
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Deciphering PerceptualQuality in Colored Point Cloud:
Prioritizing Geometry or Texture Distortion?

Anonymous Authors

ABSTRACT
Point cloud contents represent one of the prevalent formats for

3D representations. Distortions introduced at various stages in the

point cloud processing pipeline affect the visual quality, altering

their geometric composition, texture information, or both. Under-

standing and quantifying the impact of the distortion domain on

visual quality is vital to driving rate optimization and guiding post-

processing steps to improve the overall quality of experience. In

this paper, we propose a multi-task guided multi-modality no ref-

erence metric for measuring the quality of colored point clouds

(M3-Unity), which utilizes 4 types of modalities across different

attributes and dimensionalities to represent point clouds. An atten-

tion mechanism establishes inter/intra associations among 3D/2D

patches, which can complement each other, yielding both local and

global features, to fit the highly nonlinear property of the human

vision system. A multi-task decoder involving distortion type clas-

sification selects the best association among 4 modalities based

on the specific distortion type, aiding the regression task and en-

abling the in-depth analysis of the interplay between geometrical

and textural distortions. Furthermore, our framework design and

attention strategy enable us to measure the impact of individual at-

tributes and their combinations, providing insights into how these

associations contribute particularly in relation to distortion type.

Extensive experimental results on four benchmark datasets consis-

tently outperform the state-of-the-art metrics by a large margin.

The code will be released.

CCS CONCEPTS
• Human-centered computing → Visualization design and
evaluation methods; • Computing methodologies → Percep-
tion.

KEYWORDS
Point cloud, Objective quality assessment, Multi-modal, multi-task,

Geometry and texture

1 INTRODUCTION
Point cloud is prevailing among the available 3D imaging formats

nowadays [16]. It consists of points in 3D space representing a

geometric object realistically with various attributes, such as color,

reflectance, and more. However, from acquisition to compression,
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Figure 1: A high level illustration of the proposed M3-Unity.
The distortion can be divided into geometry and texture
within the point cloud. The distortion type serves as a prior
in shaping the perceptual quality through the HVS. The in-
terplay of two attributes in representing entangled distortion
adds complexity to this process.

transmission, and rendering, the quality of a point cloud undergoes

degradation. Consequently, there is a demand for effective and effi-

cient objective Point Cloud Quality Assessment (PCQA) metric to

guide the design, optimization, and parameter tuning of point cloud

processing pipelines. PCQA metrics have been extensively utilized

in various applications, including visual tasks such as restoration

[10, 36], compression [22, 37], as well as for quality monitoring in

various systems [9, 26, 38, 41].

Among all the visual artifacts for point clouds, the encountered

distortions can generally be categorized into geometric and textural

distortions, which can be created by compression algorithms as

well as other noise-generation methods. Particularly in the con-

text of lossy compression, approaches have been devised to encode

geometric coordinates or associated attributes, depending on appli-

cation requirements [33]. Given the necessity of color attributes for

human visualization, it becomes imperative to combine algorithms

addressing both geometric and textural to holistically represent the

content. Therefore a large number of studies have been conducted

to evaluate the quality of the point cloud in recent years subjectively

and objectively [4]. Subjective studies investigate the quality of the

point cloud under different distortion types of both geometry and

texture attributes or of a single attribute [5]. Objective metrics also

follow a similar paradigm to evaluate the quality. Early objective

metrics primarily focused on geometric distortions, neglecting other

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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attributes. Geometric-based metrics, from a simple displacement

such as point-to-point or point-to-plane [39] distance in the Euclid-

ian space to a more complex geometric feature such as the point-

to-distribution [18] and density-to-density [1] distances, examine

the quality only from a geometric perspective. Color-based metrics

[40, 43] produce a score computed only from color attributes. How-

ever, these metrics are hard to disentangle when distortions affect

both attributes simultaneously, even when one attribute is not ex-

plicitly distorted (for example, distortion in geometry will affect the

texture). Therefore the landscape has evolved to incorporate both

geometry and texture [3, 7, 30, 51], with several approaches integrat-

ing multimodal learning for PCQA. MM-PCQA [56] first introduces

multimodal learning for PCQA, combining uncolored point clouds

and projected texture maps. MFT-PCQA [24] further improves the

performance with a mediate-fusion strategy. pmBQA [47] perceives

the quality by using four homogeneous modalities. Despite these

advancements, existing metrics often overlook certain dimensional-

ities and fail to exploit the full potential of both attributes. Besides,

the role of the distortion type is ignored. Furthermore, Lazzarotto

et al [19] reveal that alternative trade-offs between geometry and

texture can potentially provide better visual quality in a pair-wise

comparison experiment. These researches shed certain light on how

such interplay varies based on the distortion type as a first step

towards this underexplored aspect in PCQA in a subjective manner.

To the best of our knowledge, none of the existing metrics has

explored how the geometric/textural distortion and their interplay

contribute to the perceived quality of the point cloud automatically.

Therefore, a more considerate design that can consider the interplay

of such attributes in the Human Vision System (HVS) is needed.

