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ABSTRACT

Numerous studies have demonstrated that the Transformer architecture possesses
the capability for in-context learning (ICL). In scenarios involving function ap-
proximation, context can serve as a control parameter for the model, endowing
it with the universal approximation property (UAP). In practice, context is repre-
sented by tokens from a finite set, referred to as a vocabulary, which is the case
considered in this paper, i.e., vocabulary in-context learning (VICL). We demon-
strate that VICL in single-layer Transformers, without positional encoding, does
not possess the UAP; however, it is possible to achieve the UAP when positional
encoding is included. Several sufficient conditions for the positional encoding are
provided. Our findings reveal the benefits of positional encoding from an approx-
imation theory perspective in the context of ICL.

1 INTRODUCTION

Transformers have emerged as a dominant architecture in deep learning over the past few years.
Thanks to their remarkable performance in language tasks, they have become the preferred frame-
work in the natural language processing (NLP) field. A major trend in modern NLP is the devel-
opment and integration of various black-box models, along with the construction of extensive text
datasets. In addition, improving model performance in specific tasks through techniques such as
in-context learning (ICL) (Dong et al. (2024); Brown et al. (2020)), chain of thought (CoT) (Wei
et al. (2022b); Chu et al. (2024)), and retrieval-augmented generation (RAG) (Gao et al. (2024)) has
become a significant research focus. While the practical success of these models and techniques is
well-documented, the theoretical understanding of why they perform so well remains incomplete.

To explore the capabilities of Transformers in handling ICL tasks, it is essential to examine their ap-
proximation power. The Universal Approximation Property (UAP) (Cybenko (1989); Hornik et al.
(1989); Hornik (1991); Leshno et al. (1993)) has long been a key topic in the theoretical study
of neural networks (NNs), with much of the focus historically on feed-forward neural networks
(FNNs). Yun et al. (2020) was the first to investigate the UAP of Transformers, demonstrating that
any sequence-to-sequence function could be approximated by a Transformer network with fixed
positional encoding. Luo et al. (2022) highlighted that a Transformer with relative positional en-
coding does not possess the UAP. Meanwhile, Petrov et al. (2024b) explored the role of prompting
in Transformers, proving that prompting a pre-trained Transformer can act as a universal functional
approximator.

However, one limitation of these studies is that, in practical scenarios, the inputs to language models
are derived from a finite set embedded in high-dimensional Euclidean space—commonly referred
to as a vocabulary. Whether examining the work on prompts in Petrov et al. (2024b) or the research
on ICL in Ahn et al. (2024); Cheng et al. (2024), these studies assume inputs from the entire Eu-
clidean space, which differs significantly from the discrete nature of vocabularies used in real-world
applications.

1.1 CONTRIBUTIONS

Starting with the connection between FNNs and Transformers, we turn to the finite restriction of
vocabularies and study the benefits of positional encoding. Leveraging the UAP of FNNs, we explore
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the approximation properties of Transformers for ICL tasks in two scenarios: one where the inputs
are from the entire Euclidean space, and the other where the inputs are from a finite vocabulary.

1. Without the restriction of a finite vocabulary, we establish a connection between FNNs and
Transformers in processing ICL tasks, as demonstrated in Lemma 2. Using this lemma,
we show that Transformers can function as universal approximators (Lemma 3), where
the context serves as control parameters, while the weights and biases of the Transformer
remain fixed.

2. When the vocabulary is finite and positional encoding is not used, we prove that single-
layer Transformers cannot achieve the UAP for ICL tasks (Theorem 6). However, when
the vocabulary is finite and positional encoding is used, it becomes possible for single-layer
Transformers to achieve the UAP (Theorem 8). In particular, for Transformers with ReLU
activation functions, the conditions on the positional encoding are discussed (Theorem 9).

1.2 RELATED WORKS

Universal approximation property. Neural networks (NNs), through multi-layer nonlinear trans-
formations and feature extraction, are capable of learning deep feature representations from raw
data. From the early feed-forward neural networks (FNNs) (Rosenblatt (1958)), to later advance-
ments like recurrent neural networks (RNNs) (Waibel et al. (1989); Hochreiter & Schmidhuber
(1997)), convolutional neural networks (CNNs) (Waibel et al. (1989); Lecun et al. (1998)), and
residual neural networks (ResNets) (He et al. (2016)), remarkable progress has been made. As the
application of NNs becomes more widespread, efforts have been directed toward understanding the
theoretical foundations behind their effectiveness, particularly through the UAP of NNs. Research
on the UAP of NNs generally falls into two categories: the first considers networks with any number
of neurons in each layer but a fixed number of layers (Cybenko (1989); Hornik et al. (1989); Hornik
(1991); Leshno et al. (1993)), while the second examines networks with an arbitrary number of lay-
ers but a finite number of neurons in each layer (Lu et al. (2017); Park et al. (2021); Cai (2023);
Li et al. (2024)). Since our study builds on existing results regarding the approximation capabil-
ities of FNNs, we focus on investigating the approximation abilities of single-layer Transformers
in modulating context for ICL tasks. Consequently, our work relies more on the findings from the
first category of research. The realization of the UAP depends on the architecture of the network
itself, providing constructive insights for exploring the connection between FNNs and Transform-
ers, and offering valuable guidance for our study. Recently, Petrov et al. (2024b) also explored UAP
in the context of in-context learning, but without considering vocabulary constraints or positional
encodings.

Transformers. The Transformer is a widely used neural network architecture for modeling se-
quences (Vaswani et al. (2017); Devlin et al. (2019); Yang et al. (2019); Raffel et al. (2020); Zhen-
zhong et al. (2021); Liu et al. (2020)). This non-recurrent architecture relies entirely on the attention
mechanism to capture global dependencies between inputs and outputs (Vaswani et al. (2017)). The
highly effective neural sequence transduction model is typically structured using an encoder-decoder
framework (Bahdanau et al. (2014); Sutskever et al. (2014)). The encoder maps the input sequence
X into a continuous representation S, from which the decoder generates the output sequence Y . In
the Transformer, both the encoder and decoder are composed of stacked self-attention layers and
fully connected layers. For simplicity, we describe the Transformer using a simplified self-attention
sequence encoder. Without positional encoding, the Transformer can be viewed as a stack of N
blocks, each consisting of a self-attention layer followed by a feed-forward layer with skip connec-
tions. In this paper, we focus on the case of a single-layer self-attention sequence encoder.

In-context learning. The Transformer has demonstrated remarkable performance in the field of
NLP, and large language models (LLMs) are gaining increasing popularity. ICL has emerged as a
new paradigm in NLP, enabling LLMs to make better predictions through prompts provided within
the context (Brown et al. (2020); Chowdhery et al. (2023); Touvron et al. (2023); OpenAI et al.
(2024); Xun et al. (2017)). We chose ICL as the focus of our research primarily due to its wide
range of applications and superior performance, which motivated us to explore its underlying the-
oretical foundations. ICL delivers high performance with high-quality data at a lower cost (Wang
et al. (2021b); Khorashadizadeh et al. (2023); Ding et al. (2023)). It enhances retrieval-augmented
methods by prepending grounding documents to the input (Ram et al. (2023)) and can effectively
update or refine the model’s knowledge base through well-designed prompts (De Cao et al. (2021)).
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Positional Encoding. The following explanation clarifies the significance of incorporating posi-
tional encoding into the Transformer architecture. Recurrent neural networks (RNNs) capture se-
quential order by encoding the changes in hidden states over time. In contrast, for Transformers, the
self-attention mechanism is permutation equivariant, meaning that for any model f , any permutation
matrix π, and any input x, the following holds: f(π(x)) = π(f(x)). We aim to explore the impact
of positional encoding on the performance of a single-layer Transformer when performing ICL tasks
with a finite vocabulary. Therefore, we focus on analyzing existing positional encoding methods.
There are two fundamental methods for encoding positional information in a sequence within the
Transformer: absolute positional encodings (APEs) (e.g. He et al. (2021); Liu et al. (2020); Wang
et al. (2021a); Ke et al. (2021)), relative positional encodings (RPEs) (e.g. Shaw et al. (2018); Dai
et al. (2019); Ke et al. (2021)) and rotary positional embedding (RoPE) (Su et al. (2024)). The
commonly used APE is implemented by directly adding the positional encodings to the word em-
beddings, and we follow this implementation.

UAP of ICL. Regarding the understanding of the mechanism of ICL, various explanations have
been proposed, including those based on Bayesian theory (Xie et al. (2022); Wang et al. (2024))
and gradient descent theory (Dai et al. (2023)). Fine-tuning the Transformer through ICL alters the
presentation of the input rather than the model parameters, which is driven by successful few-shot
and zero-shot learning (Wei et al. (2022a); Kojima et al. (2022)). This success raises the question of
whether we can achieve the UAP through context adjustment.

