which the new samples will be centered on (and similarly for any other parameters like sampling
variances).

Retaining the best rollout in PS. In predictive sampling (PS), MJPC additionally keeps the current
nominal (i.e., the best) control spline as one of the samples when resampling, so that if none of the
sampled trajectories improves performance, the nominal policy is not updated. We found that this is
critical to the performance of PS.

Minimum standard deviation in CEM. While the sampling variance is fixed in PS, in CEM, a
diagonal covariance is repeatedly fit to the top 𝑀 elite samples. However, in practice, the variance
may quickly collapse to very low values, preventing the planner from exploring. Therefore, we
specify a minimum standard deviation uniformly over the diagonal entries of Σ, denoted 𝜎min.

Default Parameters. Table 2 lists the values of planner parameters used in experiments unless
otherwise stated.

Method Parameter Value

All
Spline Order 0
Plan Horizon 1.0s
Plan Timestep 0.01s

Num Spline Knots 4

PS Num Samples 120
Sampling Stdev 0.3

CEM Num Samples 120
Num Elites 4

iLQR Num Parallel Line Search Threads 120
Table 2: Default planner parameter values used in all experiments.

C The Pose Estimation Pipeline

Our pose estimator consists of three parts: a keypoint predictor, a fixed-lag smoother, and a collision-
aware corrector.

We use the following notation to denote “subtraction” of two quaternions 𝑎, 𝑏 ∈ H:

𝑎 ⊖ 𝑏 := Log
(
𝑎 ◦ 𝑏−1

)
∈ 𝔰𝔬(3), (5)

and similarly, when 𝑎, 𝑏 ∈ 𝑆𝐸 (3), 𝑎 ⊖ 𝑏 ∈ 𝔰𝔢(3).
Keypoint Prediction. The estimator takes in images 𝐼𝑐 ∈ R𝐶×𝐻×𝑊 from 𝑛𝑐 cameras. We first
train a vision model 𝑔𝜑 that predicts 8 fixed keypoints on the cube corresponding to its corners,
𝑝kp = 𝑔𝜑 (𝐼𝑐). The keypoint prediction task is supervised from a training dataset of 686,000 images
of a simulated cube rendered by Blender, which includes ground-truth pixel locations for all
keypoints, even those that are outside the frame or occluded. We generate randomized background
scenes using kubric [36], which spawns the cube along with other random assets in a pybullet
simulation. Similar datasets are commonly used to train “track-any-point” models [32, 33, 34] which
exhibit strong sim-to-real transfer for similar keypoint tracking tasks.

Crucially, we then augment these images with random affine transforms; visual effects like color,
shadow, and contrast; and randomized backgrounds. We also found that pruning images where
the cube was nearly occluded, or too close for a reliable pose estimate, was essential for good
performance. Figure 4 shows some of the resulting images.

2

Figure 4: Image augmentations. To train the keypoint predictor, we augmented simulated images of the cube
with random crops, affine transformations, spliced backgrounds, random deletions, and visual adjustments in
color, contrast, brightness, and reflectivity.

To train 𝑔𝜑 , we fine-tuned an ImageNet-pretrained resnet18 using AdamWwith an MSE loss. The
only model adjustments were the number of input channels (depending on RGB or RGBD inputs)
and the dimension of the output layer. For finer details, see [37, Extended Version].

Pose Smoothing. We use GTSAM [38], a factor graph-based state estimation package, to convert
keypoints into a cube pose estimate via fixed-lag smoothing. Given a fixed pinhole camera model
with known camera poses and cube size, we derive keypoint measurement factors that relate keypoints
𝑝kp to a cube pose 𝑞𝑐. This allows GTSAM to fuse keypoint predictions from an arbitrary number of
cameras in real-time to yield a smoothed cube pose estimate 𝑞𝑐. See our open-source implementation
for exact details [37].

In both simulation and hardware, we estimate velocities by numerically differentiating position
estimates (drawn from the smoother for the cube and joint encoders for the hand) and applying an
exponential moving average filter with parameter 𝛼 = 0.1 to compute a smooth velocity estimate �̃�.