Understanding these attributes and their interrelationships is

crucial in various real-world applications. Nevertheless, the relative

significance of each attribute representation as well as the interplay

between them remain ambiguous in the context of PCQA, which

reflects human perception preferences. As for which attribute is

more important, we refer to specific distortion type. To this end,

our metric, Multi-Modality and MUlti-task no reference quality
assessment for colored point clouds, termedM3-Unity, investigate
two attributes and their interplay for perceptual quality assessment.

In particular, we use additional 3D normal and multi-view projec-

tions to retain the intrinsic characteristics of the point cloud and

mimic the imaging process of HVS. Additionally, we measure the re-

lationship between geometry and texture and their interplay given

specific distortion type, as demonstrated in Figure 1. We evaluate

the performance of the proposed metric on 4 independent datasets,

i.e., SJTU-PCQA [49], WPC [21], Broad Quality Assessment of Static

Point Clouds (BASICS) [2] and MJ-PCCD [19]. Our metric outper-

forms the state-of-the-art performance in terms of Pearson and

Spearman correlation coefficients; moreover, the whole framework

design elucidates the interplay between geometric and textural

distortions, advancing the understanding of PCQA in real-world

applications. To summarize, our key contributions are fourfold:

• We propose M3-Unity, a metric that uses 4 modalities across

different attributes in different dimensionalities to represent

the point cloud. The multi-task decoder involving distor-

tion type classification selects the best combination among

4 modalities based on the distortion type, aiding in the re-

gression task.

• The performance of M3-Unity and its variant demonstrates

clear advantages over the state-of-the-art metrics across 4

datasets, showcasing substantial gains in comparison.

• We apply attention mechanism to establish inter/intra asso-

ciations among patches (especially within dimensionality,

we keep the spatial correspondence), which can complement

each other, yielding both local and global features, to fit the

highly nonlinear property of HVS.

• We delve into the relationship between geometric and tex-

tural distortion in terms of PCQA. Extensive experiments

are conducted to determine whether geometric, textural, or

their interplay is prioritized under various distortion types.

2 RELATEDWORK
2.1 Subjective assessment of point clouds
Subjective quality assessment experiments are widely regarded as

the most reliable method to evaluate the quality of point clouds, the

interested reader may refer to [4] for a more detailed overview. Re-

cently, many subjective studies have been conducted and reported

in the literature to assess the performance of point cloud compres-

sion distortions in terms of visual quality. Lots of works present the

subjective result for standard point cloud compression, such as base

point cloud compression method from MPEG [29]; octree prun-

ing using the Point Cloud Library and projection-based method

implemented in the 3DTK toolkit [12]; Video-based Point Cloud

Compression (VPCC) and Geometry-based PCC (GPCC) variants

[6, 46]. Later, other distortion types are introduced in the SJTU-

PCQA dataset [49] to mimic the acquisition and re-sampling noise

besides the compression distortions. Liu et al [21] distorts the source
point clouds with 4 processes to simulate real-world application

scenarios and enrich the contents beyond those addressed byMPEG

and JPEG. Liu et al [25] construct the largest dataset so far with

pseudo-quality scores to support neural network training. 31 types

of impairments covering a wide range of impairments during point

cloud production, compression, transmission, and presentation are

included. More recently, learning-based point cloud compression

techniques have been considered. AK et al [2] include the GeoCNN
compression distortion. Lazzarotto et al [19] first analyzes the im-

pact of different configuration parameters on the performance of

MPEG and JPEG Pleno compression with the aid of objective quality

metrics.

2.2 Objective assessment of point clouds
Objective PCQA studies algorithms automatically evaluate the vi-

sual quality of point clouds as human judgments, it can be classified

as Full-Reference (FR), Reduced-Reference (RR) and No-reference

(NR) based on the availability of reference information. In this paper,

we focus on deep-learning-based NR PCQA models.

PKT-PCQA [20] adopts a progressive knowledge transfer to con-

vert the coarse-grained quality classification knowledge to the fine-

grained quality prediction task. The key clusters are extracted based

on global and local information, an attention mechanism is incor-

porated into the network design. Structure Guided Resampling

(SGR) [58] considers that HVS is highly sensitive to structure infor-

mation, it first exploits the unique normal vectors of point clouds

to execute regional pre-processing. Then, three groups of quality-

related features are extracted. Both the cognitive peculiarities of
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the human brain and naturalness regularity are involved in the

designed quality-aware features. These metrics belong to the single

task with unimodal, which can not integrate the perception for

both point cloud and image modality and is easy to overfit on the

training data with only regression loss [45].

PQA-Net [23] takes 6 orthographic projections of point clouds

as inputs, features are extracted after convolution neural network

blocks, and they share a distortion identification and a quality

prediction module to obtain final quality scores. GPA-net [34] pro-

poses a graph convolution kernel, i.e., GPAConv, which attentively

captures the perturbation of structure and texture, within a multi-

task framework. A coordinate normalization module is utilized to

stabilize the results of GPAConv under shift, scale and rotation

transformations. PQA-Net [23] and GPA-Net [34] account for one

main task (quality regression) and other auxiliary tasks (distortion

type/degree predictions) when accessing only one modality of the

point cloud.