Yun et al. (2020) demonstrated that Transformers can serve as universal sequence-to-sequence ap-
proximators, while Alberti et al. (2023) extended the UAP to architectures with non-standard at-
tention mechanisms. These works represent significant efforts in enabling Transformers to achieve
sequence-to-sequence approximation; however, their implementations allow the internal parame-
ters of the Transformers to vary, which does not fully reflect the characteristics of ICL. In contrast,
Likhosherstov et al. (2021) showed that while the parameters of self-attention remain fixed, vari-
ous sparse matrices can be approximated by altering the inputs. Fixing self-attention parameters
aligns more closely with practical scenarios and provides valuable insights for our work. However,
this approach has the limitation of excluding the full Transformer architecture. Furthermore, Deora
et al. (2024) illustrated the convergence and generalization of single-layer multi-head self-attention
models trained using gradient descent, supporting the feasibility of our research by emphasizing the
robust generalization of Transformers. Nevertheless, Petrov et al. (2024a) indicated that the presence
of a prefix does not alter the attention focus within the context, prompting us to explore variations
in input context and introduce flexibility in positional encoding.

1.3 OUTLINE

We will introduce the notations and background results in Section 2. Section 3 addresses the case
where the vocabulary is finite and positional encoding is not used. Section 4 discusses the benefits of
using positional encoding. A summary is provided in Section 5. All proof of lemmas and theorems
are provided in Appendix.

2 BACKGROUND MATERIALS

We consider the approximation problem as follows. For a target continuous function f : K → Rdy

with a compact domain K ⊂ Rdx , we aim to adjust the content of the context so that the output of
the Transformer network can approximate f . First, we present the concrete forms and notations for
the inputs of ICL, FNNs, and Transformers.

2.1 NOTATIONS

Input of in-context learning. In the ICL task, the given n demonstrations are denoted as z(i) =
(x(i), y(i)) for i = 1, 2, ..., n, where x(i) ∈ Rdx and y(i) ∈ Rdy . Unlike the setting in Ahn et al.
(2024) and Cheng et al. (2024) where y(i) was related to x(i) (for example y(i) = ϕ(x(i)) for some
function ϕ), in this paper, we do not assume any correspondence between x(i) and y(i), i.e., x(i) and
y(i) are chosen freely. To predict the target at a query vector x ∈ Rdx or z = (x, 0) ∈ Rdx+dy , we
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define the following matrix Z as the input:

Z =
[
z(1) z(2) · · · z(n) z

]
:=

[
x(1) x(2) · · · x(n) x
y(1) y(2) · · · y(n) 0

]
∈ R(dx+dy)×(n+1). (1)

Furthermore, let P : N+ → Rdx+dy represent a positional encoding function, and define P(i) :=

P(i). Denote the demonstrations with positional encoding as z
(i)
P = z(i) + P(i) and zP = z +

P(n+1). The context with positional encoding can then be represented as:

ZP =
[
z
(1)
P z

(2)
P · · · z

(n)
P zP

]
:=

[
x
(1)
P x

(2)
P · · · x

(n)
P xP

y
(1)
P y

(2)
P · · · y

(n)
P yP

]
∈ R(dx+dy)×(n+1). (2)

Here, the vectors x
(i)
P and y

(i)
P represent the corresponding components of z(i)P . Additionally, we

denote:

X =
[
x(1) x(2) · · · x(n)

]
∈ Rdx×n, XP =

[
x
(1)
P x

(2)
P · · · x

(n)
P

]
∈ Rdx×n, (3)

Y =
[
y(1) y(2) · · · y(n)

]
∈ Rdy×n, YP =

[
y
(1)
P y

(2)
P · · · y

(n)
P

]
∈ Rdy×n. (4)

Feed-forward neural networks. One-hidden-layer FNNs have sufficient capacity to approximate
continuous functions on any compact domain. In this article, all the FNNs we refer to and use are
one-hidden-layer networks. We denote a one-hidden-layer FNN with activation function σ as Nσ ,
and the set of all such networks is denoted as N σ , i.e.,

N σ =
{
Nσ := Aσ(Wx+ b)

∣∣ A ∈ Rdy×k,W ∈ Rk×dx , b ∈ Rk, k ∈ N
}

(5)

=

{
Nσ :=

k∑
i=1

aiσ(wi · x+ bi)

∣∣∣∣∣ (ai, wi, bi) ∈ Rdy × Rdx × R, k ∈ N

}
. (6)

For elementwise activations, such as ReLU, the above notation is well-defined. However, if the
activation function is not elementwise, especially in the case of softmax activation, we need to give
more details for the notation:

N softmax =

{
Nsoftmax =

∑k
i=1 aie

wi·x+bi∑k
i=1 e

wi·x+bi

∣∣∣∣∣ (ai, wi, bi) ∈ Rdy × Rdx × R, k ∈ N

}
. (7)

Transformers. We define the general attention mechanism following Ahn et al. (2024); Cheng et al.
(2024) as:

AttnσQ,K,V (Z) := V ZMσ((QZ)⊤KZ), (8)

where V,Q,K are the value, query, and key matrices in R(dx+dy)×(dx+dy), respectively, M =
diag(In, 0) is the mask matrix in R(n+1)×(n+1), and σ is the activation function. Here the softmax
activation of a matrix G ∈ Rm×n is defined as:

softmax(G) :=

 exp (Gi,j)
m∑
l=1

exp (Gl,j)


i,j

. (9)

With this formulation of the general attention mechanism, we can define a single-layer Transformer
without positional encoding as:

Tσ(x;X,Y ) := (Z + V ZMσ((QZ)⊤KZ))dx+1:dx+dy,n+1, (10)

where [a : b, c : d] denotes the submatrix from the a-th row to the b-th row and from the c-th column
to the d-th column. If a = b (or c = d), the row (or column) index is reduced to a single number.
Similarly to the notation for FNNs, T σ denotes the set of all Tσ with different parameters.
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Vocabulary. In the above notations, the parameters are general and unrestricted. When we refer
to a “vocabulary”, we mean that the parameters are drawn from a finite set. For networks and their
corresponding sets, we use the subscript ∗ to indicate the use of a vocabulary V .

In the context of ICL, we refer to it as vocabulary ICL if all input vectors z(i) come from a finite
vocabulary V = Vx × Vy ⊂ Rdx × Rdy . In this case, we use Tσ

∗ (x;X,Y ) to represent the
Transformer Tσ(x;X,Y ) defined in equation (10), and denote the set of such Transformers as T σ

∗ :

T σ
∗ =

{
Tσ

∗ (x;X,Y ) := Tσ(x;X,Y )
∣∣∣ z(i) ∈ V, i ∈ {1, 2, ..., n}, n ∈ N+

}
. (11)

When positional encoding P is involved, we add the subscript P , i.e.,

T σ
∗,P =

{
Tσ

∗,P(x;X,Y ) := Tσ(x;XP , YP)
∣∣∣ z(i) ∈ V, i ∈ {1, 2, ..., n}, n ∈ N+

}
. (12)

Note that the context length n in Tσ , Tσ
∗ , and Tσ

∗,P are unbounded.

For feedforward neural networks (FNNs), we denote a network with a finite set of weights as Nσ
∗ ,

and the corresponding set of such networks as N σ
∗ :

N σ
∗ =

{
Nσ

∗ :=

k∑
i=1

aiσ(wi · x+ bi) | (ai, wi, bi) ∈ A×W ×B, k ∈ N

}
. (13)

where A ⊂ Rdy ,W ⊂ Rdx , and B ⊂ R are finite sets.

To simplify calculations and expressions, we introduce the following assumptions throughout the
remainder of the article similar to the setting in Cheng et al. (2024).

Assumption. The matrices Q,K, V ∈ R(dx+dy)×(dx+dy) have the following sparse partition:

Q =

[
B 0
0 0

]
, K =

[
C 0
0 0

]
, V =

[
D E
F U

]
, (14)

where B,C,D ∈ Rdx×dx , E ∈ Rdx×dy , F ∈ Rdy×dx and U ∈ Rdy×dy . We assume the matrices
B,C and U are non-singular, and the matrix F = 0. In addition, we assume the elementwise
activation σ is non-polynomial, locally bounded, and continuous.

We present all our notations in the table below.

Table 1: Table of Notations

Notations Explanations

dx, dy Dimensions of input and output.
P Positional encoding.