Collision-Aware Correction. While the smoother’s cube pose estimate 𝑞𝑐 is usually accurate within
1cm, it may not always be physically compatible with the hand configuration 𝑞ℎ from the encoders,
as the smoother has no knowledge of collision dynamics. Thus, 𝑞 = [𝑞𝑐, 𝑞ℎ] often corresponds
to non-negligible interpenetration between cube and hand, which (i) leads to inaccurate plans that
destabilize the closed-loop system, and (ii) decreases the planning rate, as stiff MuJoCo models with
high interpenetration are poorly-conditioned, requiring more solver iterations.

To remedy this, we adapt the method of [39] by using a corrector, which maintains an asynchronous
internal model

¤̂𝑥 = 𝑓 (𝑥(𝑡), 𝑢(𝑡)) (6)

with state 𝑥 = [𝑞𝑐, 𝑞ℎ, �̂�𝑐, �̂�ℎ].
The corrector receives an un-adjusted estimate 𝑥 from the smoother and encoders, and computes a
“corrective wrench”

𝑤 = −𝐶𝑃 (𝑞𝑐 ⊖ 𝑞𝑐) − 𝐶𝐷 (�̂�𝑐 − �̃�𝑐) (7)

3

that is added to (6) as a generalized force. Since the corrector starts in a feasible state, simulating
(6) results in a corrected estimate 𝑥 that is always physically feasible, but pulled toward the (possibly
infeasible) vision-based estimate 𝑥. We also add a constant corrective force in the direction of
gravity to counteract any smoother estimates that may unrealistically pull the cube upwards due to
high corrector gains 𝐶𝑃 , overwhelming the natural gravitational forces of (6).

D Specifics of the DROP Control Problem

Mathematically, the DROP cube reorientation problem is expressed as the optimal control problem

min
𝑢

∫ 𝑇

0

{
𝜆g · ℓg (𝑟𝑐 (𝑡)) + 𝜆p · ℓp (𝑝𝑐 (𝑡))

}
𝑑𝑡

s.t. ¤𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)),
𝑥(0) = 𝑥0,

(8)

where 𝜆 (·) denote weights, the dynamics 𝑓 (𝑥, 𝑢) are only available through simulation, and

ℓg (𝑟𝑐) :=

𝑟𝑐 ⊖ 𝑟𝑐goal

2

2
, (9)

ℓp (𝑝𝑐) :=distS (𝑝𝑐), (10)
are running costs. The variables 𝑝𝑐 and 𝑟𝑐 denote the positional and rotational components of the
cube pose 𝑞𝑐 = [𝑝𝑐, 𝑟𝑐], which are extracted from the simulated state 𝑥(𝑡). ℓg penalizes rotational
distance from the goal, while ℓp penalizes the cube leaving a “safe” region S in Cartesian space.

In this work, we prioritize drop reduction by setting 𝜆p high and choosing a conservative region S
(for details, see [37]). In practice, we use a relatively low 𝜆g, which slows down the planner but also
amplifies differences in rotation rate across methods, allowing easier quantitative comparison.

The position cost term. We now explain the exact form of the position cost term ℓp (𝑝𝑐) in (10). The
function distS (·) is parameterized by the “safe region” S in which we would like the cube’s center to
remain. Specifically, we have

distS (𝑝𝑐) := 𝑑 (∥𝑝𝑐 ∥S),

𝑑 (𝑥) := 0.05 · log
(
1 + exp

(
250𝑥
0.05

))
,

(11)

where ∥𝑥∥S reports the Euclidean distance between a point 𝑥 and a set S, and 𝑑 (𝑥) is a scalar-valued
function that applies a very quickly-growing penalty when 𝑥 > 0. In particular, its parameters are
chosen such that when 𝑥 = 0.01, 𝑑 (𝑥) ≈ 1.

The set S is defined by two cases. If the cube’s 𝑥 and 𝑦 coordinates lie within a specified rectangle,
then we parameterize S as a parallelepiped whose 𝑥 and 𝑦 faces are axis-aligned, and whose 𝑧 faces
are angled at the same angle as the palm of the hand, 𝛽 := 20◦. Otherwise, we instead specify a
uniform minimum 𝑧 height denoted 𝑧− and no maximum height. The second case is designed so
that if the planner predicts the cube will leave the palm, it prioritizes not dropping it and returning it
back to the palm. See Fig. 3 for a visualization of these two cases.