IT-PCQA [50] utilizes the rich prior knowledge in images and

builds a bridge between 2D and 3D perception in the field of quality

assessment, a hierarchical feature encoder and a conditional discrim-

inative network is proposed to extract latent features and minimize

the domain discrepancy. pmBQA [47] proposes a projection-based

blind quality indicator via multimodal learning by using four ho-

mogeneous modalities (i.e., texture, normal, depth and roughness).

MM-PCQA [56] partitions point clouds into sub-models for local

geometry representation and renders them into 2D projections

for texture. A symmetric cross-modal attention module is used

for integrating quality-aware information. IT-PCQA [50] reveals

the potential connection between different types of media con-

tent for quality assessment. pmBQA [47] extract modality features

by texture, normal, depth and roughness on 2D; MM-PCQA [56]

proves the effectiveness of cross-modality perception for PCQA

with texture on 2D and geometry on 3D. None of them considers

the impact of distortion types. Remarkably, existing methods have

not undertaken a comprehensive assessment that considers both

dimensionality and attribute representations, while also incorpo-

rating multimodal within the framework of distortion types.

3 METHOD
We illustrate the proposed M3-Unity as shown in Figure 2. First,

we preprocess the original colored point cloud data and extract

multimodal features with 3D and 2D encoders, respectively (§3.2).

Second, we introduce the cross-attributes attentive fusion mod-

ule, which captures the local and global associations at both the

intra- and inter-modality perception (§3.3). Last, we employ dual

decoders to jointly learn both quality regression and distortion-type

classification (§3.4).

3.1 Multimodal geometry-texture input
processing

A colored point cloud, denoted as P, is a set of 𝑁 3D point elements.

Each point element is assigned a 3D coordinate pcoord ∈ R3 and an

RGB color value pRGB ∈ R3 as features: P = {(pcoord
𝑖

, pRGB
𝑖

)}𝑁
𝑖=1

.

We introduce how the point cloud data is processed into multiple

modalities of geometry and texture features as follows.

Processing the point cloud as 3D patches. To deal with dense point

clouds of very large 𝑁 with common neural architectures for point

cloud encoding, we first decompose each point cloud into patches

following [44, 56]. we obtain a set of 𝑛 = 6 point cloud patches

from each of the original point cloud P ⊂ P, and each P is of

cardinality 𝑘 . To do this, we adopt Farthest Point Sampling (FPS)

to obtain a set of anchor points and find the K-Nearest Neighbors

(KNN) for each point. For each point cloud patch P, we describe
the geometry and texture features for each point element, such

that the texture features are essentially the RGB features ptex =

pRGB ∈ R3, and the geometry feature is the 3D coordinate pcoord,
augmented by concatenating a normal vector pnormal

calculated

from the original point cloud as pgeo = [pcoord, pnormal] ∈ R6, i.e.
P = {(pgeo

𝑖
, ptex

𝑖
)}𝑘

𝑖=1
. Additionally, P ∈ P where P is defined as the

set of all 3D point patches extracted from the same point cloud.

Processing the point cloud as projected views. We further project

the colored point cloud to𝑚 = 6 2D views following Liu et al. [23],

which are evenly distributed in the 3D space from the∞ and −∞
of the three Cartesian coordinate axes. For each 2D view, the color

RGB values from the 3D points are ray-casted to the pixel space,

and we calculate depth and normal maps from the 3D geometry,

resulting in the 2D geometry feature Xgeo ∈ R𝐻×𝑊 ×4
and the 2D

texture feature Xtex ∈ R𝐻×𝑊 ×3
, where 𝐻 ×𝑊 is the pixelated

resolution of the 2D projections. Similarly we define X as the set of

six projected views from a point cloud: X = [Xgeo,Xtex] ∈ X.

3.2 Point cloud multimodal encoding
The goal of multimodal encoding is to represent 3D point cloud

patches and 2D projection views as embeddings and adapt those

embeddings for multimodal fusion.

For the 3D modality, we opt for PointNet++ [32] to encode each

3D point cloud patch P = {(pgeo
𝑖

, ptex
𝑖

)}𝑘
𝑖=1

⊂ P while separating
attributes from geometry and texture:

hgeo
3D

= PointNet++

(
{pgeo

𝑖
}𝑘𝑖=1

)
; (1)

htex
3D

= PointNet++

(
{ptex𝑖 }𝑘𝑖=1

)
. (2)

hgeo
3D

∈ R𝑑 and htex
3D

∈ R𝑑 are 𝑑-dimensional embeddings of 3D

geometry and texture features. Note that to encode texture feature,

we still use the 3D coordinates to obtain spatial processes in the

PointNet++ such as the farthest-point sampling and grouping.

For the 2D modality, we choose ResNet50 [17] as the 2D encoder

that applies to the geometry and texture channels Xgeo
and Xtex

separately of each 2D project view X ∈ X:
hgeo
2D

= ResNet

(
Xgeo

)
; (3)

htex
2D

= ResNet

(
Xtex

)
. (4)

Likewise, hgeo
2D

∈ R𝑑 and htex
2D

∈ R𝑑 are encoded as 𝑑-dimensional

2D geometry and texture embeddings.