X,Y Context without positional encoding.
XP , YP Context with positional encoding P .

Z Input without positional encoding.
ZP Input with positional encoding.
V Vocabulary of the vectors.

Vx,Vy Vocabulary of x(i) and y(i).
Nσ,N σ One-hidden-layer FNN and its collection.
Tσ, T σ Single-layer Transformer and its collection.
Nσ

∗ ,N σ
∗ One-hidden-layer FNN with a finite set of weights and its collection.

Tσ
∗ , T σ

∗ Single-layer Transformer with vocabulary restrictions and its collection.

Tσ
∗,P , T σ

∗,P
Single-layer Transformer with positional encoding, vocabulary restrictions,
and its collection.

∥ · ∥ The uniform norm of vectors, i.e., a shorthand for ∥ · ∥∞.

x̃ Append a one to the end of x, i.e., x̃ =

[
x
1

]
.
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2.2 UNIVERSAL APPROXIMATION PROPERTY

The vanilla form of the universal approximation property for feedforward neural networks plays a
crucial role in our study. We state it in the following lemma:
Lemma 1 (UAP of FNNs (Leshno et al. (1993))). Let σ : R → R be a non-polynomial, locally
bounded, piecewise continuous activation function. For any continuous function f : Rdx → Rdy

defined on a compact domain K, and for any ε > 0, there exist k ∈ N, A ∈ Rdy×k, b ∈ Rk, and
W ∈ Rk×dx such that

∥Aσ(Wx+ b)− f(x)∥ < ε, ∀x ∈ K. (15)

The theorem presented above is well-known and primarily applies to activation functions operating
pointwise. However, it can be readily extended to the case of the softmax activation function. In
fact, this can be achieved using neural networks with exponential activation functions. The specific
approach for this generalization is detailed in Appendix A.

2.3 FEED-FORWARD NEURAL NETWORKS AND TRANSFORMERS

It is important to emphasize the connection between FNNs and Transformers.
Lemma 2. Let σ be an elementwise activation and Tσ be a single-layer Transformer. For any one-
hidden-layer network Nσ : Rdx−1 → Rdy ∈ NReLU with n hidden neurons, there exist matrices
X ∈ Rdx×n and Y ∈ Rdy×n such that

Tσ (x̃;X,Y ) = Nσ(x), ∀x ∈ Rdx−1. (16)

There is a difference in the input dimensions of Tσ and Nσ , as the latter includes a bias dimension
absent in the former. To connect the two inputs, x̃ and x, we use a tilde, where x̃ is formed by
augmenting x with an additional one appended to the end.

By employing the structure of query, key, and value matrices in (14), the output forms of the Trans-
former Tσ (x̃;X,Y ) can be simplified as follows:

Tσ (x̃;X,Y ) =

([
X x̃
Y 0

]
+

[
DX + EY 0
FX + UY 0

]
σ

([
X⊤B⊤CX X⊤B⊤Cx̃
x̃⊤B⊤CX x̃⊤B⊤Cx̃

]))
dx+1:dx+dy,n+1

= (FX + UY )σ(X⊤B⊤Cx̃) = UY σ(X⊤B⊤Cx̃). (17)

Comparing this with the output form of FNNs, Nσ(x) = Aσ(Wx + b), it becomes evident that
setting X = (C⊤B)−1 [W b]

⊤ and Y = U−1A is sufficient to finish the proof.

It can be observed that the form in equation (17) exhibits the structure of an FNN. Consequently,
Lemma 2 implies that single-layer Transformers Tσ with in-context learning and FNNs Nσ are
equivalent. However, this equivalence does not hold for the case of softmax activation due to differ-
ences in the normalization operations between FNNs and Transformers. Therefore, in the subsequent
sections of this article, we employ different analytical methods to address the two types of activation
functions.

Moreover, the equivalence in equation (31) suggests that the context in Transformers can act as a
control parameter for the model, thereby endowing it with the universal approximation property.
This offers a novel perspective on the parameterization of FNNs.

2.4 UNIVERSAL APPROXIMATION PROPERTY OF IN-CONTEXT LEARNING

We now present the UAP of Transformers in the context of ICL.
Lemma 3. Let Tσ be a single-layer Transformer with elementwise or softmax activation, and K be
a compact domain in Rdx−1. Then for any continuous function f : K → Rdy and any ε > 0, there
exist matrices X ∈ Rdx×n and Y ∈ Rdy×n such that

∥Tσ (x̃;X,Y )− f(x)∥ < ε, ∀x ∈ K. (18)

For the case of elementwise activation, the result follows directly by combining Lemma 1 and
Lemma 2. However, for the softmax activation, the normalization operation requires an additional

6
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technique in the proof. The key idea is to consider an FNN with the exponential function as its ac-
tivation and introduce an additional neuron to account for the normalization effect. Detailed proofs
are provided in Appendix A. Similar results have also been reported in recent work Petrov et al.
(2024b), albeit using different techniques.

3 THE NON-UNIVERSAL APPROXIMATION PROPERTY OF N σ
∗ AND T σ

∗

One key aspect of ICL is that the context can act as a control parameter for the model. We now
consider the case where the context is restricted to a finite vocabulary. A natural question arises:
can a single-layer Transformer with a finite vocabulary, Tσ

∗ ∈ T σ
∗ , still achieve the UAP? Given the

established connection between FNNs and Transformers, we first analyze Nσ
∗ ∈ N σ

∗ for simplicity.

The answer is that N σ
∗ cannot achieve the UAP because the parameters can only take on a finite num-

ber of values. For elementwise activations, the span of N σ
∗ , span(N σ

∗ ), forms a finite-dimensional
function space. According to results from functional analysis, N σ

∗ is closed under the function
norm (see e.g. Theorem 1.21 of Rudin (1991) or Corollary C.4 of Cannarsa & D’Aprile (2015)).
This implies that the set of functions approximable by span(N σ

∗ ) is precisely the set of functions
within span(N σ

∗ ). Consequently, any function not in span(N σ
∗ ) cannot be arbitrarily approximated,

meaning that the UAP cannot be achieved.

For softmax networks, the normalization operation introduces further limitations. Even though
Nsoftmax

∗ consists of weighted units drawn from a fixed finite collection of basic units, normalization
prevents these networks from being simple linear combinations of one another. While the span of
N softmax

∗ might theoretically have infinite dimensionality, its expressive power remains constrained.

To better understand the behavior of functions within N softmax
∗ , we present the following proposition

as an introduction.

Proposition 4. The scalar function hk(x) =
k∑

i=1

aie
bix, where ai, bi, x ∈ R and at least one ai is

nonzero, has at most k − 1 zero points.

The function hk(x) is commonly referred to as a sum of exponentials. Proposition 4 establishes the
maximum number of zero points for this class of functions. The result can be proved using mathe-
matical induction. The cases for k = 1 and k = 2 are straightforward. Assuming the proposition
holds for k = N , we proceed with a proof by contradiction for k = N + 1. Assume aN+1 ̸= 0
and h(x) has N + 1 zero points. We can define a new function g that shares the same zero points as
hN+1, given by

g(x) =
hk(x)

aN+1ebN+1x
= 1 +

N∑
i=1

ai
aN+1

e(bi−bN+1)x. (19)

The derivative of g is the sum of N exponentials. By applying the intermediate value theorem, we
show that if the number of zero points exceeds N , it leads to a contradiction.

As a consequence of Proposition 4, we know that a sum of k exponential functions cannot arbitrarily
approximate certain functions, such as f(x) = sin((k + 1)πx) over the interval [0, 2]. The function
f(x) has k + 1 peaks and k + 1 zeros within this interval. By applying the intermediate value theo-
rem, we conclude that any function approximating f(x) closely must also exhibit more than k zeros,
leading to a contradiction. This limitation in the approximation power of sums of exponentials ex-
tends naturally to multivariate functions and applies to softmax activations, where the normalization
further restricts expressiveness.

Now we can summarize the non-universal approximation property of N σ
∗ in the following lemma.

Lemma 5. The function class N σ
∗ , with elementwise or softmax activation σ, cannot achieve the

UAP. Specifically, for any compact domain K ⊂ Rdx , there exists a continuous function f : K →
Rdy and ε0 > 0 such that max

x∈K
∥f(x)−Nσ

∗ (x̃)∥ ≥ ε0 for all Nσ
∗ ∈ N σ

∗ .