The global origin of the system is located in the center of the interface between the hand mount and
the bar of 80/20 to which it is affixed. The side length of the cube is 𝑏 := 0.07. Let (𝑝𝑐𝑥 , 𝑝𝑐𝑦 , 𝑝𝑐𝑧)
denote the position coordinates of the center of the cube. The dimensions associated with the figure
are specified in Table 3.

Cost Weights. The weights in (8) are 𝜆g = 1.0, 𝜆p = 2.5.

Time discretization. While (4) is expressed as an integral over the interval [0, 𝑇], in practice we
numerically compute it by discretizing the interval using a fixed time step Δ𝑡:∫ 𝑇

0
ℓ (𝑥(𝑡), 𝑢(𝑡)) 𝑑𝑡 ≈

𝐻∑︁
𝑗=0
ℓ

(
𝑥(𝑗Δ𝑡), 𝑢(𝑗Δ𝑡)

)
· Δ𝑡, (12)

where 𝐻 = 𝑇/Δ𝑡.

4

Dim Value
𝑥− 0.08
𝑥+ 0.14
𝑦− -0.02
𝑦+ 0.02

𝑧−

{
𝑏

2 cos(𝛽) − 𝑝
𝑐
𝑥 · tan(𝛽), if 𝑝𝑐𝑥 ∈ [𝑥− , 𝑥+], 𝑝𝑐𝑦 ∈ [𝑦− , 𝑦+]

−0.015, otherwise

𝑧+
{
𝑧− + 0.015, if 𝑝𝑐𝑥 ∈ [𝑥− , 𝑥+], 𝑝𝑐𝑦 ∈ [𝑦− , 𝑦+]
+∞, otherwise

Table 3: Dimensions of the set S.

E Additional Details on Experiments

E.1 Hardware Setup and Experimental Details

For all experiments, we perform in-hand rotation of a 3D-printed cube with 7cm side lengths and a
fixed-base LEAP hand [40] with palm angled downwards at 20◦ so that the cube slides off without
intervention (see Fig. 1 and 2). We use a 128-thread Ryzen Threadripper Pro 5995wx CPU to plan
rollouts in parallel. To capture images, we use three ZED Mini cameras with RGBD channels and
perform keypoint estimation on 256x256 center-cropped images at VGA resolution. The estimator
runs at about 90Hz, while the planner frequency fluctuates between 25-50Hz.

For our trials, we compare three planners: PS and CEM (the two sampling-based methods discussed
in Sec. 2), as well as iLQR [41], a gradient-based method. PS and CEM use 𝑁 = 120 rollouts while
iLQR devotes 120 threads to parallel line search. CEM uses 𝑀 = 4 elite samples. When tuning
hyperparameters (such as cost weights), we prioritize robustness at the expense of rotation speed.
For all experiments, we used identical costs, code, and hyperparameters for performing simulation
rollouts, state estimation, and communicating with hardware. Unlike previous work [3, 4], we did
not observe any significant degradation of our hardware stack (e.g., overheating) during testing.

E.2 Hardware Ablations

To understand the impact of key design choices in the DROP architecture, we conducted a series of
single-variable ablations with the CEM planner on hardware (Table 1C).

Depth improves performance, but only marginally. We compared keypoint detection models
trained on RGB versus RGBD images. While RGBD slightly improved rotation rates, it did not sig-
nificantly outperform RGB, which still achieved 128 rotations, the longest sequence ever observed for
DROP. Despite this noisy result, RGB’s median rotations (28.5) were still slightly lower than RGBD’s
(30.5), and overall, the relative rotation rates suggest that depth provides a minor improvement in
state estimation accuracy.

The corrector is key for performance. We tested DROP when ablating the corrector, passing raw
smoother estimates 𝑞 directly to the planner. This significantly reduced performance, with mean
rotations decreasing by 33%, median rotations by 60%, and rotation rate by 25%. Without the
corrector, the planner often became trapped in local minima and long periods of inactivity (flat
regions of rollouts in Fig. 5). This was caused by the exploitation of non-physical forces in rollouts
arising from non-physical hand-cube interpenetration, leading to unrealistic predictions.