3.3 Cross-attribute attentive fusion
The core mechanism of attention gains popularity for capturing the

associations when processing images [11, 28, 44, 53]. We employ

patch attention [15, 54] to capture the local and global associations

for both intra- and inter-modality features, followed by a symmetric
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Figure 2: M3-Unity architecture: no-reference multi-modality and multi-task learning for PCQA.

fusion function that averages the cross-attented features to model

the symmetric interaction of the source pair of features.

Symmetric intra-modality attentions. For each 3D point cloud

patch P ∈ P, we employ intra-modality attention by applying the

symmetric fusion function Ψ∗ (·, ·) to encode the interrelationship

of geometry and texture features. For simpler notation, we assign a

random sequence for the patches and arrange the set of the features

extracted features hgeo
3D

and htex
3D

for all patches in forms of matrices

as Hgeo

3D
∈ R𝑛×𝑑 and Htex

3D
∈ R𝑛×𝑑 .

The 3D intra-modality attentive fusion becomes

Hintra

3D
= Ψ∗ (Hgeo

3D
,Htex

3D
) ∈ R𝑛×𝑑 . (5)

hintra
3D

= Mean(Hintra

3D
) ∈ R𝑑 , (6)

whereMean(·) is the mean pooling over the sequence dimension

to achieve the global feature for the entire point cloud from aggre-

gating all patches in an attentive manner. Ψ∗ (·, ·) is the symmetric

fusion function based on the attention function Ψ(·, ·) such that:

Ψ∗ (x, x̃) = 1

2

(Ψ(x, x̃) + Ψ(x̃, x)) , (7)

which assumes equal sequence dimensions 𝑙1 = 𝑙2 of the Query and

Key in the transformer. And Ψ(·, ·) is the basic fusion transformer,

which is computed by an attentive representation of a target modal-

ity referred to a reference modality in the multi-head self-attention.

Similarly for the 2D modality X, we define Hgeo

2D
∈ R𝑚×𝑑

and

Htex

2D
∈ R𝑚×𝑑

, and the 2D intra-modality attention is

hintra
2D

= Mean(Hintra

2D
) = Mean(Ψ∗ (Hgeo

2D
,Htex

2D
)) ∈ R𝑑 . (8)

We clarify that the random sequence assignment would not

affect the final output feature detailed as follows, since the attention

function is equivariant to the permutation of the sequence, and we

will average over the sequence dimension to aggregated feature

output.

Symmetric inter-modality attention. For inter-modality attentive

features, we cross-attend each pair of 3D point cloud patch and

2D projection view in the combinatorial set {P,X} ∈ P × X. We

employ the inter-modality attention by applying Ψ∗ (·, ·) across 3D
and 2D modalities. Note that this result can only be achieved when

we have the same number of 3D patches and 2D projections 𝑛 =𝑚

for each point cloud. In the rest of this section, we will discard the

notation of𝑚 and consistently use 𝑛 for |P| = |X| = 6 to reduce

confusion.

Hgeo-geo

inter
= Ψ∗ (Hgeo

3D
,Hgeo

2D
) ∈ R𝑛×𝑑

Hgeo-tex

inter
= Ψ∗ (Hgeo

3D
,Htex

2D
) ∈ R𝑛×𝑑

Htex-geo

inter
= Ψ∗ (Htex

3D
,Hgeo

2D
) ∈ R𝑛×𝑑

Htex-tex

inter
= Ψ∗ (Htex

3D
,Htex

2D
) ∈ R𝑛×𝑑 .

(9)

Similar to Eq. 6, we apply average poolingMean(·) to obtain global

inter-modality attentive features hgeo-geo
inter

, hgeo-tex
inter

, htex-geo
inter

, and

htex-tex
inter

for the entire point cloud.

Feature aggregation. We aggregate all multi-modal geometry and

texture features as well as all intra- and inter-modality attentive

features for the final feature encoding:

h = E
P𝑖 ∈P

[hgeo
3D,𝑖

+ htex
3D,𝑖 ] + E

X𝑗 ∈X
[hgeo

2D, 𝑗
+htex

2D, 𝑗 ]

+
hintra
3D

+hintra
2D

2

+
hgeo-geo
inter

+hgeo-tex
inter

+ htex-geo
inter

+htex-tex
inter

4

.

(10)

The resulting feature h serves as the input to the decoder heads for

final predictions, to be detailed as follows.
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3.4 Multi-task learning with dual decoders
Dual decoders. We define dual decoders using multi-layer per-

ception for quality regression and distortion-type classification

respectively with a regression head𝜓regression and a classification

head 𝜓
classification

, both taking the aggregated feature h as the in-

put. The regression head𝜓regression is a two-layer ReLU-MLP that

outputs 𝑦 the quality score:

𝑦 = 𝜓regression (h) ∈ R. (11)

The classification head𝜓
classification

is a three-layer ReLU-MLP with

a softmax activation attached to the output layer, which gives 𝑧 the

one-hot prediction of classification type:

𝑧 = 𝜓
classification

(h) ∈ R𝑐 , (12)

where 𝑐 is the number of types of distortions.