By leveraging the connection between FNNs and Transformers, we establish Theorem 6.
Theorem 6. The function class T σ

∗ , with elementwise or softmax activation σ, cannot achieve the
UAP. Specifically, for any compact domain K ⊂ Rdx−1, there exists a continuous function f : K →

7
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Rdy and ε0 > 0 such that

max
x∈K

∥f(x)− Tσ
∗ (x̃)∥ ≥ ε0, ∀ Tσ

∗ ∈ T σ
∗ . (20)

The result for elementwise activations follows directly from the application of Lemma 2 and
Lemma 5. However, the case of the softmax activation is more intricate, as it requires additional
techniques to account for the normalization effect. The proof, which utilizes Proposition 4 once
again, is presented in the Appendix B.

It is worth noting that Theorem 6 holds even without imposing any constraints on the value, query,
and key matrices, V , Q, and K (e.g., the sparse partition described in equation (14)). For further
details, refer to Appendix D.

4 THE UNIVERSAL APPROXIMATION PROPERTY OF T σ
∗,P

After establishing that neither N σ
∗ nor T σ

∗ can achieve the UAP, we aim to leverage a key feature
of Transformers: their ability to incorporate absolute positional encodings during token input. This
motivates us to investigate whether T σ

∗,P can realize the UAP.

To facilitate our constructive proof, we introduce Lemma 7 as an auxiliary tool to support the main
theorem.
Lemma 7 (Kronecker Approximation Theorem (see e.g. Apostol (1989))). Given real n-tuples
α(i) = (α

(i)
1 , α

(i)
2 , · · · , α(i)

n ) ∈ Rn for i = 1, · · · ,m and β = (β1, β2, · · · , βn) ∈ Rn, the following
condition holds: for any ε > 0, there exist qi, li ∈ Z such that∥∥∥∥∥βj −

m∑
i=1

qiα
(i)
j + lj

∥∥∥∥∥ < ε, 1 ≤ j ≤ n, (21)

if and only if for any r1, · · · , rn ∈ Z, i = 1, · · · ,m with
n∑

j=1

α
(i)
j rj ∈ Z, i = 1, · · · ,m, (22)

the number
n∑

j=1

βjrj is also an integer. In the case of m = 1 and n = 1, for any α, β, ε ∈ R with α

irrational and ε > 0, there exist integers l and q with q > 0 such that |β − qα+ l| < ε.

This lemma (Lemma 7) indicates that if the condition in equation (22) is satisfied only when all ri
are zeros, then the set {Mq + l | q ∈ Zm, l ∈ Rn} is dense in Rn, where the matrix M ∈ Rn×m is
assembled with vectors α(i), i.e., M = [α(1), α(2), ..., α(m)] In the case of m = n = 1, let α =

√
2.

Then, Lemma 7 implies that the set {q
√
2± l | l ∈ N+, q ∈ N+} is dense in R. We will build upon

this result to prove one of the most significant theorems in this article.
Theorem 8. Let T σ

∗,P be the class of functions Tσ
∗,P , where σ is an elementwise activation, the

subscript refers the finite vocabulary V = Vx×Vy , P = Px×Py represents the positional encoding
map, and denote the set S as:

S := Vx + Px =
{
xi + P(j)

x

∣∣∣ xi ∈ Vx, i, j ∈ N+
}
. (23)

If S is dense in Rdx , {1,−1,
√
2, 0}dy ⊂ Vy and Py = 0, then T σ

∗,P can achieve the UAP. That is,
for any continuous function f : Rdx−1 → Rdy defined on a compact domain K, and for any ε > 0,
there always exist X ∈ Rdx×n and Y ∈ Rdy×n from the vocabulary V (i.e., x(i) ∈ Vx, y

(i) ∈ Vy)
with some length n ∈ N+ such that∥∥Tσ

∗,P (x̃;X,Y )− f(x)
∥∥ < ε, ∀x ∈ K. (24)

We provide a constructive proof in Appendix C, and here we only demonstrate the proof idea by
considering the specific case of dy = 1 and assuming the matrices U , B, C, and D in the Trans-
former are identity matrices. In this case, the Transformer Tσ

∗,P(x̃;X,Y ) can be simplified to an

8
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FNN, Nσ
∗ , similar to the calculation in equation (17):

Nσ
∗ (x) = Y σ

(
X⊤

P x̃
)
=

n∑
j=1

y(j)σ
((

x(j) + P(j)
x

)
· x̃
)
. (25)

The UAP of FNNs shown in Lemma 1 implies that the target function f can be approximated by an
FNN Nσ(x) with k hidden neurons:

Nσ(x) = Aσ(Wx̃) =

k∑
i=1

aiσ(wi · x̃). (26)

Since we are considering a continuous activation function σ, we can conclude that slightly per-
turbing the parameters A and W will lead to new FNNs that can still approximate f , provided
the perturbations are small enough. This observation motivates us to construct a proof using
the property that each wi ∈ Rdx can be approximated by vectors in S, and each ai ∈ R can
be approximated by numbers of the form qi

√
2 ± li, with positive integers qi and li. Note

that the summation
∑k

i=1(qi
√
2 ± li)σ(wi · x̃) can be reformulated as

∑k′

i′=1 yi′σ(wi′ · x̃) with
k′ =

∑k
i (qi + li), yi′ ∈ {

√
2,±1} and wi′ ∈ {w1, ..., wk}. For each wi′ , we can choose a vector

ŵi′ := xji′ + P(ji′ )
x ∈ S that approximates wi′ well, where ji′ ∈ N+ and xji′ ∈ Vx. The integers

ji′ can be chosen to be distinct from each other.

Now, the FNN in (25) can be constructed by using n = max(j1, j2, . . . , jk′) neurons, where the
j-th neuron is assigned by setting y(j) = yi′ ∈ Vy and x(j) = xji′ ∈ Vx for the case of j = ji′ ∈
{j1, j2, . . . , jk′}, and y(j) = 0 ∈ Vy for the case of j /∈ {j1, j2, . . . , jk′}. Here, the nonzero value
of y(j) highlights useful positions and demonstrations.

In the proof idea above, we take the density of the set S in Rdx as a fundamental assumption. Vx

contains only finitely many elements, rendering it bounded. For S = Vx + Px to be dense in the
entire space, Px must be unbounded. Next, we relax this requirement, eliminating the need for
Px to be unbounded, making the conditions more aligned with practical scenarios. Particularly,
we consider the specific activation function in the following Theorem 9, where the notations not
explicitly mentioned remain consistent with those in Theorem 8.
Theorem 9. If the set S is dense in [−1, 1]dx , then T ReLU

∗,P is capable of achieving the UAP. Addi-
tionally, if S is only dense in a neighborhood B(w∗, δ) of a point w∗ ∈ Rdx with radius δ > 0, then
the class of transformers with exponential activation, T exp

∗,P , is capable of achieving the UAP.

The density condition on S is significantly refined here. This improvement is possible because the
proof of Theorem 8 relies directly on the UAP of FNNs, where the weights take values from the
entire parameter space. However, for FNNs with specific activations, we can restrict the weights to
a small set without losing the UAP.

For ReLU networks, we can use the positive homogeneity property, i.e., AReLU(Wx̃) =
1
λAReLU(λWx̃) for any λ > 0, to restrict the weight matrix W . In fact, the restriction that all
elements of W take values in the interval [−1, 1] does not affect the UAP of ReLU FNNs because
the scale of W can be recovered by adjusting the scale of A via choosing a proper λ.

For exponential networks, the condition on S is much weaker than in the ReLU case. This relax-
ation is nontrivial, and the proof stems from a property of the derivatives of exponential functions.
Consider the exponential function exp(w · x) as a function of w ∈ B(w∗, δ), and denote it as h(w),

h(w) = exp(w · x) ≡ exp(w1x1 + · · ·+ wdxd), w, x ∈ Rd, d = dx, (27)

where wi and xi ∈ R are the components of w and x, respectively. Calculating the partial derivatives
of h(w), we observe the following relations:

∂αh

∂wα
≡ ∂|α|h

∂wα1
1 · · · ∂wαd

d

= xα1
1 · · ·xαd

d h(w), (28)

where α = (α1, . . . , αd) ∈ Nd is the index vector representing the order of partial derivatives, and
|α| := α1 + · · · + αd. This relationship allows us to link exponential FNNs to polynomials since

9
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any polynomial P (x) can be represented in the following form:

P (x) = exp(−w∗ · x)

(∑
α∈Λ

aα
∂|α|h

∂wα

)∣∣∣∣∣
w=w∗

, (29)

where aα are the coefficients of the polynomials, Λ is a finite set of indices, and the partial derivatives
can be approximated by finite differences, which are FNNs. For example, the first-order partial
derivative ∂h

∂w1

∣∣
w=w∗ = x1h(w

∗) can be approximated by the following difference with a small
nonzero number λ ∈ (0, δ),

h(w∗ + λe1)− h(w∗)

λ
=

1

λ
exp((w∗ + λe1) · x)−

1

λ
exp(w∗ · x). (30)

This is an exponential FNN with two neurons. Finally, employing the well-known Stone-Weierstrass
theorem, which states that any continuous function f on compact domains can be approximated by
polynomials, and combining the above relations between FNNs and polynomials, we can establish
the UAP of exponential FNNs with weight constraints.
Remark 10. When discussing density, one of the most immediate examples that comes to mind is the
density of rational numbers in R. How can we effectively enumerate rational numbers? The work
by Calkin & Wilf (2000) introduces an elegant method for enumerating positive rational numbers,
synthesizing ideas from Stern (1858) and Berndt et al. (1990). It demonstrates the computational
feasibility of enumeration through an effective algorithm. Thus, we assume that positional encodings
can be implemented using computer algorithms, such as iterative functions.