DROP is sensitive to the number of rollouts. We reduced the number of rollouts from 120 to 60
and elite samples from 4 to 3, resulting in a 20% decrease in mean rotation count and an over 25%
reduction in rotation rate. This highlights the importance of variance reduction via sufficiently-high
sample quantity in SPC, and suggesting that improving search efficiency could significantly boost
performance.

5

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0

20

40

60

80

100

120
Nu

m
be

r o
f R

ot
at

io
ns

CEM (Original)
RGB Only
No Corrector
Half Rollouts

Mean Rate (rot/s)

Figure 5: CEM ablation rotation rates. We use rotation rate as a proxy for planner robustness, as slower
rates correspond to “stuck” plans or repeatedly failed moves. Markers are all rotations vs. times for CEM and
all ablations. The dashed lines show the mean rotation rates: it is clear that all ablations decrease the rate,
which justifies our design of the DROP architecture. The solid lines show individual rotations for each method’s
longest streak. The long, flat regions correspond to the planner getting “stuck” in local minima.

All ablations increased rotation rate variance. This consistent pattern demonstrates that depth
measurements, the corrector, and sufficient rollout quantity all contribute significantly to the planner’s
reliability and consistency, which justifies the design of the DROP architecture.

E.3 Simulated Robustness Study

Lastly, we study DROP’s robustness to model and estimation errors by conducting controlled trials
in simulation, letting us isolate the planner from the estimation pipeline. We compared iLQR,
PS, and CEM under various corrupted conditions, simulating system physics with a 2ms timestep
while planner threads utilized a separate physics model with a 10ms timestep. Each configuration
underwent five trials, ending upon cube drop, 80s timeout, or 150 rotations.

Specifically, we intentionally induce two types of errors that we believe contribute to real-world
brittleness: (i) mis-tuning the planners’ internal value of the hand 𝐾𝑝 gains, and (ii) corrupting
pose estimates from the simulation with a 0.1s lag and additive noise (simulated using a bounded
random walk to mimic asymmetric state estimation error). When corrupting 𝐾𝑝 , we study two cases:
multiplying the true value by 1.25x and 1.5x, as the results were enlightening for comparing different
planners. We also study the effect of the estimator and 𝐾𝑝 errors together.

CEM is the most robust planner. Table 4 shows that CEM is the best planner under all error
conditions. For example, while PS achieves a higher mean rotation count under perfect conditions
than CEM, when 𝐾𝑝 is mildly corrupted up to 1.25x, PS immediately achieves fewer mean rotations
than CEM while suffering an over 2x decrease in rotation rate. At 1.5x, PS hardly rotates the cube
at all, while CEM achieves 32.2 mean rotations, and even with the most aggressive errors, CEM was

6

Planner Change Mean Rot/s ↑Mean Rots Drops Timeouts
iLQR None N/A 0 ± 0 3 2

PS

None 0.130 122 ± 54.8 1 0
𝐾𝑝 x1.25 0.060 44.4 ± 26.4 1 4
𝐾𝑝 x1.5 0.042 1.2 ± 1.17 0 5

Est. 0.032 3.2 ± 1.72 5 0
Est., 𝐾𝑝 x1.25 0.048 3.4 ± 3.14 5 0
Est., 𝐾𝑝 x1.5 0.015 0.2 ± 0.40 3 2

CEM

None 0.222 95.4 ± 34.8 0 4
𝐾𝑝 x1.25 0.148 52.8 ± 26.0 0 5
𝐾𝑝 x1.5 0.100 32.2 ± 26.6 0 5

Est. 0.120 46.8 ± 24.7 5 0
Est., 𝐾𝑝 x1.25 0.083 73.8 ± 26.4 4 1
Est., 𝐾𝑝 x1.5 0.058 24.8 ± 13.3 2 3

Table 4: Simulated robustness tests. We intentionally degrade planners to test their robustness by (i) tuning
the hand proportional gain 𝐾𝑝 too high, and (ii) corrupting the estimator with noise and lag (denoted “Est.”).
iLQR failed to achieve any rotations even with perfect information. We observe that PS degrades substantially
more than CEM in the presence of model and estimation error, which suggests that CEM may transfer well to
hardware.

able to achieve dozens of rotations. CEM’s superiority can be attributed to its strategy of recomputing
𝜋𝜃 from multiple rollouts, in contrast to PS’s single-rollout approach. This strategy appears to be
key for robustness, providing a plausible explanation for CEM’s markedly better performance in
hardware.