Learning loss. We define and jointly learn the dual decoders by

a triplet learning loss L for a mini-batch with size of 𝑛 as:

L = 𝜆1Lmse + 𝜆2Lrank
+ 𝜆3Lce, (13)

where 𝜆1, 𝜆2, 𝜆3 ∈ [0, 1] are importance scores used to control the

proportion of each type of loss.

Specifically, we compute Mean Square Error (MSE) loss between

predicted quality scores and human scores as:

Lmse =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦′𝑖 )
2 . (14)

We compute ranking loss of the predicted quality scores and

human scores as:

L
rank

=
1

𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑙𝑖 𝑗 , where

𝑙𝑖 𝑗 =max

(
0,

��𝑦𝑖 − 𝑦 𝑗
�� − (−1)1(𝑦𝑖<𝑦 𝑗 ) ·

(
𝑦′𝑖 − 𝑦′𝑗

))
.

(15)

Here 𝑖 and 𝑗 are the corresponding indexes for two point clouds in

a mini-batch, and 1(·) is the indicator function.
We compute the cross-entropy loss of the predicted distortion

type and the ground-truth labels:

Lce =
1

𝑛

𝑛∑︁
𝑖=1

−
(
𝑧′𝑖 log(𝑧𝑖 ) + (1 − 𝑧′𝑖 ) log(1 − 𝑧𝑖 )

)
(16)

4 EXPERIMENTAL SETUP
Datasets. Weemploy the SJTU-PCQA [49],WPC [21], BASICS [2]

and MJ-PCCD [19] datasets for validation. SJTU-PCQA includes

9 reference point clouds and each one is corrupted with 7 distor-

tion types (octree-based compression, color noise, downscaling,

downscaling & color noise, downscaling & geometry Gaussian

noise, geometry Gaussian noise, color noise & geometry Gaussian

noise), which generates 378 distorted stimuli. WPC contains 20 ref-

erence point clouds with each one degraded under 5 distortion types

(VPCC, Gaussian noise, downsampling, GPCC (Octree/Trisoup)),

leading to 740 distorted stimuli. BASICS comprises 75 point clouds

from 3 different semantic categories. Each point cloud is compressed

with 4 different algorithms (geoCNN, GPCC-octree-RAHT, GPCC-

octree-Predlift, VPCC) at varying compression levels, resulting in

1494 processed stimuli. MJ-PCCD was created by compressing 6

point clouds from the JPEG Pleno test set at 4 different bitrates with

the GPCC, VPCC, and JPEG Pleno standards, producing a total of

213 distorted stimuli.

Evaluation Criteria. Three commonly used evaluation criteria

are used to reflect the relationship between objective scores and

subjective scores: (1) Pearson Linear Correlation Coefficient (PLCC),

whichmeasures the linearity of prediction; (2) Spearman Rank-order

Correlation Coefficient (SRCC), which measures the monotonic-

ity of prediction; (3) Root MSE (RMSE), which measures the error

of prediction. Higher values of PLCC and SRCC indicate better

performance in terms of correlation with human opinion, while

lower RMSE indicates better consistency. A five-parametric logistic

regression is additionally adopted to fit the relationship between

the subjective scores and the objective scores [8]

Comparable methods. We selected 13 state-of-the-art PCQA met-

rics for comparison, which consist of 5 FR metrics, 2 RR metrics and

6 learning-based NR metrics. The FR metrics include PCQM [30],

GraphSIM [51], PointSSIM [3], MPED [52] and PointPCA [7]. The

RR metric are PCM-RR [42] and RR-CAP [59]. The NR metrics in-

clude 3D-NSS [55], IT-PCQA [50], VS-ResNet [14], MM-PCQA [56],

GMS-3DQA [57].

Implementation details. The proposed M3-Unity is implemented

based on the PyTorch [31].We use Adam optimizer [27] with weight

decay as 1e-4, the initial learning rate is set as 5e-5, and the batch

size is set as 4. The model is trained for 100 epochs. Specifically, we

set the cardinality 𝑘 of a local point cloud patch as 2048, the number

of local patches and the number of image projections both equal

to 6. The projected images with the resolution of 1920×1080, the
cropped image patches at the resolution of 224×224. We use Point-

Net++ [32] as the point cloud encoder and initialize ResNet50 [17]

with a pre-trained model on ImageNet [13]as the image encoder.

The multi-head attention module employs 8 heads and the feed-

forward dimension is 2048. The MOS values among the datasets

are scaled between [1, 10]. 𝜆1, 𝜆2 and 𝜆3 are all equal to 1. Fol-

lowing the practices in [23], We employ a k-fold cross-validation

strategy to evaluate the performance of the proposed method ac-

curately. We conduct 9/5/6-fold cross-validation for SJTU-PCQA,

WPC and MJ-PCCD datasets and report average scores as the final

performances. For the BASICS dataset, we follow the 60%-20%-20%

training-validation-testing strategy and compute the performance

on the test set. Notably, there is no content overlap between train-

ing and testing sets. For FR PCQA metrics requiring no training,

we assess them on the same testing sets.