5 CONCLUSION

In this paper, we establish a connection between feedforward neural networks and Transformers
through in-context learning. By leveraging the universal approximation property of FNNs, we
demonstrate that the UAP of in-context learning holds when the context is selected from the en-
tire vector space. When the context is drawn from a finite set, we explore the approximation power
of vocabulary-based in-context learning, showing that the UAP is achievable only when appropriate
positional encodings are incorporated, underscoring the importance of positional encodings.

In our work, we consider Transformers with input sequences of arbitrary length, implying that the
positional encoding Px consists of a countably infinite set of elements, independent of the target
function. As a result, the set S is also infinitely large and may or may not be dense in Rd. In The-
orem 8, we assume a strong density condition, which is later relaxed in Theorem 9. However, in
practical applications, input sequences are finite, typically truncated for computational feasibility.
This shift allows our conclusions to be interpreted through an approximation lens, where the objec-
tive is to approximate functions within a specified error margin, rather than achieving infinitesimal
precision. Additionally, to achieve universal approximation, it is insightful to compare the function
approximation capabilities of our approach (outlined in Lemma 3) with the direct use of FNNs,
particularly when the Transformer parameters are trainable.

It is important to note that this paper is limited to single-layer Transformers with absolute positional
encodings, and the main results (Theorem 8 and Theorem 9) focus on elementwise activations. Fu-
ture research should extend these findings to multi-layer Transformers, general positional encodings
(such as RPEs and RoPE), and softmax activations. For softmax Transformers, our analysis in Sec-
tions 2 and 3 highlighted their connection to Transformers with exponential activations. However,
extending this connection to the scenario in Section 4 proves challenging and requires more sophis-
ticated techniques.

Although this paper primarily addresses theoretical issues, we believe our results can offer valuable
insights for practitioners. Specifically, in Remark 10, we observe that certain algorithms use func-
tion composition to enumerate numbers dense in R. This idea could inspire the design of positional
encodings via compositions of fixed functions, similar to RNN approaches. RNNs capture the se-
quential nature of information by integrating the importance of word order in sentence meaning.
However, to the best of our knowledge, existing research on RNNs has not explored the denseness
properties of the sets formed by their hidden state sequences. We hope this unexplored property
will inspire experimental research in future studies. Furthermore, our construction for Theorem 8
relies on the sparse partition assumption in equation (14). The practical validity of this assumption
remains uncertain, and we leave this question open for future exploration.
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A PROOF FOR SECTION 2

We will lay out some lemmas mentioned in this article below. In this part of our Appendix, we
consider a more general case, of which E and F not zero matrixes.

A.1 PROOF OF LEMMA 2

Lemma 2. Let σ be an elementwise activation and Tσ be a single-layer Transformer. For any one-
hidden-layer network Nσ : Rdx−1 → Rdy ∈ NReLU with n hidden neurons, there exist matrices
X ∈ Rdx×n and Y ∈ Rdy×n such that

Tσ (x̃;X,Y ) = Nσ(x), ∀x ∈ Rdx−1. (31)

Proof. We can directly compute the following

TReLU (x̃;X,Y )

=
(
Z +AttnReLU

Q,K,V (x̃;X,Y )
)
dx+1:dx+dy,n+1

=
(
Z + V ZM ReLU(Z⊤Q⊤KZ)

)
dx+1:dx+dy,n+1

=

(
Z +

[
DX + EY 0
FX + UY 0

] [
ReLU(X⊤B⊤CX) ReLU(X⊤B⊤Cx̃)
ReLU(x̃⊤B⊤CX) ReLU(x̃⊤B⊤Cx̃)

])
dx+1:dx+dy,n+1

.

(32)

It is obvious that
TReLU(x̃;X,Y ) = (FX + UY )ReLU(X⊤B⊤Cx̃). (33)

Assume NReLU(x) = AReLU(Wx+ b) is an arbitrary single-layer FNN, where W ∈ Rk×dx , A ∈
Rdy×k, b ∈ Rk, and k represents the width of hidden layer.

Let us set the length of context to k, that is X ∈ Rdx×k, Y ∈ Rdy×k. Through trivial calculation we
can find that if we set

X = (CB)−1

[
W⊤

b⊤

]
, Y = U−1(A− FX), (34)

then T ReLU (x̃;X,Y ) = NReLU(x) holds.

A.2 PROOF OF THE UAP OF SOFTMAX FNNS

Lemma 11. For any continuous function f : Rdx → Rdy defined on a compact domain K and
ε > 0, there always exist a softmax FNN Nsoftmax(x) : Rdx → Rdy satisfying

∥Nsoftmax(x)− f(x)∥ < ε. (35)

Proof. According to Lemma 1 we can construct a network

Nexp(x) = A exp(Wx+ b)

= A

exp((Wx+ b)1)
exp((Wx+ b)2)

· · ·
exp((Wx+ b)k)

 (36)

such that ∥Nexp(x)− f(x)∥ < ε for all x ∈ K and k represents the width of hidden layer. We now
construct a softmax network as follows

Nsoftmax(x) = A′ softmax

([
Wx+ b′

0

])
, (37)

where every element in b′ = b′(ε) is sufficiently small to satisfy exp((W1x + b′)i) < ε′

k for all

x ∈ K, i = 1, 2, · · · , k, and A′
i,j =

{
Ai,j exp(bj − b′j) j = 1, · · · , k
0 j = k + 1

, where i = 1, · · · , dy . We

can compute that

∥f(x)−Nsoftmax(x)∥ ≤ ∥f(x)−Nexp(x)∥+ ∥Nexp(x)−Nsoftmax(x)∥. (38)
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We focus on estimating of the upper bound of the second term, since it is evident that the first term
does not exceed ε.

∥Nexp −Nsoftmax(x)∥ ≤ max
1≤i≤dy


∣∣∣∣∣∣∣∣∣

k∑
j=1

Ai,j exp((Wx+ b)j)−

k∑
j=1

A′
i,j exp((Wx+ b′)j)

1 +
k∑

j=1

exp((Wx+ b′)j)

∣∣∣∣∣∣∣∣∣


= max

1≤i≤dy


∣∣∣∣∣∣∣∣∣

k∑
j=1

Ai,j exp((Wx+ b)j)−

k∑
j=1

Ai,j exp((Wx+ b)j)

1 +
k∑

j=1

exp((Wx+ b′)j)

∣∣∣∣∣∣∣∣∣


≤ ∥Nexp(x)∥

1− 1

1 +
k∑

j=1

exp((Wx+ b′)j)


≤ ∥Nexp(x)∥

(
1− 1

1 + ε′

)
.

≤ ∥Nexp(x)∥ε′.
(39)

By setting ε′ = ε
∥Nexp(x)∥ , we ensure it is finite, leading to the conclusion that

∥f(x)−Nsoftmax(x)∥ ≤ 2ε. (40)

A.3 PROOF OF LEMMA 3

Lemma 3. Let Tσ be a single-layer Transformer with elementwise or softmax activation, and K be
a compact domain in Rdx−1. Then for any continuous function f : K → Rdy and any ε > 0, there
exist matrices X ∈ Rdx×n and Y ∈ Rdy×n such that

∥Tσ (x̃;X,Y )− f(x)∥ < ε, ∀x ∈ K. (41)

Proof. For ReLU case, with the help of Lemma 1 and 2, the conclusion follows trivially.