Rot/s is a good proxy for robustness. Based on empirical observation, we find that low rotation
rates are typically caused by the failure to execute precisely-planned motions or the inability of
the planner to escape local minima, resulting in the cube being “stuck,” which can be attributed to
model or estimation error. CEM’s superior speed in these simulations supports our assessments of
its robustness on hardware.

Error types have distinct failure modes. While incorrect 𝐾𝑝 values primarily resulted in timeouts,
corrupted estimates typically caused cube drops. This suggests that perfect state estimates allow for
safe ”caging” even with poor actuation models, but estimation errors during precise maneuvers often
cause drops, as the planner underestimates rollout risk.

F Dataset and Training of the Keypoint Predictor

Additional dataset details. We now further explain design decisions for the dataset used to train
the vision model 𝑔𝜑 .

As described in Sec. C, the training images were sampled from frames of a video generated
by simulating a random collection of objects (always including the cube) dropped from various
positions and heights. These data were split into train and test datasets by first separating videos into
train and test videos then by randomizing the order of all images from these videos. This ensured
that very similar frames from the same video did not appear in both the train and test sets. Each
video supplied 24 images.

In these videos, the cube’s size was normalized such that its side length was 2.0m. Thus, when using
the keypoint detector model downstream in conjunction with the smoother, the cube size must first
be normalized.

Visual/material properties of the cube were randomized using kubric by uniform random sampling
(see Table 5).

7

Property Sampling Range
Roughness [0.0, 0.3]
Specularity [0.75, 1.0]

Metallic [0.25, 0.75]
Index of Refraction [1.0, 2.0]

Table 5: Cube material randomizations.

The camera pose was sampled such that it was always pointed at the origin, but its position was
uniformly randomly located in some hemispherical shell with inner radius 7.0m, outer radius 9.0m,
and 𝑧 height exceeding 0.2m.

As described in Sec. C, images in the dataset where too few or too many pixels corresponded to the
cube were removed, as this indicated that the cube was either too occluded or too close to provide an
accurate keypoint estimate. Specifically, an image was included in the dataset only if the proportion
of cube pixels was in the interval [0.02, 0.7].
Lastly, we note that while the size of the training dataset is fairly large for such a specific task (about
686000 images), it is far fewer than number of images used to train cube pose estimators in other
works (e.g., 5 million in [4] and we approximate 76.8 million in [3]). However, it is clear that an
improved different approach will need to be used in order to generalize to different objects.

Image Augmentation Details. One of the key factors for robust keypoint prediction in the real
world was the application of extensive image augmentations during training. The augmentations
were randomly sampled and applied during training using a mix of implementations from the
open-source image processing package kornia and custom augmentations described below. The
kornia augmentations and parameters are described in Table 6. For detailed descriptions of the
parameters, please see the kornia documentation. Any time the parameter p appears, it denotes
the probability that the augmentation is applied.

Augmentation Parameters

RandomAffine

degrees: 90
translate: (0.1, 0.1)
scale: (0.9, 1.5)
shear: 0.1

RandomErasing1

p: 0.5
scale: (0.02, 0.1)
ratio: (2.0, 3.0)
same on batch: False

RandomErasing2

p: 0.5
scale: (0.02, 0.05)
ratio: (0.8, 1.2)
same on batch: False

RandomPlanckianJitter mode: blackbody

ColorJiggle

brightness: 0.2
contrast: 0.4
saturation: 0.4
hue: 0.025

RandomGaussianBlur
kernel size: (5, 5)
sigma: (3.0, 8.0)
p: 0.5

RandomPlasmaShadow All defaults
Table 6: All RGB image kornia augmentations used during training. Augmentation parameters are defaults
if unspecified.

8

RGB Only RGBD

Train Loss

Steps Steps

Lo
ss

Validation Loss

Figure 6: Training and validation loss curves for the RGBD and RGB-only vision models. Note that the curves
are log scale.