5 RESULTS
5.1 Overall Performance
Results of SRCC and PLCC on 4 datasets for the proposed M3-Unity

and other 13 PCQAmetrics are shown in Table 1. First, the proposed

M3-Unity significantly outperforms the compared metrics in terms

of SRCC on all datasets. Second, compared with GMS-3DQA, which

uses the projection-based grid mini-patch sampling only from im-

age modality, the PLCC decreases by 0.017 on the MJ-PCCD. One

possible reason is there are super dense/sparse point clouds in

MJ-PCCD. Therefore, the projection takes effect when revealing

the overlap/hole. While compared with MM-PCQA, which uses 2

modalities from 3D and 2D, M3-Unity is better across 4 datasets,



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Performance comparison among the proposed and the state-of-the-art PCQA metrics on SJTU-PCQA, WPC, BASICS,
and MJ-PCCD datasets. Best in bold and second with underlined fonts. Please note that the state-of-the-art results were taken
from the literature, often with different training strategies and splits, and not independently validated by the authors.

Category Method

SJTU-PCQA WPC BASICS MJ-PCCD

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

FR

PointSSIM [3] 0.687 0.714 0.454 0.467 0.692 0.725 0.467 0.597

PCQM [30] 0.864 0.885 0.743 0.750 0.810 0.888 0.779 0.858

GrahSim [51] 0.878 0.845 0.583 0.616 / / 0.758 0.844

MPED [52] 0.898 0.915 0.620 0.618 0.761 0.835 0.735 0.811

PointPCA [7] 0.907 0.932 0.890 0.894 0.866 0.926 0.834 0.702

RR

PCM-RR [42] 0.482 0.336 0.310 0.343 0.436 0.518 0.497 0.636

RR-CAP [59] 0.758 0.769 0.716 0.731 0.558 0.740 0.550 0.735

NR

IT-PCQA [50] 0.630 0.580 0.568 0.561 0.310 0.302 0.658 0.807

3D-NSS [55] 0.714 0.738 0.648 0.651 0.617 0.657 0.446 0.411

ResSCNN [25] 0.810 0.860 0.735 0.752 0.628 0.682 0.759 0.842

VS-ResNet [14] 0.830 0.860 0.760 0.770 0.711 0.852 0.526 0.583

MM-PCQA [56] 0.910 0.923 0.841 0.856 0.831 0.882 0.860 0.898

GMS-3DQA [57] 0.911 0.918 0.831 0.834 0.855 0.930 0.879 0.936
M3-Unity(Proposed) 0.947 0.961 0.900 0.900 0.872 0.937 0.903 0.919

Table 2: Cross-dataset validation among SJTU-PCQA, WPC, BASICS and MJ-PCCD datasets. Both the training and testing are
on the complete dataset.

Test

SJTU-PCQA WPC BASICS MJ-PCCD

Train SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE

SJTU-PCQA – – – 0.444 0.473 2.020 0.537 0.671 0.794 0.457 0.701 0.835

WPC 0.821 0.841 1.314 – – – 0.617 0.712 0.752 0.643 0.767 0.751

BASICS 0.523 0.559 2.013 0.509 0.514 1.967 – – – 0.825 0.867 0.582

MJ-PCCD 0.635 0.653 1.838 0.440 0.507 1.976 0.779 0.827 0.602 – – –

that’s because we utilized multi-attributes for both dimensionali-

ties and the interplay among them. In summary, M3-Unity demon-

strates robust and competitive performance across 4 benchmarks.

This validates our motivation that incorporating multi-attributes

in both dimensionalities and the interplay contributes to improved

perceptual quality inference.

5.2 Cross Dataset Validation
To verify the generalization and robustness of the proposed M3-

Unity, we conduct cross-dataset experiments among all datasets.

The experimental results are shown in Table 2. From Table 2, we

can see that M3-Unity has good generalization performance, the

cross-dataset performance is even higher than certain FR PCQA

metrics, for example, the performance is higher than PointSSIM

when training on WPC and testing on SJTU-PCQA (the SRCC of

MM-PCQA [56] is 0.769, and the PLCC of CoPA [35] is 0.643) and

MJ-PCCD datasets.

5.3 Time and complexity analysis
M3-unity contains 89.1M parameters using around 37GB GPUmem-

ory with batch size 4 and has an average inference time of 0.55

seconds for 1 PC from the SJTU-PCQA dataset on A100.

MOS: 4.591

Geometry-Only: 5.642     PointSSIM: 4.327

Texture-Only: 4.734     Y_PNSR:    4.445

MOS: 9.117

Figure 3: Exemplified point cloud Unicorn comparing pre-
dictions between learning-based metrics and traditional FR
metrics. The left side is the reference version of Unicorn, and
the right side is the distorted version of it. The distortion is
geometry Gaussian noise: all the points are augmented with
a random geometric shift within 0.02%.