Then we solve the softmax case. Similarly, for any ε > 0, we can construct an exponential FNN

Nsoftmax(x) = A softmax

([
Wx+ b

0

])
using Lemma 3 such that ∥Nsoftmax − f(x)∥ < ε and

it has k hidden neurons. What we need to do is to approximate this softmax FNN with a softmax
Transformer. We can directly compute the following

Tsoftmax (x̃;X,Y )

=
(
Z +Attnsoftmax

Q,K,V (x̃;X,Y )
)
dx+1:dx+dy,n+1

=
(
Z + V ZM softmax(Z⊤Q⊤KZ)

)
dx+1:dx+dy,n+1

=

(
Z +

[
DX + EY 0
FX + UY 0

]
softmax

([
X⊤B⊤CX X⊤B⊤Cx̃
x̃⊤B⊤CX x̃⊤B⊤Cx̃

]))
dx+1:dx+dy,n+1

.

(42)

It is obvious that

Tsoftmax(x;X,Y ) = (FX + UY ) softmax

([
X⊤B⊤Cx̃
x̃⊤B⊤Cx̃

])
1:n

. (43)

Then through comparing the output of the softmax Transformer with the exponential FNN, we can
find out that there is one more bounded positive term t(x) = exp(x̃⊤B⊤Cx̃) when processing
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normalization. Assume X⊤B⊤C =

[
W b+ s1
0 s

]
∈ R(k+1)×(dx), FX + UY = [A 0] ∈

Rdy×(k+1), where s = s(ε′) is big enough, making exp(x̃B⊤Cx̃ − s) < ε′, then X⊤B⊤Cx̃ =[
W b+ s1
0 s

] [
x
1

]
=

[
Wx+ b+ s1

s

]
. So we can compute a detailed form that is

Tsoftmax(x;X,Y )

=



k∑
j=1

A1,j exp ((Wx+b)j+s)

k∑
j=1

exp ((Wx+b)j+s)+exp (s)+exp (x̃B⊤Cx̃)

k∑
j=1

A2,j exp ((Wx+b)j+s)

k∑
j=1

exp ((Wx+b)j+s)+exp (s)+exp (x̃B⊤Cx̃)

...
k∑

j=1
Ady,j exp ((Wx+b)j+s)

k∑
j=1

exp ((Wx+b)j+s)+exp (s)+exp (x̃B⊤Cx̃)



=



k∑
j=1

A1,j exp ((Wx+b)j)

k∑
j=1

exp ((Wx+b)j)+1+exp (x̃B⊤Cx̃−s)

k∑
j=1

A2,j exp ((Wx+b)j)

k∑
j=1

exp ((Wx+b)j)+1+exp (x̃B⊤Cx̃−s)

...
k∑

j=1
Ady,j exp ((Wx+b)j)

k∑
j=1

exp ((Wx+b)j)+1+exp (x̃B⊤Cx̃−s)



.
(44)

We focus on estimating the upper bound of the distence between Nsoftmax and Tsoftmax, that is

∥Nsoftmax(x)− Tsoftmax(x;X,Y )∥

= max
1≤i≤dy


∣∣∣∣∣∣∣∣∣

k∑
j=1

Ai,j exp ((Wx+ b)j)

k∑
j=1

exp ((Wx+ b)j) + 1

−

k∑
j=1

Ai,j exp ((Wx+ b)j)

k∑
j=1

exp ((Wx+ b)j) + 1 + exp (x̃B⊤Cx̃− s)

∣∣∣∣∣∣∣∣∣


≤ ∥Nsoftmax∥

∣∣∣∣∣∣∣∣∣1−
k∑

j=1

exp ((Wx+ b)j) + 1

k∑
j=1

exp ((Wx+ b)j) + 1 + exp (x̃B⊤Cx̃− s)

∣∣∣∣∣∣∣∣∣
= ∥Nsoftmax∥

∣∣∣∣∣∣∣∣∣
exp (x̃B⊤Cx̃− s)

k∑
j=1

exp ((Wx+ b)j) + 1 + exp (x̃B⊤Cx̃− s)

∣∣∣∣∣∣∣∣∣
≤ ∥Nsoftmax∥

∣∣exp (x̃B⊤Cx̃− s)
∣∣

≤ ∥Nsoftmax∥ε′.
(45)

By setting ε′ = ε
∥Nsoftmax(x)∥ , which is ensured to be finite, the entire lemma has been proved.

B PROOF FOR SECTION 3

In this Appendix, we provide detailed proofs of the Proposition 4, Lemma 5, and Theorem 6 pre-
sented in Section 3.

B.1 PROOF OF PROPOSITION 4

Proposition 4. The scalar function hk(x) =
k∑

i=1

aie
bix, where ai, bi, x ∈ R and at least one ai is

nonzero, has at most k − 1 zero points.

Proof. We prove this statement by induction. When k = 1 and 2, the statement is easy to prove. For
the case k = N , suppose that every hN has at most N − 1 zero points.
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Now consider k = N + 1. Let hN+1(x) =
N+1∑
i=1

ai exp(bix). Without loss of generality, assume

aN+1 ̸= 0. Thus, we can rewrite hN+1(x) as

hN+1(x) = aN+1e
bN+1x

(
1 +

N∑
i=1

ai
aN+1

e(bi−bN+1)x

)
. (46)

We proceed by contradiction. Suppose hN+1(x) has more than N zero points. This implies

g(x) := 1 +

N∑
i=1

ai
aN+1

e(bi−bN+1)x, (47)

has more than N zero points.

Then, according to Rolle’s Theorem, g′(x) must have more than N − 1 zero points. Since g′(x) =
N∑
i=1

ai(bi−bN+1)
aN+1

e(bi−bN+1)x must have at least N zero points, this leads to a contradiction.

Thus, hN+1(x) =
N+1∑
i=1

aie
bix can have at most N zero points. The proof is complete.

B.2 PROOF OF LEMMA 5

Lemma 5. The function class N σ
∗ , with elementwise or softmax activation σ, cannot achieve the

UAP. Specifically, for any compact domain K ⊂ Rdx , there exists a continuous function f : K →
Rdy and ε0 > 0 such that

max
x∈K

∥f(x)−Nσ
∗ (x̃)∥ ≥ ε0, ∀ Nσ

∗ ∈ N σ
∗ . (48)

Proof. For any elementwise activations σ, the span of N σ
∗ , span(N σ

∗ ), forms a finite-dimensional
function space. N σ

∗ is closed under the uniform norm supported by Theorem 1.21 from Rudin
(1991) and Corollary C.4 from Cannarsa & D’Aprile (2015). This implies that the set of functions
approximable by span(N σ

∗ ) is precisely the set of functions within span(N σ
∗ ). Consequently, any

function not in span(N σ
∗ ) cannot be arbitrarily approximated, meaning that the UAP cannot be

achieved.

Without loss of generality, for any Nsoftmax
∗ ∈ N softmax

∗ , assume K = [0, 1]dx and consider only the
first component of x. Thus, we may assume dx = 1. Let us consider the output of an arbitrary j-th
dimension, that is

(Nsoftmax
∗ )(j) =

k∑
i=1

Aj,i exp (wix+ bi)

k∑
l=1

exp (wlx+ bl)

. (49)

Then the numerator,
k∑

i=1

Aj,i exp (wix+ bi), can have at most k − 1 zero points.

Now, we consider a special function f(x) = sin(mx),where ⌈m
π ⌉ > k−1, and the period is T = 2π

m .
⌈x⌉ is the smallest integer greater than or equal to x.

Let us focus on two adjacent extreme points x1, x2, where f(x1) = 1 and f(x2) = −1. We proceed
by contradiction in our proof. Suppose N softmax

∗ can achieve the UAP. There exists Nsoftmax
∗ ∈

N softmax
∗ such that |(Nsoftmax

∗ )(j) − f(x)| < ε for all x ∈ [0, 1].

Taking ε = 0.1, we have:

|(Nsoftmax
∗ (x1))

(j) − f(x1)| < 0.1 ⇒ (Nsoftmax
∗ (x1))

(j) > −0.1 + f(x1) = 0.9,

|(Nsoftmax
∗ (x2))

(j) − f(x2)| < 0.1 ⇒ (Nsoftmax
∗ (x2))

(j) < 0.1 + f(x2) = −0.9,
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By the intermediate value theorem, there exists some x0 ∈ (min(x1, x2),max(x1, x2)), such that
(Nsoftmax

∗ (x0))
(j) = 0 . Therefore, there is at least one zero of (Nsoftmax

∗ (x))(j) between two
adjacent extrema of f(x), and the total number of zeros in the interval[0, 1] is either⌈m

π ⌉ + 1 or
⌈m
π ⌉.

Thus, the number of zeros of (Nsoftmax
∗ (x))(j) exceeds k − 1, leading to a contradiction.

If approximation cannot be achieved in one dimension, it is evident that it cannot be achieved in
higher dimensions either. Therefore, N softmax

∗ cannot achieve the UAP.