We implemented custom augmentations that applied only to depth images, as well as a custom
augmentation for transplanting random backgrounds onto training images. We describe these now
and summarize the associated parameters in Table 7.

For the depth readings, we (i) uniformly randomly sample a per-image bias (DepthBias), (ii) add
Gaussian noise (DepthGaussianNoise), and (iii) uniformly randomly sample near and far planes
centered about some mean value, where everything too close or far is set to 0.0 (DepthPlane).

Lastly, we implemented a special augmentation called CustomTransplantation (not to be
confused with the RandomTransplantation augmentation in kornia), which requires a
batch of RGBD images as well as segmentation masks for the cube. With some probability, each
image in the batch (the acceptor) has all of its non-cube pixels replaced by pixels from another image
in the batch (the donor) using the following procedure. First, all non-cube pixels in the acceptor are
identified, which initializes a background mask. Second, all pixels in the donor that are closer to
the camera than the corresponding pixels in the acceptor are added to the background mask. Third,
the pixels in the donor mask corresponding to the cube in the donor are removed from the mask
(to prevent there from being two cubes in a single image). Fourth, the background mask selects
pixels from the donor and replaces the corresponding pixels in the acceptor. Finally, if the resulting
transplanted image results yields an image that has too large or small of a ratio of visible cube pixels,
the transplantation is not applied. This transplantation method allows backgrounds from donors to
further obscure the cube in acceptors in random ways, which helps improve robustness.

Augmentation Parameters

DepthBias
bias range: (-0.02, 0.02)
p: 0.5

DepthGaussianNoise stdev: 0.005

DepthPlane

near mean: 0.1
near range: (-0.05, 0.05)
p near: 0.5
far mean: 0.5
far range: (-0.05, 0.05)
p far: 0.5

CustomTransplantation
p: 0.5
ratio lb: 0.02
ratio ub: 0.7

Table 7: Parameters for our custom augmentations.

Training Hyperparameters. Training hyperparameters are described in Table 8. We trained the
model using a machine with 8 H100 GPUs for about 8 hours, though we remark that using this many
GPUs is not required.

Training and Validation Curves. We show the training and validation curves for the RGBD model
as well as the RGB-only model used in the ablation study from Sec. E.2 in Fig. 6. Overall, the

9

Hyperparameter Value
batch size 256

learning rate (initial) 1e-3
epochs 100

num workers 4
AMP True

Loss Function MSE
Optimizer AdamW

Scheduler

ReduceLROnPlateau
patience: 5
factor: 0.25
min lr: 1e-6
grad scaler: True

Table 8: Training Hyperparameters.

RGBD model seems to perform slightly better, but not by a large margin. Note that the figure is in
log scale.

G Smoother Details

This section provides a cursory overview of factor graphs, explains the setup of the graph used
in DROP’s estimation problem, and describes implementation details and hyperparameters of the
smoother.

A primer on factor graphs. Factor graphs are a type of probabilistic graphical model that models
the relationships between unknown random variables via factors, which can be interpreted as (un-
normalized) likelihood functions of subsets of all of the unknowns parameterized by measurements,
which themselves are functions of the same unknowns. The factor graph defines a factorization of
some global likelihood function over all unknowns, which gives us a computationally-convenient
framework for performing maximum a posteriori (MAP) inference to recover an estimate of the
unknowns. For further explanation, we refer the reader to [?].

Let 𝑋 denote the total set of all unknowns and 𝑋𝑙 denote some indexed subset of 𝑋 . Then, we can
represent the factors formally as

𝜙(𝑋) =
∏
𝑙

𝜙𝑙 (𝑋𝑙), (13)

which models the independence relationships between the unknown variables of interest. Now,
let measurements be modeled 𝑧𝑙 = ℎ𝑙 (𝑋𝑙), where ℎ𝑙 is some measurement model. Then, with a
Gaussian noise model and the assumption that the factors take the form

𝜙𝑙 (𝑋𝑙) ∝ exp
{
−1

2
∥ℎ𝑙 (𝑋𝑙) − 𝑧𝑙 ∥2Σ𝑙

}
, (14)

the MAP solution for the unknown variables is equivalent to the following nonlinear least squares
problem:

𝑋MAP = arg min
𝑋

∑︁
𝑙

∥ℎ𝑙 (𝑋𝑙) − 𝑧𝑙 ∥2Σ𝑙
. (15)

In practice, the MAP inference problem is solved by numerical methods like the Gauss-Newton or
Levenberg-Marquardt algorithms, which converge to some local minimum by solving successive
linearizations of (15).