5.4 Ablation Study
We conduct an ablation study onM3-Unity to examine the impact of

key components for the performance. Additionally, in the context of

the 4 datasets characterized by distinct content and distortion types,

we categorized each dataset into Human and Animal (HA) and

Inanimate Object (IO) subsets and reported the related performance.

Note: WPC only includes IO.
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Table 3: Ablation study of M3-Unity on key components, i.e., distortion type, attention, and modality. The numbers in brackets
denote the performance of the IB and HA, with the best performance highlighted in blue and orange, respectively.

Settings SJTU-PCQA WPC BASICS MJ-PCCD

SRCC PLCC ACC SRCC PLCC ACC SRCC PLCC ACC SRCC PLCC ACC

M3-Unity

0.947
(0.933|0.964)

0.961
(0.949|0.964)

0.728

(0.583|0.795)
0.900

/

0.900

/

0.981

/

0.872

(0.867|0.889)

0.937
(0.925|0.929)

0.847
(0.810|0.840)

0.903
(0.858|0.892)

0.919

(0.908|0.905)

0.643
(0.545|0.552)

(Distortion Type)

/wo DT classification

0.938

(0.930|0.963)

0.951

(0.948|0.966)

/

0.898

/

0.898

/

/

0.856

(0.860|0.872)

0.924

(0.916|0.933)

/

0.900

(0.873|0.883)
0.924

(0.917|0.920) /

(Attention)

/wo patch attention

0.919

(0.876|0.946)

0.941

(0.921|0.950)

0.537

(0.446|0.671)

0.849

/

0.855

/

0.969

/

0.684

(0.691|0.777)

0.733

(0.802|0.807)

0.730

(0.525|0.740)

0.846

(0.808|0.853)

0.869

(0.847|0.881)

0.590

(0.611|0.587)
(Modality)

/wo 2D projection

0.914

(0.886|0.947)

0.947

(0.938|0.954)

0.595

(0.542|0.610)

0.608

/

0.638

/

0.792

/

0.770

(0.759|0.771)

0.638

(0.850|0.815)

0.610

(0.565|0.650)

0.736

(0.533|0.776)

0.812

(0.664|0.838)

0.492

(0.462|0.403)

/wo 3D point cloud

0.943

(0.900|0.967)
0.957

(0.941|0.971)
0.773

(0.571|0.795)
0.911
/

0.912
/

0.989
/

0.879
(0.872|0.890)

0.937
(0.930|0.945)

0.843

(0.905|0.880)
0.896

(0.860|0.880)

0.931
(0.912|0.936)

0.624

(0.575|0.636)

Impacts of distortion type classification. To verify the effect of the
distortion type classification module, we compare the performance

with only the regression decoder. The result is in Table 3 (Distor-

tion Type). There is a slight performance drop for the 4 datasets

when the distortion type classification task is omitted. Significantly,

the prediction accuracy (ACC) of distortion types differs consid-

erably between the WPC and MJ-PCCD datasets. ACC represents

the proportion of correct predictions out of the total. There is no

discernible direct correlation between the accuracy of distortion

type classification and the accuracy of quality prediction with the

current datasets.

Impacts of the modalities. Intuitively, combining 4 modalities can

gain better visual representations than unimodal. The performance

comparison of the 4 datasets is in Table 3. The performance of both

uni-modal-based models is inferior or quite similar to M3-Unity ex-

cept for theWPC dataset, which suggests that both modalities make

contributions to creating perceptual representations. What’s more,

image-based modality is more important than point cloud-based

since HVS takes pictures of point clouds first and then processes

the visual stimuli.

Impacts of the attention. The self-attention mechanism calcu-

lates semantic affinities between different items in a sequence of

data [15], i.e., we capture the local context within the point cloud,

by enhancing input embedding with the support of FPS and KNN

search. Upon removing the attention module, the results are pre-

sented in Table 3 (Attention). M3-Unity exhibits superiority in

comparison to the model without the attention mechanism.

Our investigation revealed that M3-Unity and its variants con-

sistently demonstrate superior performance on HA compared to

IO data, as measured by SRCC across all datasets, with the number

of HA being more than or equal to that of IO for SJTU-PCQA and

MJ-PCCD datasets. Specifically, we observed that patch attention

predominantly influences performance for the SJTU and BASICS

datasets, whereas 2D projection assumes a pivotal role for the WPC

and MJ-PCCD datasets within the framework of M3-Unity, rela-

tive to other components. Upon further analysis, we found that

excluding the patch attention component resulted in a performance

drop of 9.4% for IO data and 6.2% for HA data. Similarly, when

excluding the 2D projection component, the performance drop was

more pronounced, with reductions of 21.8% for IO data and 9.3%

for HA data. Remarkably, IO data consistently exhibited a greater

decline in performance compared to HA data across the datasets,

except for the BASICS dataset, where the performance decrement

was comparable for both categories.

5.5 Discussion
We examine the interplay of geometry and texture distortion repre-

sentations in composite distortions and explore their associations

across dimensionalities.