B.3 PROOF OF THEOREM 6

Theorem 6. The function class T σ
∗ , with elementwise or softmax activation σ, cannot achieve the

UAP. Specifically, for any compact domain K ⊂ Rdx−1, there exists a continuous function f : K →
Rdy and ε0 > 0 such that

max
x∈K

∥f(x)− Tσ
∗ (x̃)∥ ≥ ε0, ∀ Tσ

∗ ∈ T σ
∗ . (50)

Proof. For any Tσ
∗ ∈ T σ

∗ with elementwise activation σ, since Tσ = Nσ , we can replace Nσ
∗ in

Lemma 5 with Tσ
∗ accordingly.

Without loss of generality, for any Tsoftmax
∗ ∈ T softmax

∗ , assume K = [0, 1]dx and consider the
output of an arbitrary j-th dimension and one-dimensional input as an example that is

(Tsoftmax
∗ )(j) =

k∑
i=1

Aj,i exp (wix+ bi)

k∑
i=1

exp (wix+ bi) + exp (x̃⊤B⊤C⊤x̃)

. (51)

We observe that the form of the numerator remains consistent with Lemma 5, and we follow the
same proof as above. We consider a specific function f(x) = sin(mx), where ⌈m

π ⌉ > k− 1, and its
period is T = 2π

m . This leads to the conclusion that T softmax
∗ cannot achieve the UAP.

C PROOF FOR SECTION 4

In this Appendix, we introduce Lemma 12 to assist in the proof of Theorem 8 and utilize Lemma 13
to provide a detailed proof of Theorem 9.

C.1 PROOF OF LEMMA 12

Lemma 12. For a network with a fixed width and a continuous activation function, it is possible to
apply slight perturbations within an arbitrarily small error margin. For any network Nσ

1 (x) defined
on a compact set K ⊂ Rdx , with parameters A ∈ Rdy×k,W ∈ Rk×dx , b ∈ Rk×1, there exists
M > 0(∥x∥ < M) , and for any ε > 0 , there exists 0 < δ < ε

k and a perturbed network Nσ
2 (x) with

parameters Ã ∈ Rdy×k, W̃ ∈ Rk×dx , b̃ ∈ Rk×1 , such that if max{∥ai−ãi∥,M∥wi−w̃i∥+∥b−b̃∥ |
i = 1, · · · , k} < δ, then

∥N1(x)−N2(x)∥ < ε2, ∀x ∈ K, (52)

where ai, ãi are the i-th column vectors of A, Ã,respectively, wi, w̃i are the i-th row vectors of W, W̃
, and bi, b̃i are the i-th components of b, b̃, respectively, for any i = 1, · · · , k.

Proof. We have Nσ
1 (x) =

k∑
i=1

aiσ(wix + bi), where ai ∈ Rdy , wi ∈ Rdx , bi ∈ R, and Ñσ
2 (x) =

k∑
i=1

ãiσ(w̃ix+ b̃i), where ãj ∈ Rdy , w̃i ∈ Rdx , b̃i ∈ R. For any x ∈ K, ∥x∥ < M .
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Due to the continuity of the activation function, for any ε > 0, there exists 0 < δ < ε
k such that if

∥wix+ bi− (w̃ix+ b̃i)∥ ≤ ∥wi− w̃i∥∥x∥+ ∥bi− b̃i∥ < M∥wi− w̃i∥+ ∥b− b̃∥ < δ, i = 1, · · · , k,
then ∥σ(wix+ bi)− σ(w̃ix+ b̃i)∥ < ε, i = 1, · · · , k, and ∥ai − ãi∥ < δ, i = 1, · · · , k.
Combining all these inequalities, we can further derive:

∥Nσ
1 (x)−Nσ

2 (x)∥ = ∥
k∑

i=1

aiσ(wix+ bi)−
k∑

i=1

ãiσ(w̃ix+ b̃i)∥

≤ kmax{∥ai − ãi∥ | i = 1, · · · , k}max{∥σ(wix+ bi)− σ(w̃ix+ b̃i)∥ | i = 1, · · · , k}
< ε2

. (53)

The proof is complete.

C.2 PROOF OF THEOREM 8

Theorem 8. Let T σ
∗,P be the class of functions Tσ

∗,P , where σ is an elementwise activation, the
subscript refers the finite vocabulary V = Vx×Vy , P = Px×Py represents the positional encoding
map, and denote the set S as:

S := Vx + Px =
{
xi + P(j)

x | xi ∈ Vx, i, j ∈ N+
}
. (54)

If S is dense in Rdx , {1,−1,
√
2, 0}dy ⊂ Vy and Py = 0, then T σ

∗,P can achieve the UAP. That is,
for any continuous function f : Rdx−1 → Rdy defined on a compact domain K, and for any ε > 0,
there always exist X ∈ Rdx×n and Y ∈ Rdy×n from the vocabulary V (i.e., x(i) ∈ Vx, y

(i) ∈ Vy)
with some length n ∈ N+ such that∥∥Tσ

∗,P (x̃;X,Y )− f(x)
∥∥ < ε, ∀x ∈ K. (55)

Proof. Our conclusion holds for all element-wise continuous activation functions in T σ
∗,P . We

demonstrate this with dy = 1. Similar cases can be inferred by analogy.

We reformulating the problem.

Using Lemma 2, we have,

Tσ
∗,P (x̃;X,Y ) = UYP σ

(
(X + P)

⊤
B⊤Cx̃

)
= UYP σ

(
X⊤

PB⊤Cx̃
)
. (56)

Since Py = 0, it follows that YP = Y . For any continuous function f : Rdx−1 → Rdy defined on a
compact domain K and for any ε > 0, we aim to show that there exists Tσ

∗,P ∈ T σ
∗,P such that:∥∥∥∥Tσ

∗,P

([
x
1

]
;X,Y

)
− Uf(x)

∥∥∥∥ < ∥U∥ε, ∀x ∈ K,

⇔
∥∥Y σ

(
X⊤

PB⊤Cx̃
)
− f(x)

∥∥ < ε, ∀x ∈ K.

(57)

Let Nσ
∗ (x) := Y σ

(
X⊤

PB⊤Cx̃
)
=

n∑
i=1

y(i) σ(R̃ix̃) ∈ N σ
∗ , where n ∈ N+, y(i) ∈ Rdy and R̃i ∈

Rdx (the i-th row of R̃ ∈ Rn×dx ). The proof is divided into four steps:

Step (1): Approximating f(x) Using a Nσ(x)

For any ε > 0, there exists a neural network Nσ(x) = Aσ(Wx + b) =
k∑

i=1

ai σ(wix + bi) ∈ N σ ,

with parameters k ∈ N+, A ∈ Rdy×k, b ∈ Rk, and W ∈ Rk×(dx−1) (where ai and wi denote the
i-th column of A and the i-th row of W ),

∥Aσ(Wx+ b)− f(x)∥ <
ε

3
, ∀x ∈ K, (58)

which is supported by Lemma 1.
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Step (2): Approximating Nσ(x) Using N′(x)

Using Lemma 7 and Lemma 12, a neural network Nσ(x) =
k∑

i=1

aiσ(wix + bi) ∈ N σ can be

perturbed into N′(x) =
k∑

i=1

(q
√
2± l)i σ(w̃ix+ b̃i) (with qi ∈ N+ and li ∈ N+, i = 1, · · · , k), such

that for any ε > 0, there exists 0 < δ < ε
k satisfying:

max{∥ai − (q
√
2± l)i∥max,M∥wi − w̃i∥max + ∥b− b̃∥max | i = 1, · · · , k} < δ, (59)

ensuring:

∥Nσ(x)−N′(x)∥ =

∥∥∥∥∥
k∑

i=1

ai σ(wix+ bi)−
k∑

i=1

(q
√
2± l)i σ(w̃ix+ b̃i)

∥∥∥∥∥ <
ε

3
, ∀x ∈ K. (60)

Step (3): Approximating N′(x) Using Nσ
∗ (x)

Next, we show that Nσ
∗ (x) =

n∑
i=1

y(i) σ(R̃ix̃) ∈ N σ
∗ can approximate N′(x) =

k∑
i=1

(q
√
2 ±

l)i σ(w̃ix̃). As a demonstration, we approximate a single term (q
√
2± l)1 σ(w̃1x̃).