In practice, we also used a robust Huber error model to reduce sensitivity to outlier measurements
(see this GTSAM blog post for more information: gtsam.org/2019/09/20/robust-noise-model.html).

Incremental smoothing. We are interested in the setting where we receive a stream of incremental
information and we seek to update the MAP estimate over time. In particular, we consider a canonical

10

https://gtsam.org/2019/09/20/robust-noise-model.html

graphical model of a dynamical system with two types of factors: dynamics factors that model the
(Markovian) temporal transitions between states (𝜙dyn

𝑡 (𝑋𝑡+1, 𝑋𝑡)), and measurement factors that
model the likelihood of observations on those states (𝜙meas

𝑡 (𝑋𝑡 ; 𝑧𝑡)).
Because the graph would rapidly grow in size as time elapses, when incrementally smoothing, it is
common to marginalize out the effect of older unknowns to retain their information content while
removing them from the graph (see [? , Sec. 5.3]). This way, the number of variables remains fixed
and the estimation problem stays tractable.

This scheme gives rise to fixed-lag smoothing, where some lookback window specifies the number
of states in the past to maintain in the graph at each time step. The case where the lookback is 1
corresponds to the standard Kalman filter.

The cube pose estimation factor graph. In DROP, we seek to estimate the cube poses (and
velocities) over time. For computational speed, we do not model the full dynamics of the cube-hand
system (which gives rise to the need for the corrector later). In particular, the stiff contact dynamics
would introduce substantial numerical challenges when conducting successive linearizations to solve
(15).

Instead, we use a constant velocity model to approximate the cube dynamics. Because the linear
and angular velocity of the cube is typically small when supported by the palm, this simple model
(accompanied by a sufficiently tuned mistrust of it) provides a coarse but sufficiently-accurate model
of the cube’s motion.

For a given camera with a known global pose in conjunction with a pinhole camera model, the
measurement model computes the expected keypoint locations in the camera’s image frame (in pixel
coordinates). The “true” measurements come from the keypoint predictor network 𝑔𝜑 .

Sketch of the keypoint projection factor. The keypoint factor (one for each keypoint, indexing
suppressed for clarity) for a camera has the form

𝜙meas
𝑡 (𝑞𝑐𝑡 ; 𝜈cam, 𝑝

pix
kp , 𝑝

𝑐
kp, 𝑝

cam, 𝑟cam), (16)

where 𝑞𝑐𝑡 is the pose of the cube at time 𝑡, 𝜈cam is the camera’s known intrinsics, 𝑝pix
kp ∈ R2 is the

measured keypoint locations in pixel coordinates from the predictor 𝑔𝜑 , 𝑝𝑐kp ∈ R
3 is the location of

the associated keypoint in the cube’s local frame, and (𝑝cam, 𝑟cam) ∈ 𝑆𝐸 (3) is the known fixed pose
of the camera in the world frame.

Let the function proj : R3 → R2 project a spatial point expressed in the camera frame to a coordinate
in pixel space, which is implemented in GTSAM [38]. The measurement residual is then computed
as follows:

𝑝
pix
kp − proj(𝑝𝑐kp; 𝜈cam, 𝑝cam, 𝑟cam), (17)

where the Jacobians associated with frame transforms and the projection function are also computed
by GTSAM. For the exact implementation details, please see our open-source implementation [37].

Smoother parameters and other details. We summarize all parameters in Table 9. All quaternions
are reported in wxyz order. Noise parameters are given by standard deviations 𝜎 corresponding to
diagonal components of the noise model covariance matrices. Rotational noise is represented by
Gaussian noise in the tangent space. Huber regularization is applied identically to all noise models.

H Corrector Implementation

As describe in Sec. C, the corrector applies a virtual corrective wrench to its internal estimate of the
cube state as shown in (7). The corrector gain matrices have 6 diagonal entries corresponding to the
virtual forces and torques applied to the cube. We use the values

𝐶𝑃 = diag([1000, 1000, 1000, 3, 3, 3]),
𝐶𝐷 = diag([1, 1, 1, 0.001, 0.001, 0.001]).