Interplay between geometry and texture. To further explorewhich

distortion representation is allocated more attention when encoun-

tering various degradations, we predict the quality with geometry-

only (3D position, normal point clouds, 2D depth, normal maps)

and texture-only (3D texture point cloud, 2D texture map) features,

separately. The performance on the 4 datasets is in Table 4.

In addition, we assessed the quality of the distorted point cloud

by examining it from both geometry-only and texture-only per-

spectives in comparison to the reference one. Figure 3 illustrates

the results obtained by the variants of M3-Unity alongside the re-

sults from FR PCQA metrics. Specifically, we use the average of

norm and curvature of PointSSIM [3] as the geometry measure-

ment, while Y_PNSR serves as the texture measurement. In the

FR manner, Y_PNSR exhibits greater similarity to the referenced

MOS (9.117) than geometry, underscoring the predominant role

of texture-related representation in predicting the quality of the

Unicorn point cloud. Notably, our model’s prediction (Texture-Only)

aligns closely with the distorted Unicorn point cloud (MOS: 4.591),

indicating that the learning-based model concludes consistent with

the FR metric. This verification underscores the significant impact

of texture on geometry Gaussian noise.

Interplay among the associations. We’ve identified 6 association

features in §3.3. To understand their contributions separately, To see

how each feature contributes, we compared their cosine similarity

to the final feature map before decoding [48]. By ranking these fea-

tures based on similarity, we observe their influence on perceptual

quality across distortion types and datasets, as depicted in Figure

4, we draw the following observations: (1)Mixed Distortion in
Colored Point Clouds: The most important factor for quality here



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: Performance comparison among the proposed metric with different variants on 4 datasets.

Settings

SJTU-PCQA WPC BASICS MJ-PCCD

SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE

M3-Unity 0.947 0.961 0.834 0.900 0.900 0.989 0.872 0.937 0.375 0.903 0.919 0.643

Texture-Only 0.942 0.956 0.675 0.895 0.894 1.021 0.855 0.905 0.457 0.874 0.927 0.413
Geometry-Only 0.888 0.915 0.948 0.644 0.670 1.692 0.837 0.905 0.677 0.818 0.860 0.561

Associations among 4 modalities
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Figure 4: Visualization of the 6 associations’ average rankings per distortion type across 4 datasets (tex2D_geo2D, tex3D_geo3D,
tex2D_tex3D, tex2D_geo3D, geo2D_tex3D, geo2D_geo3D). The result is computed in the sameway as described in Sec §4 Implementation
details. Lower values indicate higher perceptual quality importance. The datasets in order from left to right are SJTU-PCQA, WPC,

BASICS, andMJ-PCCD. The distortion types in order from top to down are as described in Sec §4 datasets and overall ranking.

Figure 5: Average ranking grouped by different modality, attributes, and dimensionality. Each bar represents a ranking.

is the association between 2D texture and 3D geometry. Follow-

ing closely is the association of geometry in both dimensionalities

(SJTU-PCQA and MJ-PCCD) and texture in both dimensionalities

(WPC and BASICS). The importance of the least crucial factor

varies depending on the specific type of distortion. (2) Compres-
sion: VPCC and GPCC’s quality is least influenced by 3D-related

association. VPCC distorts 2D images due to its projection-based

coding, while GPCC follows a geometry-based coding principle,

with attribute coding relying on decoded geometry, making the

correlations between 3D geometry and 3D texture less effective.

(3)Relative importance grouped bymodalities, attributes and
dimensionality: The average ranking of them is shown in Figure

5, which is accumulated based on Figure 4. It shows that 2D tex-

ture and 3D geometry are most influential. Additionally, geometry

distortion is more pronounced than texture for SJTU-PCQA and

MJ-PCCD, since GPCC and JPEG Pleno MJ-PCCD can produce su-

per dense/sparse stimuli and with uneven point distribution, and

SJTU-PCQA has more types of geometric distortion. 3D distortion is

more pronounced than 2D for WPC and MJ-PCCD datasets. Specif-

ically, we computed the average ranking for GPCC and JPEG Pleno

in MJ-PCCD, which are 3.38/3.68 and 2.7/4.3 for geometry/texture,

respectively, showing preference towards texture, which is in line

with the conclusion from previous experiment[19].

6 CONCLUSIONS
In this paper, we introduce a novel no-reference framework de-

signed for evaluating the quality of colored point clouds across

multiple modalities and tasks. The self-attention mechanism is em-

ployed to fuse modality-related features, therefore enhancing the

feature representations for quality assessment. Our framework en-

ables a comprehensive measurement of the contributions stemming

from both inter- and intra-associations, particularly concerning

distinct distortion types relevant to perceptual quality assessment.

In our investigations, we discovered that relying solely on 3D posi-

tional data may not suffice for accurately gauging geometric distor-

tion, and the interplay between the attributes is crucial in under-

standing the overall distortion. We observed notable performance

improvements by incorporating additional geometric information

such as surface normals and association features. Furthermore, We

draw conclusions about the prioritization of geometry/texture for

point cloud quality assessment, providing valuable insights for

bit allocation in point cloud compression and various high-level

computer vision tasks.
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