Given that the set S is dense in Rdx , it follows that G := {R̃ | R̃ = X⊤
PB⊤C,XP ⊂ 2S} is also

dense. Since y(i) ∈ {1,−1,
√
2, 0}, we require q1 + l1 elements of R̃i to approximate w̃1 such that∥∥∥∥∥∥

∑
j∈K1

y(j) σ(R̃j x̃)− (q
√
2± l)1 σ(w̃1x̃)

∥∥∥∥∥∥
= ∥

√
2
∑
j∈Q1

σ(R̃j x̃)±
∑
j∈L1

σ(R̃j x̃)− (q
√
2± l)1 σ(w̃1x̃)∥

<
ε

3k
, ∀x ∈ K.

(61)

Here, #(K1) = q1 + l1 and K1 = Q1

⋃
L1, where Q1, L1 are disjoint subsets of positive integer

indices satisfying #(Q1) = q1 and #(L1) = l1. For this construction, we assign y(j) =
√
2

for j ∈ Q1 and y(j) = ±1 for j ∈ L1. For j /∈
k⋃

l=1

Kl, we set y(j) = 0. We then define

n = max{j | j ∈
k⋃

l=1

Kl}.

Finally, we have:∥∥∥∥∥Nσ
∗ (x)−N′(x)∥ = ∥

n∑
i=1

y(i) σ(R̃ix̃)−
k∑

i=1

(q
√
2± l)i σ(w̃ix̃)

∥∥∥∥∥ <
ε

3
, ∀x ∈ K.

Step (4): Combining Results

Combining all results, we have:

∥Y σ
(
X⊤

PB⊤Cx̃
)
− f(x)∥ = ∥Nσ

∗ (x)− f(x)∥
< ∥Nσ

∗ (x)−N′(x)∥+ ∥N′(x)−Nσ(x)∥+ ∥Nσ(x)− f(x)∥
< ε, ∀x ∈ K.

(62)

The proof is complete.

C.3 PROOF OF THEOREM 9

Lemma 13. For any continuous function f : Rdx → Rdy defined on a compact domain K and
ε > 0, there always exist a softmax FNN Nexp(x) : Rdx → Rdy , x 7→ A exp(Wx+ b) satisfying

∥Nexp(x)− f(x)∥ < ε, ∀x ∈ K
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where b = 0 and all row vector of W are restricted in a neighborhood B(w∗, δ) with any prefixed
w∗ ∈ Rdx and δ > 0.

Proof. According to Stone-Weirestrass theorem we know that, for any continuous function f and
i = 1, · · · , dy and ε′ > 0, thers exists a polynomial Pi(x) which can approximate exp(−w∗ ·
x)(f(x))i, i.e.

∥Pi(x)− exp(−w∗ · x)(f(x))i∥ < ε′, ∀x ∈ K. (63)
The inequation above indicates that

∥ exp(w∗ · x)Pi(x)− (f(x))i∥ < ∥ exp(w∗ · x)∥ε′ := ε, ∀x ∈ K. (64)

Then we construct a FNN with exponential activation function to approximate exp(w∗ · x)Pi(x).
Without loss of generality, let us consider the first hidden neuron of a softmax FNN. Assume

h(w) = exp(w · x) = exp(w1x1 + · · ·+ wdx
xdx

), (65)

then the multiple derivatives of h(w) with respect to w1, · · · , wdx
is

∂|α|h

∂wα
=

∂αh

∂wα1
1 · · · ∂wαdx

dx

(66)

where α ∈ Ndx represents the index and |α| := α1 + · · ·αdx
. Actually, the form of ∂αh

∂w
α1
1 ···∂w

αdx
dx

is

a polynomial of |α| degree with respect to x1, · · · , xk times h(w). Note that exp(w∗ · x)Pi(x) can
be written as a finite sum of some multiple derivatives of h(x), that is

exp(w∗ · x)Pi(x) =

(∑
α∈Λi

aα
∂|α|h

∂wα

)∣∣∣∣∣
w=w∗

, (67)

where α ∈ Ndx is the index of multiple derivative and Λi is a finite multiple set of indexes. As
for multiple derivatives, they can be approximated by finite difference method, and the approach of
finite difference method can be done by a one hidden layer. For example,

x1 exp(w
∗ · x) = ∂h

∂w1

∣∣∣∣
w=w∗

=
h(w∗ + λe1)− h(w∗)

λ
+R1(λ,w

∗)

=
1

λ
exp((w∗ + λe1) · x)−

1

λ
exp(w∗ · x) +R1(λ,w

∗),

(68)

and

x1x2 exp(w
∗ · x) = ∂2h

∂w1∂w2

∣∣∣∣
w=w∗

=
h(w∗ + λ(e1 + e2))− h(w∗ + λe1)− h(w∗ + λe2) + h(w∗)

λ2
+R2(λ,w

∗)

=
1

λ2
exp((w∗ + λ(e1 + e2)) · x)−

1

λ2
exp((w∗ + λe1) · x)−

1

λ2
exp((w∗ + λe2) · x) +

1

λ2
exp(w∗ · x) +R2(λ,w

∗),

(69)
where e1 = (1, 0, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0) are unit vectors and R1(λ,w

∗) and R2(λ,w
∗) are

error terms with respect to λ and w∗. The error term R1(λ,w
∗) = λ ∂2h

∂w2
1

∣∣∣
w=ξ

for some ξ between

w∗ and w∗ + λe1. It is obvious that the partial differential term is bounded in B(w∗, δ), so the error
can be controlled by λ. For R2(λ,w

∗) it is similar. Equation (69) holds, as shown in Chapter X of
Boole (2009).

Since λ is very small and the exponential terms exp(w∗ ·x) only involve the parameters w∗, w∗+λe1
and w∗+λe2, which all lie within a small neighborhood of w∗ the desired conclusion can be drawn,
and this means we can actually restrict that all row vectors of W are restricted in the neighborhood
B(w∗, δ).
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Theorem 9. If the set S is dense in [−1, 1]dx , then T ReLU
∗,P is capable of achieving the UAP. Addi-

tionally, if S is only dense in a neighborhood B(w∗, δ) of a point w∗ ∈ Rdx with radius δ > 0, then
the class of transformers with exponential activation, T exp

∗,P , is capable of achieving the UAP.

Proof. For the proof of ReLU case, we follow the same reasoning as in the previous one, noting that
ReLU(ax) = aReLU(x) holds for any positive a. In the proof of Theorem 8, we construct a TReLU

∗,P
to approximate a FNN AReLU(Wx + b). Here we can do the similar construction to find another
T̃ReLU

∗,P to approximate tAReLU
(
W
t x+ b

)
as the second to the forth steps in Theorem 8, where t is

big enough to make the elements in W is small enough so S = {xi + P(j)
x | xi ∈ Vx, i, j ∈ N+} is

dense in [−1, 1]dx is sufficient. For the exponential, we using Lemma 13, we can do step the second
to the forth steps in Theorem 8 again, which is similar to ReLU case.

D GENERAL CASE FOR THEOREM 6

It is important to note that Theorem 6 remains valid even without imposing specific constraints on
the value, query, and key matrices V , Q, and K (e.g., the sparse partition described in equation (14)).
Below, we outline the reasoning.

In general, we decompose the matrices as follows:

Q⊤K =

[
M11 M12

M21 M22

]
, V =

[
D E
F U

]
, (70)

where M11, D ∈ Rdx×dx , M12, E ∈ Rdx×dy , M21, F ∈ Rdy×dx , and M22, U ∈ Rdy×dy , respec-
tively.

The attention mechanism can then be computed as:

AttnσQ,K,V (Z) = V ZMσ(Z⊤Q⊤KZ)

=

[
D E
F U

] [
X x
Y 0

] [
In

0

]
σ

([
X⊤ Y ⊤

x⊤ 0

] [
M11 M12

M21 M22

] [
X x
Y 0

])
=

[
DX + EY 0
FX + UY 0

]
σ

([
M (X⊤M11 + Y ⊤M21)x

x⊤(M11X +W12Y ) x⊤M11x

])
,

where M represents the matrix X⊤M11X +X⊤W12Y + Y ⊤M21X + Y ⊤M22Y . As a result, we
have:

Tσ (x̃;X,Y ) = (FX + UY )σ((X⊤M11 + Y ⊤M21)x̃), (71)

for the case of elementwise activations, and:

Tsoftmax(x̃;X,Y ) = (FX + UY )

[
softmax

([
(X⊤M11 + Y ⊤M21)x̃

x̃⊤M11x̃

])]
1:n

, (72)

for the case of softmax activation.

By revisiting the definition of Tσ
∗ (x;X,Y ) and comparing Tσ

∗ and Tsoftmax
∗ presented here with

those in Appendix B, it is clear that the only distinction lies in the specific matrices involved. Con-
sequently, the proof process for Theorem 6 can be directly applied to obtain the same results.
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