(18)

11

Parameter Value

Cube Pos Prior
𝑝 = [0.1, 0.0, 0.0]

𝑟 = [1.0, 0.0, 0.0, 0.0]
𝜎𝑝 = [0.5, 0.5, 0.5]
𝜎𝑟 = [1.0, 1.0, 1.0]

Cube Vel Prior
𝑣 = [0.0, 0.0, 0.0]
𝜔 = [0.0, 0.0, 0.0]

𝜎𝑣 = [0.01, 0.01, 0.01]
𝜎𝜔 = [0.2, 0.2, 0.2]

Dynamics Pos Noise 𝜎𝑝 = [0.01, 0.01, 0.01]
𝜎𝑟 = [0.2, 0.2, 0.2]

Dynamics Vel Noise 𝜎𝑣 = [0.01, 0.01, 0.01]
𝜎𝜔 = [0.2, 0.2, 0.2]

Measurement Noise (in pixels) 𝜎𝑧 = [3.0, 3.0]
Meas. Robustness Parameter 𝑘huber 1.345

Lookback Window 1
Table 9: Smoother parameters.

The extra gravitational corrective force described in Sec. C is simply an extra 10N added along the
−𝑧 axis of the virtual forces applied to the cube.

Additionally, there are a few parameters of the corrector dynamics 𝑓 that differ from the planner’s
internal model 𝑓 , which we show in Table 10.

Parameter Value
Timestep 0.04s

LEAP Hand 𝑘 𝑝 3.0
solimp [0.999, 0.999, 0.001, 0.0001, 1]
solref [0.0001, 1]

Table 10: Parameters of the corrector’s internal model 𝑓 that differ from the planner’s internal model 𝑓 .

I Miscellaneous Hardware Implementation Details

While the stack described in Sec. 2 is fairly simple, there are a few miscellaneous details that affect
performance.

LEAP hand gains. The scale of the gains in the simulated model and on hardware are quite different.
While in simulation, the planner’s LEAP hand gains are 𝑘 𝑝 = 1.0 and 𝑘𝑣 = 0.01, on hardware, we
use 𝑘 𝑝 = 75 and 𝑘𝑣 = 25. In fact, the hardware gain values are already quite low compared to the
values recommended in [40]. This was intentional; by lowering the gains, we lowered the amount of
energy imparted on the cube, and allowed the controller to manipulate the cube with a higher degree
of control.

The physical cube. The cube itself is made of low-density 3D-printed PLA, weighing 0.108kg.
The faces of the cube are simply printed out on regular printer paper and taped onto the cube using
reflective, low-friction packing tape. We remark that over time, the frictional properties of the cube
may slightly change. Our reported experiments were run using a cube that was used for about 1 week
prior, and anecdotally, the friction increased slightly over this period, which helped prevent the cube
from slipping out of the hand. In the weeks prior to our final experimental trials, older versions of
the cube also exhibited peeling tape, torn faces/edges, and other effects that substantially increased
the friction of the cube. For the most repeatable results, we would recommend re-taping a cube from
scratch every few weeks.

Manual calibration of camera poses. Before running experiments, we found it important to perform
some manual adjustments of each camera’s ground-truth pose with respect to the world frame. To

12

perform the calibration, we streamed the estimated cube pose from the smoother and projected the
associated analytical keypoint locations back onto each camera’s image frame using the keypoint
factors derived in App. G. By adjusting the camera position, we were able to manually align the
projected keypoints with the corners of the cube.

13

	Introduction
	Background
	Mathematical Notation

	The DROP Architecture
	Experiments
	Conclusion and Future Directions
	Related Work
	Sampling-based Predictive Control Implementation
	The Pose Estimation Pipeline
	Specifics of the DROP Control Problem
	Additional Details on Experiments
	Hardware Setup and Experimental Details
	Hardware Ablations
	Simulated Robustness Study

	Dataset and Training of the Keypoint Predictor
	Smoother Details
	Corrector Implementation
	Miscellaneous Hardware Implementation Details

